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ABSTRACT

Approximations to Continuous Processes

in Hierarchical Models

by

Amanda R. Cangelosi, Master of Science

Utah State University, 2008

Major Professor: Dr. Mevin Hooten
Department: Mathematics and Statistics

Models for natural nonlinear processes, such as population dynamics, have been

given much attention in applied mathematics. For example, species competition has

been extensively modeled by differential equations. Often, the scientist has pre-

ferred to model the underlying dynamical processes (i.e., theoretical mechanisms)

in continuous-time. It is of both scientific and mathematical interest to implement

such models in a statistical framework to quantify uncertainty associated with the

models in the presence of observations. That is, given discrete observations aris-

ing from the underlying continuous process, the unobserved process can be formally

described while accounting for multiple sources of uncertainty (e.g., measurement

error, model choice, and inherent stochasticity of process parameters). In addition

to continuity, natural processes are often bounded; specifically, they tend to have

non-negative support. Various techniques have been implemented to accommodate

non-negative processes, but such techniques are often limited or overly compromis-

ing. This study offers an alternative to common differential modeling practices by

using a bias-corrected truncated normal distribution to model the observations and
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latent process, both having bounded support. Parameters of an underlying continuous

process are characterized in a Bayesian hierarchical context, utilizing a fourth-order

Runge-Kutta approximation.

(54 pages)
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INTRODUCTION

Continuous Models of Bounded Systems

The dynamics of natural systems have been extensively studied by theoretical sci-

entists and applied mathematicians to describe the underlying processes (i.e., mech-

anisms) assumed to drive the phenomena of interest (e.g., population dynamics). For

various scientific and philosophical reasons, the underlying theoretical mechanism is

often assumed to be continuous in time, and thus the scientist assigns one of nu-

merous possible continuous process models, usually involving differential equations,

to describe the dynamical system of interest (e.g., Turchin, 2003, pp. 93-108). This

study addresses the need to quantify uncertainty associated with such mathematical

models, highlighting the advantage of a statistical approach. Statistical implemen-

tations of mathematical models for describing dynamical ecological systems are ap-

pearing more frequently in the literature (e.g., Wikle, 2003; Buckland et al., 2007;

Hooten and Wikle, 2007; Gianni, Pasquali, and Ruggeri, 2008; Johnson et al., 2008),

though they are often coarsely discretized. While there are situations that naturally

warrant the use of discrete models (e.g., matrix models, Caswell, 2001), this study

focuses on the implementation of continuous models to describe underlying processes,

even when the corresponding observations may be discrete.

In addition to continuity, natural processes are often bounded, meaning that

their quantification is restricted to some subset of the real number line. Almost ex-

clusively, natural processes are measured in quantities of mass, thus restricting the

continuous process model (as well as the observations) to non-negative realizations.

Numerous techniques have been utilized to accommodate issues of bounded support

(e.g., log-transformations), but often these techniques misrepresent system dynam-
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ics or fail to accommodate complicated non-linear models. When data contain zeros

as realizations (e.g., species competition; rainfall data; rare species counts), further

complications arise. A common but ad hoc approach is to add a small number so

that a log-transformation can be taken. While these practices are widespread, they

often do not represent the dynamics well. To accommodate the occurrence of ze-

ros in data, discrete probability models (e.g., Poisson) and zero-inflated models are

commonplace. However, discrete probability models are reasonable only when the

support of the data is discrete; this is not often the case for many measurements of

mass (e.g., plant basal area quadrat cover). Zero-inflated models are reasonable only

when a natural model exists for the zero process; however, in many situations, zero

data clearly belong to the same dynamical process as the data with positive support.

This study offers an alternative method of accommodating bounded data containing

zeros through the incorporation of a bias-corrected truncated normal model.

Objective

We focus on a general methodology that one may use to quantify the uncertainty

associated with a given continuous model, as well as introduce a bias-corrected trun-

cated normal distribution as a general and robust model for the data and underlying

dynamical process. The truncated normal distribution is particularly desirable over

the gamma or lognormal distributions, as it allows truncation boundaries to occur

anywhere along the real line; specifically, the truncated normal distribution allows

zero-valued realizations to have non-zero density. We show that within a hierarchical

framework (Berliner, 1996), a bias-corrected truncated normal data model can be

utilized to accommodate observations having bounded support. In addition, a simi-

lar bias-corrected truncated normal physical process model is introduced to describe

both single-species population growth (logistic growth) and interspecies competition
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(Lotka-Volterra equations, e.g., Edelstein-Keshet, 1988, pp. 224-231). Although the

example presented here contains non-negative integer observations, we implement the

truncated normal data model (which has continuous support) to demonstrate its gen-

eral utility.

We also utilize a fourth-order Runge-Kutta (RK4) approximation to the system

of differential equations in conjunction with Markov chain Monte Carlo (MCMC)

methods to implement the formal statistical model. While a high-order approxima-

tion, such as RK4, is not new to statistics (e.g., Rumelin, 1982; Shoji and Ozaki, 1998;

Scipione and Berliner, 1993), its implementation within a hierarchical framework is

underutilized. RK4 is a useful approximation, well-known for its accuracy, efficiency,

robustness, and applicability to dynamical processes of any finite dimension.

To illustrate our methods, we use a historical data set (Gause, 1934) containing

population measurements of Paramecium aurelia and Paramecium caudatum grown

in nutrient medium both separately and together. We focus on a subset of these data;

specifically, we use data from days 2 through 19 provided in Table 3 of Appendix I

of Gause’s The Struggle for Existence (pp. 144-145). While this particular data set

has been used in numerous studies (Leslie, 1957; Edelstein-Keshet, 1988; Pascual and

Kareiva, 1996; Lele, Dennis, and Lutscher, 2007), often serving as a textbook ex-

ample for biological logistic growth models, many previous studies utilize low-order

discretizations, wherein population size is exclusively modeled at times coinciding

with those of the observed data. In contrast, we augment the process so that it can

be modeled at arbitrarily small time increments. It should be noted that the focus

here is concerned mainly with the methods, while the data are used primarily for

illustration.

In the following section, the truncated normal distribution is briefly described

and the necessity of a bias-correction within the hierarchical framework is explained.
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The process model, wherein RK4 approximation is utilized, is outlined and followed

by a discussion of the entire hierarchical model. The Results section includes details

about model fits pertaining to both simulated data and the Gause data. The Dis-

cussion section provides brief interpretations of results from the classical Gause data,

followed by a detailed assessment of the methodology in general, a comparison to

other work, and possible extensions.
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METHODS

The Truncated Normal Distribution

If X ∼ N(µ, σ2) and I ⊂ R is an interval, then P (X ≤ x|X ∈ I), defined for

any real x, is the truncated normal distribution of X (adapted from Rohatgi, 1976,

p. 116). If a normal distribution is truncated, the probability mass from the tail(s)

is dispersed throughout the remaining portion. Thus, if a normal density is left-

truncated at zero, then the new mode resulting from truncation is necessarily located

in one of two places: If the original (untruncated) mode was positive, then the mode

of the left-truncated density is unchanged (though the expectation is not); if the

original mode was negative, then the mode of the left-truncated density is zero. This

characteristic becomes important in justifying our choice of parameter estimation.

The truncated normal distribution can accommodate random variables with non-

negative support, but a more appropriate model can be specified by implementing a

bias correction in the truncated normal with a target expectation. To illustrate the

suitability of such a bias correction, first suppose X ∼ T.N.(µ, σ2), where we desire

E(X) = µ > 0. The actual expectation is not µ however, but rather

E(X) = µ+ σ

 φ(
b1 − µ
σ

)− φ(
b2 − µ
σ

)

Φ(
b2 − µ
σ

)− Φ(
b1 − µ
σ

)

 ,(1)

where b1 and b2 are the lower and upper bounds of truncation, and φ and Φ are the

standard normal pdf and cdf, respectively (Johnson, Kotz, and Balakrishnan, 1994;

Horrace, 2005). That is, the expectation is not equivalent to the parameter µ, as
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desired. In particular, when b1 = 0 and b2 =∞, we have

E(X) = µ+ σ

φ
(µ
σ

)
Φ
(µ
σ

)
 .(2)

Though simpler than that in (1), the expectation in (2) is a complicated nested

integral equation that is analytically intractable; however, it can be approximated

numerically. If we specify X ∼ T.N.(g, σ2), where g is a function of µ and σ2 such

that: E(X) = µ, then we need only find the bias-correcting function g. That is, for

b1 = 0 and b2 = ∞, one can approximate a truncated normal distribution with a

target expectation µ by solving for the function g such that

E(X) = g + σ

φ
( g
σ

)
Φ
( g
σ

)
 = µ.(3)

In addition to obtaining an appropriate distribution within the hierarchical model

(i.e., one that obtains the target expectation), the implementation of this bias correc-

tion also decreases process uncertainty (i.e., standard deviation of the distribution),

particularly near truncation bounds, as often appears in data sets and is depicted in

Figure 1.

Constructing the Process Model

Let dx
dt

= h(t,x) be a differential equation (or system of differential equations)

that models a continuous dynamical process x in time t. Such a process can be well-

approximated by the classical fourth-order Runge-Kutta method (Burden and Faires,
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Fig. 1: Effect of bias correction on uncertainty. Assume a truncated normal data
model, left-truncated at zero. The dark area depicts a probability envelope for a
data model containing a bias correction; the light area is that for a model without a
bias correction. Note the shift in the mean and reduction of uncertainty in the dark
envelope near the truncation boundary.

2001):

xt+∆t = xt +
∆t

6
(a1 + 2a2 + 2a3 + a4),(4)

≡ f(xt,θ)(5)

where a1 = h(t,xt), a2 = h(t + ∆t
2
,xt + ∆t

2
a1), a3 = h(t + ∆t

2
,xt + ∆t

2
a2), a4 =

h(t + ∆t,xt + a3∆t), and θ is a vector of parameters. Thus, the process at time

t+ ∆t is determined by the process at time t plus the product of the size of the time

interval (∆t) and an estimated weighted average of slopes (a1+2a2+2a3+a4

6
), where ai

is an estimated slope at one of four points within the time interval ∆t. Note that

the approximation for xt+∆t is computed using four points within the time interval;

this accounts for the accuracy of RK4, as the error at each of the four steps is on the

order of (∆t)5 and has an overall error on the order of (∆t)4.
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The RK4 approximation, which we have labeled f(xt,θ), can then be embedded

within a hierarchical probability model at the process level. The process is “aug-

mented” in the following way: If the data consist of an l × m × n array (e.g., m

variables observed at n points in time, replicated l times), then the process will have

dimenson l ×m × ( n
∆t

+ 1), where 0 < ∆t < 1. Note that, depending on the value

of ∆t, the process can be approximated to a desired level of precision. If the process

is allowed to be stochastic at each discretization time t, while ∆t is specified to be

small, then a state-space model with Markov dependence and an augmented process

component results; i.e., xt|xt−∆t,θ ∼ [xt|f(xt−∆t,θ)], where temporal resolution of

xt is finer than that of the data.

In our case, f(xt−∆t,θ) is the RK4 approximation to the Lotka-Volterra model

for two-species competition:

dx1

dt
= r1x1

k1 − x1 − β1x2

k1

,(6)

dx2

dt
= r2x2

k2 − x2 − β2x1

k2

,(7)

where the parameter vector θ contains r1, k1, β1, r2, k2, and β2, the parameters

controlling the dynamics of the system, each of which is assumed to exist within

the interval (0,∞). Specifically, for the ith species, xi is the underlying continuous

process of population growth, ri is the growth rate, ki is the carrying capacity, and

βi is the competition parameter. Regarding competition parameters, β1 denotes the

deleterious effect of species 2 on species 1, and vice versa. Note that in the absence

of one species, this particular process model defaults to logistic growth of the other

species, and the species competition model can be generalized to any number of species

(Edelstein-Keshet, 1988, pp. 231-236). Further note that there is a wide variety of

systems of differential equations in the literature with which one can model a given
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continuous population process, each having strengths and weaknesses (Turchin, 2003).

The Hierarchical Representation

To introduce the hierarchical model, we begin with the model for observations

(i.e., likelihood). Let observations for the process under study at time t = 1, . . . , n be

denoted by yt, an l×m× n data array, where l is the number of replicates, m is the

number of species observed, and n is the number of times each species is observed.

Then a probability model can be written for these measurements:

yt|xt, σ2
y ∼ T.N.(gyt ,Σy)b2b1 , Σy = σ2

yI,(8)

where gyt is a bias correction such that E(yt) = xt > 0, and b1, b2 are the lower

and upper truncation boundaries, respectively. We focus on the expectation (rather

than the median or mode) for two reasons: First, the mean is a natural parameter

for unconstrained models and it is convenient for reparameterization; second, if the

uncorrected mode is negative, then the corrected mode is necessarily zero. Note that

we assigned the same variance (σ2
y) to each species at the data level because we

expect consistent measurement error between species; we could have easily allowed

the variance of each species at the data level to be different.

The data model in (8) is conditional on the second level in the hierarchy, the

process xt. Let us adopt the formulation described in Section 2.2 as a model for the

process:

xt|xt−∆t ∼ T.N.(gxt ,Σx)b2b1 ,(9)
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Σx =

 σ2
x1

0

0 σ2
x2

 ,

where Σx is a diagonal covariance matrix, and gxt is a bias-correcting function (de-

pendent upon f(xt−∆t,θ), σ2
x, b1, and b2) such that E(xt) = f(xt−∆t,θ) > 0, the RK4

approximation to the Lotka-Volterra species competition model at time t.

The latent variables xt can be thought of as unobserved state vectors and may

occur at a finer temporal resolution than the data, yt. In other words, if τ x, τ y are

finite sets of times, then |{xt, ∀t ∈ τ x}| > |{yt,∀t ∈ τ y}|, where “| · |” represents

the size of the set. This point is critical for obtaining a precise approximation to the

motivating system of differential equations, because in practice we could choose the

set τ x to be large enough to attain any desired precision in the approximation.

The parameter model makes up the third and final level of the hierarchy, con-

trolling the dynamics of the system (whence, θ) as well as additional stochasticity

(whence, σ2
x, σ2

y, the uncertainty associated with the process and data models, re-

spectively).

θ ∼ T.N.(µθ,Σθ)d2
d1

x0 ∼ T.N.(µ0,Σ0)b2b1

σ2
y ∼ Inverse Gamma(ry, qy)

σ2
x ∼ Inverse Gamma(rx, qx)

The truncated normal distribution for θ and x0 are desirable because the distri-

bution is both flexible and proper, guaranteeing a proper posterior. The initial state

vector x0 accommodates uncertainty in the process at the time period before data are

available. In the case where ∆t is small, this initial random state vector resembles the
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process at the time when data are first available; thus we specify its prior distribution

to have a location near that of the data where t = 1 and a diagonal covariance matrix

with variance components larger than the variance in the data at any time point.

Locational hyperparameters pertaining to the dynamic nature of the process (i.e.,

µθ) can be specified to provide reasonable dynamics while still allowing for a wide

range of behavior. Specifically, it is possible to fully specify the covariance matrices

Σθ and Σ0 to allow for prior dependence between parameters, but in the absence of

specific knowledge about the form of dependence, we allowed them to be diagonal

with standard deviations proportional to the magnitudes of the location parameters

(e.g., larger prior variability for larger parameters such as k1 and k2).

The inverse-gamma priors were specified to be conservative in location and wide

in variability. Variance components can be modeled in different ways (Gelman, 2006),

though the specification used here yielded a stable algorithm and performed well. In

hierarchical models without significant structure at the process level, identifiability

issues may arise with the variance components (Dennis et al., 2006). In this specifica-

tion, substantial structure is provided by the latent dynamical system, thus helping

partition the sources of uncertainty.

Model Implementation and Inference

The hierarchical model described above can be implemented in an MCMC setting

in the usual manner (see Appendix C) by analytically identifying proportional full-

conditional distributions (listed below) for parameters and latent state vectors, and

then sampling from them sequentially.

[x0|·] ∝ [x1|x0,θ, σ
2
x][x0]
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[xt|·] ∝
l∏

i=1

[yi,t|xt, σ2
y]I{t∈τy} [xt+∆t|xt,θ, σ2

x][xt|xt−∆t,θ, σ
2
x]

[xT |·] ∝
l∏

i=1

[yi,T |xT , σ2
y][xT−∆t,θ, σ

2
x]

[θ|·] ∝
∏
t∈τx

[xt|xt−∆t,θ, σ
2
x][θ]

[σ2
y|·] ∝

l∏
i=1

[yi,t|xt, σ2
y]I{t∈τy} [σ2

y]

[σ2
x] ∝

∏
t∈τx

[xt|xt−∆t,θ, σ
2
x][σ2

x]

In this case, the truncated distributions imply nonconjugacy in all parameters and a

Metropolis approach must be taken in the MCMC algorithm. Additionally, although

the bias corrections are functions of {xt}, they are analytically intractable and thus

must be approximated numerically, using one of several possible numerical optimiza-

tion routines to find the solution.

To illustrate our numerical method of choice for the univariate case, suppose

we desire a truncated normal random variable y to have expectation µ. Recall that,

without a bias correction, the expectation would be as specified in (1). Thus, we need

to approximate the function g such that E(y) appears as in (10). Then each time that

a bias-corrected truncated normal density needs to be evaluated in the MCMC algo-

rithm, we can numerically find g conditional on µ, σ2, b1, b2. This bias correction is,

in effect, a reparameterization that results in a more appropriate probability model.

As described below, this method is generalized for the multivariate case.

We employ a linear interpolation method (see Appendix A for details and an

example) in order to exploit efficient matrix operations in the R programming en-

vironment (R Core Development Team, 2007) and find that it is precise in approxi-

mating the well-behaved function g for our purposes here. That is, in general, if we
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desire a truncated normal random variable y to have expectation µ, then we can find

a reparameterization g(µ,Σ), using the method described in Appendix A, such that

E(y) = µ, for y|µ,Σ ∼ T.N.(g(µ,Σ),Σ), where Σ is a diagonal matrix. Perfor-

mance of numerical algorithms vary by situation and thus should be experimented

with for best results in terms of precision and efficiency.
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RESULTS

In fitting the model described in the previous section to data, we actually fit three

separate models: One univariate logistic growth model to each of the single-species

data, followed by a competition model using the two-species data. The singe-species

models were implemented by setting competition parameters equal to zero, in which

case the Lotka-Volterra equations default to logistic growth. In this case, since pop-

ulations were observed both in isolation and in competition (independently), the

advantage is that posterior distributions from the single-species models can be used

to inform prior distributions for germane parameters (i.e., r1, r2, k1, k2) in the two-

species model. Thus, single-species posterior means of r1 k1, r2, and k2 were used

within the competition model to then obtain estimates of the competition parameters,

β1 and β2. This use of independent data to gain a priori scientific knowledge about

the process is a strength of the Bayesian approach and allows us to focus all available

power on the estimation of the additional competition parameters (i.e., β1, β2). We

set ∆t = 1
4
, yielding an augmented process with four times the temporal resolution of

the data and a very precise approximation to the differential equations. The augmen-

tation level of 1
4

was chosen because it represented the process well for this scale in

the simulated data; it was large enough for computational efficiency, while providing

an accurate approximation. Higher-order systems may require a smaller ∆t depend-

ing on the dynamics. The MCMC algorithms were run for 20,000 iterations with a

burn-in of 2,000 chosen by study of trace plots (see Appendix B).

To assess the model’s capability in situations similar to the Gause data, the model

was evaluated using simulated data first; the results of this are summarized in Table 1.

Figures 2-5 depict results of the model, applied to Gause’s Paramecium data. Figure
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2 shows the data for single-species logistic growth, overlaid with the augmented pro-

cess 95% credible intervals. With regard to the model fit using the Gause data, Figure

3 shows posterior distributions for single-species logistic growth rates and carrying

capacities. Posterior mean single-species growth rates (r1 and r2) were 0.6762 and

1.068 with standard deviations 0.1684 and 0.5109, for P. aurelia and P. caudatum,

respectively. Here, the prior distributions were [r1] = [r2] = TN(0.5, 100)
dr2
dr1

, having

truncation bounds dr1 = 0 and dr2 = ∞. Posterior mean single-species carrying ca-

pacities (k1 and k2) were 564.4 and 202.2, with standard deviations 26.12 and 24.15,

for P. aurelia and P. caudatum, respectively. The prior distributions for the carrying

capacities were [k1] = TN(600, 100000)
dk2
dk1

and [k2] = TN(200, 100000)
dk2
dk1

, each with

truncation bounds dk1 = 0, and dk2 =∞.

Figure 4 shows the data for two-species competition, overlaid with the aug-

mented process credible intervals, after using the single-species growth rate and car-

rying capacity parameters to inform the two-species priors. Figure 5 shows poste-

rior distributions for competition parameters (β1 and β2). Posterior means of the

competition parameters were 2.553 and 0.4742 with standard deviations 1.152 and

0.2916, for P. aurelia and P. caudatum, respectively. Here, the prior distributions

were[β1] = [β2] = TN(1, 10)
dβ2
dβ1

, having truncation bounds dβ1
= 0 and dβ2

=∞. The

hyperparameters for both single-species and competition model variance components

were ry = rx = 10−3 and qy = qx = 2.01, yielding E(σ2
y) = E(σ2

x) = 1000 and

Var(σ2
y) = Var(σ2

x) = 108.
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Table 1: Results from simulated data

Parameter Truth Posterior Mean Posterior S.D. Prior Mean Prior S.D.
Single-Species 1

r1 0.5 0.5313 0.1473 0.5 10
k1 600 598.8 45.45 650 316.2

Single-Species 2
r2 0.3 0.3547 0.1360 0.5 10
k2 400 419.7 41.67 350 316.2

Species Competition
r1 0.5 0.4873 0.0821 0.5313 0.1473
k1 600 604.6 47.59 598.8 45.45
β1 2 1.989 0.5363 1 3.162
r2 0.3 0.2945 0.1260 0.3547 0.1360
k2 400 410.8 42.42 419.7 41.67
β2 0.5 0.5870 0.3336 1 3.162

Fig. 2: Paramecium aurelia and Paramecium caudatum observations with augmented
process 95% credible interval overlaid. Each species was grown in its own medium,
independent of the other species (no competition).
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(a) (b)

Fig. 3: Posterior distributions for single-species logistic growth rates (a) and carrying
capacities (b), with prior distribution overlaid.

Fig. 4: Mixed P. aurelia and P. caudatum observations with augmented process
95%credible intervals overlaid. Here, each species was grown in the presence of the
other species (inter-species competition).
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Fig. 5: Posterior distributions for competition parameters, with prior distribution
overlaid.
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DISCUSSION

Simulation and Gause Data

Overall, model fits suggested that the data contain significant information about

the process and parameters. More specifically, regarding the simulated data summa-

rized in Table 1, note that the posterior variance is reduced for the growth rates in the

competition model, as compared to the single-species cases. This suggests that the

competition data hold additional information about the single-species growth param-

eters. Further, note that each of the parameters used for simulation is indeed captured

by the model, suggesting that the model describes the simulated process accurately.

Regarding the Gause data, the overlap in posterior growth rates for single-species

(Figure 3a) provides little evidence of a significant difference, although the variability

differs. The fact that the posterior variability of r2 is greater than that of r1 may

seem surprising since the P. caudatum observations appear to have less spread than

the P. aurelia observations. Perhaps the difference in variability is due to the fact

that P. caudatum initially experiences a delayed growth relative to P. aurelia, yet

P. caudatum appears to meet its carrying capacity earlier than P. aurelia. Figure

3b suggests that P. aurelia is naturally capable of attaining a larger population size

than P. caudatum in the absence of the other species. Figure 5 evinces a substan-

tial difference among competition parameters; perhaps P. caudatum is more affected

as a percentage of its carrying capacity. One important aspect with regard to the

augmented process is that, similar to prediction uncertainty in all statistical models,

the credible intervals of the augmented process indicate increased uncertainty at time

points farther away from data, as seen in Figures 2 and 4.
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General Methodology

Regarding the methodology of our model, the proposed bias-corrected truncated

normal models alleviate the need for log-transformations and allow us to model a

non-negative process. It should be noted that both the process and data models have

bounded support, whereas other studies (e.g., Stein, 1992) have modeled bounded

data which were assumed to arise from a measurement model conditioned on a pro-

cess with real support, rendering no need for a bias correction. The implementation

of a bias correction allows us to specify an appropriate physical process model with

positive support. Furthermore, utilizing a finer temporal discretization in the process

(∆t < 1) improves stability of the dynamical system and avoids drawbacks pertaining

to the representation of dynamics that accompany many analytically discretized mod-

els (e.g., Ricker growth, Turchin, 2003). The process augmentation, resulting from

∆t < 1, also allows our approximation to be faithful to the motivating continuous

dynamical model; that is, as ∆t → 0, our model preserves the dynamical properties

of the differential equations. Additionally, in the presence of stochasticity, as ∆t→ 0,

our model converges to an underlying stochastic differential process. The incorpora-

tion of RK4 for continuous model approximation is useful for emphasizing parameter

estimation and ensuring that process uncertainty is focused on model choice rather

than model approximation.

It should be noted that, as Gause’s Paramecium data are counts, a Poisson data

model would also be reasonable. We have found that the implementation of such a

model (not presented here) yields similar results in terms of the posterior process and

parameters. Although the Poisson specification addresses the discrete nature of the

data in this case, it imposes a distinct mean-variance relationship. An overdispersed

Poisson model could also be used, though we focus on the more general truncated

normal model which also implies a mean-variance relationship, yet it is more flexi-
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ble than the Poisson due to its two-parameter model formulation. Furthermore, the

model we use here is also more robust in that it allows for linear transformations of

the data (e.g., scaling) as well as various types of data; for example, the proposed

model is applicable to data having bounded continuous support (e.g., rainfall data;

percent quadrat cover; plant basal area). Application to such examples is the subject

of ongoing research.
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NUMERICAL BIAS CORRECTION

This appendix describes the numerical method that we used to approximate

the bias correction (i.e., reparameterization) necessary for truncated normal random

variables within the data and process models of our hierarchical model, both of which

have non-negative support. Recall the following equation of the expectation of a

random variable X ∼ T.N.(g, σ2)∞0 :

E(X) = g + σ

φ
( g
σ

)
Φ
( g
σ

)
 = f(g, σ).(10)

Let f0(g, σ) represent a target expectation (e.g., in our hierarchical model, we desire

the expectation of the data model at time t to be equivalent to the process at time t;

E(yt) = xt). As (10) is an intractable integral equation, we cannot solve for g given

f ; however, we can determine f given g. Thus, we specify values of the function

f(g, σ), say fi(gi, σ) for i = {1, . . . , n}. Next, we determine which pair of fi(gi, σ)s

flank our target value f0(g, σ). That is, after we identify numerous gis, we identify

gl and gu (respectively, values of g that are less than and greater than the target g0

corresponding to the targeted expectation f0(g, σ)). The points gl and gu form a line

secant to the f(g, σ) curve such that f(gl) and f(gu) closely approximate f0. Via

linear interpolation of the secant line, f0(g, σ) and hence g0 is approximated. Finally,

the approximation of g0 is incorporated into the MCMC algorithm. See Figure 6 for

an illustration of the approximation method.

The following program (getgvec.R) was utilized to approximate g0 in the R

programming environment.
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(   )gf

f0

g*
g 0 gug l

g

Fig. 6: Linear interpolation method used to approximate the bias correction (g0),
given target expectation f0. Here, g∗ is the approximation of g0, and gu and gl define
the secant line that most closely approximates the curve f(g) near g0.
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getgvec <- function(f,sig,n){
### Finds reparameterized g (parameter in y~TN(g,sig) such that E(y)=f
### (left-truncated at zero)
### n is the number of g values that are plotted, consecutive pairs of
### which are assessed for their proximity to the target g

l=-100 ### lower bound for g values to be plotted
N=length(f)
gtmp=seq(l,max(f),,n) ### g values to be plotted
G=gtmp+sig*(exp(dnorm(gtmp/sig,log=TRUE)-pnorm(gtmp/sig,log=TRUE)))

### f value corresponding to g value;
### we seek the pair of G values that flank the target f.

while(min(G)>=min(f)){
l=l-100
gtmp=c(l,gtmp)
n=n+1
G=gtmp+sig*(exp(dnorm(gtmp/sig,log=TRUE)-pnorm(gtmp/sig,log=TRUE)))

} ### This loop decreases the lower bound l if corresponding G values
### did not flank the target f.

diffs=outer(as.vector(G),as.vector(f),FUN="-")
diffs.pos=diffs
diffs.pos[diffs < 0]=NA
diffs.neg=diffs
diffs.neg[diffs >= 0]=NA

### diff.pos and diffs.neg will be used to find G values closest to
### the target f.

idxu.mat=(diffs.pos==t(apply(diffs.pos,2,min,na.rm=TRUE)%x%matrix(1,1,n)))
idxl.mat=(diffs.neg==t(apply(diffs.neg,2,max,na.rm=TRUE)%x%matrix(1,1,n)))
idxu.mat[is.na(idxu.mat)]=FALSE
idxl.mat[is.na(idxl.mat)]=FALSE

G1=(G%x%matrix(1,1,N))[idxl.mat] ### best G value less than target f
G2=(G%x%matrix(1,1,N))[idxu.mat] ### best G value greater than target f
g1=(gtmp%x%matrix(1,1,N))[idxl.mat] ### best g value less than target g
g2=(gtmp%x%matrix(1,1,N))[idxu.mat] ### best g value greater than target g

beta1=(G2-G1)/(g2-g1) ### slope of secant line
g=(f-G1)/beta1+g1 ### linear interpolation of target g

plot(gtmp,G,type="l",lwd=2,col=2) ### plots G as a function of g values
abline(h=f) ### labels target f
abline(v=0)
points(g,f,pch=20) ### labels coordinate point (g,f)

### (identifies g approximation)

G=g+sig*exp(dnorm(g/sig,log=TRUE)-pnorm(g/sig,log=TRUE)))
### approximation of target f
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cbind(g,G)
}

The following output results from an implementation of getgvec.R which may be

relevant to species competition such as the Gause data. Suppose one desires a target

population size expectation of 1 for Species A and 2 for Species B at time t, and a

standard deviation of 32 for each species. Here, there will be 100 g values proposed,

with which to perform the interpolation:

> getgvec(c(1,2),32,100)

g G

[1,] -1022.0028 0.9999992

[2,] -508.0508 1.9998625

Figure 7 displays the corresponding plot. Since the target expectations for each

species are relatively close to the truncation boundary of zero, the approximations

for the bias corrections g are negative. Note the accuracy of the interpolated mean

value (G).

Now suppose that the mean expectations for each species were larger (i.e., fur-

ther from the zero-truncation boundary). For example, consider the target mean

population size for Species A is 200 and that of Species B is 500, maintaining the

relatively small standard deviation of 32:

> getgvec(c(200,500),32,100)

g G

[1,] 200 200

[2,] 500 500

Figure 8 displays the corresponding plot. Note the nature of the curve G(g); since

the lower and upper truncation boundaries are 0 and ∞, respectively, the curve is

asymptotically linear (approaching the line G = g). In the specific example depicted
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Fig. 7: Plot from getgvec(c(1,2),32,100), demonstrating the numerical approximation
method of bias correction g. The red curve is created from Equation (1), by which
100 (g,G) points were plotted. The two horizontal lines mark the approximation of
G, the corresponding approximation to the target mean f labeled by the points.
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Fig. 8: Plot from getgvec(c(200,500),32,100)
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in Figure 8, the approximated expectations are very accurate, due to the fact that

the target expectation is relatively far from the truncation boundary of zero, coupled

with a relatively small standard deviation. In the next example, we see how the

approximation for the bias correction g and resulting approximation for the target

mean G change when the standard deviation is increased:

> getgvec(c(200,500),320,100)

g G

[1,] -179.5233 199.9989

[2,] 447.8295 499.9949

Fig. 9: Plot from getgvec(c(200,500),320,100)
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Figure 9 displays the corresponding plot.

We have found this numerical approximation method to be highly efficient and

accurate in matrix languages such as R and MATLAB. However, if one implements

getgvec.R with a target expectation near zero and a large standard deviation, the

method becomes inefficient. The source of such potential inefficiency is that g values

become very negative very quickly, and thus it becomes difficult to identify gl. We

emphasize that, while this numerical method performs well in the settings discussed

here, one may choose any preferred routine, such as a root-finding algorithm or the

optimization of an objective function. For example, if µ is a vector of target means,

one may desire to minimize the objective function Q = (E(X)−µ)T (E(X)−µ) with

respect to g (recall that E(X) is a function of the bias-correcting function g).

We have presented this appendix as a detailed explanation of the reparameter-

ization of the truncated normal model in the situation where an underlying process

has non-negative support. We have found the resulting bias-corrected and bounded

distribution to be especially useful when modeling dynamical systems involving mass

(e.g., populations; hydrological processes).
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TRACE PLOTS

This appendix provides trace plots of the Lotka-Volterra parameters (i.e., growth

rate (r1, r2), carrying capacity (k1, k2), and competition parameters (β1, β2)) from

the Markov chain Monte Carlo algorithm. For each parameter, two trace plots are

provided; one plot is obtained from all 20,000 iterations and the other is obtained

from resampling every 1000 iterations.
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Fig. 10: Trace plots for Lotka-Volterra parameters for P. aurelia. The plots on the
right-hand-side are resampled.
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Fig. 11: Trace plots for Lotka-Volterra parameters for P. caudatum. The plots on the
right-hand-side are resampled.
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R CODE

This appendix contains the MCMC algorithm written by Mevin Hooten for an

R programming environment that was used in this study. This particular example

is a Metropolis algorithm (an approximate Gibbs sampler) for two-species competi-

tion dynamics modeled by Lotka-Volterra differential equations, approximated by the

classical fourth-order Runge-Kutta method. The Metropolis algorithm (as opposed

to a Gibbs sampler) is necessary due to nonlinearity and truncated normal data and

process models. Proposals are generated from an approximate Gibbs sampler without

appropriate normalizing constants.

LVrkcomp <- function(y,s2epmn,s2epvar,s2etamn,s2etavar,aug,ngibbs,
upper=10000,,augIN=TRUE){
### y is the data array, T x n x 2
### s2epmn and s2epvar: mean and variance of data error
### s2etamn and s2etavar: mean and variance of process error
### aug: quantifies the process augmentation; aug=1/dt, reciprocal

change in time between process model predictions.
### ngibbs: number of MCMC iterations
### upper: upper truncation bound

###
### Subroutines
###

source("invgammastrt.R") ### finds parameters of Inverse Gamma
source("rkcomp.R") ### RK4
require(msm)
require(bayesm)

logdIG <- function(s2,q,r){
-(q+1)*log(s2)-1/(r*s2)-q*log(r)-lgamma(q)

}

dtnorm <- function(x, mean=0,sd=1, lower=-Inf,upper=Inf,log=FALSE){
ret <- numeric(length(x))
ret[x < lower | x > upper] <- 0
ret[is.na(x)] <- NA
ind <- (x >= lower & x <= upper & !is.na(x))
if (any(ind)) {
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denom <- pnorm(upper, mean, sd) - pnorm(lower, mean,
sd)

xtmp <- dnorm(x, mean, sd, log)
if (log)

xtmp <- xtmp - log(denom)
else xtmp <- xtmp/denom
ret[x >= lower & x <= upper & !is.na(x)] <- xtmp[ind]

}
ret

}

logdtnorm <- function (x, mean = 0, sd = 1){
lower=0
upper=Inf
ret <- numeric(length(x))
ret[x < lower | x > upper] <- 0
ret[is.na(x)] <- NA
ind <- (x >= lower & x <= upper & !is.na(x))
if (any(ind)) {

xtmp <- dnorm(x,mean,sd,log=TRUE)-
pnorm(mean/sd,log=TRUE)

ret[x >= lower & x <= upper & !is.na(x)] <- xtmp[ind]
}
ret

}

logdtnormfory <- function(x, mean = 0, sd = 1){
upper=Inf
lower=0
ret <- matrix(NA,length(mean),dim(x)[2])
ret[x < lower | x > upper] <- 0
ret[is.na(x)] <- NA
ind <- (x >= lower & x <= upper & !is.na(x))
if (any(ind)) {

xtmp <- dnorm(x,mean,sd,log=TRUE)-
matrix(pnorm(mean/sd,
log=TRUE),length(mean),dim(x)[2])

ret[x >= lower & x <= upper & !is.na(x)] <- xtmp[ind]
}
ret

}

dtnormfory <- function(x,mean=0,sd=1,
lower=-Inf,upper=Inf,log=FALSE){

ret <- matrix(0,length(mean),dim(x)[2])
ret[x < lower | x > upper] <- 0
ret[is.na(x)] <- NA
ind <- (x >= lower & x <= upper & !is.na(x))
if (any(ind)) {

denom <- matrix(pnorm(upper, mean, sd) -
pnorm(lower, mean, sd),
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length(mean),dim(x)[2])
xtmp <- dnorm(x, mean, sd, log)
if (log)

xtmp <- xtmp - log(denom)
else xtmp <- xtmp/denom
ret[x >= lower & x <= upper & !is.na(x)] <- xtmp[ind]

}
ret

}

getgvec <- function(f,sig,n){
### Approximates bias correction for truncated normal
### See Appendix A

l=-100
N=length(f)
gtmp=seq(l,max(f),,n)
G=gtmp+sig*(exp(dnorm(gtmp/sig,log=TRUE)-

pnorm(gtmp/sig,log=TRUE)))
while(min(G)>=min(f)){

l=l-100
gtmp=c(1,gtmp)
n=n+1
G=gtmp+sig*(exp(dnorm(gtmp/sig,log=TRUE)-

pnorm(gtmp/sig,log=TRUE)))
}
diffs=outer(as.vector(G),as.vector(f),FUN="-")
diffs.pos=diffs
diffs.pos[diffs < 0]=NA
diffs.neg=diffs
diffs.neg[diffs >= 0]=NA
idxu.mat=(diffs.pos==

t(apply(diffs.pos,2,min,na.rm=TRUE)%x%matrix(1,1,n)))
idxl.mat=(diffs.neg==

t(apply(diffs.neg,2,max,na.rm=TRUE)%x%matrix(1,1,n)))
idxu.mat[is.na(idxu.mat)]=FALSE
idxl.mat[is.na(idxl.mat)]=FALSE
G1=(G%x%matrix(1,1,N))[idxl.mat]
G2=(G%x%matrix(1,1,N))[idxu.mat]
g1=(gtmp%x%matrix(1,1,N))[idxl.mat]
g2=(gtmp%x%matrix(1,1,N))[idxu.mat]
beta1=(G2-G1)/(g2-g1)
g=(f-G1)/beta1+g1
g

}

rtn <- function(mu,sig){
mu + sig*qnorm(log(runif(length(mu)))+
pnorm(mu/sig,log=TRUE),lower.tail=FALSE,log.p=TRUE)

}

dataaug <- function(y,aug){
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T=dim(y)[1]
T.aug=(T-1)*aug+1
y.aug=array(NA,c(T.aug,dim(y)[2],dim(y)[3]))
for(t in 1:T){

y.aug[(t-1)*aug+1,,]=y[t,,]
}
y.aug

}

###
### Augment Data
###

y=dataaug(y,aug)

###
### Setup Variables
###

T=dim(y)[1]
n=dim(y)[2]
nt=apply(!is.na(y),1,sum)
T2=T+2
dt=1/aug
nprec=100

dataTF=matrix(TRUE,T,2)
if(augIN==FALSE){
dataTF=!apply(is.na(y),c(1,3),all)

}

xsave=array(0,c(T2,ngibbs,2))
thetasave=matrix(0,6,ngibbs)
s2epsave=matrix(0,1,ngibbs)
s2etasave=matrix(0,2,ngibbs)

###
### Hyperpriors and Constants
###

rep=invgammastrt(s2epmn,s2epvar)$r
qep=invgammastrt(s2epmn,s2epvar)$q
reta=invgammastrt(s2etamn,s2etavar)$r
qeta=invgammastrt(s2etamn,s2etavar)$q

mu0=matrix(c(10,10),2,1)
s20=100
mu0=getgvec(mu0,sqrt(s20),nprec)
mua=.5
s2a=1
mub=40
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s2b=1000

mutheta=matrix(c(.6762,564.4,1,1.068,202.2,1),6,1)
### prior means for process model parameters

s2theta=matrix(c(.02836,708.5,10,.2610,583.2,10),6,1)
### prior variances for process model parameters

###
### Initial Values
###

s2ep=1500
s2eta1=600
s2eta2=200
s2eta=c(s2eta1,s2eta2)
x0=y[1,1,]-.01
x00=x0-.01

a1=.2
b1=mean(y[T,,1],na.rm=TRUE)
a2=.2
b2=mean(y[T,,2],na.rm=TRUE)
theta=mutheta
thetalow=matrix(c(0,0,0,0,0,0),6,1)
thetahigh=matrix(c(100000,100000,100000,100000,

100000,100000),6,1)
mhep=1
mheta=1
mhb=1
mha=1
mhtheta=1
mhx=matrix(0,T+2,2)
btune=5
atune=.5
thetatune=matrix(c(.2,10,.2,.2,10,.2),6,1)
eptune=500
etatune=200
x0tune=2
#xttune=2
xttune=20

x=rbind(x00,x0,matrix(0,T,2))
for(t in 1:T){
x[2+t,]=rkcomp(theta,dt,x[2+t-1,],1)$x[,2]

}
x=x+1

###
### Initialize timing variables
###
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time1=proc.time()
time2=time1
timeidx=0

###
### Begin Metropolis Loop
###

for(k in 2:ngibbs){
cat(k," ")

###
### Timing Calculations
###

if(k==12){
tentime=(proc.time()-time1)[3]
cat("\n",tentime*(ngibbs/600),"expected minutes","\n")

}
if(k%%100==0){

timeidx=timeidx+1
elapsetime=(proc.time()-time2)[3]
cat("\n",elapsetime/60,"elapsed minutes"," ")
leftidx=ngibbs/100 - timeidx
cat(" ",(elapsetime/timeidx)*leftidx/60,"remaining minutes","\n")

}

###
### Sample x_0
###

cat("x0"," ")

g0kminus1=getgvec(matrix(x[2+0,],ncol=1),x0tune,nprec)
x0star=rtn(g0kminus1,x0tune)
g0star=getgvec(x0star,x0tune,nprec)

f1star=matrix(rkcomp(theta,dt,x0star,1)$x[,2],2,1)
g1star1=getgvec(f1star[1,],sqrt(s2eta[1]),nprec)
g1star2=getgvec(f1star[2,],sqrt(s2eta[2]),nprec)
g1star=rbind(g1star1,g1star2)

f1=matrix(rkcomp(theta,dt,x[2+0,],1)$x[,2],2,1)
g11=getgvec(f1[1,],sqrt(s2eta[1]),nprec)
g12=getgvec(f1[2,],sqrt(s2eta[2]),nprec)
g1=rbind(g11,g12)

mhratio1=sum(logdtnorm(x[2+1,],g1star,sqrt(s2eta)))+
logdtnorm(x0star,mu0,sqrt(s20))+
logdtnorm(x[2+0,],g0star,x0tune)
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mhratio2=sum(logdtnorm(x[2+1,],g1,sqrt(s2eta)))+
logdtnorm(x[2+0,],mu0,sqrt(s20))+
logdtnorm(x0star,g0kminus1,x0tune)

mhratio=exp(mhratio1-mhratio2)
updateTF=(mhratio > runif(2))
x[2+0,updateTF]=x0star[updateTF]
mhx[2+0,updateTF]=mhx[2+0,updateTF]+1

###
### Sample x_t
###

cat("xt"," ")

###
### getting proposals for x_t
###

gtkminus1.mat=matrix(getgvec(matrix(x[-(1:2),],ncol=1),
xttune,nprec),ncol=2)

xtstar.mat=matrix(rtn(as.vector(gtkminus1.mat),xttune),
ncol=2)

gtstar.mat=matrix(getgvec(matrix(xtstar.mat,ncol=1),
xttune,nprec),ncol=2)

###
### evaluating proposals for x_t via Metropolis-Hastings
###

for(t in 1:(T-1)){

gtkminus1=gtkminus1.mat[t,]
xtstar=xtstar.mat[t,]
gtstar=gtstar.mat[t,]

gtystar=getgvec(xtstar,sqrt(s2ep),nprec)
gtykminus1=getgvec(matrix(x[2+t,],2,1),sqrt(s2ep),nprec)

ftplus1star=matrix(rkcomp(theta,dt,xtstar,1)$x[,2],2,1)
if(!any(ftplus1star < 0 || ftplus1star > upper)){

gtplus1star1=getgvec(ftplus1star[1,],sqrt(s2eta[1]),nprec)
gtplus1star2=getgvec(ftplus1star[2,],sqrt(s2eta[2]),nprec)
gtplus1star=rbind(gtplus1star1, gtplus1star2)

ftplus1kminus1=matrix(rkcomp(theta,dt,x[2+t,],1)$x[,2],2,1)
gtplus1kminus11=getgvec(ftplus1kminus1[1,],sqrt(s2eta[1]),nprec)
gtplus1kminus12=getgvec(ftplus1kminus1[2,],sqrt(s2eta[2]),nprec)
gtplus1kminus1=rbind(gtplus1kminus11,gtplus1kminus12)
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ftk=matrix(rkcomp(theta,dt,x[2+t-1,],1)$x[,2],2,1)
gtk1=getgvec(ftk[1,],sqrt(s2eta[1]),nprec)
gtk2=getgvec(ftk[2,],sqrt(s2eta[2]),nprec)
gtk=rbind(gtk1,gtk2)

mhratio1=apply(logdtnormfory(t(y[t,,]),gtystar,sqrt(s2ep)),1,
sum,na.rm=TRUE)+logdtnorm(x[2+t+1,],
gtplus1star,sqrt(s2eta))+logdtnorm(xtstar,
gtk,sqrt(s2eta))+logdtnorm(x[2+t,],gtstar,xttune)

mhratio2=apply(logdtnormfory(t(y[t,,]),gtykminus1,sqrt(s2ep)),1,
sum,na.rm=TRUE)+logdtnorm(x[2+t+1,],
gtplus1kminus1,sqrt(s2eta))+logdtnorm(x[2+t,],
gtk,sqrt(s2eta))+logdtnorm(xtstar,gtkminus1,xttune)

mhratio=exp(mhratio1-mhratio2)
updateTF=(mhratio > runif(2))
x[2+t,updateTF]=xtstar[updateTF]
mhx[2+t,updateTF]=mhx[2+t,updateTF]+1

}
}

###
### Sample x_T
###

cat("xT"," ")

gTkminus1=getgvec(x[2+T,],xttune,nprec)
xTstar=matrix(rtn(gTkminus1,xttune),2,1)
gTstar=getgvec(xTstar,xttune,nprec)

gTystar=getgvec(xTstar,sqrt(s2ep),nprec)
gTykminus1=getgvec(matrix(x[2+T,],2,1),sqrt(s2ep),nprec)

fTk=matrix(rkcomp(theta,dt,x[2+T-1,],1)$x[,2],2,1)
gTk1=getgvec(fTk[1,],sqrt(s2eta[1]),nprec)
gTk2=getgvec(fTk[2,],sqrt(s2eta[2]),nprec)
gTk=rbind(gTk1,gTk2)

mhratio1=apply(logdtnormfory(t(y[T,,]),gTystar,sqrt(s2ep)),1,
sum,na.rm=TRUE)+logdtnorm(xTstar,gTk,sqrt(s2eta))+
logdtnorm(x[2+T,],gTstar,xttune)

mhratio2=apply(logdtnormfory(t(y[T,,]),gTykminus1,sqrt(s2ep)),1,
sum,na.rm=TRUE)+logdtnorm(x[2+T,],gTk,sqrt(s2eta))+
logdtnorm(xTstar,gTkminus1,xttune)

mhratio=exp(mhratio1-mhratio2)
updateTF=(mhratio > runif(2))
x[2+T,updateTF]=xTstar[updateTF]
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mhx[2+T,updateTF]=mhx[2+T,updateTF]+1

###
### Sample theta
###

cat("theta"," ")

thetastar=rtrun(theta,thetatune,thetalow,thetahigh)

ftstarall=matrix(0,T,2)
gtstarall=matrix(0,T,2)
ftkall=matrix(0,T,2)
gtkall=matrix(0,T,2)
for(t in 1:T){

ftstarall[t,]=rkcomp(thetastar,dt,x[2+t-1,],1)$x[,2]
ftkall[t,]=rkcomp(theta,dt,x[2+t-1,],1)$x[,2]
if(!any(ftstarall < 0)){
gtstarall[t,]=getgvec(matrix(ftstarall[t,],2,1),sqrt(s2eta),nprec)

}
gtkall[t,]=getgvec(matrix(ftkall[t,],2,1),sqrt(s2eta),nprec)

}

mhratio1=sum(logdtnorm(x[3:(T+2),1][dataTF[,1]],(gtstarall)[,1]
[dataTF[,1]],sqrt(s2eta[1])),na.rm=TRUE)+
sum(logdtnorm(x[3:(T+2),2][dataTF[,2]],(gtstarall)[,2]
[dataTF[,2]],sqrt(s2eta[2])),na.rm=TRUE)+
sum(dtnorm(thetastar,mutheta,sqrt(s2theta),thetalow,
thetahigh,log=TRUE))+sum(dtnorm(theta,thetastar,
thetatune,thetalow,thetahigh,log=TRUE))

mhratio2=sum(logdtnorm(x[3:(T+2),1][dataTF[,1]],(gtkall)[,1]
[dataTF[,1]],sqrt(s2eta[1])),na.rm=TRUE)+
sum(logdtnorm(x[3:(T+2),2][dataTF[,2]],(gtkall)[,2]
[dataTF[,2]],sqrt(s2eta[2])),na.rm=TRUE)+
sum(dtnorm(theta,mutheta,sqrt(s2theta),thetalow,
thetahigh,log=TRUE))+sum(dtnorm(thetastar,theta,
thetatune,thetalow,thetahigh,log=TRUE))

mhratio=exp(mhratio1-mhratio2)

if(mhratio > runif(1)){
theta=thetastar
mhtheta=mhtheta+1

}

###
### Sample s2ep
###

cat("s2ep"," ")

s2epstar=rtnorm(1,s2ep,eptune,0)
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gtystarall=matrix(getgvec(matrix(x[-(1:2),],ncol=1),
sqrt(s2epstar),nprec),T,2)

gtykminus1all=matrix(getgvec(matrix(x[-(1:2),],ncol=1),
sqrt(s2ep),nprec),T,2)

mhratio1=sum(logdtnorm(as.vector(y[1:T,,1]),rep(gtystarall[,1],n),
sqrt(s2epstar)),na.rm=TRUE)+
sum(logdtnorm(as.vector(y[1:T,,2]),rep(gtystarall[,2],n),
sqrt(s2epstar)),na.rm=TRUE)+logdIG(s2epstar,qep,rep)+
dtnorm(s2ep,s2epstar,eptune,0,log=TRUE)

mhratio2=sum(logdtnorm(as.vector(y[1:T,,1]),rep(gtykminus1all[,1],n),
sqrt(s2ep)),na.rm=TRUE)+
sum(logdtnorm(as.vector(y[1:T,,2]),rep(gtykminus1all[,2],n),
sqrt(s2ep)),na.rm=TRUE)+logdIG(s2ep,qep,rep)+
dtnorm(s2epstar,s2ep,eptune,0,log=TRUE)

mhratio=exp(mhratio1-mhratio2)

if(mhratio > runif(1)){
s2ep=s2epstar
mhep=mhep+1

}

###
### Sample s2eta
###

cat("s2eta"," ")

s2etastar=rtnorm(2,s2eta,etatune,0)

gtstarall1=getgvec(ftkall[,1],sqrt(s2etastar[1]),nprec)
gtstarall2=getgvec(ftkall[,2],sqrt(s2etastar[2]),nprec)
gtstarall=cbind(gtstarall1,gtstarall2)

gtkminus1all1=getgvec(ftkall[,1],sqrt(s2eta[1]),nprec)
gtkminus1all2=getgvec(ftkall[,2],sqrt(s2eta[2]),nprec)
gtkminus1all=cbind(gtkminus1all1,gtkminus1all2)

mhratio1=sum(logdtnorm(x[3:(T+2),1][dataTF[,1]],(gtstarall)[,1]
[dataTF[,1]],sqrt(s2etastar[1])),na.rm=TRUE)+
sum(logdtnorm(x[3:(T+2),2][dataTF[,2]],(gtstarall)[,2]
[dataTF[,2]],sqrt(s2etastar[2])),na.rm=TRUE)+
sum(logdIG(s2etastar,qeta,reta))+
sum(dtnorm(s2eta,s2etastar,etatune,0,log=TRUE))

mhratio2=sum(logdtnorm(x[3:(T+2),1][dataTF[,1]],(gtkminus1all)[,1]
[dataTF[,1]],sqrt(s2eta[1])),na.rm=TRUE)+
sum(logdtnorm(x[3:(T+2),2][dataTF[,2]],(gtkminus1all)[,2]
[dataTF[,2]],sqrt(s2eta[2])),na.rm=TRUE)+
sum(logdIG(s2eta,qeta,reta))+
sum(dtnorm(s2etastar,s2eta,etatune,0,log=TRUE))
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mhratio=exp(mhratio1-mhratio2)

if(mhratio > runif(1)){
s2eta=s2etastar
mheta=mheta+1

}

###
### Save Samples
###

xsave[,k,]=x
thetasave[,k]=theta
s2epsave[,k]=s2ep
s2etasave[,k]=s2eta

cat("\n")
} #### END MH LOOP ####

###
### Write output
###

list(xsave=xsave,thetasave=thetasave,s2epsave=s2epsave,
s2etasave=s2etasave,ngibbs=ngibbs,mhtheta=mhtheta,
mhx=mhx,mhep=mhep,mheta=mheta,y=y,n=n,augIN=augIN)
}
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