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ABSTRACT 

 
Pathophysiology of Arboviral Encephalitides 

 in Laboratory Rodents 

 
by 
 
 

Aaron L. Olsen, Doctor of Philosophy 
 

Utah State University, 2008 
 
 

Major Professor:  Dr. John D. Morrey 
Department:  Animal, Dairy, and Veterinary Sciences 
 
 

Western equine encephalitis virus (WEEV) is an arboviral pathogen naturally 

found in North America.  The primary disease phenotype associated with WEEV 

infection in susceptible hosts is a relatively long prodromal period followed by viral 

encephalitis.  By contrast, in the current work, experimental inoculation of WEEV into 

the peritoneum of Syrian golden hamsters produced rapid death within approximately 96 

h.  It was determined that direct virus killing of lymphoid cells leads to death in WEEV-

infected Syrian golden hamsters, and that inflammatory cytokines have the potential to 

enhance virus-induced lymphoid cell destruction. It was further concluded that WEEV 

retains its ability to cause encephalitis in Syrian golden hamsters, if hamsters survive the 

early stages of virus infection or if virus is introduced directly into the CNS. 

 Death in WEEV-infected hamsters is associated with lymphonecrotic lesions in 

the absence of pathological lesions in the central nervous system (CNS).  Few clinical 

parameters were altered by WEEV infection, with the exception of circulating 
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lymphocyte numbers.  Circulating lymphocyte numbers decreased dramatically during 

WEEV infection, and lymphopenia was identified as a consistent indicator of eventual 

death.  Virus infection also increased serum concentrations of the cytokines interferon 

and tumor necrosis factor-alpha (TNF-alpha). 

Hamster peritoneal macrophages exposed to WEEV expressed TNF-alpha in a 

dose-responsive manner.  Macrophage expression of TNF-alpha could be significantly 

inhibited by treatment of cells with anti-inflammatory agents flunixin meglumine (FM) or 

dexamethasone (Dex).  Anti-inflammatory treatment also protected macrophages from 

cytotoxicity associated with exposure to WEEV.  Treatment of WEEV-infected hamsters 

with either FM or Dex significantly improved survival compared to placebo-treated 

controls.  WEEV induced cytotoxicity in hamster splenocytes exposed to WEEV in a 

virus dose-responsive manner.  Supernatant from WEEV-exposed macrophages 

significantly enhanced WEEV killing of splenocytes. Hamsters that survived the early 

stages of WEEV infection occasionally developed signs of neurological disease and died 

approximately 6 to 9 d after virus inoculation.  These animals had histopathological 

lesions in the CNS consistent with alphavirus-induced encephalitis.  Inoculation of 

WEEV directly into the CNS caused apparent encephalitic disease.  Death following 

CNS inoculation of WEEV was rapid and concurrent with histopathological lesions in the 

CNS similar to lesions seen in encephalitic hamsters following peripheral inoculation. 

 (221 pages) 
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INTRODUCTION 

 
Arthropod borne viruses, or arboviruses, are commonly positive-stranded, 

membrane-bound, RNA viruses.  Many arboviruses are recognized for their potential to 

cause viral encephalitis,94,224 as well as their potential use as bioterror agents.215  The 

continuing emergence and spread of new arboviral encephalitides highlights the 

importance of understanding the pathophysiological mechanisms associated with a viral 

infection of the brain. 

 However, it is recognized that in naturally occurring infections arborviral 

encephalitides undergo a peripheral nonneurological replication phase.94  The pre-central 

nervous system phase of virus infection can present with a variety of disease symptoms 

and signs, such as fever, gastrointestinal complaints, pain, malaise, and lethargy.68,118,187  

In some instances histopathological lesions in peripheral organs may be identified 

following an infection with an arborviral encephalitide.63,64,186  The presence of 

replicating virus in peripheral tissues presents the possibility for severe disease 

syndromes and possibly death prior to virus entry into the central nervous system or 

induction of viral induced pathology therein. 

 The purpose of this study was twofold:  The first objective was to examine the 

ability of various arboviral encephalitides to alter the function of normal central nervous 

system physiology.  It was originally hypothesized that breakdown of the blood-brain 

barrier (BBB), as shown by increased permeability of the BBB to fluorescent markers, is 

an integral component of the pathology associated with viral encephalitis.  A supporting 

hypothesis was that that peripheral inoculation of animals with a viral encephalitide 
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would result in a central nervous system viral infection, which in turn would lower the 

ability of the blood-brain barrier to exclude fluorescent marker molecules, and that the 

degree of blood-brain barrier disruption as measured by fluorescent markers was 

correlated with the severity of disease.   

The second purpose of this study was to determine the mechanisms of death in 

hamsters inoculated with western equine encephalitis virus (WEEV).  The hypothesis was 

that animals that rapidly succumbed to virus infection were dying due to a peripheral 

systemic disease rather than a neurological virus infection.  It was further hypothesized 

that as part of the nonneuronal disease processes inflammatory cytokines enhanced the 

ability of the virus to destroy cells.  It was also hypothesized that WEEV retained its 

ability to cause encephalitis in hamsters.  If a hamster survived the initial systemic 

disease phase, or the systemic phase was bypassed, the animal could develop a virus-

induced central neurological disease.  The specific aims of the project were as follows: 

1. Evaluate the effect of infection with a viral encephalitides on the function of 

the blood-brain barrier in animals and correlate the blood-brain barrier function with 

disease outcomes.  This was accomplished by injecting a fluorescent marker molecule 

into virus inoculated mice and hamsters, and measuring the amount of fluorescence in 

brain tissue or cerebrospinal fluid.  Correlation with disease severity was evaluated by 

measuring the blood-brain barrier function in virus-inoculated mice treated with known 

effective antiviral compounds. 

2. Characterize the non-neurological disease state noted in hamsters inoculated 

with the California strain of WEEV.  This was done by measuring and examining 

multiple disease parameters in virus-infected hamsters including: serum biochemistry, 
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complete blood profiles, tissue histopathology, tissue and serum virus titers, and serum 

and tissue cytokine expression.  

3. Determine the ability of WEEV to cause encephalitic disease in hamsters.  

This was done by observing and performing post-mortem histopathological analysis on 

hamsters that survived the initial systemic phase of the disease but later succumbed.  This 

was also accomplished by inoculating WEEV directly into the central nervous system of 

hamsters. 

4. Explore the potential roles that inflammatory cytokines, including tumor 

necrosis factor-alpha and interferon, may play in the systemic disease phenotype of 

hamsters inoculated with WEEV.  This was done by measuring the endogenous cytokine 

response to virus infection in WEEV-inoculated animals and attempting to correlate 

timing and degree of cytokine expression with the outcome, and by treating WEEV 

inoculated hamsters with various anti-inflammatory agents and monitoring disease 

outcome.  Additional information was gained by evaluating the ability of WEEV to elicit 

a cytokine response in immune cells in vitro, and by measuring the ability of virus-

induced cytokine expression to reduce the viability of primary immune cells in vitro. 

To meet these specific aims the permeability of the BBB of mice inoculated with 

either Banzi or Semliki Forest viruses were evaluated.  Follow-up experiments also 

examined BBB permeability in virus inoculated mice treated with the known antiviral 

compound Ampligen™.   

Results garnered from BBB permeability studies in virus-inoculated mice 

indicated that changes to BBB permeability may be a pathophysiologic event common to 

multiple forms of viral encephalitis.  To further examine the role of the BBB in other 
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animal models of virus infection with viral encephalitides the permeability of the BBB 

in hamsters inoculated with WEEV was examined.  Experiments were unable to detect 

significant alterations to the permeability of the BBB to fluorescent markers in hamsters 

dying following inoculation with WEEV.  It was observed over the course of multiple 

experiments that the majority of WEEV-inoculated hamsters that succumbed to virus 

infection died by approximately 96 h post-virus inoculation.  From a combination of 

these 2 experiments it was hypothesized that hamsters were dying from some cause other 

than viral encephalitis, most likely a severe systemic viral disease.  A series of 

experiments were conducted to characterize the clinical, hematological, and 

histopathological changes in hamsters inoculated with WEEV.  Results from initial 

disease characterization experiments appeared to indicate a lack of neurologic disease but 

suggested the potential for a secondary bacterial septicemia.  Therefore, experiments 

were conducted to isolate bacteria from WEEV-inoculated hamsters and to treat virus 

infected hamsters with antibiotics in an effort to eliminate the presumed septicemia.   

As previously stated, the majority of WEEV-inoculated hamsters succumbed to 

virus infection by approximately 96 h post-virus inoculation, and that hamsters died 

without any observable histopathology in the central nervous system.  However, it was 

observed that a small proportion of hamsters survived the initial disease phase only to die 

later, sometimes displaying signs of overt neurological disease.  From these observations 

it was hypothesized that WEEV retained its ability to cause viral encephalitis in hamsters.  

To test this hypothesis virus inoculated hamsters dying late in the virus infection were 

assayed for histopathological changes to the central nervous system.  A further test of the 
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hypothesis was performed by inoculated WEEV directly into the brain of hamsters and 

then observing disease outcome and histopathological changes in the brain.  

Experiments showing moderate improvement in the disease outcome of WEEV-

inoculated hamsters led to the hypothesis that animals were dying due to overwhelming 

systemic inflammation.  Experiments designed to evaluate changes in serum 

biochemistry, to maximize anti-inflammatory therapy, and to block inflammation via 

immunosuppression were conducted to test this hypothesis.   

It was also hypothesized that direct virus killing of target cells was the primary 

cause for pathology and mortality in hamsters, and that this disease phenotype is unique 

to the virus strain examined.  Experiments evalutating the effect of virus dose on the 

severity of disease and comparing the disease phenotype in hamsters inoculated with one 

of 2 different virus strains were conducted to test these hypotheses.   

Observations of note from disease characterizations included increases in serum 

concentration of the cytokines interferon and tumor necrosis factor-alpha (TNF-alpha), as 

well as a severe lymphopenia noted in the latter portions of the systemic disease.  These 

parameters were examined further in attempts to identify antemortem markers of disease 

outcome and to further understand the pathogenesis of WEEV infection in hamsters. 

Due to the observation that serum concentrations of the inflammatory cytokine 

TNF-alpha were increased in virus infected hamsters it was hypothesized WEEV could 

induce production of TNF-alpha from hamster macrophages in vitro.  It was further 

hypothesized that common anti-inflammatory compounds could reduce the production of 

TNF-alpha from virus exposed macrophages.  Studies examining the effect of WEEV on 

hamster peritoneal macrophages and the effect of concurrent treatment with anti-
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inflammatory compounds were conducted to test this hypothesis.   Due to the presence 

of lymphocytic necrosis in WEEV-infected hamsters it was hypothesized that WEEV 

could directly induce destruction of lymphoid cells.  It was further hypothesized that 

inflammatory cytokines could enhance virus killing of lymphoid cells.  To test this 

hypothesis a series of experiments examining the effect of WEEV, alone and in 

combination with the supernatant from WEEV stimulated macrophages, were conducted 

using hamster splenocytes. 
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LITERATURE REVIEW 

 
 

Arboviral Encephalitides 
 
 Arboviruses are the most common cause of encephalitis worldwide.247  Arboviral 

encephalitides are primarily small membrane-bound positive-stranded RNA viruses of 

the Flaviviridae family, and members of Togaviridae family particularly members of the 

Alphavirus genus.174,197  These families of viruses have worldwide spread, present an 

ongoing widespread threat to human and animal health, and have been considered 

potential bioterror agents.215  Encephalitic arboviruses of particular concern in North 

America include the flaviviruses West Nile and St. Louis encephalitis viruses, while 

alphaviruses of note include Venezuelan, eastern, and western equine encephalitis 

viruses. 

 In the current study 3 viruses were used:  Banzi virus, a flavivirus, and Semliki 

Forest and western equine encephalitis viruses, both alphaviruses.  While Banzi and 

Semliki Forest viruses are not naturally occurring threats to public health in North 

America, they were used in this study, as they have been is previous studies, as surrogates 

in place of related but more virulent virus species.9,58,112,184,216,217 

Banzi virus was first isolated from the serum of a febrile boy in Johannesburg, 

South Africa in 1956.221  The virus is serologically related to Uganda S and yellow fever 

viruses.36  Little work has been done to examine the Banzi virus genome, but analysis of 

its NS5 gene also shows a relationship to yellow fever virus.84  Banzi virus has been 

isolated from mosquitoes, cattle, and rodents in South Africa, Mozambique, Zimbabwe 

and Kenya,159,160,163 while neutralizing antibodies to Banzi virus have been found in 
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human sera from South Africa, Mozambique, Angola, Namibia and Botswana.138,221  

Banzi virus is not a common human pathogen, but it has been associated with a case of 

febrile illness in Tanzania.248  The natural transmission cycle of Banzi virus is poorly 

understood but the natural host is probably rodents.  Experimental work with Banzi virus 

has been conducted almost exclusively in rodents, but Banzi virus infection can cause 

abortion in experimentally infected pregnant ewes.17  In laboratory rodents inoculation 

with Banzi virus follows a typical biphasic pattern.  Following peripheral inoculation the 

virus infects and replicates in multiple systemic tissues, particularly in lymphatic 

tissues,26 and induces a febrile state.216  Following the peripheral phase of infection the 

virus enters the brain, causing a lethal meningoencephalitis.112  The primary cause of 

mortality in rodents associated with experimental infections appears to be due to viral 

induced pathology of the central nervous system, and is not associated with virus 

replication in peripheral tissues.  Following virus inoculation mice found to be 

genetically resistant to mortality due to Banzi virus infection have similar levels of virus 

in peripheral non-neural tissues as that seen in susceptible mice, but they have 

significantly lower viral titers in the brain.26  Additionally, both resistant and susceptible 

strains of mice have similar levels of virus replication, and similar degrees of mortality 

when the virus is inoculated intracranially.112  The ability to survive virus infection in 

resistant strains of mice appears to be tied to the peripheral cell-mediated immune 

response as adoptive transfer of immune cells from resistant strains protects susceptible 

strains from virus-induced mortality,113 while immunosuppression or T-cell depletion 

increases susceptibility regardless of mouse strain.25  Most nucleoside analog antiviral 

drugs are poorly efficacious against Banzi virus infection in mice,218 whereas, treatment 
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of animals with interferon,184 or use of immunomodulatory and interferon inducing 

agents can be highly effective at limiting virus spread in vivo and at protecting animals 

from lethal infections.119,179,184,208,216 

Semliki Forest virus is an Old World alphavirus and a prototypical member of the 

Semliki Forest complex of viruses.  SFV was isolated from Aedes abnormalis mosquitoes 

collected in the Semliki Forest region of western Uganda in 1942.219  Although infection 

with SFV has rarely been associated with human disease, experimental infection with 

SFV can cause encephalitis in horses, mice, rats, hamsters, rabbits, and guinea 

pigs.10,29,220,254 

Two primary disease phenotypes occur in laboratory rodents following 

inoculation with SFV, with disease type, and severity being dependent upon, age and 

species of host, animal strain in the case of mice, and virus strain.231  Inoculation of mice 

with viruses based upon the so-called avirulent strains of SFV (e.g. A7 strain) results in 

no apparent short-term disease, but produces a demyelinating pathology of the central 

nervous system if animals are allowed persist for adequate periods of time.16,70,130,189  In 

comparison infections based upon the virulent strains (e.g. Original or L10 strains) will 

result in fatal encephalitis.16,189  Following peripheral inoculation SFV animals develop a 

viremia, and virus replication is detected in multiple body tissues, including spleen and 

muscle, before the virus invades the central nervous system.95,172  The virus also infects 

brain endothelial cells, altering the function of the blood-brain barrier.74  The primary 

target of SFV in the brain appears to be neurons.77,133  Infection of neurons with either 

virulent or avirulent strains of SFV results in both apoptosis and necrosis,130,131,204 with 

virulent strains causing more rapid and more widespread cell death.16 



 10
Similar to many other encephalitic arboviruses SFV is poorly sensitive to 

nucleoside analog antiviral agents such as ribavirin.38,217  But SFV is sensitive to the 

antiviral effects of interferon and interferon inducers, but only if these agents are 

administered either previrus-exposure or very early in the virus infection.58,168,184,216,217 

Western Equine Encephalitis virus, also known as Western Equine 

Encephalomyelitis virus, is a New World alphavirus, and the prototypical virus of the 

WEEV complex.  Other members of the WEEV complex of viruses include the 

Highlands J, Fort Morgan, and Aura viruses.  Phylogenetically, WEEV is mostly closely 

related to other New World alphaviruses: Eastern Equine Encephalitis virus and members 

of the Venezuelan Equine Encephalitis virus complex.37  WEEV was originally isolated 

in 1930 from the brain of 2 horses in California during an outbreak of equine 

encephalitis.164  Following isolation WEEV was shown to readily infect and cause 

disease in a wide variety of species, including monkeys, rats, mice, rabbits and guinea 

pigs.  Mosquitoes are considered to be the primary transmission vector in naturally 

occurring infections.  Mosquitoes of the Aedes aegypti species can be experimentally 

infected with WEEV and transmit it to new hosts.127  Isolation of WEEV from Culex 

tarsalis mosquitoes in naturally occurring epizootic outbreaks identify this mosquito 

species as the principal natural arthropod vector.102  WEEV is widely distributed in the 

western United States and Canada, and in South America.110,117,239  In North America, 

WEEV is maintained in an endemic cycle involving birds (particularly finches and 

sparrows) and Culex tarsalis mosquitoes.35 

Since WEEV was first isolated from the brain of a horse it was suspected of 

causing human disease.165  The suspicion was confirmed in1938 when WEEV was 
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isolated from the brain of a child with fatal encephalitis.109  Since that time WEEV has 

been recognized as the cause of major epizootics in the years 1931, 1933-1935, 1937, 

1938, 1941, 1944, 1947, 1950, and 1952.35  Between the years of 1964 and 2005 a total 

of 639 confirmed cases of WEEV infections in humans have been reported.42 

Disease in individuals infected with WEEV results in a typical biphasic disease 

pattern similar to that seen with other alphavirus encephalitides.  There is a prodromal 

phase with symptoms of fever and headaches.  This is similar to the disease signs noted 

in horses infected WEEV wherein signs of fever, anorexia, and mild depression are 

noted.227  In many instances the disease does not progress beyond the initial febrile 

period.  In those individuals in which the disease does progress symptoms may include 

restlessness, irritability, nuchal rigidity, photophobia, altered mental status, and 

paralysis.32,79,80  Horses can present with parallel signs of ataxia, somnolence, a stiff neck, 

and head pressing.  More severe signs may develop, including blindness, circling head 

tilt, nystagmus and seizures.68,88,227  Pathological changes in the central nervous system of 

humans or horses infected with WEEV or New World alphavirus encephalitides are 

similar.  Pathological lesions are most often seen in the brainstem, cerebellum, cerebrum 

and spinal cord.  Lesions may include hemorrhage, lymphocytic infiltrate, perivascular 

cuffing, neuronal apoptosis and necrosis, and leptomeningitis.63,79,81,164,167,199 

 
Blood-Brain Barrier in Viral Disease 
 

The blood-brain barrier (BBB) is a functional and structural component of the 

central nervous system (CNS) vasculature that serves important protective functions for 

the CNS.  It is composed of highly specialized endothelial cells in the CNS vasculature.  
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The physical apposition of astrocyte foot-processes on the abluminal side of the 

endothelial cells, and the production of various trophic factors by astrocytes directly 

impacts the function of the BBB.104  The specialized endothelium of the BBB is able to 

selectively transport molecules into the CNS (e.g. glucose, insulin) while limiting the 

entry of hydrophilic compounds and toxins as well as circulating leukocytes.   

It has long been recognized that the ability of the BBB to exclude substances from 

the CNS is often compromised during infection and inflammation of the CNS.  The exact 

mechanisms of BBB breakdown and its role in the disease progression of viral 

encephalitis are currently unknown.  However, a number of inflammatory cytokines, 

whose expression levels can be increased in association with viral infection, have been 

demonstrated to increase permeability of the BBB.  Levels of matrix metalloproteinases 

(MMPs) are increased in the cerebrospinal fluid of patients with human 

immunodeficiency virus (HIV) encephalitis, as is the permeability of the BBB.54  

Infection of mice with an avirulent strain of the Semliki Forest virus (SFV) significantly 

increased the expression of MMP-2 & 9, and increased the permeability of the BBB, 

while treatment  with an inhibitor MMPs significantly improved the condition of the 

BBB.131   

The exact role of the BBB in the pathophysiology of viral encephalitis is poorly 

understood.  However, increased permeability of the BBB appears to be a vital 

component of viral encephalitic pathology.  Mortality associated with infection of 

nonneuroinvasive strains of West Nile virus or Sindbis virus can be greatly enhanced by 

prior administration of lipopolysaccharide,151 which is known to increase BBB 

permeability.151,250  SFV can infect and damage endothelial cells of the BBB 
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endothelium.74  Permeability of the BBB is also seen in encephalitis associated with 

HIV61 and in murine models of lymphochoriomeningitis virus.5 

A variety of methods have been used to evaluate the function of the BBB.  

Leakage of systemic proteins, such as fibrinogen or albumin, into the CNS have been 

used to assess BBB permeability associated with HIV associated encephalitis,61 simian 

immunodeficiency virus encephalitis148 and a mouse model of experimental allergic 

encephalomyelitis induced by infection with an avirulent strain of SFV.74  While these 

techniques have the benefit of using endogenous proteins they are highly dependent upon 

the skill of the evaluator, and are semiquantitative at best.  Additional methods involve 

the injection of a radioactively labeled marker, as was used in a mouse model of 

lymphochoriomeningitis virus.5  Use of radioactive markers can provide highly accurate 

and detailed information regarding the degree of BBB permeability, as well as giving the 

ability to spatially identify areas of variable BBB permeability within the CNS.  

However, use of radioactive materials poses a potential risk to laboratory personnel and 

requires additional oversight and precautions for disposal of isotopes as well as animal 

remains.  In contrast, fluorescent markers, such as sodium fluorescein (NaFl) provide a 

safe and relatively simple means to evaluate the function of the BBB.  NaFl is a small 

molecular weight marker (MW 367) that has been widely used in a variety of model 

systems for evaluation of BBB permeability.65,75,97,108,140 

 
Atypical Disease Phenotypes Associated  
with Arboviral Infection 
 
 Broadly categorized arboviruses may be classified as being encephalitic or 

nonencephalitic depending upon the primary disease manifestation associated with viral 
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infection.  However, atypical disease phenotypes can be observed.  Nonencephalitic 

viruses can invade the central nervous system following a systemic disease phase.  Also, 

primary encephalitides have the potential to cause severe disease in non-neuronal tissues.  

Finally, in experimental infections host-virus interactions appear to play a vital role in 

determining disease manifestations, as different species infected with the same virus can 

display widely divergent disease phenotypes. 

Dengue virus is an arbovirus of the Flaviviridae family.  The primary disease 

associated with dengue virus is dengue fever, a severe flu-like illness.178,226  A less 

common but more severe form of dengue virus infection is dengue hemorrhagic fever, in 

which patients develop system-wide vascular leakage and hemorrhage, potentially 

leading to shock and death.202  However, naturally occurring infections resulting in 

dengue virus encephalitis have been reported in both India,166 Vietnam,225 and Brazil223  

wherein patients exhibited a variety of neurological disease symptom including 

weakness, paralysis, confusion, headache, and alterations in the cerebrospinal fluid.  

Naturally occurring infections with the related flavivirus yellow fever virus have not been 

associated with cases of viral encephalitis.  However, encephalitis has been reported in 

association with adverse reactions to commercial yellow fever vaccines, although these 

events are exceptionally rare.157  Similarly monkeys inoculated with vaccine strain virus 

also have the potential to develop a viral encephalitis.155  

The Rift Valley fever (RVF) virus of the family Bunyaviridae is a zoonotic 

disease primarily causing abortion, hepatitis, hemorrhage, and death among domestic 

ruminants.87  It is transmitted to humans either via bites by infected mosquitoes or 

through contact with contaminated tissues.  In humans infection with RVF is usually 
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associated with a self-limiting febrile illness,162 and in more severe cases it can 

produce a potentially fatal hemorrhagic disease.86    In rare instances, RVF can also 

proceed to infect the central nervous system and produce encephalitis, meningitis, and 

retinitis.2,4  The Alkhumra virus, a bunyavirus related to RFV, is another arbovirus that 

primarily causes hepatitis and hemorrhagic manifestations, but it also the potential to 

cause viral encephalitis.153 

Viral encephalitis is the primary human health concern associated with infection 

by many arboviruses of the Flavi- and Togaviridae families.  However, there have been 

many reports of naturally occurring infections with arboviral encephalitides in which 

severe pathology occurs outside the CNS.  Most arboviral encephalitides exhibit a 

biphasic disease pattern with an initial systemic phase of viral replication and 

dissemination in nonneuronal tissues, followed by a second phase of infection involving 

the central nervous system and encephalitis.  The initial systemic phase of virus infection 

presents the possibility for tissue pathology, morbidity and mortality due to the peripheral 

virus infection in the absence of viral damage to the central nervous system.  Avian 

species in particular appear to be sensitive to the non-neuronal aspects of arboviral 

infection. West Nile virus (WNV) infection in humans and horses follows the familiar 

biphasic disease pattern as seen with other viruses with that display initial signs of febrile 

disease followed by signs of encephalitis.34,50,101,118,187,211,222,250  Furthermore, the 

histopathological lesions noted in naturally occurring infections in humans and horses are 

almost exclusively within the CNS.39,205,250  Nonneuronal lesions associated with WNV 

infection are rarely identified in mammalian hosts.  However, in avian hosts multiple 

species of birds infected with WNV develop splenomegaly and severe myocarditis in 
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addition to CNS lesions.228,233  In contrast to the neuropathology seen in human 

infections of EEE,22 a naturally occurring EEE infection in an egret resulted in severe 

hepatic necrosis and necrosis of sheathed arterioles in the absence of any detectable 

pathology in the CNS.92  EEE infection of turkeys resulted in lymphocytic and pancreatic 

necrosis as well as high mortality.78  Emus infected with EEEV experienced acute 

mortality and had necrosis in the liver and spleen240 while in ostriches EEEV infection 

produced a hemorrhagic colitis.31  Naturally occurring arboviral infections in mammals 

can also result in severe nonneuronal pathology.  Horses diagnosed with an infection of 

EEEV were found to have necrotic lesions in the heart, intestine, urinary bladder and 

spleen in addition to CNS lesions.64  Lethal human infections of VEEV cause necrosis in 

both spleen and lymph nodes in addition to central nervous system lesions.63 A lethal 

disease phenotype of VEEV infection in humans occurs, which occurs primarily in 

children, is described as a fulminant infection, and is considered to be primarily due to 

the viral destruction of lymphocytes and lymphoid tissue and generally lacks pathological 

changes to the CNS.72 

In experimentally infected animals the virus-host interaction appears to play a 

vital role in determining the propensity for an arbovirus to cause either encephalitis or 

pathological changes in nonneuronal tissues.  As noted previously, West Nile virus is 

considered to be a primarily neurotropic pathogen and produces few histopathological 

lesions outside of the central nervous system.  However, domestic chickens 

experimentally infected with WNV develop myocarditis and nephritis in addition to 

encephalitic lesions.213   The Alphaviruses EEE, WEE, and VEE viruses are also 

considered primary encephalitides in humans and domestic mammals.  However, as seen 
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with naturally occurring infections, experimental inoculations of domestic birds with 

Alphavirus encephalitides can often produce nonneuronal disease phenotypes.  Chickens 

and turkeys inoculated with either EEEV or the Highlands J virus (from the WEEV 

complex of viruses) develop necrosis in multiple nonneuronal tissues, including heart, 

kidney, pancreas, and lymphoid tissues.99,100  Infection of turkeys with WEEV results in 

lymphoid necrosis.55  Guinea pigs or rabbits inoculated with a virulent strain of VEEV 

often develop lymphoid necrosis and die from an apparent shock-like death.93,236  In 

contrast to the significant peripheral pathology noted in other species, mice inoculated 

with the EEEV, WEEV, VEEV or with West Nile virus develop a neurological disease 

with little peripheral signs of pathology.27,45,103,111,149,169,242  Interestingly, mice also 

develop an encephalitic disease after inoculation with a vaccine strain of the hepatotropic 

yellow fever virus.30,43  Although poorly understood, the host-virus relationship plays a 

vital role in determining the disease phenotype that will be observed. 

 
Experimental Alphavirus Infections in  
Syrian Golden Hamsters 
 

Mice are by far the most commonly used animal model for studying alphavirus 

infections.  However, hamsters are recognized as a potential animal model for the study 

of alphavirus pathogenesis and the testing of potential antiviral compounds.120  Viruses 

that have been tested in hamsters include SFV, EEEV, WEEV, and VEEV.  Hamsters 

infected with alphaviruses commonly develop viral encephalitic diseases, similar to those 

seen in mice and other laboratory animals as well as diseases seen in naturally occurring 

infections.  However, other disease phenotypes with a predominantly peripheral 

pathology can occur in hamster models of alphavirus infections.   
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SFV is a strongly neurotropic virus that appears to efficiently infect neurons in 

the central nervous system.  Adult hamsters exposed to aerosolized SFV express 

replicating virus in multiple organs, including lymphoid tissue, kidney, liver, and 

lungs.105  The neurotropic nature of the virus is verified by the fact that nervous tissue 

develops the highest viral titers.  Virus titers in the brain rise rapidly following virus 

exposure, reaching peak levels within 2 d.  Shortly after SFV enters the brain hamsters 

develop a severe necrotic and hemorrhagic encephalitis.105  SFV infection in neurons 

causes alterations and degeneration of cellular organelles leading to cell death.254  

Simultaneous with the neuronal infection by SFV, other CNS cell types respond via 

proliferation and hypertrophy, particularly in the case of astrocytes.253  Histopathological 

lesions can be found throughout the brain and spinal cord by 4 d post-virus exposure, 

particularly within the olfactory bulb.  Animals may also develop an acute hepatitis.  

Death usually ensues within 5 d following virus exposure.105   

Previous reports on the study of WEEV virus infection in hamsters indicate the 

disease pathogenesis is similar to that described for SFV in hamsters.  Following virus 

inoculation, animals develop both a febrile and central nervous system disease, and 

rapidly succumb to death within 6 d of virus exposure.255  Hamsters inoculated with a 

virulent strain of WEEV show virus replication in multiple body tissues, including liver, 

lymphoid tissues and kidneys.120   Hamsters also rapidly develop high virus titers in 

nervous tissue, followed by the appearance of CNS hemorrhage and necrotic 

histopathological lesions.  Perivascular cuffing of lymphocytic cells and astrocyte 

hypertrophy accompanied the necrosis and hemorrhage.255  As reported with other 

alphaviruses, WEEV infection in hamsters is sensitive to interferons and 
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immunomodulatory agents.  Pretreatment of hamsters with either recombinant human 

interferon alpha/beta or an interferon inducer can protect up to 100% of animals 

inoculated with a lethal dose of WEEV, whereas placebo-treated animals rapidly 

succumb to virus infection by 5 d post-exposures.120  Although not widely studied, EEEV 

infection in hamsters follows the pattern described for both SFV and WEEV, with 

widespread systemic replication of the virus followed by an invasion of the virus into the 

CNS and the production of very high virus titers in the brain.181  EEEV in hamsters 

causes hepatic necrosis and lymphoid degeneration in the viscera.  EEEV also readily 

infects neurons, causing necrosis and hemorrhage in the CNS accompanied by a 

primarily lymphocytic inflammation in the brain.71  In addition to the CNS necrosis a 

severe vasculitis associated with nervous tissue has also been noted in the brain of EEEV 

inoculated hamsters.181 

In contrast to the primarily CNS lesions noted in hamsters inoculated with SFV, 

EEEV, or WEEV, hamsters inoculated with virulent strains of VEEV develop 

histopathological lesions in peripheral organ tissues.   Lesions in VEEV-infected 

hamsters include necrosis and degeneration in the pancreas affecting both islet and acinar 

cells90 with subsequent glucose intolerance in surviving animals.192  However, the most 

striking lesions are severe and rapid necrosis in thymus, spleen, lymph nodes and gut-

associated lymphoid tissue and bone marrow.243  Lesions can appear rapidly, with 

necrosis noted in the thymus occurring as soon as 2 d after subcutaneous inoculation with 

VEEV.  Necrosis occurs in other lymphoid and hematopoietic tissues shortly thereafter 

until all of these tissue types examined display severe widespread  

necrosis.11,116  In addition to the necrosis noted in the bone marrow, VEEV infection also 
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induces chromosomal changes in bone marrow tissue, resulting in aneuploidy, 

although the mechanisms for this effect is unknown.188  Following infection animals die 

precipitously, with death occurring within 96 h post-virus inoculation.90,91  Although live 

virus may be detected in the brains of hamsters inoculated with VEEV no animal has 

displayed histopathological lesions in the central nervous before the time of death.111  The 

rapid death noted in VEEV infection in hamsters is apparently not due to viral induced 

damage of the CNS, but rather associated with an apparent septicemia and septic shock 

subsequent to destruction of gut-associated lymphoid tissues and bacterial translocation 

from the gastrointestinal tract into systemic circulation.91  Gram-negative pleiomorphic 

rods identified as Escherichia coli, and Proteus mirabilis can be isolated from the blood 

of VEEV-infected hamsters.  These organisms are consistent with normal gastrointestinal 

flora in hamsters.  Furthermore, treatment of hamsters with antibiotics that have an 

activity spectrum against gram negative enterobacteria significantly prolong survival in 

VEEV-infected hamsters from less than 4 d to greater than eight.  Although neurological 

involvement is apparently not the primary disease phenotype seen in VEEV-infected 

hamsters, the neurovirulence of the virus is confirmed by the observation that animals 

infected with virus strains of lesser virulence survive the initial period of lymphocytic 

necrosis, but die approximately eight to ten d post virus inoculation, showing severe 

necrosis and hemorrhage in the CNS.114,116  Interestingly, the difference in pathogenicity 

between highly pathogenic and attenuated vaccine strains of VEEV appears to be related 

to the immune response of the individual animal.  Hamsters infected with high doses of 

the TC-83 vaccine strain of VEEV show low mortality and delayed death.  Furthermore, 

pre-inoculation of hamsters with a low dose of TC-83 protected animals from a 
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subsequent challenge with virulent VEE strains.53  Similar protection can be gained by 

previous exposure to related alphavirus encephalitides such as WEEV virus.52  However, 

splenectomized or immunosuppressed animals inoculated with the same TC-83 strain of 

VEEV display a disease phenotype very similar to that noted with virulent strains of 

VEEV, presenting with lymphoid necrosis and rapid death.114   

Neurologic disease and neuropathology are the primary disease phenotype and the 

histopathological lesions seen in hamsters experimentally infected with alphaviruses.  

This disease pattern has been reported in hamsters inoculated with SFV, WEEV and 

EEEV viruses.  However, hamsters inoculated with virulent strains of VEEV display a 

markedly different disease phenotype involving primarily lymphoid and hematopoietic 

necrosis, and animal mortality is at least in part associated with a secondary bacterial 

sepsis.  This lymphocytic disease phenotype is distinct from the neurological disease 

phenotype observed in mice inoculated with VEEV45,111 and appears to be consistent with 

the fulminant form of VEEV virus infection in some humans where death appears to be 

associated with peripheral lymphocytic necrosis rather than viral pathology in the CNS.72 

 
Viral-Mediated Cell Killing Enhanced  
by Inflammatory Cytokines 
 
 Cytokines perform vital functions in the immune response to viral infections.  In 

many cases, cytokines confer antiviral properties on cells, and may provide 

cytoprotection.  However, in vitro evidence indicates that cytokines may also interact 

with virus infected cells in a manner that potentiates mechanisms of cell death.  The 

reasons that cytokines can enhance virus mediated cell killing are unclear.  However, in 

vivo research results suggest that the cell death potentiation by cytokines may be involved 
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in negative outcomes due to virus infection, and that cytokine-virus interactions play 

significant roles in the morbidity and mortality associated with some human viral 

diseases. 

As part of the cellular response to virus infection many cell types produce a wide 

range of cytokines.   It is widely recognized that certain cytokines can have protective 

and antiviral effects in virus-infected cells.  Human immunodeficiency virus-induced 

apoptosis of T lymphocytes can be reduced by treatment with interleukin (IL) -15.44  The 

pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) demonstrates 

antiviral activity against multiple viruses.7,249  Treatment of mice with TNF-alpha can 

reduce expression of the hepatitis B virus genome in transgenic mice.89  TNF-alpha 

inhibits murine cytomegalovirus replication, and this effect is synergistically enhanced 

when combined with interferon gamma.150  TNF-alpha also inhibits replication of 

respiratory syncytial virus both in vitro and in vivo.176  In particular, interferons have 

been widely studied for their ability to prevent virus-induced cytotoxicity.  Interferon 

gamma acts to restrict virus replication in endothelial cells.96,124,212  In animals and 

humans interferon and interferon inducers have proven to be effective against a wide 

array of viruses.  Use of the interferon inducer Ampligen™ has been shown to prevent 

morbidity and mortality in animals experimentally infected with viruses such as BaV, 

SFV, WNV, Modoc virus, Punta Toro virus, WEEV, and VEEV.120,143,168,169,185,214   The 

beneficial effects associated with Ampligen™ are primarily seen when treatment is 

performed in a prophylactic manner.  The addition of virus-specific antiserum has been 

shown to extend the therapeutic window for the use of another interferon inducer, Poly 

IC:LC, to allow significant protection after animals displayed virus associated fever.216  
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Interferons alone have also proven effective.  Use of recombinant alpha/beta 

interferons has protected animals from lethal infections due to WNV, WEEV, herpes 

simplex-2 virus, BaV and SFV.120,169,184 

In contrast to the antiviral and cytoprotective cytokine effects noted previously, 

cytokines also have the potential to initiate or enhance cell killing in virus-infected cells.  

In some instances, there is a synergistic effect on virus induced cell death, and in many 

cases, the same cytokines that display antiviral and cytoprotective effects also participate 

in mechanisms of cell death.  It is generally recognized that cell death associated with a 

virus infection can follow one of 2 basic pathways:  necrosis and apoptosis.  Necrosis 

involves the death of a cell as a result of physical damage or toxic agents.  During 

necrosis, there is disruption of the mitochondria, swelling of the cell, disruption of 

organized structure, and lysis.  Apoptosis is energy dependent and involves cell death in 

situations controlled by physiologic stimuli during development and hormonal signaling 

in response to DNA damage.  During apoptosis, there is DNA condensation and 

fragmentation, cell shrinkage, and membrane blebbing.  Cell death due to viral infection 

can result from either mechanism in that viruses may have toxic effects on the host cell, 

activate programmed cell death pathways, or both.    

Treating cells with IL-8 can enhance the cytopathic effect of EMCV and vesicular 

stomatitis viruses.132  Transforming growth factor-beta-1 (TGF-beta-1) synergistically 

enhances HIV induced apoptosis of T lymphocytes.245  Apoptosis induced by an 

influenza virus and by equine influenza virus can be enhanced by TGF-beta-1.146,210   

Interferons have the ability to potentiate virus-induced cell death.  The ability of 

interferons to enhance virus induced cell death was first suggested by Cooper et. al., who 
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showed that treating mouse fibroblasts with interferon and Poly I:C, a double stranded-

RNA (ds-RNA) molecule, produces a profound cytotoxic result.56  Intracellular ds-RNA 

is absent during normal cellular function, but it is a common condition in many viral 

infections.  Therefore, the cytotoxic effects of combined ds-RNA and interferon could 

presumably occur during a viral infection.  Other studies suggest that the combination of 

ds-RNA and interferon can lead to either cellular apoptosis or necrosis depending upon 

other environmental conditions and the presence of various cytokines.122  Additional 

studies have shown interferon’s ability to enhance cell death in conjunction with virus 

infection.  The presence of interferon alone does not induce apoptosis in murine 

embryonic fibroblasts, but the presence of virus and interferon together does, a result 

which can be mimicked by a combination of ds-RNA and interferon.235  Treatment of 

fibroblasts with interferon-alpha sensitizes cells to virus induced apoptosis.15  The exact 

mechanisms associated with interferon induced apoptosis are unclear, but interferon can 

activate the ds-RNA protein kinase,14,66 or the RNAse-L enzyme,40 both of which can 

initiate apoptotic pathways.   

The inflammatory cytokine TNF-alpha has long had a recognized ability to induce 

cell death, and in particular has been shown to synergistically enhance virus cell-killing.  

The in vitro cytopathic ability of Simian virus 5, a paramyxovirus, is positively correlated 

with increased concentrations of TNF-alpha in culture media, and the virus cytopathic 

effect is ameliorated by the use of TNF-alpha blocking antibodies147  Tula virus, a 

hantavirus, synergistically interacts with TNF-alpha to speed and increase apoptosis in 

virus-infected cells in vitro.145  Similarly, TNF –alpha speeds apoptosis in cells infected 

with vesicular stomatis virus139 while viral proteins from the Epstein-Barr virus126 or the 
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hepatitis B virus135 significantly enhance the sensitivity of cells to apoptosis induced 

by TNF-alpha.  TNF-alpha also plays an important role in inducing apoptosis in cells 

infected with a cytopathic strain of bovine viral diarrhea virus.  Blockage of TNF-alpha 

activity significantly reduces the virus associated apoptosis.251  Reovirus upregulates 

cellular receptors for the TNF-related apoptosis inducing ligand (TRAIL), which can 

enhance virus-induced apoptosis in both murine and human cell lines.51  TRAIL also 

enhances viral-induced apoptosis in a hepatic cell line infected with dengue virus.158 

  The role of cytokines in enhancing cytotoxicity in virus infected cells is more 

difficult to demonstrate in vivo, and in many instances the relationship between 

inflammatory cytokines and increased cytotoxicity is only correlative.  However, 

evidence reported in the literature appears to confirm the ability of some inflammatory 

cytokines to synergistically enhance virus cell-killing in the whole animal.  Infection of 

rhesus macaques with pathogenic simian immunodeficiency virus results in elevated 

concentrations of IL-18 and enhanced T lymphocyte apoptosis when compared to 

infection with a non-pathogenic strain.121  The cytokines IL-6, IL-10, and TNF-alpha are 

positively correlated with increased myocardial necrosis and increased mortality in mice 

inoculated with encephalomyocarditis virus (EMCV).246  In pigs inoculated with classic 

swine fever virus serum concentrations of the cytokines TNF-alpha, IL-1a and IL-6 were 

increased and positively correlated with lymphoid depletion and lymphocyte apoptosis.206  

In chickens inoculated with the infectious bursa disease virus increased amounts of IL-6 

and IL-18 correlate well with macrophage lysis and decreased numbers of 

macrophages.134,182  Mice inoculated with an avirulent strain of SFV show decreased 

neuronal necrosis in animals that are lacking an active form of IL-4.129  
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Immunocompetent mice inoculated with a virulent strain of VEEV display severe 

splenic necrosis, whereas severe combined-immunodeficient mice infected with the same 

strain of VEEV do not show similar lymphoid necrosis, suggesting a role for the immune 

system in promoting necrosis.45  A murine equivalent of human IL-8, macrophage 

inflammatory protein-2 (MIP-2) is increased in murine macrophages infected with 

EMCV, while the serum MIP-2 in mice inoculated with EMCV is similarly raised.  

Treatment of EMCV inoculated mice with anti-MIP-2 antibodies improves survival and 

lessens the degree of inflammation and necrosis in cardiac tissues.137  Similar results are 

seen in animals infected with the cardiotropic Coxsackievirus, wherein treatment of 

Coxsackievirus infected mice with anti-MIP2 antibodies reduces mortality and reduces 

the severity of virus-associated histopathological lesions in cardiac tissue.136  Liver 

biopsies from fatal human cases of yellow fever virus exhibit increased apoptosis, while 

also exhibiting increases in the concentrations of the cytokines TNF-alpha, interferon-

gamma, and considerably higher concentrations of TGF-beta-1.190  Indeed, this proposed 

interaction between yellow fever virus and inflammatory cytokines is hypothesized to be 

responsible for some of the characteristic histopathological lesions in the liver of virus 

infected individuals.191 

 
Lymphopenia Associated with  
Arboviral Encephalitides 
 

Lymphopenia, a decrease in the number of circulating lymphocytes, is a 

nonspecific clinical laboratory finding observed in many disease states.  It is commonly 

identified in association with infectious disease, and in particular in association with viral 

disease.  Lymphopenia has often been noted in association with arboviral infections, both 
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in laboratory animals and in those occurring naturally.  The degree of lymphopenia 

observed has often been found to have prognostic value in determining the outcome of a 

virus infection. 

Broadly speaking, lymphopenia associated with viral disease is due to either 

sequestration of lymphocytes or lymphocyte destruction.  Sequestration during a virus 

infection involves migration of lymphocytes from peripheral circulation into lymphatic 

organs, and minimization of recirculation, and is usually transient.69  Increases in 

inflammatory cytokines appear to play important roles in directing the movement of 

lymphocytes out of the circulation.  Increased concentrations of interferons in particular 

decrease recirculation of lymphocytes.  Macaques inoculated with simian 

immunodeficiency virus expressed high amounts of interferon immediately preceding 

and during dramatic decreases in the numbers of circulating lymphocytes.201  Mice 

inoculated with vesicular stomatitis virus display a substantial lymphopenia.  This 

lymphopenia is absent in transgenic mice lacking the receptor for interferon alpha.123  

TNF-alpha can also affect the ability of lymphocytes to circulate in the blood.  Injection 

of recombinant TNF-alpha into rats causes a transient lymphopenia.238  Similarly, both 

mice and humans treated with endotoxin, a known inducer of TNF-alpha expression, also 

display a dramatic but transient decrease in circulating lymphocytes, suggesting a 

temporary redistribution of lymphocytes.57  TGF-beta-1 also can alter circulating 

lymphocyte counts by moderating lymphocyte migration through tissues.76   

In addition to viruses and cytokines altering the migration and recirculation of 

lymphocytes, lymphopenia in virus infection may be the result of virus and cytokine-

mediated lymphocyte destruction.  Interferons and TNF-alpha are 2 cytokines commonly 
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observed to be upregulated during a viral infection.  Increased interferon 

concentrations can lead to lymphocyte apoptosis and death.  Administration of the 

interferon inducer Poly IC to mice decreases the numbers of circulating lymphocytes and 

induces lymphocyte apoptosis by stimulating the expression and activation of the pro-

apoptotic enzymes caspase-3 and caspase-8.13,161  TNF-alpha alone can also induce 

apoptosis in lymphocytes.98   

Virus infection alone may be able to induce apoptosis in lymphocytes.  

Lymphopenia occurs in humans, monkeys, ferrets, and mice infected with influenza 

viruses.18,49,125,252  In mice inoculated the highly pathogenic H5N1 strain of influenza the 

decreased number of lymphocytes occurs simultaneously with decreasing concentrations 

of circulating interferon, indicating that the lymphopenia may be due to a direct viral 

destruction of lymphocytes.237  Dogs infected with the paramyxoviral pathogen canine 

distemper virus displayed lymphopenia and increased apoptosis in correlation with 

increased viral antigen in their systems.209  Swine infected with hog cholera virus show 

virus infection, necrosis of peripheral lymphoid tissues and severe lymphopenia.175   

Although cytokines alone or virus alone may induce lymphocyte death, it is most 

likely that the lymphocytotoxic effects noted in virus-infected animals or people are due 

to an interaction between multiple effectors.  This can be observed in multiple models of 

viral disease.  Swine infected with the classic swine fever virus (CSFV) show viral-

induced lymphocyte apoptosis,232 and it appears that TNF-alpha plays an important role 

in lymphocyte destruction by enhancement of apoptosis in CSFV infected cells.206  TNF-

alpha also promotes lymphocytic apoptosis in cats infected with the coronavirus feline 

infectious peritonitis virus.234   Additionally, lymphocytes in infants infected with 
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respiratory syncytial virus have upregulated tumor-necrosis factor receptors, making 

them more sensitive to apoptotic signals.200   

Although lymphopenia is a nonspecific clinical laboratory finding in many viral 

infections, it has been evaluated for its prognostic value.  Lymphopenia is detected in up 

to 97% of patients suffering from an infection with severe acute respiratory syndrome 

(SARS) virus.48  Although lymphopenia does not show strong prognostic indicators of 

death associated with the SARS virus infection, it is strongly correlated with respiratory 

abnormalities detected in children via computed tomography.144  The degree of 

lymphopenia in children infected with respiratory syncitial virus is strongly correlated 

with the severity of disease and the amount of therapeutic intervention necessary.177  

Lymphopenia is observed in bone marrow transplant recipients infected with 

cytomegalovirus, and death associated with cytomegalovirus infection is only observed in 

those patients in which the lymphopenia persists.73  Lymphopenia is also a common 

finding in patients infected with West Nile virus, but severe lymphopenia has shown its 

prognostic value by being associated with either death or severe persistent neurological 

deficits in West Nile virus-infected individuals.59  The relationship between viral disease 

and decreased numbers of circulating lymphocytes is not clear, but the presence and 

degree of lymphopenia has been shown to have prognostic value in naturally occurring 

infections, and may be used as a valuable tool in animal models of virus disease.  

Although the exact mechanisms have not been investigated, lymphopenia is often 

noted as a clinical laboratory finding in both humans and animals infected with various 

arboviruses.  Monkeys experimentally inoculated with flavivirus members of the tick-

borne encephalitis group of viruses were observed to have severe lymphopenia before 
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death, in addition to the presence of lymphoid necrosis observed after death.128  

Humans presenting with naturally occurring WNV infections often display profound 

lymphopenia, and the finding of lymphopenia in conjunction with other clinical signs of 

viral encephalitis is considered to be a diagnostic indicator of potential WNV infection.60  

Similarly, individuals infected with the Japanese encephalitis virus, a flavivirus related to 

WNV, consistently display severe lymphopenia, although it appears to be mediated by a 

predominant lack of T lymphocytes.46  Experimental infections in guinea pigs with the 

pichinde virus, an Arenavirus, can also produce severe lymphopenia in conjunction with 

lymphatic and hepatic necrosis.115  Alphavirus infections also have dramatic effects on 

the number of circulating lymphocytes.  Humans infected with VEEV usually develop an 

absolute leukopenia, which is dominated by a dramatic lymphopenia.67  In addition to 

viral encephalitis, ponies experimentally infected with a pathogenic strain of VEEV 

isolated in Chiapas, Mexico were found to have lymphopenia as well as necrosis and 

lymphocyte depletion in peripheral lymphoid organs.203  Both guinea pigs and rhesus 

macaques experimentally infected with VEEV exhibit similar patterns of decreased 

numbers of circulating lymphocytes, with the onset of lymphopenia occurring within 2 d 

following virus exposure.241  Indeed, the lymphopenia is still seen if animals are exposed 

to aerosolized VEEV196 or even if animals are treated with a modified live vaccine of 

VEEV.195  Similar, although not as severe, decreases in circulating lymphocytes are seen 

in rhesus macaques following exposure to aerosolized EEEV or WEEV.193,194  Finally, 

although naturally occurring infections of encephalitic alphaviruses are rarely reported in 

species other than humans, equines, or birds, a case of EEEV infection in a young lamb 
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has been recently reported wherein the animal developed severe lymphopenia in 

addition to fever and neurological abnormalities preceding death.21 

Decreased numbers of circulating lymphocytes is a common correlate of many 

viral infections.  The exact mechanisms that result in lymphopenia are not always clear, 

but are likely the result of decreased lymphocyte recirculation in response to a variety of 

cytokines, or lymphocyte destruction as a result of virus infection, cytokine-mediated cell 

death, or very likely a combination of factors.  Although mechanisms of lymphopenia are 

poorly understood, low lymphocyte counts often have prognostic value.  The more severe 

or the greater the duration of lymphopenia, the poorer the disease outcomes.  Finally, 

many arboviral infections, both naturally occurring and experimental, are associated with 

varying degrees of lymphopenia. 

 
Compounds 
 

The interferon inducing agent Ampligen™™ (poly I: poly C12U) is a known 

antiviral agent.  Ampligen™ has proven to be effective against the viruses being tested 

here.  The antiviral mechanisms of interferons and interferon inducers have previously 

been reviewed.62  It is recognized that the primary mechanism of action of Ampligen™ is 

via activation of toll-like receptor-3 (TLR-3) on cells.  This results in production of 

alpha/beta interferons.  Interferons in turn induce an antiviral state within multiple cell 

types.  

The compound flunixin meglumine (FM) (trade name Banamine™) is a widely 

used anti-inflammatory compound approved for use in animals.  Its primary mechanism 

of action is considered to be inhibition of cyclooxygenase (COX) enzymes.   FM is a 



 32
broad spectrum COX inhibitor with significant inhibitory action against both COX-1 

and COX-2.24  In addition to its COX inhibitory actions FM inhibits the activity of 

nuclear factor kappa B (NF kappa B), an intracellular transcription factor involved in 

multiple inflammatory pathways.33  FM has been widely used in treatment of pain and 

fever in animals, and reduces the endogenous response to endotoxin.152 

Dexamethasone (DEX) is a synthetically derived glucocorticoid, with actions 

similar to endogenous cortisone.  DEX and related glucocorticoids are widely used in 

both human and veterinary medicine to control inflammation and induce 

immunosuppression.  The means by which DEX reduces inflammation are not fully 

understood.  However, it can readily reduce the effects of multiple inflammatory stimuli 

including endotoxin and oxygen free radicals.82,85,244 
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MATERIALS METHODS AND JUSTIFICATION 

 
Compounds 

Tumor necrosis factor-alpha, also known as cachectin, was provided as a 

lyophilized powder of its 17 kDa form (Sigma Aldrich, St. Louis, MO).  It was dissolved 

in sterile phosphate buffered saline (PBS), aliquoted, and stored at -70 °C until used.  

The interferon-inducing compound Ampligen™ (poly I: poly C12U) is a 

mismatched double-stranded (ds) RNA molecule with proven efficacy against both 

alphavirus- and flavivirus-associated encephalitis in experimental animal models.169,184  

The compound, (courtesy of David Strayer, Hemispherx Biopharma, Philadelphia, PA) 

was provided as a viscous 2.4 mg/mL solution (stored at -20 °C) and was diluted in 

diethylprocarbonate-treated sterile water to the appropriate concentrations.  

The anti-inflammatory glucocorticoid dexamethasone was used in both animal-

based and cell-based experiment.  The compound used in animal studies was provided as 

a commercially available injectable form at a concentration of 2 mg/ml (Bimeda-MTC, 

Ontario, Canada).  It was stored at 4 °C prior to use.  For animals studies it was diluted as 

necessary in sterile saline prior to injection into animals.  It was administered via i.p. 

injection at a dose of 0.6 or 2.2 mg/kg/d divided into twice daily doses.  Dexamethasone 

used in cell-based assays was acquired as a powder (Sigma Aldrich, St. Louis, MO).  It 

was dissolved in dimethyl sulfoxide (DMSO) to a stock concentration of 200 mM.  The 

compound was subsequently diluted in cell culture media to the appropriate 

concentrations. 



 34
  The anti-inflammatory compound flunixin meglumine was used in both 

animal-based and cell-based experiments.  The compound used in animal studies was 

provided in a commercially available injectable form at a concentration of 50 mg/ml 

(Banamine™, Schering-Plough Animal Health, Omaha, NE).  It was stored at room 

temperature prior use.  For animal studies, it was diluted as necessary in sterile saline 

prior to injection into animals.  It was administered via i.p. injection at a dose of 5 or 15 

mg/kg/d divided into twice daily doses.  Flunixin meglumine used in cell-based assays 

was acquired as a powder (Sigma Aldrich, St. Louis, MO).  It was dissolved in dimethyl 

sulfoxide (DMSO) to a stock concentration of 200 mM.  The compound was 

subsequently diluted in cell culture media to the appropriate concentrations. 

 The fluoroquinolone antibiotic enrofloxacin (Baytril®, Bayer Health Care, 

Shawnee Mission, KS) is an FDA approved drug for the treatment of susceptible bacterial 

infections in domestic animals, and has proven bactericidal activity against many gram 

negative and gram positive bacteria including most species of commensal enteric 

bacteria. Enrofloxacin was acquired as a commercially available injectable preparation at 

a concentration of 100 mg/ml.  Enrofloxacin was stored at room temperature prior to use.  

It was diluted in sterile saline to the appropriate concentration prior to injection into 

animals.  It was administered via i.p. injection at a dose of 10 or 100 mg/kg/d divided into 

twice daily doses. 

The antimicrobial drug florfenicol is an FDA approved compound for the 

treatment of susceptible bacterial infections in domestic animals.  It has a chemical 

structure and activity spectrum similar to chloramphenicol, and has proven efficacy 

against many anaerobic bacteria.  It was acquired as a commercially available injectable 
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preparation at a concentration of 300 mg/ml (Nuflor™ Schering-Plough Animal 

Health, Omaha, NE).  It was stored at room temperature prior to use.  It was diluted in 

polyethylene glycol (Sigma-Aldrich, St. Louis, MO) to the appropriate concentrations 

immediately before use.  Florfenicol was administered via i.p. injection at a dose of 80 

mg/kg/d divided into twice daily doses.   

 
Cell Lines 
 
 All cell lines used were originally obtained from American Type Culture 

Collection (ATCC), (Rockville, MD).  The NCTC clone 929 (L929) (ATCC; CCL-1) of 

strain L (connective tissue, mouse) was derived from a 100 d-old mouse in March of 

1948. Strain L was one of the first cell lines to be established in continuous culture, and 

clone 929 was the first cloned strain developed.  The parent line of BHK-21(C-13) 

(ATCC; CCL-10) was derived from the kidneys of 5 unsexed, 1-d-old hamsters in March, 

1961, by I.A. Macpherson and M.G.P. Stoker.  Following 84 d of continuous cultivation, 

interrupted only by an 8-d preservation by freezing, clone 13 was initiated by single-cell 

isolation.  The Vero 76 cell line was initiated from the kidney of a normal adult African 

green monkey on March 27, 1962, by Y. Yasumura and Y. Kawakita at the Chiba 

University in Chiba, Japan.  

 
Cell Culture Procedures 

 All cells were cultured with minimum essential medium with Earle’s balanced 

salts (MEM/EBSS) and nonessential amino acids (Hyclone Laboratories, Inc., Logan, 

UT).  Medium was supplemented with 10% (v/v) fetal bovine serum (FBS) (Hyclone), as 

well as with penicillin-streptomycin at 100 I.U/ml and 100 μg/ml, respectively.  Cells 
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were cultured at 37 °C in a humidified 5% CO2-95% air environment.  All cells were 

first plated in either 75 cm2 or 175 cm2, canted-neck, culture flasks.  Cells were passaged 

as needed by aspirating the culture media and dissociating the cells with 0.25% solution 

of porcine trypsin in Hank’s Balanced Salt Solution (HBSS) with ethylenediamine 

tetraacetic acid (EDTA), without calcium and magnesium (Sigma Aldrich, St. Louis, 

MO). 

 
Bioassay for Quantification of Tumor  
Necrosis Factor-Alpha Activity 
 

Quantitation of TNF-alpha in biological samples was accomplished via the use of 

the L929 mouse fibroblasts cell line, known to be sensitive to the cell-death signals of 

TNF-alpha when cultured in the presence of actinomycin D.  The procedure for 

quantitation was similar to that as previously described by Hogan et al.107  Briefly, 4x104 

L929 cells per well were plated in 96-well cell culture microplates (Corning Constar®), 

and allowed to culture overnight.  Samples of animal serum, tissue homogenate, or 

culture supernatant were diluted as needed in MEM containing 10% FBS.  These samples 

were in turn diluted through 8 serial dilutions (e.g. 1:2, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 

1:128, and 1:256).  Diluted samples were added to confluent cell monolayers in triplicate.  

An equal volume of MEM containing actinomycin D at a concentration of 8 μg/ml was 

immediately added to each well, resulting in a final concentration of 5% FBS and 4 μg/ml 

of actinomycin D in each well. Samples were allowed in incubate at 37 °C in a 

humidified 5% CO2-95% air environment.  After incubation for 18-20 h L929 cell 

viability was determined by means of the Cell-Titer Blue™ cell viability assay system 

(Promega, Madison, WI) according to the manufacturers instructions.  Samples were 
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analyzed on an fmax 96-well plate fluorometer (Molecular Devices, Sunnyvale, CA) 

using an excitation wavelength of 544 nm, and fluorescence measured at 590 nm.  Assay 

functionality was verified by simultaneously assaying the ability of recombinant murine 

TNF-alpha (Sigma-Aldrich, St. Louis, MO) to reduce cell viability.  One unit (U) of 

TNF-alpha activity was defined as the concentration of sample needed to decrease cell 

viability by 50% when compared with untreated control cells.  Results were reported as 

the number of units per milliliter of serum or media, or gram of tissue assayed. 

 
Bioassay for Quantification of  
Interferon Activity 
 

The concentration of interferon in samples, either serum or tissue homogenate, 

was determined by seeding 96-well, flat-bottomed plates with 4 x 104 BHK-21 cells per 

well then incubating for 1 d.  The confluent monolayers were then treated with the 

sample to be assayed.  Samples were initially diluted at a ratio of 1:10 in cell culture 

media, followed by an additional 7 serial dilutions (e.g. dilutions of 1:10, 1:20, 1:40, 

1:80, 1:160, 1:320, 1:640, and 1:1280).  Cells were immediately infected with the 

encephalomyocarditis virus (EMCV).  The concentration of virus used was previously 

determined by placing log10 dilutions of virus stock on confluent monolayers of BHK-21 

cells and determining the minimum concentration of virus that would produce a >90% 

decrease in cell viability after 3 d when compared with non-infected control wells.  After 

cultures were incubated for 3 d in the presence of the virus and sample, cells viability was 

determined by means of the Cell-Titer Blue™ cell viability assay system (Promega, 

Madison, WI) according to the manufacturers’ instructions.  Samples were analyzed on 

an fmax 96-well plate fluorometer (Molecular Devices, Sunnyvale, CA) using an 
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excitation wavelength of 544 nm, and fluorescence measured at 590 nm.  Interferon 

activity was identified by the ability of samples to prevent virus-induced cell death.   

One unit (U) of interferon activity was defined as the concentration of sample 

needed to decrease virus-induced cell death by 50% when compared non-infected control 

wells.  Results were reported as the number of units per milliliter of serum or gram of 

tissue assayed. 

 
Viruses  
 

Unless otherwise noted all viruses used were originally obtained from the 

American Type Culture Collection (ATCC, Manassas, VA).   Banzi virus (BaV), H336 

strain ATCC VR-414, was passaged 3 times in Vero 76 cells.  Semliki Forest virus 

(SFV), original strain ATCC VR-1247 was passaged in 2 times in Vero 76 cells.  Two 

strains of western equine encephalitis Virus (WEEV) were used.  The ATCC VR-70 

strain, referred to as the California strain, was passaged 3 times in Vero 76 cells.  The 

Kern strain, obtained from Dr. Kenneth Olson at Colorado State University (Fort Collins, 

CO), was passaged 3 times in Vero 76 cells.  Unless otherwise stated all experiments 

involving WEEV used the California strain of the virus. 

 
Titration of Virus in Serum and Tissues 
 

The virus titers in tissues or serum were assayed using the virus-yield assay 171 

wherein a specific volume of tissue homogenate or heparinized serum was added to the 

first tube of a series of dilution tubes.  Serial log10 dilutions were made and added to Vero 

76 cells in 96-well microplates.  Three d later for SFV and WEEV, and 7 d later in the 

case of BaV, visual identification of cytopathic effect (CPE) was used to identify the end-
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point of infection.  Four replicates were used to calculate the infectious doses per gram 

of tissue.   Results were reported as log10 cell culture infectious dose units (CCID50)/gram 

of tissue or milliliter of serum. 

 
Macrophage Isolation and Testing 
 
 Activated hamster peritoneal macrophages were used to assess the ability of 

WEEV to stimulate TNF-alpha production in vitro.  Hamsters received 5 ml 

intraperitoneal injections of sterile 4% brewer’s thioglycollate (Sigma Aldrich, St. Louis 

MO).  Thioglycollate solution was sterilized via autoclave, and then stored in the dark at 

room temperature for approximately one month prior to use.  Macrophages were 

harvested 3 d after thioglycollate injection.  Hamsters were euthanized via carbon dioxide 

inhalation.  Immediately following euthanasia animals were injected intraperitoneally 

with approximately 50 ml of MEM supplemented with 10% FBS.  Media was collected 

and centrifuged at 800 x g for 10 min on an Omnifuge RT model centrifuge.  Following 

centrifugation the supernatant was discarded and the remaining cells were re-suspended 

in additional MEM with 10% FBS.  Before cell suspension was added to cell culture 

plates, nucleated-cell numbers were quantified via manual counting on a hemocytometer.  

Tests were performed in 2 different cell plate configurations, with 2 x 105 cells per well 

in 96-well flat-bottom culture plates or 10 x 106 cells per flask in 25 cm2 cell culture 

flasks.  Cell preparations were cultured 2 h at 37°C before being washed 2 times with 

ice-cold media to select for macrophages and remove non-adherent cells.   

 The ability of a virus to stimulate macrophages to produce TNF-alpha was 

initially determined by adding various log dilutions of virus stock to adherent 
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macrophages in multi-well plates.  Cell culture supernatant was collected at various 

times post-virus inoculation and stored at -70°C until assayed.  Data from initial 

macrophage stimulation experiments were used to determine optimal virus concentration 

and optimal time of culture supernatant collection.  The ability of various compounds to 

suppress TNF-alpha expression in virus-stimulated macrophages were assayed by 

treating triplicate wells of  macrophages seeded in 96-well plates with various half-log 

dilutions of compounds (e.g. 1000, 320, 100, and 32 μM).  Cells were immediately 

treated with the virus at a multiplicity of infection (MOI) of 3.  Each concentration of the 

compound was also incubated in duplicate on macrophages in the absence of virus to 

determine the degree of drug-induced cytotoxicity.  Each plate had 4 wells that received 

no compound treatment, but were cultured in the presence of a nonvirus cell lysate at a 

dilution identical to that used for diluting virus stocks.  These wells acted as nonvirus 

normal cell controls.  Cell lysate was prepared by using nonvirus exposed Vero 76 cells 

prepared in a manner identical to that used in preparing the virus stocks.  An additional 4 

wells per plate received the virus only and no drug to determine the degree of virus-

induced cytotoxicity.  Cultures were incubated at 37°C with 5% CO2 in MEM with 10% 

FBS and 25 μg/mL of gentamicin for 18 h before supernatant was collected and stored at 

-70°C until being assayed.  Following supernatant collection, fresh media was added to 

macrophage containing wells, and macrophage cell viability was assayed by means of the 

Cell-Titer Blue™ cell viability assay as previously described.  Cell viability was reported 

as a percentage compared to cell control wells.  Corrected cell viability on virus-

inoculated wells was calculated by adding the difference in cell viability between control 

wells and drug toxicity wells to the cell viability value in virus inoculated wells.  TNF-
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alpha concentration was determined by means of the L929 TNF-alpha bioassay as 

previously described.  Relative increases in TNF-alpha were determined by measuring 

the TNF-alpha concentration in the supernatant from wells containing macrophages that 

received virus only, or virus and compound in combination and comparing that with the 

TNF-alpha concentration in supernatant from wells containing non-virus treated 

macrophages.  Each compound was tested on at least 3 separate preparations of peritoneal 

macrophages. 

 Flasks containing 107 macrophages were inoculated with WEEV at a MOI of one 

or inoculated with a similar dilution of non-virus cell lysate.  Cells were incubated for 18 

h as previously described, after which the cell culture supernatant was collected.  Flasks 

containing an equal amount of virus but without macrophages were incubated 

concurrently with the macrophage-containing flasks, and the contents were also collected 

at 18 hpi.  Various compounds intended to reduce TNF-alpha expression were added to 

flasks containing an equal amount of the virus, both with and without macrophages, and 

incubated concurrently with other cell culture flasks.  Samples were assayed for virus 

concentrations and TNF-alpha concentrations as described elsewhere.  The collected 

supernatants were then stored at -70 °C until used in splenocyte testing. 

 
Splenocyte Isolation and Testing 
 
 Hamster splenocytes were used to evaluate the ability of WEEV to directly cause 

destruction of hamster lymphoid cells.  Hamsters were euthanized by carbon dioxide 

inhalation, after which spleens were collected using an aseptic technique.  Spleens were 

cut into smaller pieces and placed in a dounce homogenizer with 5-7 ml of MEM 
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supplemented with 5% FBS and were homogenized by moving the plunger up and 

down 10 times.  Spleen homogenate was centrifuged at 800 x g for 10 min in an 

Omnifuge RT model centrifuge.  Supernatant was discarded and the cells were 

resuspended in red cell lysis buffer (Sigma Aldrich, St. Louis, MO) for 5 to 10 min with 

periodic mixing.  An equal volume of MEM with 5% FBS was added to the cell 

suspension in the lysis buffer, and the cells were centrifuged at 800 x g for 10 min.  The 

supernatant was discarded and the cells were resuspended in 5 to 10 ml MEM with 5% 

FBS.  Histopaque® (Sigma Aldrich, St. Louis MO) high density gradient solution was 

layered underneath the cell suspension and the cells were centrifuged at 1500 x g for 15 

min.  The viable cells at the media-Histopaque® interface were aspirated, mixed with 15 

ml media, and centrifuged at 800 x g for 10 min.  Following centrifugation the 

supernatant was discarded and the cells were resuspended in MEM with 10% FBS.  Cell 

numbers were quantified by counting on a hemocytometer.  Cells were added to 96-well 

cell culture plates at a concentration of 3 x 105 cells per well in a volume of 100 μL.  To 

assay the ability of the virus to directly initiate lymphocytic cell death various log 

dilutions of WEEV stocks were added to cell-containing wells and cell viability was 

determined 3 d later by the Cell-Titer Blue™ cell viability assay as previously described.  

Cell viability was reported as a percentage when virus inoculated cells were compared to 

untreated control cells.   

To assay the ability of virus-stimulated cytokines produced from peritoneal 

macrophages to enhance virus-mediated cell killing, 96-well plates of splenocytes were 

prepared as described above.  An equal volume of cell culture supernatant collected from 

flasks as described above was then added to splenocyte-containing wells in triplicate.  
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Additional WEE virus, approximately 1 log in excess of the virus measured in 

macrophage culture supernatant, was added to similarly treated triplicate wells.  Six wells 

per plate contained splenocytes with neither virus nor macrophage supernatant.  An 

additional 6 wells per plate received additional virus only but no supernatant.   

Splenocyte culture plates were incubated as previously described for 3 d, after which cell 

viability was assayed.  Cell viability was reported as the percentage of cell viability 

compared to non-treated control wells.  Tests for virus-induced cell killing and 

macrophage supernatant enhancement of viral cell killing was tested on at least 3 separate 

preparations of splenocytes. 

 
Antiviral Efficacy  
 
 The antiviral efficacy of drugs was determined by seeding triplicate wells of 96-

well, flat-bottomed plates with 4 x 104 Vero 76 cells per well then incubating for 1 d.  

The confluent monolayers were then treated with 8 serial half-log dilutions of the drug or 

control (e.g. 1000, 320, 100, 32, 10, 3.2, 1.0, 0.32 μg/mL).  Cells were immediately 

infected with 5 CCID50 of virus.  Each concentration of drug was also incubated in 

duplicate on cells in the absence of virus to determine the degree of drug induced 

cytotoxicity.  Each plate had 6 wells that received neither virus nor drug to act as normal 

cell controls, 6 wells that received virus only and no drug to determine the degree of virus 

induced CPE, and quadruplicate wells receiving sterile water to determine the amount of 

background fluorescence when cell viability was measured.  Plates were incubated at 

37°C with 5% CO2 in MEM with 1% FBS and 25 μg/mL of gentamicin for 3 d in the case 

of SFV or WEEV, and for 6 d in the case of BaV.  The antiviral effect was determined by 



 44
visually scanning individual wells and estimating the percentage of cytotoxicity 

present.  Following visual assessment cell viability was measured via the Cell-Titer 

Blue™ cell viability assay as previously described.   

The 50% effective concentration (EC50) was defined as the concentration of the 

drug required to reduce virus-induced CPE by 50%.  The 50% inhibitory concentration 

(IC50) was defined as the concentration of the drug that resulted in a 50% decrease in cell 

viability when compared to cell controls.  The selectivity index (SI) was defined as the 

ratio of the IC50 to the EC50.  Interferon alfacon-1 was used as a positive control in all 

Vero 76 cell-based antiviral assays. 

 
Animals 
 

Female BALB/c mice (Mus musculus) 7-8 wk old (18-20 g) were obtained from 

Charles River Laboratories (Wilmington, MA). Female Syrian golden hamsters 

(Mesocricetus auratus) were also obtained from Charles River Laboratories. All animals 

were quarantined at the animal housing facilities at Utah State University for 1 wk prior 

to the beginning of the experiment.  All animals were fed standard rodent chow and tap 

water ad libitum.  All experiments were conducted in an AAALAC-accredited facility. 

 
Blood-Brain Barrier Permeability  
Assay in Mice 
 

For evaluation of BBB permeability to small molecular weight compounds, mice 

were injected with 10 mg of NaFl (Sigma Aldrich, St. Louis MO) in a volume of 0.1 ml 

of sterile saline, administered i.p. To obtain the serum, animals were anesthetized with 

ketamine HCl (100-200 mg/kg) i.p. 45 min after the NaFl injection.  Blood was collected 
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into serum separator tubes (Sarstedt, Newton, NC) by retro-orbital bleeding.  Blood 

samples were stored for at 4 °C for approximately 30 min to allow for clotting, after 

which they were centrifuged at 7,000 rpm for 7 min.  The serum was removed and stored 

at -70 °C until processing.  Animals were sacrificed immediately following blood 

collection.  Transcardial perfusion to remove blood from the vasculature was performed 

by making an incision in the right atrium of the heart, and gently injecting sterile 

phosphate-buffered saline (PBS) through the left ventricle until the expelled blood ran 

clear.  The brain was removed, weighed, homogenized in 1 ml of sterile PBS and stored 

at -70 °C until processing. 

   
Collection of Cerebrospinal Fluid and  
Measurement of Blood-Brain Barrier  
Permeability in Syrian Golden Hamsters 
 
 Cerebrospinal fluid (CSF) was collected from anesthetized hamsters in a 

technique slightly modified from that described for the collection of CSF from rats.83  A 

CSF-collecting device was made by extracting a 30-ga needle from its plastic hub and 

placing the nonsharp end into an approximately 30 cm length of Tygon© (Saint-Gobain 

Performance Plastic, Akron, Ohio) tubing (0.25 mm inner diameter).  The needle was 

then placed into the cannula-holding arm of the stereotaxic device (David Kopf 

Instruments, Tujunga, California) parallel to the ground.  A second 30-gauge needle 

attached to a 1-ml syringe was inserted into the opposite end of the tubing.  Hamsters 

were anesthetized with i.p. ketamine and xylazine at doses of 100 mg/kg and 5 mg/kg, 

respectively, and the fur at the caudal base of the skull was shaved.  Animals were then 

placed into the stereotaxic device (Model 902, David Kopf Instruments) with the 
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animal’s snout oriented horizontally or slightly downward and the body of the animal 

rolled underneath the snout such that the neck was in a flexed position allowing access to 

the cisterna magna.  Anesthesia was maintained as needed with isoflurane anesthetic gas 

delivered via a nosepiece in a nonrebreathing manner.  A 5-mm skin incision was made at 

the base of the skull on the midline.  The needle in the stereotaxic arm was advanced into 

the incision and into the perispinal musculature.  The needle was further advanced with 

mild suction placed upon the attached syringe until clear CSF from the cisterna magna 

was visualized entering the tubing and into the syringe.  In general, the ideal location for 

collection of CSF was on the midline and 4 mm caudal from the top of the skull.  If 

resistance was encountered during advancement of the needle it was removed, slight 

modifications were made to the location of the needle, either left or right, up or down.  

The needle was then reinserted until CSF was collected.  If visible blood or 

contamination was noted in the tubing the needle was removed and the tubing was 

flushed with sterile saline followed by air before making another attempt to collect CSF.  

CSF samples were diluted at a rate of 1:100 and total numbers of cells in each sample 

were counted manually using a hemocytometer. 

 For evaluation of BBB permeability to small molecular weight compounds 

hamsters were injected with 100 mg of NaFl (Sigma Aldrich, St. Louis, MO) in a volume 

of 0.1 ml of sterile saline, administered i.p. To obtain CSF, animals were anesthetized via 

i.p. injection of ketamine and xylazine as previously described.  Anesthesia was initiated 

45 min after the NaFl injection, and CSF was collected as described.  Immediately 

following CSF collection blood was collected into serum-separator tubes (Sarstedt, 

Newton, NC) by retro-orbital bleeding.  Blood samples were stored for at 4 °C for 
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approximately 30 min to allow for clotting, after which they were centrifuged at 7,000 

rpm for 7 min, and the serum was removed.  The serum and CSF were stored at -70°C 

until processing. 

 
Measurement of Fluorescence 
 
 Protein was precipitated from samples with trichloroacetic acid (TCA) to remove 

potential background fluorescence.  Cerebrospinal fluid and serum samples were diluted 

1:10 in 20% TCA, while brain samples were homogenized in PBS then centrifuged at 

3,000 rpm for 5 min, after which the resulting supernatant was diluted 1:10 in 20% TCA.  

All samples were incubated in TCA at 4°C for 24 h.  Samples were centrifuged at 10,000 

rpm for 15 min to remove precipitated protein.  The supernatant was removed and diluted 

with equal volumes of sodium borate buffer (0.05 M, pH 10), resulting in a final 

concentration of 10% TCA and 0.025 M sodium borate buffer.  Samples were analyzed 

on an fmax 96-well plate fluorometer (Molecular Devices, Sunnyvale, CA) using an 

excitation wavelength of 480 nm, and fluorescence was measured at 538 nm.  A standard 

curve for the quantitation of NaFl in the samples was generated by simultaneously 

analyzing samples of a known NaFl concentration in 10% TCA and 0.025 M borate 

buffer.  The degree of BBB permeability was measured as the percentage (w/v) of NaFl 

in a gram of brain tissue per the amount of NaFl in a milliliter of serum.  For assays using 

CSF instead of brain tissue the degree of fluorescence per red blood cell (RBC) in the 

circulating blood was calculated for each individual animal using the observed 

fluorescence and assuming 7.5 x 106 RBC per μL of whole blood.  The amount of 

fluorescence detected in CSF samples attributable to RBC contamination was calculated 
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by multiplying the number of RBCs observed in individual samples by the 

fluorescence per RBC and this amount was subtracted from the observed fluorescence 

value for CSF samples.  This corrected CSF fluorescence value was used to determine 

BBB permeability and was measured as the percentage of NaFl in a milliliter of CSF per 

the amount of NaFl in a milliliter of serum.   

 
Time Course of Banzi Virus and Semliki  
Forest Virus Infection in Mice 
 

For viral infection studies in mice, animals were inoculated with either LD50 or 

LD90 doses of Banzi or Semliki Forest viruses diluted in minimum essential medium 

(MEM).  These viral doses correlated to 10 or 100 50%-cell culture infectious doses 

(CCID50) per animal, respectively for BaV and 104 or 105 CCID50 per animal, 

respectively for SFV.  All virus inoculations were performed via the intraperitoneal (i.p.) 

route.  In initial experiments, to determine the time course of virus dissemination in mice, 

animals were inoculated with LD50 doses of either BaV or SFV.  Starting 1 d post–virus 

inoculation (dpi) and continuing daily until 10 dpi, with one additional set of tissues 

harvested on 14 dpi, groups of 4 virus-inoculated animals and one sham-inoculated 

animal were sacrificed, and tissue samples were collected.  Tissue samples collected from 

each mouse included serum, liver, kidney, spleen, and brain.  Samples were homogenized 

in MEM by manual stomaching, and then stored at -70°C until assayed for virus titer.  

Experiments to determine the time course of BBB permeability alterations 

associated with virus infection were conducted using an LD50 dose of virus.  Beginning 

on 1 dpi, 3 virus-inoculated animals and 2 sham-inoculated animals were assayed for 

BBB permeability to (NaFl) each d until 10 dpi.   
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Ampligen™ Efficacy Versus Banzi and  
Semliki Forest Viruses in Mice 
 

Mice were inoculated with LD90 doses of virus for all experiments wherein mice 

were treated with Ampligen™.  Groups of 25 virus-infected mice (35 for placebo-treated 

animals) and 6 sham-infected mice were treated i.p. with 1 mg/kg of Ampligen™ or 

vehicle.  Ten virus-infected and 3 sham-infected mice were assayed for BBB 

permeability to NaFl on either 6 dpi (SFV) or 8 dpi (BaV).  On the same day, 5 animals 

from each group were assayed for brain virus titers.  The remaining animals were 

monitored for weight change and survival until 21 dpi.  Ampligen™ was administered as 

a single treatment at 24 h before, 4-6 h before or 24 h after virus inoculation. 

 
Using Cerebrospinal Fluid to Measure  
Blood-Brain Barrier Permeability in  
WEEV-Infected Hamsters 
 
 Hamsters were inoculated intraperitoneally with an LD90 dose of WEEV.  This 

viral dose correlates to 103.5 CCID50 per animal.  Beginning 24 h post-virus inoculation 

(hpi) and continuing every 24 h until concluding at 96 hpi 3 randomly selected virus 

inoculated animals were assayed for BBB permeability by injection with NaFl and 

collection of CSF, as previously described.   

Following the identification of the time point at which the peak permeability 

appeared to occur, a second experiment was conducted in which animals were inoculated 

with an approximately LD50 dose of WEEV, a viral dose correlating to 102.5 CCID50 per 

animal.  At 72 hpi all virus- and sham-inoculated animals were assayed for BBB 
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permeability using injection of NaFl and collection of serum and CSF.  Animals were 

allowed to recover from anesthesia and were monitored for survival until 204 hpi. 

 
Histopathology and Bacterial Isolation in  
Hamsters Inoculated with WEEV 
 
 To identify potential histopathological lesions associated with the virus infection, 

hamsters were inoculated with a 10x LD90 dose of WEEV.  At various time points post-

virus inoculation, animals were subjected to transcardial perfusion, as a means for tissue 

fixation in preparation for histopathological analysis.  Animals were deeply anesthetized 

with ketamine and xylazine at doses of 200 mg/kg and 10 mg/kg, respectively, 

administered via the i.p. route.  When the animal no longer showed signs of response to a 

toe pinch the thoracic cavity was opened, and the right atrium of the heart was incised.  A 

needle attached to a large syringe or peristaltic pump was inserted into the left ventricle, 

and cold phosphate-buffered saline (PBS) was introduced into the left ventricle until the 

discharge from the incision of the right atrium ran clear.  The PBS was followed by a 

similar volume of 4% paraformaldehyde to fix tissues.  Finally, the abdominal cavity was 

opened, and the entire animal was placed in a container of 4% paraformaldehyde.  The 

whole animal was then delivered to the Utah Veterinary Diagnostic Laboratory (UVDL) 

for complete necropsy and preparation of histopathological samples.  All tissue slides 

were reviewed by a Diplomate of the American College of Veterinary Pathology. 

 Tissues of WEEV-inoculated animals were assayed separate at various times post-

virus inoculation for the presence of bacteria.  For collection of tissue and blood samples 

for isolation of bacteria, animals were euthanized via an intraperitoneal injection of 

sodium pentobarbital.  Immediately following euthanasia the ventral thoracic and 
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abdominal areas were shaved, and a surgical scrub of povidone-iodine was applied 

liberally.  Then, using sterilized instruments and aseptic technique, the abdominal and 

thoracic cavities were opened.  Blood was collected directly from the heart using a 22-

gauge needle attached to a 3-ml syringe.  Small samples of the right cranial lung lobe, 

spleen, liver, and kidney were also collected.  All samples were immediately placed into 

10 ml of thioglycollate broth supplemented with hemin and vitamin K (Hardy 

Diagnostics, Santa Maria, CA).  Samples were submitted to the UVDL for isolation and 

characterization of bacterial isolates.  Digital photomicrographs of histopathological 

lesions were taken and provided by the UVDL. 

 
Supportive, Antibacterial and Anti- 
Inflammatory Treatment of WEEV- 
Inoculated Hamsters 
 
 Treatments were instituted to treat potential septic shock in WEEV-inoculated 

hamsters.  Animals were inoculated intraperitoneally with an LD90 dose of WEEV.  

Supportive treatments were begun 12 h prior to virus inoculation and were continued 

every 12 h throughout the course of the experiment.  These treatments consisted of 

lactated ringers solution (LRS) with 5% dextrose.  LRS was warmed to 37 °C in a water 

bath prior to administration, and delivered subcutaneously at quantities that would 

replace weight loss from the previous weight measurement assuming 1 ml of the LRS 

was equivalent to 1 gram of body weight, up to a maximum of 10 ml/animal at each 

treatment point.  Fluids could be administered up to twice daily as indicated by weight 

loss.  Additional supportive treatments included administration of the antibiotics 

florfenicol or enrofloxacin and the anti-inflammatory agents flunixin meglumine, or 
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dexamethasone, using doses and schedules as previously described.  The various 

supportive treatments were given singly and in various combinations depending upon 

specific experimental requirements. 

 
Evaluating the Relationship Between  
Circulating Lymphocyte Counts and  
Disease Outcome in WEEV- 
Inoculated Hamsters 
 
 Experiments were conducted to investigate the correlation between decreases in 

circulating lymphocyte numbers and poor disease outcome in hamsters inoculated with 

WEEV.  Estimation of both nucleated and nonnucleated cells in whole blood were 

conducted with the use of a Coulter Counter model ZBI electronic particle counter 

(Beckman Coulter, Fullerton, CA).  To collect whole blood hamsters were anesthetized 

with ketamine and xylazine administered via the i.p. route at a dose of 100 mg/kg and 5 

mg/kg, respectively.  Blood from the periorbital sinus of anesthetized hamsters was 

collected into tubes containing the anticoagulant sodium citrate (40 mg/mL).  Sufficient 

blood was collected to result in an approximate final sodium citrate concentration of 4 

mg/mL.  Device calibration and automated counts of both red blood cells and nucleated 

cells using the particle counter were conducted following the manufacturer’s instructions.  

For red blood cell (RBC) counts anticoagulated blood samples were first diluted at a ratio 

of 1:500 in hematology diluent (Clinical Diagnostic Solutions, Plantation, FL), followed 

by a second dilution in hematology diluent of 1:100, resulting in a final dilution of 

1:50,000.  Samples were then analyzed on the device.  To calculate nucleated cell 

numbers samples of anticoagulated whole blood was diluted 1:500 in the hematology 

lysing agent CDS 3DP/C (Clinical Diagnostic Solutions, Plantation, FL), prior to being 
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analyzed on the counting device.  Each sample was analyzed on the machine 3 times in 

a randomized order.  The final concentration of RBC in the samples (RBCs/μL whole 

blood) was determined by multiplying the average result for a given sample by 100.  The 

concentration of nucleated cells in a sample (nucleated cells/ μL whole blood) was 

considered to be the average of the analysis results for the given sample.   

To determine the numbers of individual leukocyte types a manual differential 

count was performed.  Approximately 15-20 μL of anticoagulated blood was placed on 

one end of a glass microscope slide.  A second glass slide was used to spread the blood 

sample into a thin film on the glass slide.  The blood film was allowed to air dry before 

being fixed and stained in eosin and Wright-Giemsa stains (Dip Quick staining kit, 

Jorgensen Laboratories, Loveland, CO).  A manual differential was performed by 

reviewing each stained blood sample under a microscope and classifying the first 100 

nucleated cells observed as lymphocyte, monocyte/macrophage, neutrophil, basophil or 

eosinophil.  The percentage of each cell type as determined by this manual count was 

multiplied by the total number of nucleated cells previously determined to calculate the 

quantity of the various leukocyte populations in the sample. 

To determine the relationship between circulating lymphocyte counts and disease 

outcome hamsters were inoculated intraperitoneally with an approximate LD50 dose of 

WEEV or were sham-inoculated.  Blood samples were collected at various time points 

post-virus inoculation and total nucleated cell numbers and differential leukocyte 

population numbers were calculated as described.  Animals were then monitored for 

mortality associated with WEEV infection.   
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In a subsequent experiment, hamsters were inoculated with an LD90 dose of 

WEEV and received treatment with either flunixin meglumine or placebo as previously 

described.  Blood samples were collected at various time points post-virus inoculation 

and total nucleated cell numbers and differential leukocyte population numbers were 

calculated as described.  Animals were then monitored for mortality associated with 

WEEV infection.   

 
Clinical Characterization and Time- 
Course of WEEV Infection in Hamsters 
 
 An experiment was conducted to measure multiple clinical and inflammatory 

parameters in hamsters infected with WEEV.  Animals were inoculated intraperitoneally 

with either an LD90 dose of WEEV or were sham inoculated.  Beginning at the time of 

the infection and every 12 h thereafter until the end of the experiment at 84 hpi all 

animals were individually weighed and rectal body temperatures were measured.  

Beginning at 12 hpi and continuing until the conclusion of the experiment 3 virus-

inoculated animals were humanely euthanized and the following samples were taken:  

whole blood, serum, liver, kidney, spleen, and brain.  At the conclusion of the experiment 

all sham-inoculated animals were euthanized and processed in a similar manner.  Serum 

and whole blood were collected and prepared as previously described.  Tissue samples 

were individually weighed and placed in 9 volumes (w/v) of MEM with 2% FBS for 

homogenization, resulting in a tissue homogenate with a 1:10 dilution.  Whole blood was 

used for measurement of RBC counts, nucleated cell counts, and differential leukocyte 

counts as previously described.  Immediately following collection, serum clinical 

biochemistry values were measured by the use of the Vetscan automated serum chemistry 
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analyzer (Abaxis, Union City, CA) using the comprehensive diagnostic profile.  

Parameters measured included:  albumin, alkaline phosphatase, alanine aminotransferase, 

amylase, blood urea nitrogen, calcium, creatinine, globulin, glucose, potassium, sodium, 

phosphorous, and total protein.  Remaining serum and tissue homogenates were stored at 

-70°C until processing.  Virus titers and concentrations of TNF-alpha and interferon 

activity were measured in all serum and tissue homogenate samples as previously 

described. 

 
Evaluation of the Effect of Viral Dose and  
Dexamethasone Immunosuppression on  
Disease Phenotype and Outcome in  
Syrian Golden Hamsters 
 
 Hamsters were inoculated intraperitoneally with either an LD50 or an LD90 dose of 

WEEV.  Twice daily following inoculation animals were weighed and observed for 

death. 

 Animals were separately inoculated intraperitoneally with an LD90 dose of the 

California strain of WEEV.  Additional animals were inoculated with a CCID50 

equivalent dose of the Kern strain of WEEV.  A third group received a sham inoculation.  

Twice daily following inoculation animals were weighed, rectal body temperature was 

measured, and animals were observed for death.  Serum was collected from animals at 36 

and 48 h post-virus inoculations and assayed for the presence of interferon via the 

interferon bioassay.  In a subsequent experiment animals were inoculated with either an 

LD50 dose of the California strain of WEEV, a CCID50 equivalent dose of the Kern strain 

of WEEV, or were sham-inoculated.  Beginning 5 d prior to virus inoculation, and 

continuing through the duration of the experiment, animals were received either 
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intraperitoneal injections of dexamethasone at a dose of 4.4 mg/kg/d divided into twice 

daily doses, or with a drug vehicle.  Twice daily following inoculation animals were 

weighed, rectal body temperature was measured, and animals were observed for death. 

 
Correlation Between Early Expression of  
Serum Interferon and Disease Outcome  
in Hamsters Inoculated with WEEV 
 

Hamsters were inoculated intraperitoneally with a LD50 dose of WEEV.  Twice 

daily following inoculation animals were weighed, rectal body temperature was 

measured, and animals were observed for death.  Serum was collected from animals at 20 

and 44 h post-virus inoculations and assayed for the presence of interferon via the 

interferon bioassay as previously described. 

 
Intracranial Inoculation of WEEV  
in Hamsters 
 
 Hamsters were anesthetized with an intraperitoneal injection of a combination of 

ketamine and xylazine at a dose of 100 mg/kg and 5 mg/kg, respectively.  Anesthesia was 

maintained via the use of isoflurane administered at a rate of 2% of inspired air.  The 

head and cranial neck of the hamsters was shaved and a solution of povidone iodine was 

applied to the skin followed by an application of 70% ethanol.  Animals were restrained 

within a stereotaxic device.  A midline incision was made over the dorsal portion of the 

skull.  Underlying connective tissue was dissected away bluntly.  A 0.3-mm diameter 

hole, located 1 mm to the right of midline and 1 mm rostral to suture joining the parietal 

and occipital skull bones was drilled through the skull.  A 30-gauge needle attached to a 

low volume syringe (Hamilton Company, Reno, NV) was inserted to a depth of 3 mm 
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below the surface of the skull.  A total of 10 CCID50 of WEEV was injected into the 

right cerebral hemisphere in a total volume of 10 μL of unsupplemented MEM.  To 

prevent backflow or leakage of the virus-containing media the needle was allowed to 

remain in place for approximately 1 min following injection of the virus.  Following 

removal of the needle the drill hole in the skull was observed to ensure that no significant 

hemorrhage had occurred as a result of the injection.  After needle removal the skin was 

closed with a series of wound clips (Stoelting, Wood Dale, IL).  Post-surgery animals 

were observed until they had recovered from anesthesia sufficiently to hold themselves 

upright and move about the cage.  Sham-inoculated animals underwent the same 

procedure, but they received an injection of MEM without any virus present.   

 All animals received a once daily dose of interferon alfacon (infergen), at a dose 

of 5 μg/kg/d.  The first dose was administered approximately 4 h before virus inoculation, 

and treatment was continued through the duration of the experiment.  Twice daily 

following inoculation, animals were weighed, rectal body temperature was measured, and 

animals were observed for death.  At the time of death, or at 204 hpi in the case of 

survivors, animals were transcardially perfused with saline and 4% paraformaldehyde as 

previously described, and submitted to the UVDL for necropsy and histopathological 

analysis. 

 
Statistical Evaluation 
 

Differences in survival of different populations of animals were evaluated via the 

Kaplan Meier survival analysis.  Differences in tissue virus titer, mean day to death 

(MDD) or mean h to death (MHD), nucleated cell counts, serum cytokine concentrations, 
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and changes in whole body weight were analyzed by an unpaired, two-tailed t test.  

Analysis of variance (ANOVA) was not used for the preceding statistical analysis due to 

the possibilities of different sample sizes for different treatment groups.  ANOVA with 

the Bonferroni correction was used for statistical analysis of macrophage and splenocyte 

based assays, including TNF-alpha concentrations post-virus exposure, and cell viability 

in either splenocytes or macrophages post-virus exposure.  ANOVA was also used for 

analysis of changes in BBB permeability.  Comparison of splenocyte viability following 

exposure to supernatant from WEEV-stimulated macrophages was analyzed by use of the 

unpaired two-tailed t test. 
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RESULTS 

 
Virus Infection and Blood-Brain Barrier  
Permeability Changes in Mice 
 

Mice were inoculated with either SFV or BaV and a variety of parameters were 

assayed o determine the effects of virus infection on the blood-brain barrier in mice.  The 

infectious viral titers in the plasma, spleen, kidney, liver and brain were determined over 

a course of time in mice inoculated i.p with either BaV or SFV (Table 1).  Peak viral 

brain titers in BaV-infected mice was 8.3 ± 0.8 log10 CCID50/gram of brain tissue on 8 

dpi, while peak viral brain titers for SFV infected mice was 7.5 ± 0.5 log10 CCID50/g of 

tissue on 6 dpi.  Similarly, the time course of BBB permeability to NaFl was determined 

in mice inoculated with either BaV or SFV.  The permeability of the BBB in BaV-

infected mice began increasing at 4 dpi, with peak penetration of fluorescent dye 

occurring on 9 dpi (Figure 1).  Brain fluorescence reached 12.4% of that in serum (w/v) 

on 9 dpi, which is greater than a 4-fold increase in comparison to the 2-3% noted in 

sham-infected animals.  In SFV-infected mice BBB permeability began to increase on 5 

dpi, with peak permeability occurring on 7 dpi (Figure 2).  Peak brain fluorescence 

reached 8.1% of serum fluorescence (w/v), which was approximately 3-fold higher than 

the 2-3% fluorescence seen in sham-infected animals.  Interestingly, in both virus 

infection models peak fluorescence was reached 1 d after expected peak virus titers in the 

brain.  The data were used to identify the time of virus entry into the brain as well as peak 

brain titers and peak fluorescence for subsequent experiments. 

Treatment with Ampligen™ significantly improved the outcome for mice 

inoculated with BaV, but only if it was administered prior to virus inoculation (Table 2).  
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Figure 1:  Time course of blood-brain barrier permeability in 7-8 wk old 
BALB/c mice inoculated i.p. with Banzi virus.  Percentage of fluorescence 
measured in 1 g of brain tissue vs. the amount of fluorescence measured in 1 
ml of serum 45 min after i.p. injection of sodium fluorescein dye. 
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Figure 2:  Time course of blood-brain barrier permeability in 7-8 wk old 
BALB/c mice inoculated i.p. with Semliki virus.  Percentage of fluorescence 
measured in 1 g of brain tissue vs. the amount of fluorescence measured in 1 
ml of serum 45 min after i.p. injection of sodium fluorescein dye. 
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Placebo-treated animals had 0% survival following BaV inoculation, with a MDD of 

10.4 ± 1.8, whereas, mice receiving a single 1 mg/kg dose of Ampligen™ 24 h prior to 

virus inoculation had 90% survival (p<0.001) with a single mouse dying on 14 dpi, while 

BaV inoculated mice treated with Ampligen™ 4-6 h before virus exposure had 70% 

survival (p<0.001), with a MDD of 12.3 ± 1.5.  Delaying treatment to 24 h post-virus 

inoculation resulted in 0% survival, although the MDD of 12.8 ± 3.1 was significantly 

(t=2.732, p<0.05) later than that seen in placebo-treated animals. 

Ampligen™ treatment prior to virus exposure resulted in significantly reduced 

viral titers in the brains of BaV-inoculated mice, as measured at 8 dpi.  Placebo-treated 

mice had viral brain titers of 9.1 ± 0.1 log10 CCID50/g of brain tissue.  At 8 dpi mice 

treated with Ampligen™ 24 h prior to virus inoculation had titers of 2.3 ± 0.1 log10 

CCID50/g (t=20.19, p<0.001), and those treated 4-6 h before virus injection had titers of 

3.8 ± 1.0 log10 CCID50/g (t=10.40, p<0.001).  When treatment was delayed until 24 h 

after virus inoculation, titers rose to 7.0 ± 2.1 log10 CCID50/g, which was not significantly 

different than placebo-treated animals.  However, delaying treatment to 24 h after virus 

inoculation did cause titers to be significantly higher than with animals receiving 

Ampligen™ 24 h (t=5.045, p<0.01), and 4-6 h before virus exposure (t=3.022, p<0.05). 

The beneficial effects of Ampligen™ treatment on survival and brain virus titer of 

mice challenged with BaV were mirrored in its ability to significantly improve weight 

change in virus-inoculated mice (Figure 3).  Placebo-treated animals had an average 

weight change of –13.1% ± 8.8% on 8 dpi.  In contrast, on the same day post-virus 

exposure animals receiving 1 mg/kg of Ampligen™ 24 h prior to virus inoculation 
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Figure 3:  Average percentage weight change from initial body weight of 
Banzi virus-inoculated mice after a single i.p. dose of 1 mg/kg of 
Ampligen™ administered at various times in relation to virus exposure.  
***p<0.001 compared to placebo-treated animals.
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had an average weight change of +1.3% ± 4.4% (t= 6.712, p<0.001), while animals 

treated with Ampligen™ 4-6 h prior to virus exposure had  weight change of +1.1% ± 

7.2% (t=5.909, p<0.001).  Mice treated with Ampligen™ 24 h after virus exposure had 

an average weight change of –1.4% ± 5.2% on 8 dpi, which was also significantly 

different than with placebo-treated animals (t=5.916, p<0.001). 

Treatment with a single 1 mg/kg dose of Ampligen™ was able to significantly 

improve the outcome for mice inoculated with SFV (Table 2).  Placebo-treated animals 

displayed 10% survival, with a MDD of 7.6 ± 1.3.  Animals that received 1 mg/kg of 

Ampligen™ 24 h prior to virus exposure had 40% survival, which was not significantly 

higher than with placebo-treated animals.  However, treatment of SFV inoculated mice 

with Ampligen™ 24 h before virus exposure extended the MDD to 9.0 ± 1.1, which was 

significantly longer (t=2.294, p<0.05) than with placebo-treated animals.  When 

compared to placebo-treated animals those mice treated with Ampligen™ 4-6 h prior to 

virus inoculation had  a significantly higher survival rate, with 70% of the animals 

surviving (p<0.001), while animals treated with Ampligen™ 24 h after virus inoculation 

had 30% survival which was not significantly higher than with placebo-treated animals. 

Treatment with Ampligen™ did not significantly reduce brain viral titers on 6 dpi as 

compared to placebo treatment in SFV inoculated mice (Table 2).  However, it is 

interesting to note that mice treated with Ampligen™ 4-6 h before virus exposure had a 

brain viral titer of 5.4 ±1.5 log10 CCID50/g, which was significantly (t=2.987, p<0.05) 

lower than the brain viral titer observed in mice that received Ampligen™ 24 h after virus 

exposure, which was  7.8 ± 1.1 log10 CCID50/g. 
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Ampligen™ treatment also significantly improved weight change in SFV-

inoculated mice (Figure 4).  Placebo-treated animals had an average weight change of –

22.3% ± 9.7% on 7 dpi.  In contrast, animals receiving 1 mg/kg of Ampligen™ 24 h prior 

to virus inoculation had an average weight change of –9.6% ± 8.8% (t=3.169, p<0.01), 

while animals treated with Ampligen™ 4-6 h prior to virus exposure had a weight change 

of –4.7% ± 9.7% (t=4.166, p<0.001).  Mice treated with Ampligen™ 24 h after virus 

exposure had an average weight change of –20.1% ± 9.6% on 7 dpi, which was not 

significantly different than with placebo-treated animals. 

Blood-brain barrier permeability was assayed in SFV-inoculated mice on 6 dpi, and 

in BaV-inoculated mice on 8 dpi using i.p. injections of NaFl.  In both SFV- and BaV-

inoculated mice BBB permeability was assayed 1 d prior to expected peak permeability 

to avoid the death loss of a substantial number of placebo-treated mice.  A time of 45 

minutes between administration of NaFl and collection of serum and brain samples for 

assay was based on previously published reports using a similar technique.97  Treatment 

with Ampligen™ prior to virus exposure was able to significantly decrease BBB 

permeability associated with BaV-induced encephalitis (Figure 5).  The brains of 

placebo-treated animals had 9.4% ± 3.7% (w/v) of the fluorescence found in their serum.  

Mice receiving Ampligen™ 24 h before virus exposure had a measurement of brain 

fluorescence of 2.8% ± 1.0% (t=6.096, p<0.001), and mice receiving Ampligen™ 4-6 h 

before virus exposure had a measurement of brain fluorescence of 4.0% ± 2.7% (t=3.564, 

p<0.01).  In those animals treated with Ampligen™ 24 h after virus inoculation the brain 

fluorescence was 5.8% ± 2.3% of serum fluorescence, which was not significantly lower 
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Figure 4:  Average percentage weight change from initial body 
weight of Semliki Forest virus-inoculated mice after a single i.p. 
dose of 1 mg/kg of Ampligen™ administered at various times in 
relation to virus exposure.  *p<0.05, **p<0.01, ***p<0.001 
compared to placebo-treated animals.  +p<0.05, ++p<0.01, 
+++p<0.001 compared to mice receiving Ampligen™ 24 h post-
virus exposure 
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Figure 5:  Percentage of fluorescence detected in the brain vs. the 
serum (w/v) on 8 dpi of mice inoculated with Banzi virus and treated 
with a single i.p. dose of 1 mg/kg of Ampligen™ at various times in 
relation to virus exposure.  **p<0.01, ***p<0.001 compared to 
placebo.  +p<0.05 compare to Ampligen™ administration at 24 h 
post-virus inoculation. 
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than placebo-treated animals, but was significantly higher than animals treated with 

Ampligen™ 24 h prior to virus inoculation (t=3.039, p<0.05). 

Treatment of mice with Ampligen™ prior to virus exposure resulted in significantly 

decreased BBB permeability associated with SFV induced encephalitis when compared 

to placebo-treated SFV-inoculated mice (Figure 6).  The brains of placebo-treated 

animals had 11.3% ± 2.3% (w/v) of the fluorescence found in their serum.  

Administration of Ampligen™ to mice 24 h before virus exposure resulted in brain 

fluorescence of 6.2% ± 3.4% (t=2.991, p<0.05), and animals treated with Ampligen™ 4-

6 h before virus exposure displayed a measurement of brain fluorescence of 4.7% ± 2.9% 

(t=4.086, p<0.01).  In those animals treated with Ampligen™ 24 h after virus inoculation 

the brain fluorescence was 8.8% ± 3.3% of serum fluorescence, which was not 

significantly lower than placebo-treated animals, but was significantly higher than 

animals treated with Ampligen™ 4-6 h prior to virus inoculation (t=2.947, p<0.05). 

No significant differences in weight change or BBB permeability were detected 

between groups of sham-inoculated mice, regardless of treatment regimen. 

 
Blood-Brain Permeability Changes in  
Hamsters Inoculated with Western  
Equine Encephalitis Virus 
 

Due to the apparent relationship between increased BBB and viral encephalitis 

observed in mice inoculated with either BaV or SFV it was decided to explore the 

potential for similar relationships in hamsters inoculated with WEEV, a virus related to 

SFV.  The ability to collect CSF from hamsters in a non-lethal manner provided a new 

technique for evaluating the relationship between the BBB and viral encephalitis. 
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Figure 6:  Percentage of fluorescence detected in the brain vs. the 
serum (w/v) on 6 dpi of mice inoculated with SFV and treated with 
a single dose of 1 mg/kg/ of Ampligen™ at various times in relation 
to virus exposure.  *p<0.05, **p<0.01, compared to placebo.  
+p<0.05 compared to Ampligen™ administration at 24 h post-virus 
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Hamsters were inoculated intraperitoneally with an approximately LD50 dose of 

WEEV and BBB permeability was assayed in 3 animals every 24 h following virus 

exposure, by comparing fluorescence measured in the cerebrospinal fluid to that 

measured in the serum.  At 72 h post-virus inoculation (hpi) virus-inoculated animals had 

an average ratio of 1.79% ± 0.29 when the CSF fluoresecence was compared to that of 

serum, representing an approximate 1.8-fold increase in comparison to the ratio of 1.01% 

± 0.76% measured in uninfected controls (Figure 7).  A similarly increased permeability 

ratio of 1.79% ± 1.42% in the CSF versus the serum was again measured at 96 hpi, 

immediately preceding death.  Subsequently, in an attempt to correlate changes in BBB 

permeability with death associated with WEEV infection, animals were again inoculated 

with an LD50 dose of virus.  The BBB permeability as measured by the ratio of 

fluorescence in the CSF versus the serum was then measured at 72 hpi, and animals were 

monitored for death.  The average ratio of fluorescence in the CSF of animals that 

survived virus infection (n=12) was 0.68% ± 0.52%, nonsurviving animals (n=9) had an 

average fluorescence ratio of 1.12% ± 0.78%, while sham-inoculated animals (n=3) had a 

ratio of 0.60% ± 0.16% (Figure 8).  Although the nonsurviving animals had a 1.7-fold 

increase in BBB permeability when compared to surviving animals and an almost  

1.9-fold increase when compared to sham-inoculated animals there was no statistically 

significant difference.  There also was not any apparent correlation between the degree of 

BBB permeability and time of death (data not shown). 
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Figure 7:  Time course of blood-brain barrier permeability in 
Syrian golden hamsters inoculated i.p. with WEEV.  Percentage of 
fluorescence measured in 1 ml of CSF vs. the amount of 
fluorescence measured in 1 ml of serum 45 min after i.p. injection 
of sodium fluorescein dye. 
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Figure 8:  Comparison of fluorescence detected in the CSF vs. the 
serum (v/v) in Syrian golden hamsters that either survived or died 
following inoculation with WEEV via the i.p. route.  
Fluorescence measured at 72 hpi.
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Histopathology and Microbiology  
Associated with WEE Virus  
Infection in Hamsters 
 

Due to the lack of a detectable correlation between BBB permeability and death 

in hamsters inoculated with WEEV studies were conducted with the intent of identifying 

sites of virus associated pathology within the animal.  Due to initial histopathological 

results additional studies were conducted to investigate a potential role for secondary 

bacterial infections. 

Hamsters were inoculated intraperitoneally with a 10x LD90 dose of WEE virus.  

Beginning at 24 hpi 3 virus-inoculated animals were sacrificed and various tissues, 

including spleen, thymus, kidney, brain, and spinal cord were collected for 

histopathological evaluation.  An additional 3 animals were similarly sacrificed and 

tissues collected every 24 h thereafter until all animals had succumbed to virus infection.  

At 24 and 48 hpi no lesions were observed in any tissue evaluated.  However, by 72 hpi 

lymphocytosis and severe necrotic lesions were seen in the spleen (Figure 9).  

Lymphocytic necrosis in various lymph nodes was also occasionally noted.  

Histopathological lesions in other tissues were rarely seen.  By 96 hpi all virus-inoculated 

animals had died. 

Initial histopathological results of splenic necrosis were consistent with conditions 

of septicemia and indicated the potential for a secondary bacterial involvement.  To test 

the hypothesis of death due to bacterial infections secondary to WEEV infection a 

separate experiment was conducted in which animals were again intraperitoneally 

inoculated with a 10x LD90 dose of WEE virus or sham-inoculated.  At 72 and 84 hpi 

both virus and sham-inoculated animals were sacrificed, and samples of the lung, kidney, 
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Figure 9:  Spleen from WEEV-infected hamsters at 48 hpi (A 100x & B 400x 
magnification) and 72 hpi (C 100x & D 400x).  No evidence of necrosis is seen at 
48 hpi.  By 72 hpi lymphocytosis and necrosis are evident throughout areas of the 
spleen.  

A B

C D
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liver, spleen, and blood were aseptically collected and cultured for the isolation and 

identification of bacteria.  At 72 hpi bacterial species isolated include: Aerococcus 

viridans, Corynebacterium sp., Streptococcus sp., and Kryptococcus sp.  A similar 

Corynebacterium sp. was identified from samples collected at 84 hpi, as well a 

Staphylococcus sp..  Bacteria isolated from samples taken from sham-inoculated animals 

include:  Corynebacterium sp., Aerococcus sp., and Pastuerlla sp.  Bacteria were isolated 

from 10 out of the 40 samples that were submitted.  This represents isolation of bacteria 

from 10/30 samples collected from virus-inoculated animals (4/6 animals sampled), and 

5/10 samples from sham-inoculated animals (2/2 animals) (Table 3). 

As described later in experiments evaluating the effects of anti-inflammatory 

treatment on WEEV inoculated animals it was noted that some hamsters would survive 

beyond the initial disease period in which the majority of animals die by approximately 

96 hpi .  A proportion of the surviving animals would then die at between 144-204 hpi (6-

9 dpi), occasionally displaying signs of overt neurological disease such as head-tilt, 

circling, tremors, or paralysis.  To evaluate the possibility of viral induced 

neuropathology animals that survived the initial disease phase but succumbed at the later 

time points were submitted for necropsy and histopathological analysis.  In these animals 

there was evidence of previous necrotic lesions in the spleen that appeared to be 

resolving.  Other lesions included meningitis, cerebral hemorrhage, and perivascular 

cuffing with lymphocytic infiltrate into nervous tissue (Figure 10). 

The ability of WEEV to induce viral encephalitis was further investigated by 

inoculating hamsters intracranially into the right cerebral hemisphere with 100 CCID50 of 

WEEV (n=5) or sham inoculating hamsters (n=4) as a negative control.  The 
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WEEV:  4/6

Time of Sample 
Collection 72 hpi 84 hpi Sham

Corynebacterium Corynebacterium Corynebacterium 
Aerococcus viridans Staphylococcus sp. Aerococcus sp. 
Streptococcus sp. Pasteurella 
Kryptococcus sp. 

Bacterial species 
isolated

Sham:   2/2

Table 3:  Description of rates of bacteria isolation and bacterial species isolated from 
WEEV- and sham-inoculated hamsters.

WEEV:  5/30
Sham:   5/10

Bacteria isolated from 6/8 hamsters Bacteria isolated from 10/40 samples 
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Figure 10:  Brain from WEEV-infected hamsters at 132 (A & B) and 144 (C & D) 
hpi.  Brains show evidence of hemorrhage, lymphocytic perivascular cuffing, and 
inflammatory infiltrate. 

A B

C D
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intracranially inoculated hamsters were monitored for morbidity and mortality.  

Animals that were moribund were euthanized with both euthanized and dead animals 

being submitted for necropsy and histopathological assessment.  Beginning at 36 hpi 

virus-inoculated animals began to show observable signs of disease.  Epistaxis was a 

common sign among virus-inoculated animals.  Signs of neurological involvement 

included paralysis, tremors, apparent hyperesthesia, circling, ataxia, increased agitation, 

and head tilt.  All virus-inoculated animals but 1 was dead by 72 hpi while no sham-

inoculated animals showed any signs of disease (Figure 11).  All sham-inoculated 

animals were subsequently sacrificed and submitted for necropsy.  Lesions in virus-

inoculated animals were similar to, albeit more severe than, those observed in animals 

that survived the initial stages of peripheral disease, but later succumbed to apparent viral 

encephalitis.  Lesions noted include hemorrhage, necrosis, meningitis and lymphocytic 

infiltration of the nervous tissue (Figure 12).  No lesions were seen in nonneuronal tissue. 

No histopathological lesions were noted in any sham-inoculated animal. 

 
Supportive Care of WEE Virus  
Inoculated Hamsters 
 
 As previously stated, initial results of histopathological changes in hamsters dying 

due to inoculation with were consistent with lesions noted in animals suffering from 

septicemia and/or bacteremia.  To test the hypothesis that WEEV inoculated hamsters 

were dying due to a bacteremia secondary to virus infection or due to inflammatory 

reactions to either virus or secondary bacteria a series of experiments were conducted to 

evaluate the effects of various combinations of supportive care on hamsters inoculated 

with WEE virus.  As previously described, supportive care consisted of treatment either 
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Figure 11:  Survival of Syrian golden hamsters following 
intracranial inoculation with WEEV or sham inoculation by the 
same route. 
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Figure 12:  Brains from hamsters following intracranial inoculation of WEEV.  
Animals were submitted for necropsy following death at 36 (A & B) and 48 (C & D) 
hpi.  Brains show evidence of hemorrhage, lymphocytic perivascular cuffing, and 
inflammatory infiltrate. 
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singly or in combination with anti-inflammatory agents, antibiotics, and/or 

subcutaneous fluids.  In all experiments hamsters were inoculated intraperitoneally with a 

10x LD90 dose of WEEV.  In the initial experiment animals received either a placebo 

treatment with drug vehicles (n=10) or supportive care in the form of an intraperitoneal 

treatment with the antibiotic enrofloxacin at a dose of 20 mg/kg/d, the anti-inflammatory 

agent flunixin meglumine (FM) at a dose of 5 mg/kg/d, and subcutaneous fluids as 

needed (n=10).  Animals were monitored for weight change and mortality.  Placebo-

treated hamsters had 0% survival with all animals being dead by 108 hpi, while treated 

animals had 10% survival at 204 hpi.  However, treated animals had significantly 

improved survival as evaluated by Kaplan-Meier survival analysis (p<0.05) (Figure 13).  

Animals receiving supportive care also had a weight change of 0.4 ± 3.4% and 3.4 ± 

1.5% at 72 and 96 hpi, respectively.  These values were significantly improved compared 

to a weight change of -4.6 ± 1.7% (t=3.964, p<0.01) and -16.5 ± 12.7% (t=4.947, p<0.01) 

measured in placebo- treated animals at 72 and 96 hpi, respectively (Figure 14). To better 

understand the role of antibiotic therapy in the improved survival noted in hamsters 

receiving supportive care a follow-up experiment was conducted in which WEE virus-

inoculated hamsters were treated with a placebo (n=14) a high dose (200 mg/kg/d) of 

enrofloxacin (n=13) and a low dose (20 mg/kg/d) of enrofloxacin (n=13) without any 

additional supportive treatment.  All virus inoculated animals were dead by 132 hpi, and 

there was no significant difference in survival detected regardless of treatment (Figure 

15). 

 To test the hypothesis that bacteria resistant to the initial antibiotic of choice, 

enrofloxacin, were participating in the disease conditions observed, and to better  
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Figure 13:  Effects of supportive care on the survival of WEEV 
inoculated hamsters.  *p<0.05 compared to placebo-treated animals. 
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Figure 14:  Effects of supportive care on the weight change of WEEV-
inoculated hamsters.  **p<0.01 compared to placebo-treated animals 
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elucidate the role of supportive and anti-inflammatory treatment in the improved 

responses observed in WEEV infected hamsters a subsequent experiment was conducted 

in which animals received placebo treatment, supportive care of fluids and anti-

inflammatory agents, or supportive care in combination with the antibiotics enrofloxacin 

or florfenicol.  Florfenicol treatment was toxic in hamsters as evidenced by the weight 

loss and mortality seen in sham-inoculated animals receiving treatment (data not shown).  

Among virus-inoculated hamsters those animals receiving florfenicol treatment (n=13) or 

florfenicol in combination with enrofloxacin (n=13) had a 0% survival rate, while 

placebo-treated animals (n=20) had 10% survival at 204 hpi.  Although not statistically 

significantly different, those animals that received enrofloxacin treatment with supportive 

care (n-=13), or supportive care alone (n=13) both had 30% survival at 204 hpi (Figure 

16).  Furthermore, at 84 hpi placebo-treated animals had an average weight change of -

1.7 ± 4.1% (Figure 17).  Animals receiving supportive care alone or supportive care with 

enrofloxacin had a significantly improved weight change.  Those receiving supportive 

care alone had an average weight change of +4.2 ± 2.8% (t=4.239, p<0.001), and those 

animals that received enrofloxacin in addition to supportive care had an average weight 

change of 3.9% ± 3.2% at 84 hpi (t=3.666, p<0.01). 

 Results from previous experiments appeared to indicate that anti-inflammatory 

treatment was the primary effector of improved survival in WEEV inoculated hamsters.  

To test the hypothesis that inflammation plays a substantial role in the pathogenesis of 

WEEV infection in hamsters an experiment was conducted wherein hamsters were 

inoculated intraperitoneally with a 10x LD90 dose of WEEV and then received a placebo 

treatment (n=20), or a treatment with FM at doses of either 5 mg/kg/d (n=15), or 15  
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Figure 15:  Effects of high and low doses of enrofloxacin alone on the survival 
of Syrian golden hamsters inoculated with WEEV via the i.p. route. 
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Figure 16:  Effects of supportive treatment with and without antibiotics on the 
survival of Syrian golden hamsters inoculated with WEEV via the i.p. route. 
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Figure 17:  Effects of supportive with and without antibiotics on the 
weight change of Syrian golden hamsters inoculated with WEEV via 
the i.p. route.  ***p<0.001 compared to placebo-treated animals. 
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mg/kg/d (n=15).  Animals were monitored for weight change and death.  Hamsters 

receiving the placebo treatment had 0% survival with all animals being dead by 96 hpi 

(Figure 18).  Animals receiving flunixin meglumine at either dose had 20% survival at 

204 hpi, which was significantly better than in placebo-treated animals (p<0.05).   

 Additionally, animals receiving FM at 15 mg/kg/d had an average weight change of -

0.5% ± 4.2%, which was significantly better than the weight change of -4.9% ± 4.2% 

seen in placebo-treated animals (t=2.745, p<0.05)(Figure 19).  In a separate experiment, 

hamsters were inoculated intraperitoneally with 10x LD90 dose of WEEV.  Animals were 

then treated with either placebo (n=10), or dexamethasone at 0.6 mg/kg/d (n=10) 

administered intraperitoneally.  Animals were monitored for changes in body 

temperature, weight change, and death.  Placebo-treated animals had 10% of animals 

surviving to 204 hpi, with all mortalities occurring by 84 hpi (Figure 20).  Animals 

receiving anti-inflammatory treatment with dexamethasone had 60% survival at 204 hpi, 

which was statistically significantly higher than that seen in placebo-treated animals 

(p<0.01).  The dexamethasone treatment did not significantly alter weight change in 

virus-inoculated animals (Figure 21); however, it did significantly inhibit the febrile 

response at 60 and 72 hpi.  Placebo-treated animals had average rectal body temperatures 

of 39.6 ± 0.7 °C and 39.2 ± 0.8 °C at 60 and 72 hpi, respectively.  Hamsters treated with 

DEX had average body temperatures of 38.3 ± 1.1 °C (t=3.475, p<0.01) and 38.3 ± 0.8 

°C (t=3.045, p<0.01) (Figure 22).   

 A composite of the effects of anti-inflammatory and antimicrobial treatment in 

hamsters inoculated with WEEV was constructed using data from multiple experiments 

(Figure 23).  Animals in the composite were categorized by treatment modality.  
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Figure 18:  Effects of anti-inflammatory treatment on the survival of Syrian 
golden hamsters inoculated with WEEV via the i.p. route.  *p<0.05 
compared to placebo-treated animals.  FM=Flunixn meglumine 
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Figure 19:  Effects of anti-inflammatory treatment on weight 
change of Syrian golden hamsters inoculated with WEEV via the 
i.p. route.  *p<0.05 compared to placebo-treated animals.   
FM=Flunixn meglumine
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Figure 20:  Effects of anti-inflammatory treatment on the survival of 
Syrian golden hamsters inoculated with WEEV via the i.p. route.  
**p<0.01 compared to placebo-treated animals.  
DEX=Dexamethasone
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Figure 21:  Effects of anti-inflammatory treatment on weight 
change of Syrian golden hamsters inoculated with WEEV via the 
i.p. route.  DEX=Dexamethasone 
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Figure 22:  Effects of anti-inflammatory treatment on the rectal 
body temperature of Syrian golden hamsters inoculated with 
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Figure 23:  Composite representation of the effects of anti-inflammatory 
treatment on the survival of Syrian golden hamsters inoculated with WEEV via 
the i.p. route.  Results represent data collected from four separate experiments 
using anti-inflammatory treatment with or without antibiotic treatment, antibiotic 
treatment without anti-inflammatory treatment, and placebo treatment.  
***p<0.001 compared to placebo and antibiotic only treated animals.   
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Treatment groups included the following:  anti-inflammatory treatment with antibiotics 

(n=23), anti-inflammatory treatment without antibiotics (n=63), antibiotic treatment 

without anti-inflammatory treatment (n=40), and placebo-treated animals receiving 

neither antibiotic nor anti-inflammatory treatment (n=56).  This composite excluded 

animals receiving drugs with apparent toxicity, such as florfenicol.  There was no 

significant difference between groups receiving either placebo or antibiotic treatment 

without anti-inflammatory treatment.  Indeed, the results for these two groups are almost 

identical with animals receiving antibiotic treatment alone having 2.5% survival at 108 

hpi and 0% survival at 204 hpi. Placebo-treated animals had 3.6% at both 108 and 204 

hpi.  There was no significant difference between the survival of animals receiving anti-

inflammatory agents in combination with antibiotics or anti-inflammatory agents alone. 

However, both groups receiving anti-inflammatory treatment had significantly 

improved survival rates compared to placebo-treated animals, and those receiving 

antibiotics alone (p<0.001).  At 108 hpi animals receiving antibiotics in addition anti-

inflammatory treatment had 39.1% survival while those receiving anti-inflammatory 

treatment alone had 34.9% survival.  By 204 hpi the survival rate had dipped to 21.7% 

and 19.0%, respectively. 

 
Characterization of Clinical and  
Cytokine Changes in Hamsters  
Inoculated with WEEV 
 
 Results from previous experiments evaluating the effects of anti-inflammatory 

agents on the disease outcome in WEEV inoculated hamsters indicated that the 

inflammatory response was at least partially responsible for the morbidity and mortality 
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observed.  It was hypothesized that infection with WEEV could induce an 

overwhelming inflammatory response producing a clinical syndrome similar to SIRS-

MODS as described in humans.  Therefore, to test this hypothesis and to gain a fuller 

understanding of the clinical characteristics of WEEV infection in hamsters an 

experiment was conducted wherein hamsters were inoculated intraperitoneally with a 10x 

LD90 dose of WEEV and multiple clinical parameters were measured over time.  Body 

weight and body temperature were measured in all animals every 12 h, and all animals 

were observed for morbidity and mortality.  Also, every 12 h after virus exposure, and 

continuing until all animals were dead, 3 randomly selected virus-inoculated animals 

were sacrificed, and samples were collected for analysis.  Parameters measured included, 

complete blood counts, serum biochemistry panels, virus titers, and interferon 

concentrations, as well as TNF-alpha concentrations in serum, liver, spleen, kidney, and 

brain.  The intent of this experiment was to identify parameters and trends for future 

analysis.  No statistical analysis of data was conducted. 

  Virus-inoculated animals appeared to be normal and healthy until approximately 

60 hpi, at which time they began to assume a hunched appearance and display decreased 

activity.  As diseased animals progressed towards death they became increasing lethargic 

and unresponsive until becoming moribund immediately preceding death.  Occasionally, 

blood was noted on the external nares and muzzle indicating probable epistaxis.  Death 

occurred at approximately 96-108 hpi.  No obvious neurological disease signs were 

observed prior to death. 

There was no apparent difference in the daily weight change between sham-

inoculated and virus-inoculated animals until 60 hpi, when virus-inoculated animals had 
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an average weight change of -0.8% ± 4.0%, compared to an average weight change of 

5.1% ± 2.3% seen in sham-inoculated animals (Figure 24).  After 60 hpi, virus-inoculated 

animals lost weight precipitously until the time of death.  Similarly, alterations in normal 

body temperature in virus-inoculated animals were not noted until 60 hpi.  At that time 

sham-inoculated animals had an average rectal body of 37.5 °C compared to the 

abnormally elevated temperature of 39 °C seen in WEEV-inoculated animals (Figure 25). 

The infectious viral titers in the plasma, spleen, kidney, liver and brain were 

determined over a course of time in hamsters inoculated with WEEV (Table 4).  Serum 

virus titers peaked at 36 hpi with 3.1 ± 1.3 log10 CCID50/ml serum simultaneously with 

the spleen virus titers measured at 4.8 ± 0.7 log10 CCID50/gram of tissue.  Brain virus 

titers peaked approximately 24 h before death at 72 hpi, with 8.25 ± 0.0 log10 

CCID50/gram of tissue.  

Serum biochemistry parameters were also measured in animals over the course of 

the infection with WEEV via the use of the VetScan automated serum chemistry device 

(Abaxis, Union City, CA) (Table 5).  Virus-inoculated animals had notable increases in 

alanine aminotransferase, glucose, phosphorus, and potassium at various time points 

post-virus inoculation, when compared with sham inoculated animals.  Virus- inoculated 

animals had average alanine aminotransferase (ALT) concentrations of 209 ± 107, 192 ± 

117, and 173 ± 10 U/L at 12, 72 and 84 hpi, respectively.  This represents an 

approximately 4-fold increase over the average ALT of 49 ± 5 U/L measured in sham- 

inoculated animals.  Sham inoculated animals had an average serum glucose 

concentration of 161 ± 41 mg/dL.  In contrast, virus-inoculated animals had increased 

serum glucose concentrations ranging from 255 ± 81 mg/dL at 36 hpi to 387 ± 88 
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Figure 24:  Average percentage weight change from initial body 
weight of Syrian golden hamsters inoculated with WEEV or 
sham-inoculated via the i.p. route.
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Figure 25:  Average rectal body temperature of Syrian golden 
hamsters inoculated with WEEV- or sham-inoculated via the i.p. 
route. 
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mg/dL at 60 hpi.  This represents up to an approximately 2.4-fold increase in the 

serum glucose of virus-inoculated animals when compared to sham inoculated animals.  

In examination of serum electrolytes sham-inoculated animals had serum concentrations 

for phosphorus 6.6 ± 0.6 mg/dL.  In comparison, virus-inoculated animals had increased 

serum phosphorus concentrations ranging from a low of 7.5 ± 0.3 mg/dL at 48 hpi to a 

high of 10.3 ± 1.5 mg/dL at 48 hpi.  Serum potassium in virus-inoculated animals was 

intermittently increased compared to 5.7 ± 0.5 mg/dL observed in sham-inoculated 

animals.  Virus-inoculated animals had elevated serum potassium concentrations on 7.8 ± 

0.0, 7.8 ± 1.0, 7.0 ± 0.1, and 7.9 ± 0.4 mg/dL at 12, 48, 72, and 84 hpi, respectively.  In 

the case of glucose and phosphorus there was no obvious temporal pattern associated 

with the increased serum concentrations noted in virus inoculated animals.  However, the 

elevated potassium concentrations appeared to be more likely to occur late in the disease 

process.  

Hematological parameters were monitored in WEEV-infected hamsters over time 

(Table 6).  No notable changes were detected in either the hematocrit or total red blood 

cells counted over the course of the virus infection.  Total white blood cell (WBC) counts 

in virus-inoculated animals were relatively unchanged over the course of the infection 

except at 48 when hamsters had a moderately decreased WBC count of 3484 ± 1577 

cells/μL, and at 84 hpi when hamsters had a moderately increased WBC count of 11857 ± 

5843 cells/μL.  In comparison sham-inoculated animals had an average WBC count of 

6899 ± 852 cells/μL.  The primary cause for the decrease in WBC seen at 48 hpi appears 

to be associated with decreased circulating lymphocytes, as circulating neutrophil  
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and monocyte numbers remained relatively unchanged over the time course 

measured.  Sham-inoculated animals had an average lymphocyte count of 4338 ± 817 

cells/μL.  Virus-inoculated animals initially had very similar numbers of lymphocytes, 

but the average number of circulating lymphocytes began noticeably decreasing at 24 hpi 

and reached a nadir of 1000 ± 484 cells/μL at 48 hpi before rebounding somewhat at 60 

and 72 hpi (Figure 26). 

Concentrations of the cytokines TNF-alpha (Table 7) and IFN (Table 8) were 

measured over time in the serum and tissues of WEEV-inoculated animals.  Interferon 

was undetectable in the serum of virus-inoculated animals at 12 and 24 hpi.  At 36 hpi, 

serum interferon concentrations increased rapidly, with animals having an average serum 

interferon level of 357 ± 34 U/ml (Figure 27).  The interferon concentrations decreased to 

an average of 144 ± 118 U/ml at 48 hpi, and appeared to be detected only sporadically 

after that time.  In other tissues interferon concentrations were detected sporadically, with 

no apparent pattern.  However, at 72 hpi all 3 animals sampled had detectable interferon 

in the liver, kidney and spleen with interferon concentrations of 644 ± 860, 43 ± 17, and 

812 ± 805 U/gram of tissue, respectively.  No sham-inoculated animal had detectable 

concentrations of interferon in any tissue sampled.  TNF-alpha was detected in the serum 

of virus-inoculated animals beginning at 12 hpi and continuing for the duration of the 

experiment.  TNF-alpha concentrations began noticeably increasing at 36 hpi and peaked 

at 60 hpi with concentrations of 58 ± 26 U/ml of serum (Figure 28).  No TNF-alpha was 

detected at any time point in the liver, kidney or brain of WEEV-inoculated animals.  In 

the spleen of virus-inoculated animals elevated TNF-alpha concentrations of 134 ± 67 

U/g were measured at 12 hpi.  Thereafter, TNF-alpha was detected only sporadically 
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Figure 27:  Interferon concentrations at various times post-virus 
inoculation in the serum of Syrian golden hamsters inoculated with 
WEEV.  Dashed line indicates limit of detection.
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Figure 28:  TNF-alpha concentrations at various times post-virus 
inoculation in the serum of Syrian golden hamsters inoculated with 
WEEV.  Dashed line indicates limit of detection.
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 in the spleen.  No TNF-alpha was detected in any sample assayed from sham-

inoculated animals. 

An additional clinical observation made over the course of multiple experiments 

was that a small proportion of animals occasionally survived the initial disease phase and 

appeared healthy and normal.  These animals had weight gain comparable to that of 

noninfected controls and no overt signs of disease.  However, beginning at approximately 

144 hpi some of the surviving animals would begin to die.  Signs of neurological 

involvement such as head-tilt, circling, tremors, and paralysis were occasionally noted.  

However, the most commonly noted clinical sign was acute death.  The exact proportion 

of animals that survived the initial disease period as well as the proportion of animals that 

would later succumb to disease was highly dependent upon viral dose and the use of any 

exogenous therapy. 

 
The Effects of Viral Dose and  
Dexamethasone Immunosuppresion on  
Disease Phenotype in WEEV- 
Inoculated Hamsters 
 

Additional experiments were conducted with the intent of better characterizing the 

relationship between virus dose, the immune and inflammatory response, and disease 

phenotype and outcome.   To compare the effects of different viral doses 20 hamsters 

each were inoculated intraperitoneally with either a LD50 or a 10x LD90 dose of WEEV.  

Animals were monitored for mortality.  Animals inoculated with the higher viral dose had 

0% survival, while those inoculated with the lower dose had 20% survival (p<0.05) 

(Figure 29).  Additionally, among those animals from either group that died, those that 

received the higher viral dose had a significantly greater degree of weight loss 
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Figure 29:  Survival of Syrian golden hamsters inoculated via the i.p. route with 
either a high (an LD90) dose (103.5 CCID50/animal) or a low (LD50) dose (102.5 

CCID50/animal) of WEEV.  *p<0.05 compared to low dose WEEV. 
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 (Figure 30).  At 72 hpi, hamsters that received the high viral dose had weight 

changes of -5.4% ± 3.4%, which was significantly more severe than the weight change of 

-3.0% ± 3.4% (t=2.040, p<0.05) seen among nonsurvivors inoculated with the lower viral 

dose.  Furthermore, among those animals from either group that died, the mean time to 

death (MTD) in animals receiving the higher viral dose was 91.2 ± 9.0 h, which was  

statistically significantly shorter than the MTD of 102.8 ± 15.1 h seen among those 

receiving the lower viral dose (t=2.839, p<0.01) (Table 9). 

Hamsters were treated with an immunosuppressive dose of dexamethasone (n=5) or 

treated with drug vehicle (n=5) beginning 5 d prior to inoculation with an LD50 dose of 

WEEV.  Dexamethasone-treated animals had 0% survival, with all animals dying at 84 

hpi (Figure 31).  This was not significantly different than the 20% survival observed in 

vehicle-treated animals.  At 60 hpi vehicle-treated animals had an average body 

temperature of 39.3 ± 0.2 °C, which was significantly higher than the 38.4 ± 0.2 °C 

measured in sham-inoculated animals (t=5.419, p<0.01) (Figure 32).  Dexamethasone 

treatment was able to suppress the febrile response somewhat, as drug-treated  animals 

had an average body temperature of 38.7 ± 0.8 °C at the same time point, which was not 

significantly different than in the sham-inoculated animals.  Simultaneous with its 

suppression of the febrile response, dexamethasone treatment altered viral titers in virus- 

inoculated animals.  At 60 hpi 3 out of 5 vehicle-treated animals had detectable virus in 

their serum, with an average virus titer of 2.0 ± 0.5 log10 CCID50/mL.  In contrast, virus 

was detected in all 5 samples tested from dexamethasone treated animals, which also had 

a significantly higher average serum virus titer of 5.3 ± 0.5 log10 CCID50/mL (t=10.66, 

p<0.001) (Figure 33). 
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Figure 30:  Changes in body weight of hamsters inoculated via the i.p. route 
with either a high (an LD90) dose (103.5 CCID50/animal) or a low (LD50) dose 
(102.5 CCID50/animal) of WEEV.  *p<0.05 compared to low dose WEEV. 
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Figure 31:  Survival of WEEV-inoculated Syrian golden hamsters 
following either placebo or immunosuppressive treatment with 
dexamethasone. 

Treatment Group Mean Time to Death (hours)
High Dose WEEV   91.8 ± 8.9**
Low Dose WEEV 102.8 ± 15.1
**p<0.01 Compared to Low Dose WEEV

Table 9:  Comparison of Mean Time to Death among Syrian golden 
hamsters inoculated with either a high (an LD90) dose (103.5 

CCID50/animal) or a low (LD50) dose (102.5 CCID50/animal) of 
WEEV.  
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Figure 32:  Rectal body temperatures of WEEV-inoculated 
Syrian golden hamsters following either placebo treatment or 
immunosuppressive treatment with dexamethasone.  ++p<0.01 
Compared to sham-inoculated animals
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Figure 33:  Serum virus titer in WEEV-inoculated Syrian golden 
hamsters following either placebo treatment or 
immunosuppressive treatment with dexamethasone.   
***p<0.001 compared to placebo-treated animals.
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Comparisons of Infection with Kern and  
California Strains of WEEV in the  
Syrian Golden Hamster 
 
 It was hypothesized that the disease phenotype of rapid death associated with 

lymphocytic necrosis as previously described was a condition unique not only to 

hamsters, but to the specific virus strain used.  Therefore experiments were conducted to 

compare certain disease phenotype characteristics in hamsters inoculated with the 

previously used California strain of WEEV and a separate distinct virus strain, the Kern 

strain.  Hamsters were inoculated intraperitoneally with 103.5 CCID50 per animal of the 

California (CA) strain of WEEV (n=10), equivalent to a LD90 dose as previously 

determined in viral titration experiments.  Simultaneously, additional groups of hamsters 

were inoculated with 103.5 CCID50 per animal of the Kern strain of WEEV (n=5), or were 

sham-inoculated (n=5).  Animals were monitored for disease and death.  Animals 

inoculated with the CA strain followed similar disease patterns as described previously, 

displaying lymphopenia, fever, and rapid death.  Animals inoculated with the CA strain 

had 20% survival, with all mortalities occurring by 96 hpi (Figure 34).  The survival in 

Kern inoculated animals was significantly different than that observed in CA inoculated 

animals as determined by Kaplan-Meier analaysis (p<0.01).  Kern inoculated hamsters 

had 40% survival with fatalities occurring between 288 and 312 hpi.  At 60 hpi the rectal 

body temperature of animals inoculated with the CA strain was 39.0 °C ± 0.8 °C, which 

was significantly higher than the average rectal body temperature of 37.5 °C ± 0.6 °C  

(t=3.796, p<0.01) seen in Kern-inoculated animals or the 37.5 °C ± 0.4 °C measured in 

sham-inoculated animals (t=3.798, p<0.01) (Figure 35). 
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Figure 34:  Survival of Syrian golden hamsters inoculated with two 
different strains of WEEV.  **p<0.01 compared to hamsters inoculated 
with the California strain of WEEV. 
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Figure 35:  Comparison of rectal body temperatures at 60 hpi 
in Syrian golden hamsters inoculated with two different strains 
of WEEV or strain inoculated at 60 hpi.  **p<0.01 compared to 
sham inoculated animals, ++p<0.01 compared to animals 
inoculated with the Kern strain of WEEV.  Open circles 
indicate animals that survived infection with the California 
strain of WEEV.
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 Blood samples were collected from all animals at 36 hpi and assayed for 

serum interferon, serum virus titers, and circulating lymphocyte counts.  Blood was also 

collected at 48 hpi and assayed for serum interferon concentrations.  At 36 hpi CA-

inoculated hamsters had an average circulating lymphocyte count of 3605 ± 3290 cell/µL 

of whole blood (Figure 36).  While this was not significantly different than the 5708 ± 

2033 cell/µL seen in sham-inoculated animals it was significantly lower than the 7943 ± 

2244 cell/µL measured in Kern-inoculated animals (t=2.634, p<0.05).  The virus was 

detected in the serum of all CA-inoculated animals at 36 hpi, with a mean serum virus 

titer of 4.9 ± 1.5 log10 CCID50/mL of serum (Figure 37).  This was significantly higher 

than the mean titer of 2.7 ± 1.5 log10 CCID50/mL measured in Kern-inoculated animals 

wherein only 3 of the 5 animals had detectable virus titer (t=2.772, p<0.05).  At 36 hpi 1 

sham-inoculated animal had a detectable interferon concentration in the serum, and sham 

animals had a mean interferon concentration of 24.0 ± 31.3 U/mL.  Hamsters inoculated 

with the CA strain also had only 1 animal with detectable concentrations of interferon in 

the serum and had an average serum concentration of 36.7 ± 31.3 U/mL.  In contrast, all 

but 1 Kern-inoculated animal had detectable amounts of serum interferon and had a mean 

concentration of 361.4 ± 206.3 U/mL, which was statistically significantly higher than 

the concentrations measured in CA-inoculated animals (t=4.415, p<0.001) (Figure 38).  

By 48 hpi serum concentrations had altered, with no detectable interferon measured in 

sham-inoculated animals.  Among CA strain-inoculated animals interferon concentrations 

were increased, wherein 9 out of 10 animals had detectable amounts of interferon in their 

serum and a mean concentration of 125.0 ± 128.7 U/mL.  The interferon concentrations 

in Kern animals had decreased, with only 1 out of 5 animals having serum 
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Figure 36:  Lymphocyte counts at 36 hpi in the whole blood of 
Syrian golden hamsters inoculated with two different strains of 
WEEV or strain inoculated.  +p<0.05 compared to animals 
inoculated with the Kern strain of WEEV.  Open circles indicate 
animals that survived infection with the California strain of WEEV. 
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Figure 37:  Serum virus titers at 36 hpi in hamsters inoculated 
via the i.p. route with two different strains of WEEV.  *p<0.05 
compared to animals inoculated with the Kern strain of WEEV. 
Open circles indicate animals that survived infection with the 
California strain of WEEV.
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Figure 38:  Serum interferon concentrations at 36 and 48 hpi in 
hamsters inoculated with two different strains of WEEV.  
***p<0.001 California strain-inoculated animals compared to Kern 
strain-inoculated animals.  Open circles and open triangles indicate 
animals that survived infection with the California strain of WEEV. 
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interferon concentrations above the limits of detection and having a mean interferon 

concentration of 59.0 ± 109.5 U/mL, which was not significantly different than that seen 

in CA-inoculated animals. 

 
Identification of Potential Markers of  
Disease Outcome in WEEV- 
Inoculated Hamsters 
 
 It had been previously noted that hamsters develop severe lymphopenia associated 

with WEEV infection, but that lymphocyte counts in animals subsequently surviving 

WEEV infection were higher (Figure 36).  It was also noted that hamsters inoculated with 

the Kern strain of virus displayed significantly different serum interferon concentrations 

at early time-points in virus infection (Figure 38).  Therefore, experiments were 

conducted to evaluate lymphocyte counts and serum cytokine concentrations as  

indicators of disease outcome.  Hamsters were either inoculated intraperitoneally with an 

LD50 dose of WEEV or sham-inoculated, and monitored for death.  At various time 

points both before and/or after virus inoculation blood samples were collected and 

analyzed for numbers of circulating WBC and circulating lymphocytes.  For the current 

experiments animals alive after 108 hpi were considered survivors.  At 72 hpi sham-

inoculated animals (n=5) had an average WBC count of 4220 ± 1746 cells/μL of whole 

blood (Figure 39).  In comparison animals that subsequently survived the WEEV 

infection (n=4) had an average WBC count of 2663 ± 782 cells/μL and nonsurvivors 

(n=6) had 1871 ± 461 cells/μL, which was significantly lower than in sham-inoculated 

animals (t=3.197, p<0.05).  A separate group of animals was assayed at 84 hpi.  At that 

time point sham-inoculated animals (n=5) had an average WBC count of 7040 ± 
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Figure 39:  Comparison of circulating white blood cell counts at 72 and 
84 hpi in whole blood from hamsters that either survived or succumbed 
to infection with WEEV.  *p<0.05 WEEV nonsurvivors compared to 
sham inoculated animals, +p<0.05 WEEV nonsurvivors compared to 
WEEV survivors.  
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688 cells/μL.  WEEV survivors (n=5) had 8540 ± 1746 cells/μL and nonsurvivors 

(n=5) had 5655 ± 1632 cells/μL, which was significantly lower than survivors (t=2.700, 

p<0.05), but not significantly different than in sham-inoculated animals.  Highly 

statistically significant differences between survivors and nonsurvivors were noted when 

lymphocyte counts in the same groups of animals were assayed (Figure 40).  At 72 hpi, 

sham-inoculated animals had an average of 2665 ± 597 cells/μL compared to 945 ± 378 

cells/μL in survivors (not statistically significant), and 216 ± 184 cells/μL in nonsurvivors 

(t=4.120, p<0.01 vs. survivors, t=9.593, p<0.001 vs. sham).  At 84 hpi sham-inoculated 

animals had average lymphocyte counts of 4762 ± 740 cells/μL compared to 3528 ± 943 

cells/μL in survivors, and 467 ± 221 cells/μL in nonsurvivors (t=7.063, p<0.001 vs. 

survivors, t=12.42, p<0.001 vs. sham). 

  In a separate experiment animals were again inoculated intraperitoneally with an 

LD50 of WEEV or were sham-inoculated.  Previous to virus inoculation blood samples 

were collected from all animals and analyzed for WBC and lymphocyte counts, and 

animals were then randomly assigned to virus or sham-inoculation groups.  No 

significant differences in either WBC or lymphocyte counts were detected between 

groups previous to virus inoculation (data not shown).  Blood samples were collected and 

analyzed at 84 hpi, and animals were monitored for disease outcome.  At 84 hpi sham 

inoculated animals (n=5) had average WBC counts of 7834 ± 1565 cells/μL compared to 

5382 ± 2037 cells/μL in survivors (n=5) and 6514 ± 2279 cells/μL in nonsurvivors  

(n=15) (Figure 41).  Lymphocyte counts in the same animals were 3752 ± 1232 cells/μL 

in sham-inoculated animals, 2703 ± 1375 cells/μL in survivors, and 1498 ± 637 cells/μL 

in nonsurvivors (t=2.369, p<0.05 vs. survivors, t=4.759 p<0.001 vs. sham) (Figure 42). 
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Figure 40:  Comparison of circulating lymphocyte counts at 72 and 
84 hpi in whole blood from hamsters that either survived or 
succumbed to infection with WEEV.  **p<0.01, ***p<0.001 WEEV 
nonsurvivors compared to sham-inoculated animals, +++p<0.001 
WEEV nonsurvivors compared to WEEV survivors.  
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Figure 41:  Circulating white blood cell counts at 84 hpi in whole 
blood from hamsters that either survived or succumbed to infection 
with WEEV.   
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Figure 42:  Circulating lymphocyte counts at 84 hpi in whole 
blood from hamsters that either survived or succumbed to 
infection with WEEV.  ***p<0.001 WEEV nonsurvivors 
compared to sham-inoculated animals, +p<0.05 WEEV 
nonsurvivors compared to WEEV survivors.  
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In a third related experiment animal blood samples were collected from animals for 

WBC and lymphocyte counts, followed by random assignment of animals to different 

treatment groups.  Hamsters were inoculated with a 10x LD90 dose of WEEV or were 

sham-inoculated.  Hamsters then received treatment with flunixin meglumine (5 mg/kg/d) 

as previously described or received placebo treatment.  Blood was collected at 84 hpi and 

analyzed for WBC and lymphocyte counts.  Animals were monitored for disease 

outcome.  No significant differences in either WBC or lymphocyte counts were noted 

between any groups prior to virus inoculation (data not shown).  By 108 hpi all placebo-

treated animals were dead; while FM-treated animals had 40% survival at 108 hpi (Figure 

43).  At 84 hpi sham-inoculated animals treated with FM (n=4) had an average WBC 

count of 8188 ± 2103 cells/μL, placebo-treated animals (n=3) had an average of 8175 ± 

2575 cells/μL, FM-treated animals that subsequently survived beyond 108 hpi (n=4) had 

4720 ± 802 cells/μL, while nonsurvivors (n=6) had a mean of 6285 ±855 cells/μL (Figure 

44).  Lymphocyte counts in the same animals were 4065 ± 2055 cells/μL in sham-

inoculated animals, 1408 ± 271 cells/μL in placebo-treated animals, 2375 ± 963 cells/μL 

in survivors, and 1292 ± 434 cells/μL in nonsurvivors (t=2.952, p<0.05 vs. sham) (Figure 

45). 

 Hamsters were inoculated intraperitoneally with an LD50 dose of WEEV and 

monitored for disease outcome.  Serum was collected at various times post-virus 

inoculation and assayed for cytokine concentration.  Animals with cytokine 

concentrations below the limits of detection were considered to have a concentration at 

the lower limits of the assay (10 U/mL). Virus inoculated animals had a 40% survival 

rate, with all mortalities occurring by 108 hpi (Figure 46).  Serum was collected at 20 and 



 131

 

 

0 24 48 72 96 120 144 168 192
0

20

40

60

80

100
FM 5 mg/kg/day
Placebo

Hours Post-Virus Inoculation

Pe
rc

en
t s

ur
vi

va
l

Figure 43:  Survival of WEEV inoculated hamsters treated with 
flunixin meglumine or placebo treatments.
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Figure 44:  Circulating white blood cell counts at 84 hpi in whole 
blood from hamsters inoculated with WEEV and treated with 
flunixin meglumine or placebo treatment.  Survivors=animals 
persisting beyond 108 hpi.
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Figure 45:  Circulating lymphocyte counts at 84 hpi in whole blood 
from hamsters inoculated with WEEV and treated with flunixin 
meglumine or placebo treatment.  Survivors=animals persisting 
beyond 108 hpi. *p<0.05 Nonsurvivors compared to sham-
inoculated animals. 
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Figure 46:  Survival of hamsters inoculated with WEEV.  Serum 
samples were collected to measure cytokine concentrations in 
WEEV survivors and nonsurvivors. 
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 44 hpi and assayed for interferon concentrations (Figure 47).  At 20 hpi sham-

inoculated animals (n=3) had no samples with interferon above the lower limits of 

detection.  Of the animals that survived virus infection (n=4) had detectable interferon at 

20 hpi, with a serum interferon concentration of 20 ± 20 U/mL, whereas 3 of the 

nonsurviving animals  (n=6) had detectable interferon with an average of 117 ± 163 

U/mL.  At 44 hpi the same groups of animals had <10 U/mL in sham-inoculated animals, 

3 out of 4 survivors had detectable interferon with an average of 114 ± 147 U/mL, and 3 

of 6 nonsurvivors had detectable interferon with an average of 182 ± 204 U/mL.  No 

statistically significant differences were detected between survivors and nonsurvivors at 

either time point.  Serum TNF-alpha concentrations were also measured in the same 

animals at 44 hpi (Figure 48).  Serum concentrations of TNF-alpha in sham- inoculated 

animals were < 10 U/mL.  Surviving animals had an average of 32 ± 44 U/mL, and non-

surviving animals had an average concentration of 270 ± 199 U/mL (t=2.311, p<0.05 vs. 

survivors).  Virus titer assays were also conducted on the serum samples collected at 44 

hpi.  No virus was detected from sham-inoculated animals.  At 44 hpi surviving animals 

had an average virus titer of 1.6 ± 0.1 log10 CCID50/mL of serum, and only 1 of the 4 

animals had a serum virus concentration above the limit of detection (Figure 49).  

Meanwhile, virus was detected in the serum of all non-surviving animals, with a mean 

serum virus concentration of 5.4 ± 1.2 log10 CCID50/mL, which was significantly higher 

than that seen in surviving animals (t=6.217, p<0.001). 

  Finally, body temperature was also measured in animals every 12 h during the 

course of the disease, and correlated with disease outcomes.  Similar to that described 

previously, rectal body temperatures were seen to increase in virus-inoculated animals, 
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Figure 47:  Concentration of interferon in the serum at 20 and 44 
hpi from sham-inoculated hamsters or hamsters that either 
survived or succumbed to WEEV infection. 



 137

Survivors

Non-Survivors
Sham

0

100

200

300

400

500
*

U
ni

ts
 T

N
F-
α

/m
l s

er
um

Figure 48:  Concentration of TNF-alpha in serum at 44 hpi from 
sham-inoculated hamsters or hamsters that either survived or 
succumbed to WEEV infection.  *p<0.05 Nonsurvivors compared 
to survivors. 
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Figure 49:  Serum virus titers at 44 hpi from sham-inoculated 
hamsters or hamsters that either survived or succumbed to 
WEEV infection.  ***p<0.001 Nonsurvivors compared to 
survivors. 
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and particularly in nonsurvivors, beginning approximately 60 hpi, peaking at 72 hpi, 

and then rapidly declining before death.  At 72 hpi the mean rectal temperature of sham-

inoculated animals was 37.9 °C ± 0.4 °C compared to an average temperature of 37.9 °C 

± 0.2 °C in survivors.  Nonsurviving animals had an average rectal body temperature of 

39.9 °C ± 0.3 °C, which was statistically significantly higher than either sham-inoculated 

animals (t=7.051, p<0.001) or WEEV survivors (t=7.428, p<0.001)(Figure 50). 

 
In vitro Effects of WEEV on Hamster  
Macrophages and Splenocytes 
 
 Previous in vivo experiments indicated a potential role for inflammatory cytokines 

in the pathogenesis of WEEV in hamsters.  Therefore, experiments were conducted to 

examine the ability of WEEV to induce production of TNF-alpha in macrophages in 

vitro, and to evaluate the ability of previously used anti-inflammatory agents to mitigate 

the TNF-alpha response in macrophages.  Hamster peritoneal macrophages were 

inoculated with various multiplicities of infections (MOIs) of WEEV.  After incubation 

supernatant was collected and assayed for TNF-alpha concentrations.  In an initial 

experiment supernatant was collected at 18 hpi.  Macrophage release of TNF-alpha in 

response to virus appeared to occur in a dose-responsive manner (Figure 51).  When 

compared with cells in control wells that were not exposed to virus macrophages 

inoculated with a MOI of 5 expressed an average of a 63.5 ± 3.7-fold increase, those 

exposed to an MOI of 0.5 had an average of a 9.0 ± 1.0-fold increase, and those exposed 

to an MOI of 0.05 had a 1.3 ± 0.1-fold increase in TNF-alpha expression.  Macrophages 

exposed to lower MOIs did not have detectable TNF-alpha in excess of that seen in 

control cells. 
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Figure 50:  Rectal body temperature in sham-inoculated hamsters 
or hamsters that either survived or succumbed to WEEV infection.  
***p<0.001 Nonsurvivors compared to survivors, +++p<0.001 
Nonsurvivors compared to sham-inoculated animals.
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Figure 51:  TNF-alpha production by peritoneal macrophages after 
18 h of exposure to various multiplicities of infection of WEEV. 
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 To determine the time post-virus exposure when the highest expression of 

TNF-alpha could be measured macrophages were inoculated with WEEV at MOIs of 

0.05, 0.5, and 5, and supernatants were collected at 12, 18, 24, and 36 hpi, and assayed 

for TNF-alpha concentrations.  Macrophages continued to show an apparent virus dose 

response in regards to the concentration TNF-alpha measured (Figure 52).  The time 

point of 18 hpi produced the highest concentrations of TNF-alpha.  Those macrophages 

inoculated with an MOI of 5 had an average of 99.9 ± 17.3-fold increase over non-virus 

inoculated control macrophages.  In comparison supernatants from other macrophages 

inoculated with an MOI of 5 and collected at 12, 24 and 36 hpi had average fold increases 

with an MOI of 5 had an average of 99.9 ± 17.3-fold increase over non-virus inoculated 

control macrophages.  In comparison supernatants from other macrophages with an MOI 

of 5 had an average of 99.9 ± 17.3-fold increase over non-virus inoculated control 

macrophages.  In comparison supernatants from other macrophages inoculated with an 

MOI of 5 and collected at 12, 24 and 36 hpi had average fold increases of 35.1 ± 10.3, 

13.4 ± 2.0, and 74.6 ± 17.4, respectively.  All subsequent experiments with peritoneal 

macrophages used a collection time of 18 hpi when assaying for TNF-alpha and for 

assaying for cell viability.  Peritoneal macrophages were seeded into 96-well plates, and 

either inoculated with WEEV at an MOI of 3, or sham-inoculated with nonvirus cell 

lysate at a similar dilution.  Macrophage containing wells, both virus and sham 

inoculated, were simultaneously treated with various concentrations of the test 

compounds dexamethasone and flunixin meglumine, or were left untreated.  At 18 hpi 

cell culture supernatant was collected and assayed for concentrations of TNF-alpha.  

Virus control wells that received no addition of test compound had an average of a 
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Figure 52:  TNF-alpha production by peritoneal macrophages 
inoculated with various multiplicities of infection of WEEV at 
multiple times post-virus exposure. 
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 42.9 ± 25.8-fold increase in TNF-alpha concentrations compared to untreated cell 

control wells (Figure 53).  Virus exposed macrophages treated with dexamethasone at 

concentrations of 1000 µM, 320 µM, 100 µM, and 32 µM had fold-increases in TNF-

alpha concentrations of 3.5 ± 2.8, 13.8 ± 11.4, 17.6 ± 14.8, and 12.9 ± 10.0, respectively.  

Of the dexamethasone concentrations tested only those virus exposed macrophages 

treated with 1000 µM of dexamethasone displayed statistically significantly lower 

concentrations of TNF-alpha than virus controls (t=5.718, p<0.01).  In comparison, wells 

similarly treated with flunixin meglumine at concentrations of 1000 µM, 320 µM, 100 

µM, and 32 µM had fold increases of TNF-alpha of 1.7 ± 1.2, 13.5 ± 11.5, 17.1 ± 17.8, 

and 20.7 ± 23.5, respectively, when compared to control wells.  Similar to the results 

measured with dexamethasone, only treatment with a concentration of 1000 µM of 

flunixin meglumine significantly reduced TNF-alpha concentrations (t=5.988, p<0.01).  

There were no significant differences in the increase of TNF-alpha between 

dexamethasone and flunixin meglumine-treated cells receiving similar micromolar 

concentrations.  Treatment of macrophages with either dexamethasone or flunixin 

meglumine in the absence of virus did not produce detectable concentrations of TNF-

alpha (data not shown). 

 Macrophage cell viability was also measured at 18 hpi.  Virus control wells had 

an average cell viability of 60.9 ± 12.7%, when compared to cell control wells.  Wells 

treated with dexamethasone at concentrations of 1000 µM, 320 µM, 100 µM, and 32 µM 

had mean cell viability values of 55.9 ± 13.9, 72.2 ± 12.8%, 67.2 ± 13.8%, and 67.8 ± 

15.6%, respectively, none of which were significantly different than the virus controls.  

However, dexamethasone treated toxicity wells had an average decrease in cell 
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Figure 53:  TNF-alpha production by peritoneal macrophages 
inoculated with WEEV at a MOI of 3 and treated with anti-
inflammatory compounds.  **p<0.01 compared to virus control 
macrophages. 
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 viability of 28.3 ± 7.3% compared to cell controls.  Therefore, when the cell viability 

in wells treated with both virus and dexamethasone was corrected for toxicity, wells 

treated with 1000 µM of dexamethasone had average cell viability of 83.3 ± 7.3%, which 

was statistically significantly higher than virus inoculated wells (t=4.186, p<0.01) (Figure 

54).  Cells treated with flunixin meglumine showed minimal toxicity at all concentrations 

tested, and no correction of cell viability was necessary.  Virus-inoculated wells treated 

with flunixin meglumine at concentrations of 1000 µM, 320 µM, 100 µM, and 32 µM 

had mean cell viability values of 94.5 ± 6.2%, 78.9 ± 13.5%, 69.5 ± 10.9%, and 73.8 ± 

12.3%, respectively.  Flunixin meglumine significantly improved cell viability in virus-

inoculated macrophages at concentrations of 1000 µM (t=6.280, p<0.001) and 320 µM 

(t=3.366, p<0.05), when compared to virus controls.  Cell viability in flunixin 

meglumine-treated wells was not significantly different than that measured in 

dexamethasone-treated wells of similar micromolar concentrations after cell viability was 

corrected for toxicity. 

 Previous in vivo experiments indicated a relationship between WEEV infection in 

hamsters and the spleen and other lymphoid tissues.  Therefore, experiments were 

conducted to examine the ability of WEEV to alter cell viability of primarily lymphoid 

cells derived from the spleen.  Additional experiments were conducted to determine if 

WEEV induced cytokines from peritoneal macrophages could further modulate the effect 

of WEEV on splenocytes.  To that end, splenocytes were exposed to various MOIs of 

WEEV and later tested for cell viability.  WEEV was able to reduce cell viability in 

primary hamster splenocytes in an apparent dose-responsive manner (Figure 55), wherein 

it was observed that cells inoculated with WEEV at MOI rates of 1.0, 0.1, and 0.01 
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Figure 54:  Cell viability of peritoneal macrophages following inoculation with 
WEEV at an MOI of 3, and treatment with anti-inflammatory compounds.  Cell 
viability corrected for drug toxicity measured in nonvirus, compound-treated 
macrophages.    *p<0.05, **p<0.01, ***p<0.001 compared to virus control 
macrophages. 
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 had cell viability rates of 29.8 ± 3.1%, 66.0 ± 3.9%, and 83.5 ± 3.9%, respectively, 

when compared to non-infected cell controls.  Assays to measure the TNF-alpha in the 

supernatant from WEEV-inoculated splenocytes were conducted similar to those used 

following exposure of macrophages to virus.  However, no TNF-alpha could be detected 

via the cell-based assay used. 

 When a comparison was made between the ability of the CA and Kern strains of 

WEEV to affect splenocytes directly it was found that the CA strain of WEEV reduced 

splenocyte viability significantly more so than the Kern strain (Figure 56).  Kern strain 

inoculated onto primary hamster splenocytes at MOIs of 0.1 and 0.01 produced cell 

viability of 87.0 ± 6.7% and 96.0 ± 2.1%, respectively.  These in turn were significantly 

higher than the 66.0 ± 3.9% (t=6.584, p<0.001), and 83.5 ± 3.9% (t=3.912, p<0.05) cell 

viability previously described in splenocytes inoculated with similar amounts of virus 

using the CA strain. 

 In a similar manner to that used in macrophages, the compounds flunixin 

meglumine and dexamethasone were evaluated for their ability to modulate the effects of 

WEEV on splenocytes (Figure 57).  There was no apparent effect in cells treated with the 

compounds.  The presence of substantial cytotoxicity associated with each compound 

used limited the ability to test for drug effect. 

 Splenocytes were exposed to a culture supernatant that had been treated in 1 of 3 

ways for 18 h:  peritoneal macrophages incubated in the absence of any known stimulus, 

peritoneal macrophages incubated in the presence of WEEV at an MOI of 1, or culture 

media incubated in a similar manner lacking macrophages but containing equivalent 

amounts of virus.  Samples of supernatants were assayed for infectious virus titers 
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Figure 55:  Cell viability of hamster splenocytes 3 d after inoculation 
with various multiplicities of infection of WEEV. 
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Figure 56:  Comparison of the ability of two different strains of WEEV to induce 
decreased cell viability in hamster lymphocytes in vitro after 3 d of incubation. 
*p<0.05, ***p<0.001 Kern strain compared to California strain of WEEV. 
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Figure 57:  Effects of treatment with the compound flunixin 
meglumine and dexamethasone on hamster splenocytes inoculated 
with WEEV.   
FM=Flunixin meglumine, DEX=Dexamethasone 
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 prior to exposure of splenocytes.  No significant differences in virus titer were 

detected between treatment types whether virus was incubated in the presence or absence 

of macrophages.  No virus was detected in supernatant from macrophages incubated in 

the absence of virus.  An additional amount of virus stock, approximately 1 log in excess 

of that detected in culture supernatants, was added to each splenocyte culture exposed to 

culture supernatant, resulting in a MOI of approximately 1.0.  This was done to ensure 

that even minor or undetectable differences in virus titers of cell culture supernatant did 

not significantly affect the response of splenocytes. 

 Splenocytes inoculated with virus only and no culture supernatant had a cell 

viability rate compared to cell controls of 45.5 ± 9.1% (Figure 58).  The addition of 

macrophage supernatant-lacking virus stimulation resulted in a cell viability rate of 54.6 

± 8.1%, while the addition of supernatant containing WEEV incubated in the absence of 

macrophages produced cell viability of 45.6 ± 8.49%.  When culture supernatant from 

macrophages exposed to WEEV was added to the splenocyte culture, it resulted in a cell 

viability rate of 26.2 ± 3.9%, which was significantly lower than in the virus control 

(t=5.961, p<0.001), non-stimulated macrophages, (t=8.715, p<0.001) or WEEV  

incubated in the absence of macrophages (t=5.961, p<0.001).  No other 

combination of WEEV and/or macrophages produced significant differences in 

splenocyte viability. 

 In subsequent tests, splenocytes were similarly exposed to supernatant from 

macrophage cultures.  In this instance, supernatant came from macrophages exposed to 

WEEV, or WEEV incubated in the absence of macrophages as previously described.  

Additional supernatants came from similarly prepared culture conditions with the 
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Figure 58:  Effects of stimulated macrophage supernatant on the 
viability of hamster splenocytes exposed to WEEV.  Mac no 
stim=Supernatant from nonstimulated macrophages; WEEV no 
Mac=Culture media containing WEEV incubated in the absence of 
macrophages; WEEV & Mac=Culture supernatant from 
macrophages stimulated with WEEV.  ***p<0.001 compared to 
splenocytes exposed to supernatant from WEEV-stimulated 
macrophages. 
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addition of flunixin meglumine or dexamethasone added at concentrations of 1000 

and 320 μM, respectively, added prior to the incubation of virus in the presence or 

absence of macrophages (Figure 59).  The exposure of virus to either flunixin meglumine 

or dexamethasone did not significantly alter detectable virus titers (data not shown).  

Treatment of splenocytes with virus only resulted in cell viability of 52.4 ± 3.9%, while 

the addition of supernatant containing WEEV incubated in the absence of macrophages 

resulted in cell viability of 46.9 ± 6.1%.  The use of supernatant from macrophages 

exposed to WEEV resulted in cell viability of 29.1 ± 1.4%, which was statistically 

significantly lower than in either virus controls (t=15.29, p<0.001) or virus incubated 

without macrophages (t=12.22, p<0.001), confirming the earlier noted effects of 

supernatant from WEEV-stimulated macrophages.  The addition of dexamethasone to 

macrophage cultures exposed to WEEV resulted in splenocyte viability of 23.8 ± 1.4% 

compared to the 25.1 ± 3.3% viability of splenocytes exposed to culture media containing 

virus and dexamethasone without macrophages.  Cells exposed to culture supernatant 

containing virus and flunixin meglumine in the absence and presence of macrophages had 

cell viability rates of 10.3 ± 1.6% and 10.5 ± 1.6%, respectively.  There was no detectable 

benefit to splenocyte viability associated with treating macrophages with anti-

inflammatory agents prior to collection of supernatant for use in splenocytes.  However, 

the apparent cytotoxicity associated with residual drug in the supernatant treated with 

dexamethasone or flunixin meglumine limit effective analysis of the drug’s effects on the 

agents produced by macrophages which in turn, enhance splenocyte destruction in 

culture. 
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Figure 59:  Cell viability of splenocytes cultured in the presence of 
supernatant from macrophages stimulated with WEEV and treated 
with anti-inflammatory compounds. ***p<0.001 Comparison 
between use of supernatant from WEEV-stimulated macrophages or 
WEEV incubated without macrophages.   
 
WEEV no Mac=WEEV incubated in culture media without 
macrophages 
 
WEEV & Mac=Supernatant from WEEV-stimulated macrophages 
 
Dex WEEV No Mac=WEEV incubated in culture media with 
Dexamethasone (320 μM) without macrophages 
 
WEEV Mac Dex=Supernatant from macrophages stimulated with 
WEEV and treated with dexamethasone  (320 μM) 
 
FM WEEV No Mac=WEEV incubated in culture media with 
flunixin meglumine  (1000 μM) without macrophages 
 
WEEV Mac FM=Supernatant from macrophages stimulated with 
WEEV and treated with flunixn meglumine (1000 μM).
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DISCUSSION 

 
 Arboviral infections are a worldwide threat to both human and animal health.  

Disease caused by arboviruses varies widely depending upon the virus, the host species, 

and a multitude of virus-host interactions.  This is true even for viruses primarily 

considered to be encephalitides.  Having a proper understanding of viral 

pathophysiological mechanisms is vital to the goals of proper diagnosis and treatment of 

arboviral disease. 

 
Viral Encephalitis Disrupts the Function  
of the Blood-Brain Barrier 
 

It was initially hypothesized that the permeability of the blood-brain barrier of 

mice to the small molecular weight marker sodium fluorescein would increase during the 

course of disease following inoculation with a viral encephalitide.  This hypothesis was 

confirmed by measuring up to 4-fold increases in BBB permeability in virus-inoculated 

animals when compared to sham inoculated animals.  An additional hypothesis was that 

BBB permeability would correlate with disease outcome following treatment with the 

interferon inducer Ampligen™, an antiviral agent previously shown to be effective 

against the viruses tested.  This hypothesis was confirmed by measurement of 

significantly decreased permeability of the BBB and significantly improved weight 

change and survival of mice that received treatment with the immunomodulatory agent 

Ampligen™ prior to virus exposure. 

Treatment of viral encephalitis presents a clinical challenge, with few effective 

therapies.  Improved understanding of the role of the BBB in both health and disease is 



 157
vital to understanding the challenges associated with treating viral encephalitis, and 

will also aid in developing new strategies for treatment of viral encephalitis.  The results 

presented here highlight several aspects of the role of the BBB in viral encephalitis 

including the following:  that increases in permeability of the BBB is a pathophysiologic 

event common to many forms of viral encephalitis, such as arboviruses, that the degree of 

BBB permeability correlates directly with disease severity; and that increased 

permeability of the BBB may play an important role in the pathophysiology of viral 

encephalitis.  Showing the ability of two disparate viral species to produce similar 

changes in the permeability of the BBB to NaFl reinforces the probability that breakdown 

of the BBB is a pathophysiological event common to many forms of viral encephalitis.  

This suggests that similar changes may occur in humans infected with encephalitic 

viruses from the Flavivirus or Togavirus families of viruses, such as West Nile or 

Venezuelan equine encephalitis viruses. 

In addition to quantifying the degree of increased BBB permeability, the data 

show a positive correlation between increased degrees of BBB permeability and 

increased disease severity.  This was shown in studies in which Ampligen™ treatment 

significantly decreased the degree of BBB permeability while simultaneously decreasing 

mortality and weight loss associated with virus inoculations.    Ampligen™ has been 

proven to be effective against many viruses in a wide range of animal 

models.143,168,169,185,214  Ampligen™ is a double-stranded RNA molecule, and its antiviral 

activity is recognized to be due to its ability to induce the expression of alpha/beta 

interferons via stimulation of the toll-like receptor 3 which responds to the presence of 

double-stranded RNA.180  The exact means by which Ampligen™ treatment of virus-
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inoculated animals resulted in a lessening of the degree of BBB permeability is not 

known, although it is likely that the decreased BBB permeability measured in virus-

inoculated animals associated with Ampligen™ treatment is due to the systemic antiviral 

effects of the drug, and not due to any direct effect of either Ampligen™ or interferon on 

the BBB itself.    Reducing systemic as well as nervous tissue titers of virus would most 

likely result in a blunting of the inflammatory response, which in turn would minimize 

associated pathological changes throughout the animal.  This view is supported by the 

result that administration of Ampligen™ 24 h after virus challenge did not improve 

outcome, regardless of the absence of detectable virus in central nervous system tissues 

or detectable changes in BBB permeability at the time of Ampligen™ administration. 

It should also be noted that BBB permeability in virus inoculated mice began 

increasing only after virus was detectable in the brain (Table1, Figure 1, and Figure 2).  

This is particularly true in the case SFV inoculated mice wherein relatively high virus 

titers could be measured in brain tissue as soon as 2 dpi, but increases in BBB 

permeability were not apparent until at least 5 dpi.  Therefore, these results do not 

suggest that increases in the BBB permeability, as measured by NaFl, lead to virus 

invasion of the central nervous system.  Indeed, it is most likely an opposite effect, 

wherein virus infection of the CNS and subsequent immune and inflammatory reactions 

within the CNS promote the increased BBB permeability observed here.   

The correlation between high degrees of BBB permeability and poor disease 

outcomes appears to be clear.  The data suggest that measuring BBB permeability 

provides a CNS-specific and quantifiable marker of disease in animal models of viral 

encephalitis.  Identification of appropriate disease markers is necessary to better 



 159
characterize viral encephalitis in animal models, and is vital for evaluating the 

efficacy of antiviral compounds and therapies.  A variety of assays for assessing the 

condition of animals inoculated with encephalitic viruses have been used.  But, with the 

exception of histopathology, sensitive markers of disease that are specific for 

involvement of the CNS have been difficult to identify in animal models of viral 

encephalitis.  Common human symptoms of CNS infection with an encephalitic virus 

include headache, nuchal rigidity, and altered mental status.8,183  It is difficult, if not 

impossible, to evaluate and characterize similar disease syndromes in laboratory animals.  

Virus titers in the target tissue are a common measurement tool in virological studies.  

However, as seen here with SFV-inoculated animals (Table 2), a high viral load in the 

CNS does not always correlate to a poor disease outcome for experimental animals.  

Standard serum biochemical analyses are unable to detect abnormalities in the CNS.  

Changes in body weight can be easily measured and, as seen here, weight loss may 

correlate with the progression of disease while amelioration of weight loss can indicate 

efficacy of an antiviral agent.  However, weight change is a nonspecific marker of 

general health which can be affected by environmental conditions, reproductive status, 

and administration of drugs or experimental therapeutic compounds, and does not provide 

any information specific to the CNS.  Measurement of CNS function via neurological 

exams and evaluation of motor functions have been previously used in animal models of 

viral encephalitis.170  While these techniques can provide valuable information, they are 

subjective and their value may depend upon the skill of the observer.  Histopathological 

evaluation of CNS tissues is an ideal technique, for animal model development, for 

disease characterization and drug efficacy studies.  However, this requires the services or 
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training of an experienced pathologist, and its use may be limited by availability of 

pathological services or cost concerns.  Similarly, specialized imaging techniques such as 

computerized tomography or magnetic resonance imaging may be useful for examining 

changes in the CNS of infected animals, but they are not widely available because of 

cost, and biocontainment concerns. 

As with all assays, the measurement of BBB permeability to NaFl or a similar-

sized marker has certain limitations, and hence should not be considered as a replacement 

for other established assays.  However, it did provide a quantifiable means for evaluating 

the function of the BBB.  We observed that BBB permeability gradually increased over 

the course of the disease and appeared to peak shortly before the majority of animals 

began to die from virus infection.  Degree of permeability in virus-inoculated animals at 

the apparent peak of disease severity was up to 4-fold higher than the consistently low 

BBB permeability measured in sham-inoculated animals. 

Permeability measurements in virus-inoculated animals appeared to be a sensitive 

indicator of the antiviral efficacy of Ampligen™.  Mice treated with Ampligen™ 24 h 

after inoculation with Banzi virus had no improvements in survival (Table 2), but had 

reduced post-virus weight loss that was highly significantly different, and presumably 

better, than placebo-treated animals (Figure 3).   Meanwhile, no statistically significant 

difference was detected between the BBB permeability measurements of the same 

Ampligen™-treated animals and placebo-treated animals. (Figure 5).  Similarly, in the 

case of mice inoculated with Semliki Forest virus animals receiving Ampligen™ 4-6 h 

before virus had highly significantly improved survival compared to placebo-treated 

animals, but also had brain virus titers nearly identical to those detected in placebo-
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treated animals (Table 2).  However, when BBB permeability was measured in the 

same group of SFV-inoculated mice, Ampligen™-treated animals had significantly lower 

permeability than measured in placebo-treated animals.  In both animal models the BBB 

permeability assay showed some benefits over currently available assays by identifying a 

false positive result of ameliorated weight loss in the BaV model and a false negative 

result of high brain viral titers in the SFV model.  The use of a BBB permeability assay in 

no way replaces the use of established assay techniques.  Indeed, the results described 

here highlight the importance of using multiple assay methods to fully characterize 

animal models of viral disease and antiviral effects of potential therapeutics 

One of the functions of the BBB is to limit entry of foreign molecules into the 

CNS.  It does so by severely limiting the penetration of hydrophilic or charged molecules 

that lack a specific transport system, such as that for glucose.  The result of this barrier 

function is generally poor distribution to CNS tissue of most pharmacological 

compounds, including the majority of currently available antiviral agents.  It has been 

suggested that investigating means to increase permeability of the BBB to enhance entry 

of antiviral agents into the CNS may provide a therapeutic strategy for the treatment of 

viral encephalitis.  Such a strategy has proven effective in an animal model of herpes 

virus infections in the brain in which Acyclovir treatment was administered in 

conjunction with the use of a synthetic bradykinin analog used to temporarily 

permeabilize the BBB.28  The exact relationship between increased BBB permeability in 

viral encephalitis and disease outcomes is unknown.   However, the results presented here 

showing a correlation between increased BBB permeability and increased disease 

severity strongly suggest that any technique intended to increase BBB permeability 
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would be contraindicated in animal models of either BaV or SFV infection, or in 

humans infected with related members of the Flavivirus  or Togavirus families of viruses. 

Such a conclusion is consistent with other published reports evaluating the connection 

between BBB permeability and viral encephalitis.23,151    A possible explanation for the 

correlation of BBB break-down, as well as a reason for avoiding any technique that 

would increase BBB permeability in clinical cases of viral encephalitis may be that, as 

previously stated, the increases in BBB permeability associated with viral encephalitis are 

due to inflammation in the CNS.  Breakdown of the BBB eliminates the 

immunoprivileged status of the CNS, allowing entry of signaling molecules that act as 

mediators of both inflammation and cell death, as well as the entry of inflammatory cells.  

The subsequent CNS damage from the entry of such inflammatory mediators and cells 

may be more severe than that induced by the virus alone.  Further study will be necessary 

to fully understand the relationship between the increased permeability of the BBB and 

disease severity in viral encephalitis. 

 
WEEV Infection in Syrian  
Golden Hamsters 
 

The changes in BBB permeability noted in mice inoculated with viral 

encephalitides encouraged a similar approach in hamsters inoculated with WEEV.  

Hamsters are highly susceptible to death due to WEEV infection when inoculated 

intraperitoneally with WEEV.120  It was presumed that the animals were dying due to 

viral encephalitis.  The ability to collect cerebrospinal fluid in a minimally invasive, non-

terminal manner provided the potential to measure BBB permeability to NaFl by 

measuring NaFl concentrations in CSF rather than in brain tissue.  This provided a means 
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to use BBB permeability in a longitudinal fashion not practical in mouse models of 

viral encephalitis, and provided the ability to assess increased BBB permeability as an 

antemortem marker of disease outcome.  It was hypothesized that BBB permeability in 

hamsters inoculated with WEEV, as measured using the CSF, would increase as virus 

disease severity progressed, in a manner similar to that observed in mice inoculated with 

viral encephalitides.  This hypothesis proved to be false.   Although there was a moderate 

increase in the ratio of fluorescence measured in CSF vs. serum noted in virus inoculated 

animals when compared to sham inoculated animals (Figure 7) there was no correlation 

between the degree of fluorescence measured in CSF and disease outcome (Figure 8).  

Furthermore, the ratios of fluorescence measured in the CSF WEEV of hamsters were 

minor compared to those seen previously in mice inoculated with either Banzi or Semliki 

Forest viruses.179 

The lack of apparent changes in the BBB preceding death in WEEV-infected 

hamsters led to an investigation of the cause of death in WEEV-inoculated hamsters.  A 

review of previously published reports regarding the disease processes of Venezuelan 

equine encephalitis virus infections in Syrian golden hamsters indicates the presence of 

severe lymphocytic necrosis induced by viral infection followed by systemic septicemia 

and rapid death, all with the absence of central nervous system pathology.91,243 Therefore, 

it was hypothesized that a similar disease state was occurring in hamsters inoculated with 

WEEV via the i.p. route.  Specifically, it was hypothesized that WEEV-inoculated 

hamsters develop a systemic lymphonecrotic disease in the absence of lesions within the 

central nervous system.  A secondary hypothesis was that systemic lymphonecrosis was 

followed by a secondary septicemia due to bacterial translocation from the 
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gastrointestinal tract, and that hamsters then rapidly die from septic shock in a 

syndrome similar to that described as systemic inflammatory response syndrome and the 

subsequent multiple organ dysfunction syndrome (SIRS-MODS).  To test these 

hypotheses, and to more fully characterize WEEV infection in Syrian golden hamsters, 

experiments were conducted to assay multiple components of disease progression, 

including virus titers, histopathology, cytokine response, serum biochemistry analysis, 

clinical hematology, and bacteriology, over the time course of virus infection.   An 

additional experiment was conducted to evaluate the response of animals to virus injected 

directly into the brain. 

The hypothesis that WEEV inoculation into hamsters causes systemic 

lymphonecrosis in the absence of observable central nervous system pathology was 

proven correct.  The virus titers in serum and tissues followed closely those previously 

reported for WEEV infection in hamsters (Table 4),120 although the shorter sampling 

interval in the current study may allow for a more precise  description of viral kinetics 

and the identification of the time of peak viral titers.  Histopathological lesions were 

consistently seen in the spleen, occurring at or after 72 hpi in virus inoculated-animals 

(Figure 19).  Splenic lesions occurred approximately 36-48 h after peak spleen virus 

titers, with an average peak of 4.8 log10 CCID50/g of tissue.  Other lesions noted in 

animals that died late during the systemic portion of the disease (between 72 and 108 

hpi),  including pathological changes in the liver and adrenal glands, were considered 

incidental as they are commonly seen associated with hypoxia occurring during the end 

terminal stages of many disease processes.  Also of particular note is the absence of 

detectable histopathological changes to the central nervous system at the time of death in 
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animals dying from the systemic phase of disease.  The lymphonecrotic lesions seen 

in the spleen are consistent with those reported for hamsters and guinea pigs 

experimentally infected with VEEV11,93,111 and are consistent with lesions seen in animal 

models of septic shock.106   Furthermore, the splenic necrosis seen in hamsters infected 

with WEEV was consistent with lesions seen in naturally occurring human cases of 

VEEV.63 

Concentrations of TNF-alpha and interferon were measured in the serum and 

tissues of WEEV-inoculated hamsters over time.  Serum interferon concentrations were 

initially undetectable before rapidly peaking at 36 hpi, after which serum interferon 

quickly returned to concentrations below the limits of detection (Figure 12).  

Interestingly, peak serum interferon concentration coincided temporally with peak serum 

and spleen virus titers indicating that the presence of virus in serum or other tissues is 

probably inducing the expression of interferon.  Serum TNF-alpha concentrations were 

also low or undetectable during the earliest stages of virus infection.  However, a 

noticeable rise in serum TNF-alpha was noted at 48 hpi, before serum concentrations 

peaked at 60 hpi and then subsided (Figure 13).  The exact trigger of the increased serum 

TNF-alpha is uncertain as the peripheral virus titers were waning at the time that TNF-

alpha concentrations were increasing.  However, the increased concentrations of TNF-

alpha overlap the time frame of lymphopenia (Figure 11), and the peak TNF-alpha 

concentration at 60 hpi coincides with the peak febrile response measured in WEEV-

inoculated hamsters (Figure 10).  This suggests that TNF-alpha is possibly contributing to 

both of these observed events in a manner similar to that which has been described for 

TNF-alpha with other clinical disease states.57,238  In contrast to the serum from WEEV-
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infected animals, and somewhat surprisingly, detectable amounts of either interferon 

or TNF-alpha in virus-infected tissues were only sporadic, with no apparent pattern to 

their expression.  The significance of the lack of consistently detectable cytokines in the 

tissues assayed is uncertain. 

It was hypothesized that WEEV infection provided an endogenous environment 

that allowed a secondary bacterial septicemia which may have been ultimately 

responsible for the demise of WEEV-infected hamsters via an inflammatory syndrome 

similar to SIRS-MODS in humans.  This hypothesis was in due course shown to be false. 

To test this hypothesis an attempt was made to isolate bacteria from virus inoculated 

animals, and animals were treated animals with the antibiotics enrofloxacin and 

florfenicol.  Various bacterial species were successfully isolated form WEEV-inoculated 

animals at stages late in the systemic disease phase.  However, similar microbial species 

were simultaneously isolated from sham-inoculated animals (Table 3).  Additionally, the 

species isolated are common environmental bacteria, such as Staphylococcal or 

Streptococcal species, or bacteria commonly considered to be commensal organisms in 

hamsters, such as the Corynebacterial species.  This led to the conclusion that all bacteria 

isolated were possibly contaminants, in spite of efforts to collect samples under aseptic 

conditions.  Further evidence suggesting that bacteria isolated from WEEV-inoculated 

hamsters were contaminants, and further disproving the hypothesis that secondary 

septicemia contributed to the death of hamsters infected with WEEV came from studies 

testing the ability of antibiotics to improve survival in virus-infected animals.  When 

hamsters were treated with enrofloxacin alone and without any anti-inflammatory agent, 

animals did not show any improvement compared to placebo-treated animals (Figure 25).  
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A lack of improvement with antibiotics is in direct contrast to earlier reported studies 

of VEEV infection in hamsters wherein antibiotics blocked early death in virus-infected 

animals.  Enrofloxacin is a broad spectrum antibiotic with activity against what would be 

considered the most common species of bacteria that would cause septicemia, such as 

Escheria coli, and Staphylococcus spp.  The inability of enrofloxacin to improve disease 

outcome would most likely indicate bacteria outside its spectrum of activity, or a non-

bacterial cause of death.  Enrofloxacin is poorly effective against anaerobic bacteria, and 

the microbial isolation techniques employed did not attempt to isolate anaerobes.  

Therefore, an experiment was conducted that included the antibiotic florfenicol, an agent 

with recognized activity against most anaerobic bacteria.  Use of florfenicol alone, or in 

combination with enrofloxacin was again unable to improve the outcome for WEEV-

inoculated hamsters, in spite of the addition of anti-inflammatory treatment (Figure 26).  

Florfenicol did cause some apparent toxicity in sham-inoculated animals (data not 

shown).  Hamsters have a well recognized sensitivity to the ability of various antibiotics 

to disrupt normal intestinal flora.  This may explain the toxicity noted with the use of 

florfenicol.  However, the toxicity did not manifest itself until several d after all virus 

inoculated animals had died, and it cannot account for the death in those virus infected 

hamsters. 

In a further attempt to identify a SIRS-MODS like clinical syndrome, and to 

better characterize WEEV infection in hamsters serum from WEEV-inoculated animals 

was assayed for common clinical biochemistry values and monitored over the course of 

disease.  Surprisingly, few alterations were seen in the serum biochemistry values of 

virus-inoculated animals compared to sham-inoculated animals (Table 5).  The only 
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serum parameter to be altered sufficiently to note was alanine aminotransferase 

(ALT), which was elevated approximately 4-fold compared to sham-inoculated animals 

at 12 hpi, immediately post-virus inoculation.  ALT was again elevated in the late 

systemic phase of the disease at 72 and 84 hpi to approximately 4 times that noted in 

sham inoculated animals.  While it is worth noting such an increase, the biological 

significance of a relatively minor increase is questionable.  Increased ALT levels may be 

associated with the suspected hypoxic damage to livers noted in livers in end-terminal 

diseased animals.  The quantities of serum glucose, potassium and phosphorus were also 

noted to be elevated in virus inoculated hamsters compared to sham inoculated animals.  

The reason for the increases noted is unclear.  Possible explanations for increased serum 

glucose include the choice of anesthetics, a combination of ketamine and xylazine, which 

are known to increase serum glucose.  Release of endogenous cortisol in response to 

stress, whether to the virus infection or to handling of animals, can induce a transient 

hyperglycemia.  Increased serum potassium can be seen in cases of anuric or oliguric 

renal failure, or with massive tissue necrosis.  Both possibilities may occur in hamsters 

which die due to system WEEV infection, but it would be expected that such changes 

would be noted only during the latter portions of the systemic disease, which was not the 

case observed here.  Hyperphosphatemia may also be noted in renal failure, or may be 

increased, along with other electrolytes, in dehydrated animals.  The lack of any apparent 

temporal pattern (i.e. levels increasing or decreasing over time) associated with the 

quantities of serum glucose, potassium, and phosphorus indicate that the differences 

observed between virus inoculated animals and sham inoculated animals are probably not 

associated with viral pathology.  The most likely causes for the elevated concentrations 
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for these 3 parameters are either hemolysis or prolonged contact of serum with RBC 

after blood collection.  RBCs contain high concentrations of glucose, potassium, and 

phosphorous, which may be released into serum if a blood sample is not properly and 

promptly processed after collection.  Any future studies involving serum biochemistry in 

WEEV inoculated hamsters must make every effort to appropriate collect and handle 

blood samples to eliminate such potentially confounding results as noted here. 

Perhaps what is more significant in the serum biochemistry is what is absent.  

Specifically, it had been hypothesized that animals were dying due to bacterial septicemia 

and a subsequent inflammatory syndrome similar to the SIRS-MODS complex noted in 

humans with septicemia.  Such a disease syndrome is characterized by severe dysfunction 

of multiple organ systems and is in part diagnosed clinically via alterations in serum 

biochemistry values.19,20  Increased values of BUN and creatinine would indicate kidney 

dysfunction, or increased ALP, ALT, or bilirubin would indicate liver damage or 

dysfunction.  Except as previously noted, hamsters infected with WEEV displayed little 

or no alteration to serum biochemistry values, even at the latter stages of disease 

immediately preceding death.  The absence of expected changes in serum biochemistry 

that would indicate organ dysfunction further contradicts the hypothesis that a secondary 

bacterial infection is contributing to death in WEEV-infected hamsters. 

Hematological values were measured over time in WEEV-inoculated animals (Table 6).  

The hematocrits of virus-infected animals were elevated to an average of 55.0% and 

52.0% at 72 and 84 hpi, respectively, compared to a mean hematocrit of 49% in sham-

inoculated animals.  The degree of increase should be considered moderate, and it is most 

likely due to the dehydration associated with anorexia and malaise in febrile animals.  
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Otherwise, the erythron of virus-infected animals was unremarkable.  In contrast, the 

leukogram and, in particular, the circulating lymphocyte count displayed marked changes 

in WEEV-inoculated hamsters.  At 48 hpi a temporary mild decrease in the total white 

blood cell count was detected, coinciding with a more severe lymphopenia (Figure 11).  

The circulating WBC count returned to approximately normal at all time points 

afterwards.  However, lymphocyte counts remained low in most animals measured until 

84 hpi when lymphocyte numbers appeared to rise somewhat. 

It has been observed in multiple experiments that a subset of WEEV-infected 

hamsters would survive the early systemic phase of the disease without any obvious 

negative side-effects.  A very small subset of the surviving animals would then begin to 

die between approximately 144 and 216 hpi (6-9 dpi) (Figures 23, 26, 28, and 33).  

Among those animals dying at these later time points some would display disease signs 

characteristic of nervous system damage, such as circling, tremors, and limb paralysis.  

The observed phenomenon only occurred if animals were inoculated with a virus dose 

that was sufficiently high to cause death in a majority of animals.  Animals inoculated 

with lower viral doses would survive infection without any apparent negative sequelae.   

Interestingly, these events began to occur 48 h after peak viral titers were measured in 

brain tissue, a time interval similar to that observed between peak viral titers in the spleen 

at 36 hpi, and severe splenic necrosis beginning to occur at 72 hpi.  This observation 

regarding the time interval between viral invasion of an organ and manifestation of 

pathological lesions may explain the absence of nervous system pathology at the time of 

animal death at approximately 96 hpi in spite of very high viral titers in nervous tissue.  

Simply put, the virus has not had adequate time in the CNS to cause visible pathologic 
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damage.  The observation that some hamsters would eventually develop CNS disease 

following WEEV inoculation led to the hypothesis that WEEV retained its ability to 

cause viral encephalitis in hamsters.  This hypothesis was shown to be correct.  To test 

the hypothesis that WEEV can induce CNS disease, WEEV-infected hamsters that 

survived the initial systemic disease but succumbed after 144 hpi were submitted for 

necropsy and histopathological analysis.  These animals often displayed resolving 

necrotic lesions in the spleen.  They also had lesions of encephalitis and meningitis in the 

CNS (Figure 20).  These lesions included extravasation of lymphocytic cells into the 

perivascular space, lymphocytic infiltration of nervous tissue, and hemorrhage in the 

brain.  These histopathological lesions in the central nervous system are consistent with 

those seen in other infections with related alphaviruses, such as VEEV infections in 

humans63 and horses;199 WEEV infections in humans6 and in monkeys;194  and EEEV 

infections in humans22 and horses.64  To confirm that the lesions observed in the CNS of 

hamsters dying late in the disease process were due to WEEV, and to definitively show 

the ability of WEEV to induce encephalitis in hamsters, animals were inoculated with 

virus directly into the right cerebral hemisphere.  Incidentally, the virus dose inoculated 

into the brain was sufficiently low that it would have been unlikely to induce death if 

inoculated via the peripheral route.   Intracranially inoculated animals began to die within 

36 hpi, and all but 1 virus inoculated-animal were dead by 72 hpi.  These animals 

displayed overt signs of central nervous system involvement including circling, paralysis, 

apparent hyperesthesia and head tilt.  Histopathological lesions in the CNS of hamsters 

inoculated intracranially were similar to, albeit more severe than, those observed in 

hamsters dying late in the disease following peripheral inoculation (Figure 21).  
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Furthermore, hamsters inoculated intracranially did not show evidence of 

pathological changes in nonneuronal tissues.  It is worth noting that the interval between 

virus introduction into the brain and the onset of morbidity and mortality is similar to the 

time interval between peak virus titer in the brain and apparent encephalitis observed in 

animals following peripheral virus inoculation.  No sham-inoculated animals showed any 

observable signs of disease during the same time period.  Histological observations of the 

brain of sham inoculated animals were lacking in any lesions of significance, except 

minor traces associated with the introduction of a needle into nervous tissue.  These 

results lead to the conclusion that death in hamsters inoculated via the i.p. route is likely 

not caused by bacteremia or a syndrome similar to SIRS-MODS.  It is also concluded that 

WEEV retains its ability to cause lethal encephalitis in hamsters whether inoculated 

peripherally or directly into the CNS.  It is further concluded that the primary cause of 

death in WEEV-infected hamsters following peripheral inoculation is not encephalitis, 

but rather sequelae associated with lymphocytic necrosis.  The presence of virus in the 

brain at the time of death means that viral damage to neurons can not be precluded as a 

contributor to the death of WEEV-infected hamsters.  It is recognized that as much as 12 

h or more may pass between the time a cell ceases to function and dies, and the time 

when histopathological changes may be observed via a light microscope.  It is possible 

that because of the vital role the CNS plays in sustaining life, that sufficient damage to 

the CNS may occur such that an animal dies but no detectable lesions in the CNS are 

present.   However, the severe histopathological changes noted in the brains of hamsters 

inoculated with WEEV intracerebrally suggests that an animal dying from viral 

encephalitis due to WEEV with an absence of histopathological lesions within the central 
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nervous system is unlikely.  Finally, it is concluded that severe lymphopenia is a 

reliable antemortem marker of death, and the mechanisms associated with lymphopenia 

may contribute to animal death.  A corollary to these conclusions is the observation that 

pathology and substantial cell death will occur approximately 48-72 h after the 

establishment of a virus infection in susceptible tissues 

 
Supportive Care and Dexamethasone  
Immunosuppresion of WEEV- 
Inoculated Hamsters 
 

Data gained from experiments evaluating histopathological changes in hamsters 

inoculated with WEEV showing lymphocytic necrosis (Figure 19)  were consistent with 

previously published reports of hamsters inoculated with VEEV.243  Results from 

previous studies involving VEEV in hamsters indicated that animals were dying due to 

bacterial translocation from the intestines allowed by viral destruction of intestinal 

lymphatic tissue.  Therefore, it was hypothesized that WEEV-inoculated hamsters were 

dying due to an endotoxemia/septicemia secondary to viral destruction of lymphatic 

tissue in the gastrointestinal tract.   Standard clinical therapy for individuals suffering 

from endotoxemia is broad spectrum antibiotics in combination with anti-inflammatory 

therapy and cardiovascular support in the form of fluids.  Therefore, the initial 

experiment testing this hypothesis centered on the administration of the antibiotic 

enrofloxacin in combination with supportive fluids and anti-inflammatory treatment with 

flunixin meglumine.  Later experiments also used dexamethasone as an anti-

inflammatory.  Interestingly, fluoroquinolone compounds, such as the antibiotic 

enrofloxacin, have been evaluated for the antiviral properties,198 while, there are no 
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published reports indicating that either flunixin meglumine or dexamethasone have 

any direct antiviral properties.  Flunixin meglumine is a widely used veterinary anti-

inflammatory agent whose primary mechanism of action is considered to be broad 

inhibition of cyclooxygenase enzymes.24  FM has also been shown to inhibit nuclear 

factor kappa-B,33 a ubiquitous transcription factor involved in many components of 

inflammation and the immune response to viruses.12,33,207     Dexamethasone is a steroid 

hormone with wide ranging systemic effects in vivo, not the least of which is potent 

inhibition of inflammation.173,244 

Experimental results initially appeared to confirm the hypothesis that animals died 

due to septicemia as animals receiving supportive care had a moderate but statistically 

significant improvement in survival compared to placebo-treated animals (Figure 23).  

However, this hypothesis was shown to be false, as results from subsequent studies 

showed that the administration of antibiotics in the absence of anti-inflammatory 

treatment provided no benefit to virus-infected animals (Figure 25).  Furthermore, the 

administration of FM in the absence of antibiotics provided nearly identical protection 

compared to those receiving FM in combination with antibiotics (Figure 26).  These 

results lead to the conclusion that the beneficial effects observed were associated with 

anti-inflammatory treatment.  Treatment with FM was also able significantly modulate 

the lymphocyte response to virus infection (Figure 45).   FM can suppress production of 

TNF-alpha,33,152 an inflammatory cytokine reported to reduce numbers of circulating 

lymphocytes.  However, the observed effect of FM treatment improving circulating 

lymphocyte numbers in WEEV-inoculated animals may be more suggestive of the 

predictive value of lymphopenia as a marker for death than it is a description of a specific 
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mechanism for FM in virus-infected animals.  These data strongly suggest that the 

anti-inflammatory capabilities of FM were the primary cause for its beneficial effects.  

The corollary being that virus-induced inflammation is a contributing factor to the 

morbidity and mortality observed in WEEV-infected hamsters.  Additional support for an 

inflammatory component was gained from the observation that administration of 

dexamethasone to hamsters after virus inoculation was able to significantly improve 

survival while also suppressing fever (Figures 30 and 32).   

Experimental results showing improvement in WEEV-inoculated hamsters treated 

with anti-inflammatory compounds suggested a role for the immune response and 

inflammation in the pathogenesis of WEEV in hamsters.  Therefore, it was  hypothesized 

that inflammation and the immune response were playing a significant role in the demise 

of WEEV-infected hamsters and that suppression of the immune response would provide 

improved outcomes for virus-inocualted hamsters.  Therefore, an experiment was 

conducted in which hamsters received an immunosuppressive dose of dexamethasone or 

a placebo treatment for 5 d prior to inoculation with an approximate LD90 dose of WEEV.  

The febrile response to WEEV was suppressed in animals receiving dexamethasone when 

compared to placebo-treated animals (Figure 17).  Dexamethasone treatment also had 

significantly higher serum virus titers at 60 hpi compared to placebo-treated animals 

(Figure 18).  Previous results indicate that there is little or no detectable virus in the 

serum at the relatively late time period of 60 hpi in immunocompetent hamsters, which 

was confirmed by the low average virus titer detected in placebo-treated animals.  The 

suppression of fever and significant alterations to virus kinetics in WEEV-inoculated 

hamsters indicates that dexamethasone treatment is exerting effects on the immune 
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system of hamsters.   However, dexamethasone treatment did not significantly alter 

disease outcome compared to placebo-treated animals (Figure 16). 

While there appears to be clear evidence that inflammation plays a role in 

hamsters infected with WEEV, it should not be concluded that inflammation is the sole 

nor even the primary cause of disease and death associated with WEEV infection in 

hamsters.  The inability of high doses of FM to provide additional benefit compared to 

the previously used standard dose suggest that maximum inhibition of inflammation had 

been achieved (Figure 28), and no further benefit would be observed through blocking 

inflammation.  The concept that inflammation is a secondary contributing factor rather 

than the primary cause of WEEV-induced disease in hamsters is further supported by the 

inability of dexamethasone administered in an immunosuppressive-manner pre-virus 

inoculation to alter disease phenotype or outcome.  This leads to the conclusions that 

animals are not dying from a septicemia, or a SIRS/MODS like syndrome, but that direct 

viral effects probably play the greatest role in WEEV-associated disease in Syrian golden 

hamsters.  An additional conclusion is that the inflammatory response to virus infections 

enhances virus induced pathology. 

 
The Effects of Virus Dose and Virus Strain 
 

As a result of previously described studies examining the effects of supportive 

care and dexamethasone immunosuppression on WEEV-inoculated animals it was 

hypothesized that death in WEEV infected hamsters was primarily due to virus 

destruction of target cells.  A supporting hypothesis being that an increased virus 

inoculum would result in increased quantities of virus in hamsters and subsequently result 
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in a more severe disease process.  A counter hypothesis was also considered.  

Namely, that the pathological processes in WEEV-inoculated animals that succumb to 

virus infection are essentially identical, and that virus dose is only important in 

determining the rate of mortality within a group of hamsters.   To test this hypothesis a 

comparison of pathophysiological effects of different virus doses was done by 

inoculating animals with either an LD50 or a 10x LD90 dose of WEEV, and then 

observing animals for morbidity and mortality.  The degree of mortality for each group 

was approximately as expected, with animals receiving the higher viral dose showing 0% 

survival, while those receiving the lower dose had a significantly higher 20% survival 

rate (Figure 14).  Virus titration experiments in hamsters showed that animals which 

succumb to the virus all die at approximately the same time regardless of virus dose.120  

Such results appear to support the second hypothesis that pathophysiological processes 

are similar in animals that die due to virus infection, regardless of virus dose.  However, 

it is worth noting that even when comparing only nonsurvivors from each group the viral 

disease phenotype was significantly different depending upon the virus dose.  

Nonsurviving hamsters receiving the higher viral dose had significantly more severe 

weight loss (Figure 15) and died significantly earlier in the disease than those receiving 

the lower viral dose (Table 9).  These results support the hypothesis that disease severity 

is closely correlated with the amount of virus present, while contradicting the latter 

hypothesis that virus dose does not matter.  These results, in conjunction with results 

form previously described experiments showing limitations on the ability of anti-

inflammatory or immunosuppressive therapy to modulate disease outcome, also support 
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the hypothesis that death in WEEV-infected hamsters is due to direct virus killing of 

target cells, and not secondary immune or inflammatory events. 

The WEEV disease phenotype of rapid death associated with a systemic virus 

infection is notably different than that observed in other animal models inoculated with 

encephalitic viruses.  Therefore, it was hypothesized that the disease phenotype noted in 

hamsters inoculated with the California strain of WEEV is unique to this virus strain and 

animal model.  The acquisition of a different strain of WEEV provided an excellent 

opportunity to test this hypothesis and compare the effects of two different strains in the 

same animal model.  Such a comparison would allow for the identification of disease 

characteristics unique to the animal and virus model being used.  Hamsters were 

inoculated with an LD50 dose of the CA strain and a CCID50 equivalent dose of the Kern 

strain of WEEV and monitored for outcome.  Different characteristics of virus disease 

were observed in animals inoculated with the two different strains.  As expected, 

hamsters inoculated with the CA strain appeared outwardly normal until approximately 

60 hpi, at which time they exhibited fever and began showing signs of lethargy and 

apparent malaise, followed rapidly by death between 84 and 96 hpi.  In contrast Kern-

inoculated animals displayed no outward signs of disease until approximately 192-216 

hpi (9-10 dpi), at which time animals underwent a wasting disease process with 

progressive weight loss leading to death between 288 and 312 hpi (11-13 dpi).  In 

addition to these observed clinical differences statistically significant differences between 

animals inoculated with the CA strain and the Kern strain were noted in circulating 

lymphocytes (Figure 36), serum interferon concentration (Figure 38), and serum virus 
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titers at 36 hpi (Figure 37), body temperature at 60 hpi (Figure 35), and overall 

survival (Figures 34). 

Conclusions from experiments comparing disease phenotype in hamsters 

inoculated with two different strains of WEEV are that the rapid death previously 

described in hamsters inoculated with the CA strain is a disease phenotype unique to this 

virus stain and animal model.  Each of the statistically significant differences noted 

between CA- and Kern-inoculated hamsters, such as mortality, weight loss, lymphocyte 

count, and body temperature, highlight the unique characteristics of disease associated 

with the California strain of WEEV.  Although spleen histopathology was not assayed, 

the lack of lymphopenia in Kern inoculated animals may suggest that lymphonecrosis 

does not occur in association with Kern strain infection; further enhancing the hypothesis 

that the CA strain infection in hamsters causes a unique disease phenotype.   

 
Identification of Potential Markers of  
Outcome in Hamsters Inoculated  
with WEEV 
 

Identification of markers for disease outcomes in virus infected animals is an 

important tool for developing animal models and designing experiments to test 

therapeutic efficacy of new treatment strategies or compounds.  Identification of markers 

may also provide additional information about disease pathogenesis.  In hamsters 

inoculated with WEEV an apparent correlation between low lymphocyte counts and poor 

clinical outcome was observed in animals at late stages in the systemic disease phase.  

Due to this observation it was hypothesized that severe lymphopenia in hamsters infected 

with WEEV is a marker for death.  This hypothesis was proven to be correct.  To test this 
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hypothesis a series of experiments was conducted in which circulating lymphocyte 

numbers were assayed and correlated with disease outcome.  Repeated studies found that 

animals that eventually succumbed to virus infection in the systemic phase had 

significantly lower circulating lymphocyte counts than either sham-inoculated animals, or 

animals that subsequently survived WEEV infection (Figures 40, 42, 45). Additional 

confirmation of the correlation between decreased lymphocyte counts and death seen in 

hamsters inoculated WEEV was noted in experiments comparing differences between 

different strains of WEEV, wherein it was observed that the two CA strain survivors had 

noticeably higher numbers of lymphocytes in circulating blood than did the nonsurvivors 

(Figure 36). 

 In general, lymphopenia occurring in such a short time frame as that seen in 

WEEV-inoculated hamsters can occur either due to lymphocyte destruction or 

redistribution and sequestration of lymphocytes out of blood circulation.  The current 

study shows that WEEV infection in hamsters can stimulate production of both TNF-

alpha and interferons, both of which can induce sequestration of lymphocytes.123,238  This 

study also shows that WEEV can directly induce lymphocyte cell death in vitro, which 

can be enhanced by inflammatory cytokines.  Therefore, while the exact mechanism of 

lymphopenia in WEEV-inoculated hamsters is unknown it is likely due to a combination 

of factors including lymphocyte sequestration and viral induced lymphocyte destruction.  

The physiological or immunological significance of lymphopenia in WEEV-infected 

hamsters is also unclear.  In the current study it is proposed that severe lymphopenia is a 

consistent and reliable marker of death in virus-infected hamsters.  However, there is a 

potential for decreased lymphocyte numbers to be an inherent part of the viral 
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pathophysiology in hamsters.  It could be argued that a lack of immune cells limits an 

animal’s ability to mount both a humoral and cell-mediated immune response.  This, in 

turn, would inhibit an animal’s ability to effectively clear a virus infection and ultimately 

contribute to virus associated death. 

It was observed that hamsters inoculated with the Kern strain of virus had an 

earlier expression of serum interferon than did hamsters inoculated with the CA strain 

(Figure 38), and that Kern-inoculated animals had a noticeably different disease 

phenotype with a significantly delayed onset of mortality when compared to CA-

inoculated animals.  Therefore, it was hypothesized that the timing of the endogenous 

interferon response in CA-inoculated animals may be an indicator of disease outcome in 

that an early interferon response may be more effective at limiting virus spread within an 

animal.  To test this hypothesis a study was conducted wherein animals were inoculated 

with an LD50 dose of WEEV and then assayed at various times post-virus inoculation for 

serum interferon concentrations.  There were no significant differences between survivors 

and nonsurvivors in the serum interferon concentrations at either 20 or 44 (Figure 47).   

However, it was observed that nonsurvivors had significantly elevated rectal body 

temperature at 72 hpi when compared to either survivors or sham-inoculated animals 

(Figure 50).  Additionally, serum virus titers (Figure 49) and serum TNF-alpha 

concentrations (Figure 48) were significantly higher in nonsurvivors than in survivors at 

44 hpi.  These results lead to the conclusion that serum interferon is not a reliable 

indicator of disease outcome in hamsters infected with WEEV.  However, as previously 

described severe lymphopenia is a consistent indicator of poor disease outcome.  Other 

potential markers of disease outcome include elevated body temperature, high serum 
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virus titers, and elevated serum TNF-alpha concentrations, all of which appear to 

indicate that death during the systemic phase of disease is likely.   In addition to standing 

as indicators of disease outcome each of the parameters also likely indicates the presence 

of a robust systemic virus infection and associated increases in disease severity among 

animals that subsequently die.  This is in contrast to what is likely a substantially limited 

virus infection in animals that survive.  The presence of either a robust or limited 

systemic infection is also consistent with differences in serum virus titers between 

survivors and nonsurvivors as well as with the observation that survivors from groups of 

hamsters inoculated with LD50 doses of WEEV rarely have any negative sequelae. 

 
In vitro Activity of WEEV in Hamster  
Splenocytes and Macrophages 
 

Experiments involving WEEV-infected hamsters provided evidence that WEEV 

stimulates production of TNF-alpha during virus infection.  Other experiments showed 

that treatment of animals with anti-inflammatory agents provided improvements in 

disease outcomes.  These results suggest a probable role for inflammatory cytokines in 

the pathogenesis of WEEV infection in hamsters in vivo.   It was decided to examine the 

ability of WEEV to induce TNF-alpha production in cells in vitro, and to evaluate the 

ability of anti-inflammatory compounds to modulate the virus-induced production of 

TNF-alpha.  From that, it was hypothesized that WEEV could stimulate TNF-alpha 

production from hamster macrophages in vitro, and that both flunixin meglumine and 

dexamethasone could inhibit WEEV-stimulated production of TNF-alpha from hamster 

macrophages.  The data show that the WEEV can stimulate macrophages to produce the 

inflammatory cytokine TNF-alpha.  The observations that TNF-alpha production appears 
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to occur in a dose-responsive manner (Figure 51), that increased TNF-alpha 

production can be measured as early as 6 h after virus inoculation of macrophage cultures 

(Figure 52), and that there is no detectable increase in WEEV titers after incubation with 

macrophages would all suggest that the virus particles are inducing TNF-alpha 

production in macrophages in a manner more consistent with a ligand rather than an 

actively infectious organism.  The production of TNF-alpha can be significantly inhibited 

by both flunixin meglumine and dexamethasone in a dose dependant manner (Figure 53).  

Dexamethasone and flunixin meglumine are two anti-inflammatory compounds with 

divergent mechanisms of action that have both been shown to be able to reduce 

inflammatory cytokine production in vitro.24,47,142  Neither dexamethasone nor flunixin 

meglumine has been reported to exhibited antiviral properties, a result that was confirmed 

by testing in a standard antiviral cytopathic assay (data not shown).  The current report 

does not attempt to describe the means by which WEEV can stimulate macrophages to 

produce TNF-alpha.  However, the ability of these two compounds to inhibit virus 

induced inflammatory cytokine production suggests that WEEV stimulates TNF-alpha 

production via common inflammatory pathways.  Toll-like receptors (TLR) are potential 

mediators of the inflammatory response in macrophages because many are recognized for 

their ability to sense markers of pathogen infection, such as activation of TLR-3 by 

double-stranded RNA associated with viral infection.180  Both TLR-3 and TLR-9 have 

been shown to interact with virus and participate in the production of TNF-alpha.141,154  

The common ability of flunixin meglumine and dexamethasone to inhibit TNF-alpha 

production would suggest their ability to modulate downstream regulators rather than the 

toll-like receptors themselves.  Potential targets for the effects of dexamethasone and 
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flunixin meglumine seen here are NF-kappa-B and COX enzymes.  Both NF-kappa-B 

and COX-2 are activated during TNF-alpha stimulation.   TLR-3 can activate nuclear 

factor kappa-B3 and the COX-2 enzyme.229  However, cyclooxygenase enzymes may also 

stimulate the production of TNF-alpha via the production of various prostaglandin 

molecules41  Both dexamethasone and flunixin meglumine can inhibit activation of NF-

kappa-B and cyclooxygenase enzymes.1,24,33,82   

Inoculation of macrophages with WEEV was able to reduce cell viability by 

approximately ½ within 18 h, a relatively short period of time compared to the 48-72 h 

necessary to see reductions in cell viability in the highly susceptible Vero 76 cell line.  

Both flunixin meglumine and dexamethasone were able to significantly ameliorate, and 

in some cases almost eliminate reductions in macrophage viability associated with 

exposure to WEEV, and did so in a dose-dependant manner.  The degree of protection 

from FM or DEX appeared to correlate with their respective abilities to reduce 

macrophage production of TNF-alpha.  The current study does not attempt to describe the 

exact mechanisms of decreased macrophage viability.  However, the ability of anti-

inflammatory agents to protect macrophages from virus-induced cytotoxicity in the 

absence of any recognized antiviral effect leads to the conclusion that cell death was most 

likely induced by inflammatory mediators rather than direct viral effects.    One possible 

mechanism is inhibition of TNF-alpha production, which in turns blocks the cell death 

signals initiated by TNF-alpha.98,230  Another potential target is the previously mentioned 

NF-kappa-B.  As noted above, both FM and DEX can inhibit NF-kappa-B.  Among its 

many recognized functions NF-kappa-B participates in the induction of apoptosis and can 

be induced by the presence of virus.156  If NF-kappa B plays a significant role in WEEV-
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induced macrophage death blocking it would certainly provide protection.  Further 

studies will be necessary to determine if TNF-alpha is the primary mediator of decreased 

macrophage viability, or if some other effector or cell death mechanism is involved. 

Due to the splenic necrosis observed following infections of hamster with WEEV 

it was hypothesized that WEEV could directly induce cytotoxicity in splenic cells, and 

that the cytotoxicity could be observed in vitro. Furthermore, following the stimulation of 

TNF-alpha production in hamster macrophages in vitro, the observed increase in TNF-

alpha in WEEV infected animals, and the beneficial effects associated with the use of 

anti-inflammatory compounds in vivo it was hypothesized that macrophage-produced 

inflammatory cytokines could enhance virus-induced destruction of splenocytes.  It was 

deemed important to use conspecific cells to study the effects of virus-stimulated 

cytokines on splenocyte-virus interactions rather than commonly available cell lines or 

recombinant cytokines.  This was because of the uncertainty of the full range of cytokines 

that may be produced by macrophages under virus stimulation and because of the 

uncertainty of cross-species cytokine reactivity.  Both the hypothesis regarding WEEV 

cytotoxicity of splenocytes and the hypothesis regarding the ability of macrophage 

produced cytokines to enhance WEEV cytotoxicity of splenocytes were shown to be 

correct.  WEEV can induce reductions in splenocyte viability in a dose-dependent 

manner, although it requires 72 h after exposure to virus to detect substantive reductions 

in cell viability, compared to the less than 24 h needed in macrophages.  No TNF-alpha 

could be detected in the supernatant from virus inoculated splenocytes, suggesting that 

reductions in splenocyte viability were due to direct virus actions rather than TNF-alpha 

as seen in macrophages.  Additionally, the use of the same anti-inflammatory compounds 
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used successfully to protect macrophages did not provide any benefit when used on 

splenocytes.  However, interpretation of the effects of anti-inflammatory agents on 

splenocytes must be somewhat tempered by the substantial compound-induced toxicity to 

splenocytes that was not observed in macrophages treated with similar concentrations of 

the drugs (Figure 57).  The anti-inflammatory compound-associated toxicity may be due 

to the longer incubation period associated with splenocyte culture.   

The results from experiments evaluating the effect of WEEV on splenocytes 

indicate that splenocyte destruction appears to be more related to direct virus effects 

rather than inflammatory mediators, in contrast to peritoneal macrophages.  This is in 

concert with the proposed in vivo effects of virus on lymphoid cells wherein WEEV is the 

primary mediator of cell destruction.  This is not to say that inflammatory mediators do 

not play a role in splenocyte destruction.  Exposure of splenocytes to supernatant from 

WEEV-stimulated macrophages resulted in moderate but statistically significant 

enhancements to the virus cytotoxic effects (Figure 58).  This also is in agreement with 

the proposed ability of inflammatory cytokines to enhance WEEV-mediated cytotoxicity 

in vivo.  Although attempts were made to evaluate the ability of flunixin meglumine and 

dexamethasone to inhibit the ability of macrophages to produce pro-cytotoxic mediators, 

the apparent toxicity of splenocytes due to residual drugs found in the macrophage 

supernatant makes accurate interpretation of such data impossible (Figure 59). 

This model of WEEV infection in the Syrian golden hamster was selected because 

of its unique disease phenotype.  However, the use of a hamster-based animal model 

severely limits the ability to test for most cytokines due to a lack of species specific 

assays and reagents that are widely available in more commonly studies species such as 
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mice and humans.  However, it is highly likely that WEEV induces macrophages to 

produce multiple inflammatory cytokines in addition to TNF-alpha.  Identification of the 

specific role of TNF-alpha in causing or enhancing virus-associated decreases in cell 

viability in either splenocytes or macrophages was also limited by the inability to identify 

an agent or blocking antibody able to inhibit the activity of hamster TNF-alpha in spite of 

attempt to do so (data not shown).  But due to the widely reported and investigated ability 

of TNF-alpha to induce either apoptosis or necrosis in a broad range of cells and tissues 

under widely varying conditions it seems likely that TNF-alpha is at least partially, if not 

wholly, responsible for the cytotoxic effects noted in WEEV-inoculated macrophages, 

and the cytotoxic enhancing effects observed in splenocytes. 

 
Proposed Model of WEEV Infection in  
the Syrian Golden Hamster 
 

Interpretation of the results of the studies presented here in context of one another 

leads to the proposal of the following model for WEEV infection in the Syrian golden 

hamster (Figure 60).  Following intraperitoneal inoculation of WEEV, 1 of 3 disease 

pathways is possible.  First, a mild virus infection will be established, an adequate 

immune response will occur and the hamster will rapidly eliminate the virus with no 

negative sequelae.  Second, a robust virus infection will be established leading to the 

clinical and pathological signs observed in WEEV-infected animals.  These signs include 

increases in serum TNF-alpha, lymphopenia, fever, and virus-induced 

lymphocytotoxicity that may be enhanced by inflammatory cytokines.  Animals 

following this infectious path will rapidly succumb to virus infection with death 

occurring by approximately 96 hpi.  Although severe lymphocytic necrosis may be 
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seen in these animals no histopathological evidence of neurological disease will be 

present. The third infectious pathway that may be taken occurs in animals in which a 

moderate virus infection is established.  These animals will survive beyond the time 

period of animals suffering a robust virus infection, and display no signs of viral disease 

until 6-9 dpi.  At this late time in the infectious process animals may develop overt signs 

of neurological damage, but the most common outward sign of disease noted is sudden 

death.  Following death animals will display histopathological lesions in the central 

nervous system, and may show signs of resolving lymphocytic lesions in nonneuronal 

tissues.  This encephalitic disease path was the least commonly observed of the 3 disease 

phenotypes.  The reason for the low prevalence of the encephalitic disease path may be 

because the virus must maintain a delicate balance of having sufficient replication to 

maintain a persistent infection, but not so robust replication as to cause severe 

lymphocytic necrosis resulting in early death.   Under such a hypothesis of the virus 

infection and the difficulty of maintaining the appropriate balance the encephalitic 

disease phenotype would be expected to have a low rate of occurrence.  Administration 

of anti-inflammatory agents to WEEV-infected hamsters may protect some animals from 

death associated with the robust phenotype of WEEV infection and allow them to follow 

either the mild or encephalitic phenotypic pathways because anti-inflammatory drugs 

limit the cytotoxic enhancing effect of inflammatory cytokines.  Interestingly, the 3 forms 

of WEEV-induced virus disease following establishment of mild, robust, or moderate 

virus infections described herein for hamsters mimic very closely the influenzal, 

fulminant and encephalitic forms of VEEV infection described in human cases.72 
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The ability of anti-inflammatory agents to protect some animals from the 

initial stages of disease highlights a probable role for inflammatory cytokines in causing 

morbidity and mortality.  This becomes especially apparent when reviewing the 

composite survival results for WEEV-infected hamsters receiving anti-inflammatory 

treatment (Figure 33).  Although the beneficial effect of anti-inflammatory therapy on 

survival was moderate, the repeatable nature of the results and the improved statistical 

power associated with the increased numbers of animals indicate a true and significant 

biological response.  Support for the role of inflammatory cytokines in inducing or 

enhancing viral destruction of cells was also gained from the in vitro assays involving 

macrophages and splenocytes. 

The factors that direct the infectious path that an individual hamster will follow 

are not known, but, at the very least, virus dose is a vital determining factor.  Under the 

currently proposed model, benefit from anti-inflammatory treatment will only be 

observed when animals are inoculated with virus within a very narrow viral dosing range.  

In the current report the ability of anti-inflammatory agents to protect some animals from 

early death was observed in animals inoculated with a 10x LD90.  The identification of 

the appropriate virus dose for recognizing the benefits of anti-inflammatory treatment and 

subsequently determining the potential role for inflammatory cytokines in the progression 

of WEEV-induced disease in hamsters was arrived at somewhat serendipitously.  In 

retrospect it can be observed that almost any other viral dose would not have led to the 

current conclusions regarding the role of inflammation in the pathophysiology of WEEV 

in hamsters.  Animals inoculated with high viral doses will almost always develop a 

robust virus infection and die by approximately 96 hpi.  Use of such a dose would result 
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in an overwhelming infection and massive virus-induced destruction of cells 

regardless of the presence or absence of inflammatory cytokines.   In contrast, animals 

inoculated with low doses of virus will rarely die or even show signs of disease.  Because 

the beneficial effects of anti-inflammatory agents are somewhat moderate the use of LD50 

or otherwise low virus doses would require impractically large numbers of animals to 

detect statistically significantly changes in outcome.  The ability to detect effects from 

anti-inflammatory agents is further complicated by the observation that individual 

animals appeared most likely to follow either the robust or mild forms of disease, with 

only a very small percentage exhibiting the third encephalitic form of WEEV infection, 

even when hamsters are inoculated with viral doses intended to cause death in 

approximately half of the animals.  Immune status may also play a role in determining 

disease phenotype as observed by the rapid death and uncommonly high serum virus 

titers seen in animals immunosuppressed with dexamethasone prior to virus inoculation. 

 
Future Experiments 

The results of this work have lead to several questions to be answered by future 

experiments.  Several of these questions are discussed below. 

What are the mechanisms of death in virus-inoculated splenocytes?  The results of 

this report strongly support the hypothesis that splenocytes die directly from virus-

mediated actions, and only secondarily due to inflammatory responses.  However, this 

report does not describe whether cells die due primarily to apoptotic or necrotic signaling 

pathways, nor what intracellular death pathways may be involved.  Elucidation of such 

information may provide for novel therapeutic approaches to virus infections.  This 
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hamster model of WEEV infection may present a unique opportunity for testing new 

therapeutic strategies.  The blood-brain barrier has posed a significant hurdle to 

introducing experimental therapeutic agents into the target organ associated with 

infection by viral encephalitides.  If virus-infected neurons follow similar intracellular 

pathways leading to cell death as do splenocytes the peripheral nature and apparent high 

susceptibility of splenocytes to WEEV may provide an adequate surrogate cell model to 

study basic mechanisms of virus-induced cell death as a well as means to prevent cell 

death. 

By what means does WEEV trigger cytokine production in macrophages, and 

what cytokines, in addition to TNF-alpha are produced in response to virus exposure?  

These results suggest that WEEV acts more as a ligand than as a replicating infectious 

agent in stimulating production and release of TNF-alpha from macrophages.  

Identification of receptor or cellular pathways by which this occurs would better define 

the disease process as well as provide additional targets for therapeutic investigations.  

Toll-like receptors are known to recognize characteristics of various pathogens and 

participate in the immune and inflammatory response,141,180 and would provide an ideal 

starting place in attempts to answer this question.  Use of cells from animals lacking 

specific toll-like receptors or other target receptors, the use of transfection technologies, 

and receptor blocking strategies may be used in such endeavors. 

What are the mediators that enhance virus associated cytotoxicity in splenocytes?  

An obvious first step would be to identify which WEEV-induced macrophage-produced 

factors are able to increase the virus-mediated destruction of splenocytes.  TNF-alpha is 

certainly a candidate for further consideration in this role as it has been shown to enhance 
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cell death in other virus models.251  Identification of agents that specifically block 

TNF-alpha activity would help to delineate its role both in cell culture and animal-based 

models of WEEV infection.  However, a multitude of other inflammatory cytokines has 

been shown to influence survival of virus-infected cells.  The use of a hamster model 

severely limits the availability of commercial reagents and assays, such as antibodies and 

cytokine specific immunoassays, which would help answer this question.  However, the 

relatively recent and ongoing identification of the mRNA sequences of hamster cytokines 

in combination with newer technologies, such as small-inhibitory RNA molecules able to 

inhibit mRNA transcription, may provide powerful research tools to better elucidate what 

macrophage-produced mediators are in involved in enhancing cell destruction. 

Three questions specific to the current animal model have been proposed for 

future research.  An additional step would involve attempts to apply results gained in 

further elucidating the virus-cell or virus-host interaction to additional disease models or 

eventually to applicable human disease conditions. 

 
Conclusion and Summary 
 

The findings from each of the specific aims of this project are summarized below: 

Inoculation of mice with either Banzi or Semliki Forest viruses will cause 

increased permeability of the BBB to the small molecular weight marker NaFl.  Virus-

induced BBB permeability increases in a manner that is progressive with the viral 

infection in vivo.  Similar increases in permeability demonstrated by two disparate virus 

species indicates that increased permeability of the BBB may be a pathophysiological 

event common to many forms of viral encephalitis.   In agreement with published data 
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these results have also shown that administration of the immunomodulatory agent 

Ampligen™ prior to, but not after, virus exposure can significantly improve the survival, 

weight change, and tissue viral titers in mice inoculated with viral encephalitides.  

Ampligen™ treatment prior to virus exposure also results in virus-infected animals 

showing improved BBB function as indicated by a concomitant decrease in BBB 

permeability.  This improved function appears to be positively correlated with 

improvements in disease outcome such as weight change, tissue viral titers, and survival.  

The improvement in BBB function was lost if Ampligen™ treatment was delayed until 

after virus inoculation.  Hamsters inoculated with western equine encephalitis virus 

exhibited only mild increases in BBB permeability as measured via cerebrospinal fluid.  

However, there was no apparent correlation between degree of changes to BBB 

permeability and disease outcome in WEEV-inoculated hamsters. 

Hamsters inoculated with the California strain of WEEV can potentially follow a 

mild form of disease with no negative sequelae, a robust virus infection with death 

occurring at approximately 96 hpi, or an encephalitic form of infection with overt 

neurological disease, and death occurring between 6-9 dpi.  Virus dose was at least 

partially responsible for the disease phenotype expressed.  Among hamsters that died, the 

robust form of infection was the most common disease phenotype.  In the robust infection 

animals appeared to be dying primarily from a lymphonecrotic rather than encephalitic 

disease.  At the time of death at approximately 96 hpi virus-infected hamsters had severe 

lymphocytic necrosis, primarily in the spleen, and no detectable histopathological lesions 

in the brain in spite of high brain viral titers.  Bacterial isolates form WEEV-infected 

hamsters were similar to those isolated from sham-inoculated animals and antibiotic 
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treatment alone did not provide any benefit to animal survival.  This indicates that in 

spite of similarities to lymphocytic necrosis seen in VEEV-infected hamsters, WEEV-

infected hamsters are not dying from a secondary bacterial infection.  Results of serum 

biochemistry analysis of WEEV-infected hamsters were essentially unremarkable.  This 

suggests hamsters did not die from an overwhelming inflammatory disease and 

subsequent organ disregulation as such changes would have been detected via standard 

serum biochemical analysis.  However, inflammatory cytokines may play a role 

enhancing disease severity.  Hematological analysis found WEEV-inoculated animals 

exhibited lymphopenia.  Lymphopenia was found to be a consistent marker of poor 

disease outcome, although the exact mechanism and pathophysiological significance of 

lymphopenia is uncertain. 

WEEV retained its ability to cause encephalitis in hamsters.  Some hamsters 

inoculated with WEEV survived the initial systemic disease period or were protected 

from death by the use of anti-inflammatory agents.  Among these animals, some 

displayed overt signs of neurological disease before death, while other animals died 

without displaying observed clinical signs.  These events occurred at approximately 6-9 

dpi.  These animals had histopathological lesions in the brain consistent with published 

reports of neuropathology caused by alphavirus induced encephalitis.  Hamsters 

inoculated with WEEV intracranially also exhibited overt signs of neurological disease.  

Animals receiving virus inoculation directly into the brain had neuropathology consistent 

with published reports of alphavirus encephalitis.  The lesions were also very similar, 

albeit more severe, to that seen in animals that died 6-9 d after peripheral virus infection. 
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The cytokine TNF-alpha was increased in the serum of WEEV-infected 

hamsters, indicating a possible role for inflammatory cytokines in virus-induced disease.  

Treatment of WEEV-inoculated hamsters with the anti-inflammatory agents flunixin 

meglumine or dexamethasone resulted in moderate but statistically significant increases 

in animal survival, and in the case of FM treatment resulted in significantly improved 

lymphocyte counts.  These results strongly suggest a potential role for inflammation to 

enhance virus disease in vivo.  Peritoneal macrophages exposed to WEEV in vitro 

expressed TNF-alpha which could be measured in culture supernatant, and appeared to 

do so in a virus dose-responsive manner.  The addition of high concentrations of virus 

could induce decreased macrophage viability within the relatively short time period of 18 

h.  The addition of known anti-inflammatory compounds to macrophage cultures exposed 

to WEEV significantly reduced TNF-alpha expression in a dose-responsive manner.  

Although the same anti-inflammatory compounds exhibited no detectable antiviral 

activity their use could also significantly protect macrophage viability in virus-exposed 

cultures.  This result suggests that macrophages cell death was being induced by 

inflammatory mediators rather than virus effects.  Hamster splenocytes exposed to 

WEEV displayed decreased cell viability in a virus dose-responsive manner although no 

TNF-alpha could be detected in splenocyte culture supernatant, indicating a primary viral 

mechanism for splenocyte death.  Cell culture supernatant from WEEV-exposed 

macrophages could significantly enhance virus-induced killing of splenocytes.  Anti-

inflammatory agents provided no benefit to virus-inoculated splenocytes, and anti-

inflammatory treatment of macrophage cell cultures also could not block cytotoxic 



 197
enhancement.  In both cases of anti-inflammatory compound use in splenocytes, 

drug-associated toxicity limited effective interpretation. 

In conclusion, these data support a disease model in WEEV-infected Syrian 

golden hamsters in which morbidity and mortality are associated with a non-neurological 

peripheral lymphonecrotic disease.  Inflammation may enhance viral disease, but virus 

mediated cell killing is the primary cause of pathology and disease manifestations.  In 

spite of the primarily peripheral disease phenotype, WEEV retains its ability to cause 

viral encephalitis in hamsters. 
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