

On-board Calibration Trend of ASTER/TIR

F. Sakuma^a, M. Kikuchi^a, H. Ono^b ^a Japan Space Systems, ^bFujitsu

2012/8/28 Logan

CALCON2012

Contents

- Introduction
- TIR Trend
- TIR Degradation Spectra
- Hydrazine
- Silicone
- Summary

CALCON2012

ACTE

ASTER Bands

Band	Radiometer	Center wavelength (µm)	Uncertainty <i>k</i> =1	
1		0.56		
2	VNIR	0.66	4 %	
3		0.81		
4	SWIR	1.65		
5		2.165		
6		2.205	4.07	
7		2.265	4 %	
8		2.33		
9		2.395		
10		8.3		
11	TIR	8.65	3 K (200 K - 240 K)	
12		9.1	2 K (240 K - 270 K) 1 K (270 K - 240 K)	
13		10.6	2 K (340 K - 370 K)	
14		11.3	$= 1 \times (370 \times - 370 \times)$	

ASTER/TIR optics

2012/8/28 Logan

CALCON2012

LTC and STC

- Short Term Calibration (STC)
 Start of every observation sequence
 Blackbody temperature: 270 K
 Offset is corrected
- Long Term Calibration (LTC)

Once every 49 days

Blackbody temperature is changed from 270 K to 340 K The Gain and Offset of each detector are corrected

CALCON2012

TIR RCC

• $L = C_0 + C_1 * DN + C_2 * DN^2$

L: Radiance C_2 :Nonlinear term: kept fixed C_1 :Linear term: determined by the Long Term Calibration (LTC) C_0 :Offset term: determined by the Short Term Calibration (STC)

 $C_0 = L - C_1 * DN - C_2 * DN^2$

2012/8/28 Logan

CALCON2012

TIR RCC C_1

For days from October 20, 2000 (after 304 days since launch) Express C_1 with an exponential function $C_1 = 1/\{b \exp(-a^* t) + c\}$

CALCON2012

TIR $1/C_1$

CALCON2012

F. Sakuma

ACTE

TIR Spectra

- TIR Spectra History
- TIR Spectra
- Hydrazine
- Silicone

TIR Spectra History

2012/8/28 Logan

CALCON2012

TIR Spectra

F. Sakuma

ACTE

Possible cause of degradation

- Contamination by fuel Hydrazine or its impurity
- Outgas from Silicone
 Siloxane

Exhausted components from hydrazine fuel

Species	Mole Fraction	Condensation Temperature (K)	
NH ₃	0.10-0.77	106	
H ₂	0.02-0.59	5	
N_2	0.20-0.32	25	
N_2H_4	0.004-0.05	162	
H ₂ O	< 0.03	166	
C_6H_7N	<0.002	178	
CO ₂	<0.0002	83	
Others	<0.00007		

Infrared spectra of water, hydrazine and aniline

CALCON2012

Hydrazine Spectra

CALCON2012

TIR Band-Averaged Hydrazine Spectra and TIR degradation

CALCON2012

Hydrazine Fuel Consumption

Hydrazine Fuel Consumption and TIR Degradation

2012/8/28 Logan

CALCON2012

Hydrazine film thickness estimate from infrared absorbance

Film Thickness	Absorb- ance	Notes
2 to 4 µm	69.6 %	Hydrazine from paper
1 to 1.9 µm	43.5 %	Hydrazine thieckness
0.3 to 0.7 µm		For Pointing mirror

In case of hydrazine, the thickness was estimated as 0.5µm at the Pointing mirror.

2012/8/28 Logan

CALCON2012

Inclination Adjustment Maneuver (IAM) in Fiscal Year 2011

	Date	Cal before	IAM	Cal after	Beta angle
IAM#29	19 October 2011	4:10:55	14:57:23	15:43:09	19.9 °
		to 10:02:52	to 15:29:38	to 21:35:06	
IAM#30	26 October 2011	4:17:47	15:03:36	15:50:00	19.9 °
		to 10:09:44	To 15:36:35	To 21:41:57	
IAM#31	23 February 2012	5:06:56	15:53:16	16:39:05	26.7 °
		to 10:58:53	to 16:35:24	to 22:31:02	

Silicone

decamethyl Tetrasiloxane $C_{10}H_{30}O_3Si_4$ Decamethyl cyclopentasiloxane $C_{10}H_{30}O_5Si_5$

Octaphenyl cyclotetrasiloxane $C_{48}H_{40}O_4Si_4$

2012/8/28 Logan

CALCON2012

Siloxane Spectra

TIR Band-Averaged Siloxane Spectra and TIR degradation

2012/8/28 Logan

CALCON2012

Conclusions

- The ASTER VNIR and TIR have been working for twelve and half years in space.
- The degradation of output signal is about 43 % at the TIR Band 12.
- From the degradation spectra of the TIR five bands two possible causes were discussed.
- Hydrazine absorption spectra is similar to the TIR degradation spectra but LTC just before and after IAM showed almost no difference.
- Outgases from silicones might be the first contaminant.
- An experiment of the silicone outgas test at JAXA is planned and starts soon.

Thank you for listening!

2012/8/28 Logan

CALCON2012