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Abstract. Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D)
information from digital images from different perspectives, and lidar-based methods have been proposed that
merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has
difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and
a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that
uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and
robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging
to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused
at the sensor level, more accurate 3-D images are generated because registration of image data automatically
improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other
methods. The proposed method also includes modifications for the situation where an estimate of position and
attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measure-
ment units sensors. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.54.3.031105]
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1 Introduction
Generation of three-dimensional (3-D) imagery is a topic of
interest in many applications. These datasets result from tex-
turing a 3-D surface with digital imagery, resulting in a 3-D
image made up of textured elements, or “texels,” a term used
in computer graphics literature. The 3-D images can then be
used to create models of historical sites, document archaeo-
logical artifacts, or document topography. On a smaller scale,
3-D images can be used for object recognition in defense and
surveillance applications, such as targeting, monitoring, per-
son identification, or people counting.1

There have been many efforts to create datasets that
include both 3-D sensed data and imagery from a scene.
These include hardware configuration methods, such as
combining stereo camera pairs with a lidar sensor,2–4 meth-
ods based on edges, geometric features, or match points,5–9

methods based in optical flow,10 or methods based on mutual
information.11

There have also been many efforts to match two-dimen-
sional (2-D) datasets and create 3-D models from the images.
Many of the 2-D methods are based in the well-known
mathematics of projective geometry and stereo pairs.12–14

Although often effective, these methods are not robust in
some practical situations. In addition, a significant amount
of computation is required to construct the 3-D surface. A
good tutorial on image registration is given by Zitova and
Flusser.15

A significant problem in 2-D image registration is auto-
matically finding corresponding feature points using corre-
lation. When the perspectives between images are widely

separated, perspective distortion in the images causes the
correlation between true correspondences to decrease to the
point where correlation thresholds are not robust. Several
authors have proposed methods to address this problem in
matching feature points in imagery. These methods can be
generally classed as affine-invariant methods,16,17 scale-
invariant methods,18,19 or other feature-based methods.20,21

As proposed in a preliminary work,22 coarse position and
attitude knowledge from low-cost global positioning systems
and inertial measurement units (GPS/IMU) can be used to
avoid correlation.

Other efforts have been made in matching 3-D datasets.
The seminal work of Besl and McKay23 in developing an
iterative method for matching 3-D point clouds has led to
various improvements for the performance of the basic algo-
rithm.24,25 Other 3-D methods have been developed that are
guided by lidar intensity data.26

The goal of this work is to present a method that uses
previously fused imagery and lidar data to register 3-D tex-
tured surfaces. If the datasets are taken from different per-
spectives around a 3-D scene, the registered datasets will
produce a true 3-D image of the scene. Since the datasets
contain fused 2-D and 3-D data, both 2-D and 3-D registra-
tion methods can be employed to better register the
datasets.27

The remainder of the paper proceeds as follows. Section 2
begins by describing the combined sensor used in this work.
Section 3 describes the basic method used to register the
datasets based on both the 2-D digital imagery and the
3-D lidar data contained in texel images, followed by Sec. 4,
which describes modifications when coarse GPS/IMU data
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are known. Finally, registration results are given in Sec. 5,
and Sec. 6 concludes the paper.

2 Texel Camera
The combination of a flash or time-of-flight lidar with a
digital (electro-optic or EO) camera that produces data
that is fused at the subpixel level is known as a “texel
camera.28–30” An example of a compact texel camera proto-
type is shown in Fig. 1, with sensor specifications given in
Table 1. Additional details are given in the literature.31 The
camera is constructed to directly produce fused datasets—no
post processing is necessary. This is possible because each 3-
D lidar measurement obtained from the lidar sensor array is
assigned, through a calibration process, to a pixel in the
simultaneously captured EO image.31 The EO pixel assigned
to each lidar measurement is the projection of the 3-D lidar
point onto the EO image. This assignment is given as the
set fx∶x → ug, where x is a 3-D lidar point and u is a cor-
responding 2-D point in the EO image.

Direct sensing of a 3-D surface using lidar imaging can be
used to create a triangulated interconnected network (TIN or
wireframe model) to represent the surface. This surface can
then be textured with a digital (EO) image of the surface,
creating a “texel image.” The texel image is, therefore, a
fused dataset, where the spatial resolution of the image pixels
is higher than the resolution of the lidar sensor. An additional
advantage of these datasets is that there is no misregistration
due to sensor motion.

Since the resolution of the EO sensor is much higher than
the resolution of the lidar sensor, only a few of the EO pixels
correspond directly to projected 3-D points measured by the

lidar. As a result, other pixels in the EO image must be
assigned 3-D points by interpolation of the lidar pixels
fused to the surrounding EO pixels. When correctly cali-
brated, there is a one-to-one correspondence between 3-D
points in the sensor field-of-view and the pixels in the EO
image. This means that a 3-D point, referenced to the center
of projection (COP) of the lidar sensor, is assigned to each
pixel in the EO image.

An example of a dataset produced by a texel camera is
given in Fig. 2.

3 Image Registration Using Texel Images
The creation of 3-D images results from the registration of
several texel images acquired from different viewpoints
around the 3-D object of interest. If each position and attitude
of a texel camera is known to a high degree of accuracy in a
common frame of reference, it is possible to immediately
register the images, and the overlapping areas of the texel
images can be combined to create a continuous textured sur-
face. It is of interest, however, to create fused images without
the cost of a highly accurate position/attitude measurement
system.

The fused nature of texel images allow registration
methods that exploit the EO image data or the 3-D lidar
data, or both, when the situation requires it. If the EO
images contain few features or smooth areas, it is difficult
to find correspondences and compute 3-D information
using machine vision approaches (In theory, at least
eight correspondences are needed,13 but in practice five
times that many may be necessary for a good registration.).
If the overlapping 3-D points alone are used to register the
3-D surfaces, the well-known iterated closest point (ICP)
algorithms may diverge due to outliers and noise.23,25

The initial approach taken in this paper is to use image
features as a starting point, and then exploit the 3-D infor-
mation associated with each EO pixel to find the 3-D
transformation to register the texel images. No a priori
information about the position and attitude of the texel cam-
era is known. This requires that there will be an overlap in
the images that contains a set of corresponding feature
points ðu; u 0Þ, where u is a point in the first image, and
u 0 is a point in the second image.

Algorithm 1 summarizes the steps for registering texel
images acquired from arbitrary overlapping perspectives.
Note that steps 1 to 4 of the algorithm exploit the
2-D EO information, and steps 5 to 7 exploit the 3-D
lidar information in the texel image. The end result of the
algorithm is an estimate of the 3-D rotation matrix, R̂,
and translation vector, t̂, describing the coordinate transfor-
mation from the second texel image frame into the first
texel image frame.

During the process of finding point correspondences, it is
possible to find many points in one image that possibly cor-
respond to one point in the other image. This is denoted as
the set fðu; u 0

sÞg, where there are s features in image 2 that
correspond to a feature in image 1.

3.1 Detecting Harris Features

The first step in the basic algorithm is to detect Harris
features32 in each of the EO images. These are points
that occur at corners and are detected as points that have
large curvatures in both principal directions. Since the

Fig. 1 Texel camera constructed from a time-of-flight depth sensor
and an imaging [electro-optic (EO)] sensor.

Table 1 Specifications for prototype texel camera.

Specifications

Lidar array size 64 × 64 pixels

EO array size 1280 × 1024 pixels

Calibrated range 0.2 to 2.1 m

Calibrated range error (1 − σ) <3 mm
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EO images are color, each of the color planes are processed
individually, and the detected points from each of the planes
are added to a list of feature points. Examples of feature
points found in a pair of overlapping EO images are
given in Fig. 3.

In order to reduce the effect of illumination on the ability
to detect features, the Harris features were detected in the
YCrCb color space. Detections are independently made on
all three color planes.

3.2 Finding Putative Correspondences

The next step of the process is to find features in each EO
image that possibly correspond to the same point in the 3-D
field-of-view. An assumption is made that the two views
overlap and that the corresponding feature points have a
high image correlation.

Awindow is centered on each feature, and the correlation
between each of the features in the first image and each of
the features in the second image is computed using

γi;j ¼
P

N
k¼−N

P
N
l¼−N ½uiðk; lÞ − μi�½u 0

jðk; lÞ − μj�
fPN

k¼−N
P

N
l¼−N ½uiðk; lÞ − μi�2g1

2fPN
k¼−N

P
N
l¼−N ½u 0

jðk; lÞ − μj�2g1
2

; (1)

where the window size is 2N þ 1, ðk; lÞ index points in the
windows centered about the feature points ui and u 0

j, μi
and μj are the mean intensities in the windows, and
uiðk; lÞ and u 0

jðk; lÞ are the intensities of the pixels in
the window around the i’th and j’th feature points in
the respective images. If γi;j exceeds a threshold, the fea-
tures are labeled as putative correspondences. A typical
correlation threshold for accepting a correspondence is
0.87. An example of the resulting matches is given in
Fig. 4.

3.3 Random Sample Consensus (RANSAC)

Once the putative correspondences have been determined, it
is necessary to eliminate as many incorrect correspondences
(outliers) as possible. A well-known method for eliminating
outliers is to use the RANSAC algorithm.33 RANSAC
requires that a model must be used to separate inliers
from outliers. This can be done by using a model that
imposes a second constraint on the correspondences: they
must satisfy the well-known epipolar constraint of projective
geometry.13 For this constraint to hold, the EO images must
be calibrated to remove nonlinear distortion.31

A geometric interpretation of the constraint is illustrated
in Fig. 5, where the 3-D points (red and black) are shown in

the image 1 coordinate frame. Any 3-D point x visible in two
images will project a point onto the image planes (given by u
and u 0 in the figure). The plane formed by x and the COPs of
the two cameras, C and C 0 (the epipolar plane), must contain
the projected points. Therefore, if a putative correspondence
does not meet this constraint, it is not a correct correspon-
dence. More precisely, the test for the epipolar constraint
is given by

u 0TFu ¼ 0; (2)

where F is the fundamental matrix, and u and u 0 are in
homogeneous coordinates. Note that the epipolar constraint
is necessary but not sufficient to determine corresponding
points. Any 3-D point that projects to a 2-D point on the epi-
polar line will meet the constraint. This is illustrated in Fig. 5,
where incorrect image correspondences (shown in red) meet
the epipolar constraint. The fundamental matrix can be com-
puted from as few as eight correspondences, but is often
computed from many more using least-squares (LS) estima-
tion techniques.34,35 Instead of directly computing Eq. (2),
the distance from each correspondence to its epipolar line
is computed using the Sampson distance, given by13

Fig. 2 Examples of a texel image. (a) Triangulated, interconnected network (TIN) created from the lidar
measurements. (b) Textured TIN surface, or texel image.
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dSðu; uÞ ¼
ðu 0TF̂uÞ2

ðF̂uÞ21 þ ðF̂uÞ22 þ ðF̂Tu 0Þ21 þ ðF̂Tu 0Þ22
; (3)

where ðF̂uÞ2j represents the square of the j’th entry of the
vector F̂u.

RANSAC is used as follows:

1. Eight putative correspondences are selected randomly
and the fundamental matrix F̂ is estimated.

2. For each of the putative correspondences, if
dSðu; u 0Þ < te, the correspondence is counted.

3. Steps 1 and 2 are repeated for a desired number of iter-
ations, and the set of correspondences with the largest
count is taken to be the set of correct inliers.

3.4 Optimal Fundamental Matrix Computation and
Testing

Once the largest set of inliers has been found, a epipolar test
of the complete set of putative correspondences is performed.
First, the set of inliers from RANSAC is used to compute the
optimal LS estimate of the fundamental matrix. This is then
used to select the putative correspondences from the original
set that meet both the correlation threshold and the epipolar
constraint using Eq. (3).

3.5 Point Cloud Matching using Fused
EO Image/Lidar Data

At this point, it is possible to use the fused EO image and
lidar data to compute the 3-D transformation from the second
camera reference frame to the first reference frame. No dis-
parity computation is required. Since each EO correspon-
dence found previously has a 3-D point assigned to it,
the 3-D points can then be used to find an estimate of the
rigid body transformation from one lidar point cloud to
the other.36 The resulting transformation is found to be
ðR̂; t̂Þ, where R̂ is the rotation matrix and t̂ is the translation
vector from the second camera coordinate system to the first
camera coordinate system.

3.6 Improvement in Registration Exploiting 3-D
Information

Unfortunately, the epipolar constraint is necessary but not
sufficient for corresponding points, since any point on an
epipolar line (where the epipolar plane intersects the
image planes) will satisfy the constraint. This is illustrated
in Fig. 5, where erroneous correspondences that meet the
epipolar constraint are marked as red circles and project
on image 2 as red stars. Thus, it is possible that erroneous
correspondences can be found if EO points in one image cor-
relate highly with points in the other image and lie on the
same epipolar line that the correct correspondence lies on.

A solution to the problem is to guide the selection of puta-
tive correspondences by using the results of the first attempt
at registration to eliminate correspondences that are in error.
This leads to an iterative solution: if the first iteration of the
registration process described in Sects. 3.1–3.5 is reasonably
close, it can be used to guide a better selection of correspond-
ences, which can then be used to estimate the 3-D rigid trans-
formation again.

3.6.1 Epipolar constraint

All of the putative correspondences have passed the epipolar
constraint based on F̂ estimated from 2-D EO data. The test
will be applied again, but with F̂ estimated from 3-D data.
The fundamental matrix can be estimated using

F̂ ¼ K−T ½t̂×�R̂K−1; (4)

where K is the EO camera calibration matrix (intrinsic
parameters), and

½t̂×� ¼
2
4 0 −ẑt ŷt

ẑt 0 −x̂t
−ŷt x̂t 0

3
5; (5)

which is constructed from t̂ ¼ ½ x̂t ŷt ẑt �T . This new F̂ is
used to test each remaining correspondence for the condi-
tion u 0TF̂u < te.

3.6.2 Distance measures

The 3-D information in the texel images is used to create a
second restriction on correspondences remaining after the
previous test. The 3-D point x 0 corresponding to the feature
u 0 in texel image image 2 can be transformed into the coor-
dinate system of texel image 1 using the relationship

Algorithm 1 Automatic registration of texel images.

1. Detect Harris features.

2. Determine putative correspondences by 2-D image
correlation around features.

3. RANSAC using a fundamental matrix model and
the epipolar constraint.

4. Estimate the optimal fundamental matrix F̂ and
determine putative correspondences that meet the epipolar
constraint to within a threshold.

5. Match point clouds using fused EO image/lidar
data to create an estimate of the registration
transformation ðR̂; t̂Þ.

6. Use the current estimate ðR̂; t̂Þ and the fused
EO image/lidar data to test putative correspondences
and eliminate incorrect and many-to-one correspondences:

(a) Estimate the fundamental matrix from ðR̂; t̂Þ.

(b) Test each potential correspondence to determine
that (3) holds.

(c) If true, test that the Mahalanobis distance
[Eq. (10)] between the corresponding 3-D points fðx ; x̂sÞg
is below a threshold. If all s in the set have a distance greater
than the threshold, discard the set fðu;u 0

sÞg.

(d) Select the correspondence with the minimum Euclidean
distance out of the set of s correspondences.

7. Repeat step 5.
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x̂ ¼ ½ x̂ ŷ ẑ �T ¼ ½ R̂ t̂ �
�
x 0

1

�
: (6)

If ðR̂; t̂Þ and ðx; x 0Þ contain no error, then x ¼ x̂. Error in
the estimates of ðR̂; t̂Þ and the measurements of x and x 0
cause the pair ðx; x̂Þ to be unequal, as shown in Fig. 5.
If the estimates of ðR̂; t̂Þ are reasonably good, however,
x and x̂ should be close to each other in 3-D space if
ðu; u 0Þ is a correct correspondence.

The Euclidean distance between the 3-D points ðx; x̂Þ in
the image 1 coordinate system is dependent on several fac-
tors related to the texel image taken in the image 2 coordinate
system: the error in ðR̂; t̂Þ, sensor error, range to x 0, and the
position of the detector on the lidar sensor array that mea-
sured the range to the point. The position of the detector
can be measured as the azimuth and elevation of the detector
relative to the principal ray of the texel camera, located at the
center detector of the array at 0 deg in azimuth and elevation
(boresight). This error is illustrated in Fig. 6(a). The blue
ellipsoid represents a 1 − σ error bound of 5 deg in attitude

Fig. 3 Examples of Harris features found in the (a) first and (b) second images and marked with red dots.

Fig. 4 Examples of putative correspondences found in the (a) first and (b) second images and marked
with corresponding colored dots.

Fig. 5 Epipolar constraint required by projective geometry. The points
u and u 0 represent corresponding image points projected from the
three-dimensional (3-D) point x , and the red points are erroneous
correspondences to u satisfying the epipolar constraint. The center
of projection of each camera is shown as C and C 0, respectively.
The gray ellipsoid is discussed in Sec. 3.6.2.
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knowledge, 2 cm in position, and 1.5 cm in range at a range
of 1 m from texel camera 2 and a boresight lidar measure-
ment direction. The black ellipsoid is the error ellipse rotated
to the position seen by the lidar detector at an azimuth and
elevation of about 16.7 deg each, which corresponds to the
detector in the lidar array with normalized image coordinates
at (0.3, 0.3). The attitude, position, and range errors are
assumed to be independent. The orientation of the error
ellipsoid changes depending on the direction of the lidar
measurement relative to the camera boresight, as illustrated
in Fig. 6(b) for the off-boresight (black ellipsoid) case in
Fig. 6(a). The tilt of error ellipse is evident.

The error ellipsoid relative to a 3-D point in the second
texel image must be transformed into the first image coor-
dinate system to test whether or not the two points are
the same 3-D point. The result of this transformation is
shown in Fig. 5, where the error ellipsoid for the point x 0
in the second coordinate system has been transformed to
the first coordinate system (shown in gray). Note that the
error ellipsoid also scales in size as the range changes, as
indicated by the dashed green projection lines.37 The 3-D
point pair ðx; x̂Þ is indicated in the figure. The error ellipsoid
represents the boundary in the image 1 coordinate system
where the position of x̂ could be in error by 1 − σ.

The error ellipsoid can be constructed as follows. Assume
the errors in R̂ and t̂ can be approximately described by a
multivariate normal distribution with variances in the x, y,
and z coordinates given by

σ2x ¼ r2 tan2ðσψÞ þ σ2xp σ2y ¼ σ2r þ σ2yp ;

σ2z ¼ r2 tan2ðσϕÞ þ σ2zp ;
(7)

where r is the range to the point x 0, σψ , and σϕ are standard
deviations of the errors in the azimuth (rotations about the
camera z axis) and elevation (rotations about the camera
x axis) angles, σr is the range error, and ðσxp ; σyp ; σzpÞ is

the camera position error. The tangent terms represent the
motion of a point rotated at a range of r. A correlation matrix
for the lidar boresight case is thus given by

Σ ¼ Diagðσ2x; σ2y; σ2zÞ; (8)

and the corresponding scatter matrix is rotated from bore-
sight to the azimuth and elevation of the point x 0 using a
rotation matrix Rσ describing the rotation, resulting in the
scatter matrix

Σ−1
Rσ

¼ RT
σΣ−1Rσ: (9)

Finally, the squared Mahalanobis distance between x and
x̂ is found after rotating the scatter matrix into the coordinate
system of image 1

d2ðx; x̂Þ ¼ ½x − x̂�TR̂TΣ−1
Rσ
R̂½x − x̂�: (10)

If d2ðx; x̂Þ < 1, the points are closer together than one
standard deviation of the error, indicating that they likely
are the same point. (Other thresholds can be used.)

The Mahalanobis distance is computed for each pair of
correspondences in the set ðu; u 0

sÞ. If none of the points in
the set of u 0

s passes the epipolar and distance tests, the
ðu; u 0

sÞ correspondence set is removed. Otherwise, the corre-
spondence in the set with the smallest Euclidean distance is
retained.

After all of the correspondence sets are tested using the
3-D tests, the surviving correspondences are used to compute
the updated estimate of R̂ and t̂.

An example of the results of this step is given in Fig. 7.
The colored lines in the figure are the epipolar lines to which
each inlier corresponds. Note that the correspondences are
reduced to those that meet the correlation and epipolar con-
straint conditions in the two EO images and that also meet
the Mahalanobis distance test with the 3-D lidar data.

Fig. 6 Error ellipses in the image 2 coordinate system for 1 − σ error of 5 deg in attitude knowledge,
1.5 cm in range, and 2 cm in position. (a) Ellipses on a constant range sphere at a range of 1 m
from texel camera 2 and a boresight lidar direction (blue) and about 16.7 deg in azimuth and elevation
(black). The y -axis is the principal ray (boresight) of the lidar sensor. (b) The 16.7-deg case translated to
the origin to illustrate the error ellipse tilt. The boresight case is aligned with the axes (no tilt).
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4 Texel Image Registration Using Coarse Position
and Attitude Information

In many applications, it is desirable to obtain GPS/IMU
information available from small, low-cost microelectrome-
chanical systems (MEMS). For example, these GPS/IMU
sensors can be integrated with a miniaturized texel camera
and used in a small unmanned aerial system (UAS) at a
cost low enough to make the UAS accessible to a wide
range of users.

The need for registration methods when only coarse posi-
tion and attitude information is available is illustrated in
Fig. 8, where the position and attitude of the camera for

the second image contains 2 cm of position error (1.3%
of the scene depth of 1.5 m) and 3 deg of attitude error
(5.2%). Note that the blocks show an offset, and the back-
ground map is shifted. In a UAS application, a UAS flying at
a 300-m altitude using a typical MEMS GPS/IMU would
experience a maximum translation error of about 5 m
(1.7%) and maximum attitude error corresponding to about
10.5 m (3.5%, assuming a rotation error of 2 deg), leading to
registration errors of the type in Fig. 8. This reduces the accu-
racy of the registered 3-D image created by the UAS.

In addition to using the available GPS/IMU data, it is
desirable to remove the dependence of the registration on
image correlation. The method of Sec. 3 is limited in perfor-
mance by a characteristic common to algorithms that rely on
finding feature point correspondences in images using
correlation. When the perspectives are widely separated,
perspective distortion in the images causes the correlation
between true correspondences to decrease to the point
where correlation thresholds are not robust. An example of
this problem is given in Fig. 9, where a potential Harris
feature point is circled in green. Figure 9(a) is from a per-
spective in front of a checkered cube, and Fig. 9(b) is
from above. It is evident that the image pixels around the
point are significantly different and will lead to a low corre-
lation value.

Fig. 7 Examples of putative correspondences retained by 3-D epipolar and Mahalanobis distance test in
the (a) first and (b) second images and marked with corresponding colored dots. The colored lines are
the epipolar lines corresponding to the feature point.

Fig. 8 Texel images with registration mismatch due to 2 cm of posi-
tion error and 3-deg error in attitude, with a maximum scene depth of
about 1.5 m. All texel image figures in this paper are taken from a 3-D
viewing program.

Fig. 9 Examples of potential Harris feature points on a checkered
cube from (a) a front perspective, and (b) a top perspective.
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A second disadvantage of correlation-based methods is
the computational cost. Correlation is performed using a
window of image pixels around each feature point. Every
point in the first image is correlated with every point in
the second image, and a list of putative correspondences
is created where the correlation value between points exceeds
a threshold. For a list of N1 features in the first image and N2

features in the second image, the total number of correlations
[Eq. (1)] that must be performed is OðN1N2Þ.

The method of Sec. 3 can be modified to register texel
images with coarse GPS/IMU data. Image correlation around
feature points appears in Algorithm 1 in step 2. GPS/IMU
information will be used to replace the need for correlation
in this step as given in Algorithm 2. The new steps 2 to 3
depend on an initial estimate of ðR̂; t̂Þ given from the coarse
GPS/IMU. It was observed that the RANSAC runs with
many fewer iterations than in Algorithm 1 due to the epipolar
test used in step 3a.

5 Registration Results

5.1 Visual Performance

The technique of Sec. 3 was applied to pairs of texel images
of different scenes acquired from different positions and
attitudes. The threshold te used for Eq. (3) during

RANSAC was 0.5 pixels. For the tests in step 6 in the
algorithm, the Sampson threshold te was increased to 5.0
pixels, and the standard deviations used in Eq. (7) were
σψ ¼ σϕ ¼ 0.4 deg, (corresponding to about 5 pixels in
the EO images), and σxp ¼ σxp ¼ σxp ¼ σr ¼ 0.005 m.
These values were chosen based on the assumption that the
registration up to this step was accurate within a few pixels in
rotation and 0.5 cm in position. A Mahalanobis threshold of
2.0 was used.

A visual example of the results obtained using the texel
images in Figs. 3–7 is illustrated in Fig. 10. Figures 10(a)–
10(c) show the same images from a perspective view,
revealing the 3-D nature of the images. Additional visuali-
zation of the 3-D is given by TINs in Figs. 10(d)–10(f).
As can be seen in the figure, the registration of the two
images is very good. The “seams” between the images
occur next to the right textbook and halfway through the pic-
ture on the left textbook. These results are typical of results
obtained using other texel image pairs.

One of the most difficult registration problems is the case
where two flat planes need to be registered. If 3-D-only
registration methods such as ICP are used, the registration
process will often not converge or will converge to the
wrong solution. In the noiseless case, any shift of the
overlapping points will produce a minimum RMS registra-
tion error. For image-only registration and stereo 3-D
reconstruction, it is possible that multiple points may satisfy
(to within the threshold) the epipolar constraint as described
in Sec. 3.6, resulting in erroneous correspondences. It is also
difficult to compute stereo disparity if the images have large
areas of constant color. An example of these problems is
given in Fig. 11, where (a) and (b) are from texel images
of a flat wall taken with a right shift in perspective. Note
that several correspondences are incorrectly declared
because multiple corners of the gray bars are highly corre-
lated and lie close to the same epipolar line. Registration
using these correspondences leads to an evident mismatch,
as observed in the registration of the gray bar chart and the
broken edges of the black squares on the right.

An example of the improvement in corresponding point
selection by including step 6 in Algorithm 1 is given in
Fig. 12. The erroneous correspondences have been removed,
leaving a set of correct correspondences for computing a new
transformation ðR̂; t̂Þ, which is then used to register the two
texel images.

The advantage of the proposed method over ICP is illus-
trated with Fig. 13. This figure shows the registration
achieved using ICP with point-to-point matching on the
3-D data only.24 The registration is poor, with the red text-
book aligned with the blue box. The difficulty with this
approach is that ICP tries to find the LS registration estimate
using all of the points presented to it; satisfactory results
require some preprocessing or prior knowledge to determine
which points in the two point clouds overlap. These images
were successfully registered using the proposed method.

5.2 Numerical Performance

One of the major goals of this research is to create fused 3-D
datasets that are not only visually pleasing, but that contain
accurate distances between points in 3-D space. These 3-D
images then can be used for scientific measurements of
objects, or to improve the performance of object recognition

Algorithm 2 Automatic registration of texel images using position
and attitude information.

1. Detect Harris features.

2. Estimate the fundamental matrix F̂ from ðR̂; t̂Þ using (4).

3. Determine putative correspondences using F̂ and the position
and attitude information ðR̂; t̂Þ:

(a) Test each potential correspondence to determine that (3) holds.

(b) If true, test that the Mahalanobis distance [Eq. (10)] between
the corresponding 3-D points ðx ; x̂Þ is below a threshold.

4. RANSAC using a fundamental matrix model and the epipolar
constraint.

5. Estimate the optimal fundamental matrix F̂ and determine
putative correspondences that meet the epipolar constraint to
within a threshold.

6. Match point clouds using fused EO image/lidar data to create
an estimate of the registration transformation ðR̂; t̂Þ.

7. Use the current estimate ðR̂; t̂Þ and the fused EO image/lidar
data to test putative correspondences and eliminate incorrect
and many-to-one correspondences:

(a) Estimate the fundamental matrix F̂ from ðR̂; t̂Þ using (4).

(b) Test each potential correspondence to determine that (3) holds.

(c) If true, test that the Mahalanobis distance [Eq. (10)] between
the corresponding 3-D points fðx ; x̂sÞg is below a threshold.
If all s in the set have a distance greater than the threshold,
discard the set fðu;u 0

sÞg.

(d) Select the correspondence with the minimum Euclidean
distance out of the set of s correspondences.

8. Repeat step 6.
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algorithms. One measure of registration quality is the mean-
squared error (MSE) between corresponding 3-D points in
the registered dataset. The MSE is given in m2. For the
results that follow, a texel image of the scene served as
ground truth. Since the calibration of the camera gives 1-
sigma 3-D position errors of about 3 mm,31 it was deemed
accurate enough.

To quantify the performance of the algorithms, five scenes
were captured and registered. The algorithm parameters used
are given in Sec. 5.1. For the tests for Algorithm 2, a trans-
lation error of 3 cm and rotation error of 3 deg were artifi-
cially added. The MSE for the proposed algorithms was

recorded after the first computation of ðR̂; t̂Þ, and the final
MSE was computed after “bad” correspondences were
removed using the Sampson distance test [using F̂ from
ðR̂; t̂Þ] and the Mahalanobis distance test, and recomputing
ðR̂; t̂Þ. The MSE for the 3-D ICP method was also recorded.
MATLAB code for the ICP method used was provided by
Tang,38 with the ICP tolerance parameter set to 2 cm. The
results are given in Table 2. The final estimate resulted in
a reduction in MSE of an order of magnitude for
Algorithm 1, and nearly half for Algorithm 2 (which uses
no correlation to find corresponding points). The MSE for
the ICP registration is significantly larger than that for the

Fig. 11 Examples of erroneous correspondences passing the epipolar constraint and the resulting
registered texel image. (a) First EO image. (b) Second EO image. (c) Registered texel image.
Correspondences are marked with the same color dot.

Fig. 10 Registered texel images and TINs from lidar measurements. All images taken from a perspective
view. (a) First texel image. (b) Second texel image. (c) Registered texel image. (d) First image TIN.
(e) Second image TIN. (f) Registered image TIN.
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proposed methods. This is because in these cases the ICP
method failed to produce a good registration.

An additional case was captured where the perspective
difference between the texel images was larger—the second
texel image was taken from a position 13 cm to the left and
2 cm closer, with a rotation of 10-deg clockwise. As before, a
translation error of 3 cm and rotation error of 3 deg were
artificially added. The registration results are presented as
Image pair 6. Note that Algorithm 2 performs better than
Algorithm 1. This is because the correlation step was unable
to find as many correspondences as the initialization with
coarse GPS/IMU data.

Another measurement of the accuracy of the algorithms
was taken by registering two texel images of a scene and
then measuring the 3-D distance across the registered scene
between 3-D points in the first texel image and 3-D points in
the second texel image. The points chosen were not image
correspondences, but arbitrary 3-D points in the scene. These
distances were compared to the ground truth distances
between these points as measured in a single-texel image
as mentioned above. This measures the quality of the regis-
tration for use in applications where the dimension of objects
in the registered scene are of interest, and the objects extend
across the registered images. Points which were distributed
throughout the scene were chosen, resulting in 72 unique

Table 2 Mean-squared error (MSE) between corresponding points in the registered dataset.

Corresponding point MSE

Dataset

Algorithm 1 Algorithm 2

ICPStep 5 Step 6 Step 6 Step 7

Image pair 1 1.079 × 10−3 1.715 × 10−5 3.063 × 10−5 2.132 × 10−5 9.900 × 10−3

Image pair 2 3.739 × 10−4 2.051 × 10−5 9.694 × 10−5 5.408 × 10−5 8.800 × 10−3

Image pair 3 1.890 × 10−4 1.290 × 10−5 2.149 × 10−5 1.484 × 10−5 7.600 × 10−3

Image pair 4 1.999 × 10−5 1.281 × 10−5 8.720 × 10−5 4.479 × 10−5 7.900 × 10−3

Image pair 5 3.042 × 10−4 2.942 × 10−5 4.744 × 10−5 3.132 × 10−5 8.600 × 10−3

Average 3.932 × 10−4 1.856 × 10−5 5.674 × 10−5 3.327 × 10−5 8.560 × 10−3

Corresponding point error—poor correlation

Image pair 6 2.948 × 10−3 5.318 × 10−4 3.032 × 10−4 4.074 × 10−5 1.180 × 10−2

Fig. 12 Improved correspondences after using step 6 in Algorithm 1 and the resulting registered texel
image. (a) First EO image. (b) Second EO image. (c) Registered texel image.

Fig. 13 Registration result achieved using iterated closest point on
the lidar point cloud only. The blue box in the right image is clearly
misregistered with the blue box in the left image.
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3-D distances between the points. The distances between
these points in the ground truth texel image were computed,
and the corresponding distances between the same scene
points in the ground truth texel image and the registered
texel image 2 were compared by finding the error between
the ground truth and registered distances. The results are
given in Table 3.

These results show that both proposed methods result in
significantly better registration than the ICP method, when
the measurement of distances between points across the reg-
istered dataset is important. As observed in Table 2, the
errors for Image pair 6 are greater for Algorithm 1 than
Algorithm 2.

6 Conclusion
The method described in this paper has been shown to per-
form very well in registering textured 3-D point clouds (texel
images) to create a 3-D mosaic of two images. If multiple
texel images from different perspectives surrounding a
scene are used, it is possible to create a true 3-D image of
the scene.

Registration is based on the unique properties of texel
images. Since the EO image is fused to the 3-D lidar mea-
surements at the sensor level, no 2-D-to-3-D registration and
the resulting additional error is introduced into the process.
In addition, the registration of the texel images uses both the
EO image and the 3-D measurements. This allows for iter-
ative improvement of the registration because the images
must satisfy both the properties of projective geometry
and 3-D rigid transformation. Also, since measured 3-D
information is used in the registration, this method does
not require decomposition of the fundamental matrix to
find the 3-D transformation and resolution of the scale ambi-
guity often faced in 2-D image-only methods. As shown in
the experiments, the proposed methods can also avoid the
poor registration that can result from ICP using only 3-D
data.

Both registration with no a priori knowledge, and with
coarse knowledge of position and attitude were presented.
Registration was successful with both methods. It was

shown that with coarse position and attitude information,
it is unnecessary to depend on image correlation to find
initial putative correspondences, enabling registration of
texel images of widely different perspectives, and avoiding
the computational requirements for multiple correlation
calculations.

There are many new and exciting areas for ongoing
research in texel image registration. For example, the robust-
ness of the techniques presented here must be studied further.
Although not a goal of this study, the selection of feature
points in low-contrast imagery must be improved. In addi-
tion, the sensitivity of the algorithm to the thresholds for
the Harris detector, correlation threshold, te, and the
Mahalanobis distance must be studied. It was also observed
that Algorithm 2 was sensitive to the condition where Harris
points were clustered in the images. Finally, the fused-dataset
nature of texel images also opens the possibility of image and
shape super-resolution techniques to improve both the reso-
lution of the EO textures and the density and accuracy of
the 3-D data upon which the textures are applied.
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