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ABSTRACT 18 

Elevated NO3
- concentrations can cause eutrophication, which may lead to harmful algal 19 

blooms, loss of habitat and reduction in biodiversity. Denitrification, a dissimilatory process that 20 

removes nitrate (NO3
-) mainly as dinitrogen gas (N2), is widely believed to be the dominant NO3

- 21 

removal pathway in aquatic ecosystems. Evidence suggests a lesser studied process, 22 

dissimilatory nitrate reduction to ammonium, (DNRA), that transforms NO3
- to ammonium 23 

(NH4
+) and hence retains nitrogen (N) in the system, may be at least as important as 24 

denitrification under favorable conditions.  25 

Using stable isotope tracers in sealed microcosms we measured the potential for NO3
- 26 

losses due to DNRA and denitrification in an oligotrophic aquatic ecosystem. We took sediment 27 

and water samples at runoff and baseflow, across several ecotypes. We hypothesized that the 28 

relative importance of DNRA compared to denitrification would vary spatially and temporally, 29 

because of variations in ambient conditions related to ecotype and season. 30 

Potential denitrification rates ranged from 0 to 0.14 + 0.03 µgN gAFDM-1 d-1. Potential 31 

DNRA rates ranged from 0 to 0.0051 + 0.0008 µgN gAFDM-1 d-1. Denitrification losses peaked 32 

at the inflow stream ecotype at 96.16 % of total dissimilatory NO3
- removal, whereas losses due 33 

to DNRA peaked in the lake ecotype at 34.42 %. When averaged over the entire system, 34 

denitrification peaked at baseflow (31.17 %), while DNRA peaked at runoff (2.93 %) 35 

Although NO3
- transformations due to denitrification were higher than DNRA in all 36 

ecotype and temporal comparisons, our results suggest that DNRA may be more important than 37 

denitrification under favorable conditions. 38 

KEY WORDS DNRA, denitrification, nitrogen transformations, lake-stream 39 

interactions.40 
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INTRODUCTION 41 

Anthropogenic activities have had a profound effect on the global N cycle. Current 42 

estimates suggest that creation of reactive N has increased by 120 % since 1970 due to 43 

agriculture and industry and the rate is still dramatically increasing (Galloway et al. 2008).  44 

A significant fraction of this anthropogenically-mobilized reactive N ends up in inland aquatic 45 

ecosystems. Riverine export of TN was calculated to increase globally by up to 30% between 46 

1970 and 2000 (Seitzinger et al. 2010). Increased N loading in riverine systems can cause local 47 

problems with eutrophication and can increase N fluxes to coastal systems. This adds to the 48 

problem of coastal eutrophication and in extreme cases, can lead to hypoxic zones such as that in 49 

the Gulf of Mexico (Rabalais et al. 2001). The main biological process for removal of N (as NO3
-50 

) from freshwater systems is the microbial process of denitrification (Seitzinger 1988). However, 51 

a competing process, dissimilatory nitrate reduction to ammonium, (DNRA), retains N in the 52 

system in a bioavailable form (Tiedje et al. 1982). In order to properly manage aquatic 53 

ecosystems and prevent potential problems such as harmful algal blooms (Davis and Koop 2005) 54 

it is important to understand the processes that remove or transform NO3
-
. 55 

Respiratory denitrification (hereafter denitrification) is a dissimilatory process usually 56 

carried out by facultatively anaerobic microbes in the absence of oxygen (O2 < 10 µM – Tiedje 57 

1988). NO3
- is reduced to NO2

-, NO, N2O and finally N2 (Ye et al. 1995). The final reduction 58 

products, nitrous oxide (N2O, a potent greenhouse gas, Ramaswamy et al. 2001) and N2, are then 59 

lost from the system into the atmosphere (Delwiche and Bryan 1976). In the presence of O2, 60 

most denitrifying bacteria will switch to the physiologically preferred process of aerobic 61 

respiration at the expense of NO3
- reduction. (Megonigal et al. 2004). Denitrification may also be 62 
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diminished by the presence of free sulfides, which can inhibit the enzymes responsible for the 63 

final two stages of the process (Burgin and Hamilton 2007).  64 

DNRA is a microbial process that transforms NO3
- to NH4

+ via formation of NO2
- in 65 

anaerobic or low O2 environments. The final N form, NH4
+, is highly bioavailable and can be 66 

readily immobilized by microbes and plants, or can be transformed by nitrification (Bengtsson et 67 

al. 2003). There are two DNRA pathways; fermentative and chemolithoautotrophic. 68 

Fermentative DNRA microbes reduce NO3
- to NO2

- as a way of producing ATP / energy. The 69 

subsequent reduction of NO2
- to NH4

+ is believed to be used as an electron sink to allow re-70 

oxidation of NADH, (Tiedje 1988). Chemolithoautotrophic DNRA is the transformation of NO3
- 71 

to NH4
+, linked to free sulfide / elemental sulfur oxidation. This sulfur-driven NO3

- reduction can 72 

also lead to production of N2 and N2O via respiratory denitrification, however since higher 73 

concentrations of free sulfides are believed to inhibit the final steps in the denitrification 74 

sequence, (Brunet and Garcia-Gil 1996, Burgin and Hamilton 2007) reduction to NH4
+

 via 75 

DNRA should dominate. Burgin and Hamilton (2007) summarized that the fermentative 76 

microbes are favored by non-sulfidic sediments with high C:N ratios, whereas the 77 

chemolithoautotrophic microbes prefer sediments where S oxidizers dominate and H2S is present 78 

in appreciable concentrations (Burgin and Hamilton 2007). While most of the denitrifying 79 

microbes that use DNRA, are anaerobes (Tiedje 1988), recent evidence suggests they can also 80 

tolerate low levels of O2, while continuing to reduce NO3
-, especially at high C:N 81 

ratios.(Fazzolari et al. 1998, Silver et al. 2001).  82 

 83 

The main factors believed to govern the balance between denitrification and DNRA in 84 

freshwater sediments are the ambient O2 concentration (Fazzolari et al. 1998, Silver et al. 2001), 85 
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the C:N ratio, (Tiedje 1988) and the presence of free sulfides (H2S, S2-) or elemental sulfur (S) 86 

(Burgin and Hamilton 2007, Brunet and Garcia-Gil 1996). Other possible contributing factors 87 

include the presence of macrophytes (Nijburg and Laanbroek 1997a,b) and ambient temperature 88 

(Ogilvie et al. 1997, Scott et al. 2007, Nizzoli et al. 2010). 89 

Spatial and temporal variations in the balance between denitrification and DNRA in 90 

freshwater ecosystems have been studied by relatively few researchers, and studies seldom 91 

quantify variation in both space (between different ecotypes) and time. Accordingly, we aimed to 92 

elucidate NO3
- losses due to potential DNRA and potential denitrification, across a stream lake 93 

interaction zone of a sub-alpine watershed. We hypothesized that the relative importance of 94 

DNRA compared to denitrification would vary significantly spatially and temporally, because of 95 

variations in C:N ratios, presence/absence of highly reducing sediments and presence/absence of 96 

aerenchymatous macrophytes. 97 

 98 

 99 

MATERIALS AND METHODS 100 

 101 
Sample sites 102 

  The sampling area, consisting of Warm Springs creek and Bull Trout Lake, is an 103 

oligotrophic stream–lake system in a sub-alpine watershed in the Sawtooth Mountains in Idaho, 104 

USA. Four replicate cores were obtained from seven sites along with water samples (Fig 1.). We 105 

sampled in June 2008, during snowmelt runoff (runoff), close to peak discharge, ~ 858 l s-1 at 106 

site 1 (personal communication, K J Goodman). 107 
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 Samples were again taken at baseflow in August 2008, with a discharge of about 154 l s-1 at site 108 

1 (personal communication, K J Goodman). Peak discharge occurred on about the same date for 109 

all sites, as did the minimum. 110 

Site 1 was in-stream, approximately 1.5 km upstream from the lake (Fig. 1). Site 2 was in 111 

a lateral pool just downstream of site 1 in the delta marsh, with abundant emergent plants on the 112 

outskirts of the pool. Site 3 was about 1 km upstream from the lake in an algae filled, stagnant 113 

side channel in the delta marsh. Site 4 was at the stream-lake interface at the head of the lake. 114 

Site 5 was benthic sediment from about 3 m depth in the littoral zone of the lake where 115 

submerged macrophytes were plentiful. Site 6 was at the outflow stream-lake interface at the 116 

bottom of the lake. Site 7 was in the stream, a hundred meters or so downstream of the lake. Sites 117 

1 and 4 were categorized as the inflow stream ecotype. Sites 2 and 3 were categorized as the 118 

marsh ecotype. Sites 5 and 6 were taken as the lake ecotype, (site 6 was right at the edge of the 119 

lake where the water temperature and sediment consistency indicated lake conditions). Site 7 was 120 

the outflow stream ecotype. 121 

 122 

Microcosms 123 

Four sample cores were obtained from each site on each date (only 3 at site 7 at runoff 124 

and none for site 3 at baseflow as it had dried out). Sediment from at least 15 cm below the 125 

water-sediment interface was extracted using a coring device. The cores were measured and the 126 

top 10 cm (6 cm for the lake samples) of sediment discarded. The rest of each sediment sample 127 

was then pushed out into a plastic bag and sealed with the depth being recorded. Lake samples 128 

were taken using a Wildco® standard KB core sampler (Rickly Hydrological Company) at 129 

runoff and SCUBA diving at baseflow. Water samples were also taken at each site. 130 
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On return to the lab the homogenized sediments were weighed out into mason jars and 131 

then topped off with sample water, sealed and shaken. After settling, the overlying water was 132 

sampled for 15N2, 15N2O, 15NH4
+, 14NH4

+ and 14NO3
- and then the jars were topped off with the 133 

appropriate sample water again, sealed, shaken and stored in the dark for 24 hours to assure 134 

anoxia. Spare samples were taken so that the O2 levels could be checked for anoxia. We did not 135 

extract sorbed ammonium using KCl and therefore it is possible that our potential DNRA rates 136 

are underestimated. 137 

Stable isotope tracer (0.4 ml of 50.32 mg l-1 Na15NO3-N solution, 99 atom %) and 138 

nutrient solutions (1.0 ml of 25 mg l-1 KNO3-N + 4 mg l-1 KH2PO4-P + 1.5 g l-1 Dextrose-C 139 

solution) were added, with a syringe through a gas impermeable septa, to each microcosm at T0. 140 

This protocol varied at baseflow when we added 0.8 ml of 15N solution in order to ensure that the 141 

samples were adequately enriched. We estimate that addition of 15N tracer enriched the nitrate 142 

pool to at least 70 atom percent. Nutrient solutions were added to alleviate nutrient limitations, 143 

thus all rates calculated in this study were potential not actual rates. Septa were re-sealed with 144 

Aquaseal (Urethane repair adhesive. McNett Corporation, 1411 Meador Ave Bellingham, WA, 145 

98229-5845), incubated in the dark at 20°C for ~11 hours and then sampled once more for 15N2, 146 

15N2O, 15NH4
+, 14NH4

+ and 14NO3
-.  147 

 148 

Chemistry  149 

All 14NO3
- and 14NH4

+ samples were run on an Astoria Pacific flow injection analyzer 150 

using methods adapted from the phenolhypochlorite method, by Solorzano (1969) for NH4
+ and 151 

the cadmium reduction method by Grasshoff (1976) for NO3
-. Dissolved organic carbon (DOC) 152 

samples (Personal communication, K J Goodman) were run on a OI Corporation model 700 TOC 153 
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analyzer using the protocol outlined by Bernard (1984). 15N (N2, N2O and NH4
+) samples were 154 

run at the UC Davis (on a continuous flow Isotope Ratio Mass Spectrometer - IRMS) and MBL 155 

(Marine Biological Laboratory, using a Europa ANCA-SL elemental analyzer - gas 156 

chromatograph preparation system attached to a continuous-flow Europa 20-20 gas source stable 157 

isotope ratio mass spectrometer) stable isotope facilities.  158 

Potential denitrification and DNRA rates were calculated as the change in 15N2 and 15NH4
+ 159 

nitrogen mass respectively over time per µg of ash free dry mass of sediment (given as µgN 160 

gAFDM-1 d-1 and corrected for initial ambient 15N-NO3 mass). Both microbial processes were 161 

also calculated as % transformation of 15NO3-N mass per day (to 15NH4-N mass for DNRA and 162 

15N2-N mass for denitrification) corrected for initial ambient 15N-NO3 mass. 15N2O production 163 

was measured but not attributed to either of these two processes. DNRA was also measured as a 164 

percentage of total dissimilatory nitrate removal, with the total being made up of denitrification 165 

plus DNRA plus N2O production. Note that we measured denitrification as production of 15N-N2 166 

and our method did not distinguish between denitrification and anammox. In the rest of this 167 

paper we refer to 15N-N2 production from as denitrification 168 

 169 

Percent organics was measured as the percentage of the mass lost on combustion (sample 170 

heated to 450°C in muffle furnace for 2 hours). Ash free dry mass (AFDM) was taken as the 171 

mass of the pre-dried sample remaining after ashing. 172 

 173 

Statistical analysis 174 

For pairwise comparisons of data groups we used the multiple response permutation 175 

procedure (MRPP) in the USGS statistical package Blossom (Cade and Richards 2005). This 176 
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non-parametric analysis accommodates data with heterogeneous variances, non-normal 177 

distributions and small sample sizes. One-sample, single tailed t-tests in R were used to evaluate 178 

whether the N transformations measured were significantly greater than zero. 179 

 180 

 181 

RESULTS 182 

 183 

Biogeochemistry 184 

 % organic matter was measured in the samples. The lake and wetland ecotype sediments 185 

contained the most organic matter, 9.9 % and 7.0 % by mass respectively. The inflow and 186 

outflow ecotypes only contained 0.4 % and 1.3 % organic matter respectively. DOC was 187 

measured at sites 1, 6 and 7 and then averaged to give total available C values (ambient + added 188 

DOC) of 2339 µg and 2036 µg per microcosm equivalent volume at runoff and baseflow 189 

respectively. NH4
+ and NO3

- were measured in microcosms from all sites, averaged and 190 

combined to give total available N values (ambient + added DIN) of 51.0 µg and 87.9 µg per 191 

microcosm at runoff and baseflow respectively. 192 

 193 

Spatial trends 194 

Rates of denitrification and DNRA varied spatially and temporally. Potential 195 

denitrification rate ranged from 0 to 0.14 + 0.03 µgN gAFDM-1 d-1 over the entire study, while 196 

potential DNRA rates ranged from 0 to 0.0051 + 0.0008 µgN gAFDM-1 d-1. DNRA rate was 197 

always highest at site 6, the interface between the lake and the outflow, on both dates (although 198 

only marginally significant at baseflow, p = 0.098). Mean rates of DNRA and denitrification 199 
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were significantly greater than zero in ~ half of the samples (Fig. 2, asterisk denotes p < 0.050, 200 

with exception of August, site 2, p = 0.057). Denitrification rates were not significantly greater 201 

than zero at all sites during runoff but were greater than zero at more than half of the sites during 202 

baseflow (Fig. 2., asterisk denotes p < 0.050, with the following exceptions; site 1 p = 0.058, site 203 

5 p = 0.060). Rates of N2O production were also measured but due to low values and high 204 

variation, all but one result were non-significant, and this one rate was negligible compared to 205 

denitrification and DNRA (site 4, 1.2 x 10-6 + 4.7 x 10-7 µgN gAFDM-1 d-1, p = 0.010, results not 206 

shown). 207 

The highest denitrification rate of the samples taken at runoff was measured at site 4 208 

(0.06 + 0.03 µgN gAFDM-1 d-1, MRPP, p = 0.033, Fig. 2). The maximum DNRA rate was 209 

0.0051 + 0.0008 µgN gAFDM-1 d-1 (MRPP, p < 0.050) and was measured at site 6. 210 

Denitrification rate exceeded DNRA rate at site 6 in June by an order of magnitude (MRPP, p = 211 

0.050). All other pairwise comparisons between denitrification and DNRA were not statistically 212 

significant (p > 0.050). 213 

The baseflow data set results show averages of the two microbial processes to be 214 

statistically different, (Fig. 1, MRPP, p < 0.0001),  with maximum rate of denitrification 215 

exceeding that of DNRA by nearly 3 orders of magnitude (Fig. 2, MRPP, p < 0.016). 216 

Denitrification rate was highest at site 1, (0.14 + 0.03 µgN gAFDM-1 d-1), but means across sites 217 

were not significantly different (MRPP, p > 0.050). DNRA rates ranged from 0.0002 + 0.0001 218 

µgN gAFDM-1 d-1, (site 2), to 0.0006 + 0.0002 µgN gAFDM-1 d-1, (site 5), although means were 219 

not statistically different (MRPP, p > 0.050). 220 

 To gain more insight into spatial variation, the data were grouped by  ecotype: wetland, 221 

inflow stream, lake and outflow stream (Fig. 3). The mean % transformation of NO3-N due to 222 
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denitrification was lowest in the wetland ecotype (12.70 + 4.37 %, Fig. 3) and highest in the 223 

stream ecotypes (36.10 + 8.01 %, inflow stream, Fig 3). However, the only statistically 224 

significant difference between denitrification values was between the wetland and inflow 225 

ecotypes (MRPP, p= 0.028), so there was no statistically significant spatial trend. 226 

Percent NO3-N transformation per day due to DNRA, averaged over both seasons, 227 

increased downstream from the wetland ecotype (0.51 + 0.23 %) to peak at the lake ecotype, 228 

(3.57 + 0.72 %, Fig. 3). MRPP analysis showed the lake maximum to be significantly different to 229 

all other ecotypes (p < 0.050, with exception of comparison to outflow - only marginal 230 

significance, p = 0.086) 231 

  Percent transformation of NO3-N per day (calculated by mass) was also measured in the 232 

sample microcosms as production of N2O gas, (Fig. 3) and arranged by ecotype. The rate of N2O 233 

production was considerably lower than that of DNRA per ecotype, (MRPP, p < 0.001) with the 234 

exception of the wetland ecotype, which had approximately equal transformations of N due to 235 

DNRA and N2O production (wetland DNRA = 0.51 + 0.23 %, wetland N2O = 0.48 + 0.24 %. 236 

MRPP, p = 0.641). 237 

We calculated DNRA as a percentage of total dissimilatory nitrate removal (with the total 238 

being defined as denitrification plus DNRA plus N2O production) to evaluate the relative 239 

importance of this process as a NO3-N removal pathway. Nitrogen transformations due to DNRA 240 

were greatest at the lake site (34.42 % + 21.92 %. Fig. 4) and lowest at the inflow stream site 241 

(3.69 % + 2.78 % Fig. 4). Ecotypes were not significantly different to each other except for 242 

comparisons between the inflow and lake (MRPP p = 0.043) and between the inflow and outflow 243 

(MRPP p = 0.075, only marginal significance) DNRA seems to be a potentially more important 244 

pathway for NO3-N removal in the lake, than in any of the other ecotypes in our study. 245 
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 246 

Temporal trends     247 

 Transformation of N due to denitrification was potentially more important during 248 

baseflow, 31.17 % + 4.87 %, compared to runoff, 19.93 % + 6.02 %, when averaged across sites 249 

(MRPP, p = 0.011; Fig. 5). In contrast, NO3-N transformation due to DNRA was higher at 250 

runoff, 2.93 % + 0.72 %, than at baseflow, 1.30 % + 0.41 %, (MRPP, p = 0.027; Fig. 5). 251 

Similarly N2O production was higher at runoff, 0.23 % + 0.10 %, than at baseflow, 0.03 % + 252 

0.02 %, (MRPP, p = 0.037; Fig 5). 253 

 254 

 255 

DISCUSSION 256 

 257 

Spatial patterns in NO3
- losses by dissimilatory pathways 258 

The lake sediments were relatively productive in the littoral zone (compared to the other 259 

ecotypes) where the samples were taken, as confirmed by the calculated % organics. The wetland 260 

and lake ecotype sediments contained considerably more organic matter, than the inflow and 261 

outflow ecotype sediments. Additionally, during sampling, the top 5 – 6 cm of each lake core 262 

(site 5) were visibly green, and site 6 samples were noted as smelling strongly of sulfides. Owing 263 

to high organic matter content, sediments from lake and wetland ecotypes were relatively highly 264 

reducing as they all went anoxic within 30 minutes of being sealed in the dark, whereas 265 

microcosms from the other ecotypes took close to 11 hours. Highly reducing sediments, 266 

containing free sulfides (S2- or H2S) are known to enable the chemolithoautotrophic DNRA 267 

process (Buresh and Patrick 1981, Burgin and Hamilton 2007) while at the same time, free 268 



 13 

sulfides also inhibit the enzymes that sustain the final steps of the denitrification process (Burgin 269 

and Hamilton 2007, Brunet and Garcia-Gil 1996). So the presence of highly reducing sediments 270 

and hence free sulfides may have suppressed denitrification in our samples while potentially 271 

enhancing the DNRA process.  272 

High importance of DNRA to total dissimilatory NO3-N transformation in lake sediments 273 

also may be attributed to the presence of macrophytes. It has been speculated that the presence of 274 

certain macrophytes in low nitrate sediments may greatly increase the proportion of DNRA to 275 

denitrification, possibly due to increased C availability from root exudates and elevated O2 276 

levels, (Nijburg and Laanbroek 1997b). Aerenchymatous plants release O2 into the root zone 277 

when healthy, (Nijburg et al. 1997), and this in turn selects for DNRA over denitrification as 278 

DNRA is less inhibited by O2 presence than denitrification, especially at high C:N ratios, 279 

(Fazzolari et al. 1998). Species of Potamogeton praelongus and Elodea Canadensis (identified as 280 

aerenchymatous macrophytes. Personal communication, M Barkworth), were abundant in Bull 281 

Trout Lake and were present at site 5. Macrophytes were not substantially present in the inflow 282 

and outflow stream ecotypes. 283 

 284 

Temporal variation in NO3
- losses via dissimilatory pathways 285 

The data in this study show that denitrification is potentially more important during 286 

baseflow than runoff, while the opposite is true for DNRA. A similar temporal trend was 287 

observed in a fringing marsh-aquifer ecotone where seasonally, denitrification : DNRA ratio was 288 

25-fold lower at runoff (0.6) compared with at baseflow, suggesting that NO3
- removal was 289 

significantly higher during baseflow conditions. However water temperatures (from piezometers) 290 
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were + 2°C between seasons and were therefore unlikely to account for this trend (Tobias et al. 291 

2001.) 292 

It is generally accepted that denitrification and DNRA are carried out by different 293 

competing species of microbes, and that certain ambient conditions select for or against 294 

denitrifiers (Megonigal et al. 2004, Tiedje 1988). The relative increase in denitrification and 295 

relative decrease in DNRA from runoff to baseflow could be explained by this competition, 296 

possibly due to a shift in the balance of available nutrients in the system, amongst other potential 297 

factors. Denitrification is generally thought to be favored by more C limited conditions, and 298 

DNRA by sediments more enriched with available C, specifically with high C:N ratios, (Tiedje 299 

1988, Kelso et al. 1997, Omnes et al. 1996). Fazzolari et al. (1998) measured DNRA at changing 300 

C:N ratios and found that in all but one case an increase in C:N ratio correlated to an increase in 301 

NH4
+ production via DNRA. Our nutrient data showed dissolved C:N ratios (DOC:DIN) in our 302 

microcosms of 46 at runoff and 23 at baseflow on average. The higher ratio at runoff is expected 303 

in this system, due to increased DOC inputs with snowmelt from the watershed. McGlynn 304 

(personal communication) found C:N ratios (NPOC:TDN) of 35 at runoff and 22 at baseflow in 305 

the Warm Springs creek / Bull Trout lake system (average of 4 sites in the lake, inflow and 306 

outflow). Inputs to the inflow stream peaked at runoff in late May, when inflow DOC was 307 

measured at 2.81 mg l-1, and stayed high through the first week of June. Baseflow average was 308 

measured as only 0.65 mg l-1 (Personal communication, K J Goodman). 309 

Temperature is another factor that influences the balance of denitrification and DNRA. 310 

Conclusions vary in the literature, but mounting evidence points towards a summer DNRA 311 

maximum. Ogilvie et al. (1997) found that denitrifying bacteria were better than fermentative 312 

nitrate-ammonifiers at scavenging NO3
- at low temperatures and vice versa, (5°C and 20°C 313 
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respectively). Scott et al. (2008) were only able to measure DNRA during the summer months 314 

when temperatures averaged 28.6°C, (winter average = 8.4°C) and Nizzoli et al. (2010) found 315 

that DNRA was appreciably higher in lake Verde in the summer samples (13°C compared with 316 

5°C in the winter). However, Kelly-Gerreyn et al. (2001), suggested that DNRA is favored in 317 

more extreme temperatures (< 14 to > 17°C) whereas denitrifying microbes prefer a narrow 318 

range of 14 - 17°C. Although our microcosms were all incubated at 20˚C, different ambient 319 

temperatures between seasons may have selected for different microbial populations at the time 320 

of sample collection.  321 

 322 

Data limitations 323 

All rates and % transformations mentioned in this study refer to potential values, 324 

although the nutrient concentrations we employed were not outside the realms of natural 325 

variation at this study site (Hall et al. 2009, Marcarelli and Wurtsbaugh 2009). The addition of N, 326 

C and P to the microcosms in order to remove low-level nutrient limitation, (and 15N as a tracer), 327 

altered the available nutrient pool and influenced the rates of localized microbial processes 328 

(Burgin and Hamilton 2008). Therefore it was not possible to measure actual in-situ rates of 329 

denitrification and DNRA for our sites in this experiment.  330 

 331 

N2O production represented a small transformation of NO3 compared to the processes of 332 

DNRA and denitrification. N2O could be attributed to either DNRA or denitrification as it is 333 

believed to be an intermediate in both pathways (Tiedje 1988, Welsh et al. 2001, Burgin and 334 

Hamilton 2008).  335 
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Therefore DNRA and / or denitrification may be underestimated. However, because N2O 336 

production was either not significantly different from zero, or negligible, this underestimation 337 

would be small relative to the measured rates of DNRA and denitrification. Therefore, in this 338 

study N2O production rates were only used to complete the calculation of total dissimilatory 339 

nitrate reduction. 340 

Anammox, the combination of NO2
- (from reduction of NO3

-) and NH4
+ to form N2 gas 341 

under anaerobic conditions (Dalsgaard et al. 2005) has not been addressed in this study. This 342 

process is mainly of interest in marine systems, contributing up to 67% of total N2 production in 343 

continental shelf sediments (Thamdrup and Dalsgaard 2002.) In one freshwater system that it has 344 

been studied in, anammox accounted for 7-13% of the total production of N2 but this was only 345 

measured in the water column (Schubert et al. 2006) Since we have not attempted to measure 346 

anammox in this study it is therefore possible that our denitrification figures could be 347 

overestimated by approximately 10%. However, since anammox is believed to prefer eutrophic 348 

sediment conditions (Megonigal 2004)  with relatively high NO3
- concentrations (Rysgard et al. 349 

2004) and low labile carbon concentrations (Jetten et al. 1999) it would seem probable that this 350 

process would be minimal in our system. 351 

 352 

Global comparisons 353 

Measured as % of the total dissimilatory nitrate removal at each ecotype, our DNRA 354 

results can be compared to global data as reviewed by Burgin and Hamilton (2007). Our results 355 

range from 0-12 % at the inflow stream ecotype to 6-99 % at the lake ecotype and overlap with 356 

global freshwater data, (Freshwater lakes; Nijburg and Laanbroek 1997b, Nizzoli et al. 2010. 357 

Wetlands; Ambus et al. 1992, Scott et al. 2008. Streams; Kelso et al. 1999, Omnes et al. 1996, 358 
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Fig. 6). According to this small sample of global data, and data presented by Burgin and 359 

Hamilton (2007), wetland and lake ecotypes in general have higher % DNRA than stream 360 

ecotypes. The results of this study agree with this finding. However, in this study, the lake 361 

ecotype had by far the highest proportion of DNRA as a percentage of total dissimilatory nitrate 362 

removal, but also was most variable, (34.42 % + 21.92 % Fig. 4).  363 

From data compiled in Fig. 4, we infer that denitrification accounts for the main 364 

proportion of dissimilatory nitrate removal in each ecotype. Optimal conditions for DNRA in 365 

freshwater sediments are still poorly defined. The results in this study show that DNRA varies 366 

spatially and temporally and has potential to rival denitrification in the sediments of some 367 

freshwater ecotypes, particularly those with high organic matter content.  368 

 369 

 370 

CONCLUSIONS 371 

In conclusion, DNRA was measured in each ecotype and season and whilst not as 372 

prevalent as denitrification, was still significant in this study. The lake ecotype was found to be 373 

the most favorable environment for DNRA, with a third of all dissimilatory nitrate reduction 374 

being attributed to it here. DNRA was significantly higher during runoff compared to baseflow 375 

conditions although temperature was kept constant between the two seasonal experiments and so 376 

did not contribute directly. Therefore DNRA may be more important during runoff conditions 377 

compared to baseflow, with the opposite being true for denitrification. 378 

 379 

 380 

 381 
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 389 

Figure Captions 390 
 391 
 392 
Fig. 1 Map of the field sites at Bull Trout lake in the Sawtooth Mountains in southern Idaho. 393 
 394 
Fig. 2 Potential denitrification and dissimilatory nitrate reduction to ammonium (DNRA) rates, 395 
(ugN gAFDM-1 d-1), for each site sampled at runoff and baseflow + SE. Asterisks denote 396 
statistical significance versus zero. 397 
 398 

Fig. 3 Dissimilatory nitrate reduction to ammonium (DNRA), denitrification and N2O production 399 
measured per ecotype down the watershed (left to right). Measured as % NO3-N transformation 400 
per day (calculated by mass). Data are means + SE.  401 
 402 
Fig. 4 Mean dissimilatory nitrate reduction to ammonium (DNRA, + SE) as a percentage of total 403 
dissimilatory nitrate removal per ecotype. 404 
 405 
Fig. 5 Meandissimilatory nitrate reduction to ammonium (DNRA), denitrification and N2O 406 
values measured as % transformation of NO3-N per day (calculated by mass), at runoff, (June 407 
samples) and at baseflow, (August samples) + SE. MRPP analysis ran for DNRA gave a p value 408 
of 0.0270, for denitrification a p value of 0.0114 and for N2O a p value of 0.0369. Number of 409 
observations ‘n’ is indicated above each bar.  410 
 411 
 412 
Fig. 6 Ranges of dissimilatory nitrate reduction to ammonium (DNRA) as a % of total 413 
dissimilatory nitrate removal. Means from Fig 4.  are displayed in white lines for the Bull Trout 414 
Lake data. Data were obtained from the following sources, left to right: Kelso et al. 1997,  415 
Bengtsson and Annadotter 1989, Buresh and Patrick 1978,  Yin et al. 2002, Nizzoli et al. 2010, 416 
Nijburg and Laanbroek 1997b, Scott et al. 2008, Matheson et al. 2005, and, Ambus et al. 1992. 417 
BTL prefix signifies ranges from Bull Trout Lake measured in this study. 418 
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Fig. 1 424 

Fig. 1. Map of field sites at 
Bull Trout lake 
watershed. 
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