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ABSTRACT 

Granivores and Restoration: Implications of Invasion and Considerations of  
Context-Dependent Seed Removal 

 

by 

 
Steven M. Ostoja, Doctor of Philosophy 

Utah State University, 2008 
 

Major Professor: Eugene W. Schupp 
Department: Wildland Resources 
 

 
Granivores are important components of sagebrush communities in western North 

America.  These same regions are being altered by the invasion of the exotic annual 

Bromus tectorum (cheatgrass) that alters physical and biological dynamics in ways that 

appear to promote its persistence.  This research directly relates to the restoration of B. 

tectorum-dominated systems in two inter-related ways.  First, because these landscapes 

have large quantities of seeds applied during restoration, it is important to determine the 

major granivore communities in intact sagebrush communities and in nearby cheatgrass-

dominated communities.  Second, it is important to develop an understanding of patterns 

of seed harvest by granivores.  In addition to the data chapters there are two review 

chapters; Chapter 1 highlights factors contributing to seed removal and Chapter 7 

provides ecologically based techniques that could minimize the negative consequences of 

granivores during ecological restoration.  Common groups of ants showed increased 

abundances; uncommon species and functional groups were generally negatively 

impacted by cheatgrass (Chapter 2).  Conversely, rodents were negatively impacted by 
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conversion to cheatgrass (Chapter 4).  Ant seed removal was highly context-dependent 

(Chapter 3), depending on the background vegetation (large-scale among-patch effects), 

foraging distance from the nest mound (small-scale among-patch effects), and the 

presence of other seed species in mixture (within-patch effects).  In addition, cheatgrass 

provided associational resistance to native seeds in mixture, meaning the presence of 

cheatgrass increased native seed survival.  In Chapter 5 a novel statistical technique in the 

ecological sciences showed that rodents have marked preferences for some seeds over 

others and that more seeds were removed in sagebrush compared to cheatgrass-

dominated sites, although associational effects among seed mixtures were not detected.  

In Chapter 6 we show that the amount of seed harvested depended on both intraspecific 

and interspecific seed density.  B. tectorum seeds had associational susceptibility 

(increased harvest) in the presence of native seeds.  Although the reciprocal effect may 

occur, we did not find statistical support for it.  These sets of studies are not only of basic 

ecological interests, but are also important for developing management strategies for 

restoration of these degraded lands.   

        (216 pages) 
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CHAPTER 1 

 
IMPORTANCE OF SEED CHOICE AND REMOVAL: SEED CHARACTERISTICS 

AND ENVIRONMENTAL INFLUENCES1 

 
I. Abstract 

Granivorous animals are important components of many arid and semi-arid 

communities throughout North America.  The important influence of selective seed 

predation and/or dispersal by granivorous animals on vegetation dynamics is well 

understood.   Many sites throughout the Intermountain West that are home to these 

animals have been altered structurally and functionally by invasive species in ways that 

promote the sustained persistence of these invasive species.  As such, the restoration of 

western arid- and semi-arid lands has been widespread to redirect disturbed and invaded 

landscapes toward a trajectory deemed desirable for wildlife and other ecological values 

and human interests alike.  Because restoration often requires the application of seed, 

consideration of granivory in this process is critical.  In so doing, it is important to 

consider factors both inherent to the seed as well as resource-wide characteristics that 

contribute to seed selection and/or removal by granivores in semi-arid and arid 

communities in North America.  Using such a framework, we provide an overview of ant 

and rodent granivory, which may influence seed removal events and possibly mitigate 

potential negative impacts from granivory on ecological restoration.  Additionally, we 

provide implications of these plant-animal interactions while considering managed 

systems where appropriate. 

                                                 
1 Coauthored by Steven M. Ostoja and Eugene W. Schupp 
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II. Introduction 

As in other environments, seeds have an important role in arid and semi-arid 

environments (Chambers & MacMahon, 1994).  In these habitats the dominant plants in 

terms of vegetative cover and biomass are perennial shrubs, perennial grasses, and non-

native annual grasses.  The latter spend the majority of their life cycle as seeds scattered 

and hidden in the soil.  Ths is obvious after precipitation when available moisture allows 

these seeds to germinate, grow, and ultimately set seed for the cycle to continue.  

Additionally, we know that seed production in North American deserts is strongly tied to 

precipitation events (Brown & Ernest, 2002), which influence annual variability in seed 

production and potentially affect seed consumer populations.  In terms of total numbers, 

seeds of annuals dominate the seed bank in many sites in the eastern Great Basin (S. 

Ostoja, unpubl.) in both relatively intact sagebrush communities and non-native 

grasslands dominated by the exotic annual grass Bromus tectorum (cheatgrass).  

Because the life history strategy of many plants demands a significant resource 

allocation to seed production, large quantities of seeds of many species can be found in 

the soil awaiting suitable conditions for germination while avoiding desiccation and 

predation (Chambers & MacMahon, 1994).  Thus it is not surprising that many animals in 

North American arid and semi-arid environments have evolved a dependence on seeds. 

For animal consumers, seeds provide nutrition and a means of water extraction.  Seeds 

are nearly always available in the soil environment to some degree and can be collected 

when abundant and stored for later use. 
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Granivores comprise a significant faunal biomass and are known to exert 

substantial impacts on ecosystems via direct seed predation and dispersal as well as 

through other activities associated with life in the habitat, such as burrow construction.  

More recently, granivory has received interest in managed systems as well (Hoffmann et 

al., 1995) because it may be one of the most important yet frequently overlooked 

processes affecting restoration (Whisenant, 1999).  Janzen (1971) suggested that “seed 

eaters” should be considered for their potentially significant role in the development, 

structuring, and functioning of communities, and Majer (1989) has called attention to the 

potentially important but largely overlooked role of animals as agents of change in 

revegetation activities.  And perhaps most convincingly, results from (Brown and Heske, 

1990) show clearly how selective seed removal can alter plant community composition.  

Because seeds are an important food resource for desert granivores and restoration often 

involves the application of large quantities of seeds, xeric rangelands have been promoted 

as potentially good laboratories for exploring the integration of granivory and vegetation 

management (Kelrick & MacMahon, 1985; Archer & Pyke, 1991).  The goals of this 

paper are (1) to provide a brief background of granivory within the North American arid 

and semi-arid regions and (2) to outline the important potential interactions between 

granivores and seeds that affect seed harvesting in both natural and managed 

environments, first by considering individual seeds as a resource and second by 

considering resource-wide qualities at the community level.   

We use the term “seed” throughout this paper in reference to all non-ovarian 

reproductive tissues which to be botanically accurate are actually fruits.   Because the 

differing tissues among these structures may either enhance or detract the seeds 
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desirability as a resource this distinction is thought to be a significant factor that could 

influence preference by a granivore (Kelrick & MacMahon, 1985).   

 
III. Granivory – An Overview 

Granivorous animals are critical components of many different ecosystems 

around the world (Brown et al., 1979, 1986; Davidson, 1977 a and b). However, unlike 

other arid and semi-arid regions, only in North America has granivory evolved in such a 

diverse faunal component (Mares, 1993; Kelt et al., 1996).  Longland (1994) attributes 

the high abundance and diversity of granivorous animals to a greater availability and 

suitability of seeds as food compared to other types of plant materials in these plant 

communities.  Based on the quantity of seed handled, the most important of these animals 

are rodents and ants (Davidson et al., 1980; Brown et al., 1979; Parmenter et al., 1984).  

Although seed-eating birds can be temporally important and at times locally abundant in 

North American arid and semi-arid communities (arid hereafter), few species are 

specialized granivores (Brown et al., 1979). Moreover, they have been shown to be 

generally only a small component of the granivore community in these environments (see 

Kelrick et al., 1986; Longland et al., 2001), and hence are not considered here.    

Seed dispersal and seed predation by granivores are considered to be key 

processes affecting recruitment and survival of plants (Davidson et al, 1980; Hansen, 

1978; Inouye et al., 1980; Schupp & Fuentes, 1995; Brown et al., 1986; Gibson et al., 

1990; Wilson et al., 1990; Howe & Brown, 2001).  Seed-eating animals can alter the 

composition of seed pools by preferentially harvesting some seeds over others (Brown et 

al., 1979) and can redistribute seeds by moving and caching them (Vander Wall, 1992a).  
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Both of these activities can have profound effects on plant populations and communities.  

In addition to these direct effects of granivory on seed pools, granivory and associated 

activities can have indirect effects by creating soil disturbances and affecting soil 

chemistry (Brown et al., 1979; MacMahon et al., 2000).   

Considering ant granivores, two genera of harvester ants (Pogonomyrmex and 

Veromessor) within the family Formicidae are the dominant seed foragers in North 

American arid lands (Hobbs, 1985; Hölldobler and Wilson, 1990; Longland et al., 2001), 

although others are known to occur.  Of these, the Pogonomyrmex spp. are the most 

common seed harvesting ants within the arid West (MacMahon et al., 2000; Chapter 2).  

Seed harvesting ants forage along trails that radiate from their mounds and are referred to 

as trunk-trail foragers. Foraging location and distance form the mound may vary due to 

biotic and abiotic interactions (MacMahon et al., 2000).  Although harvester ants remove 

only a fraction of available seeds, and can only locate surface seeds, research suggests 

they are selective granivores and can have profound effects on the structure of plant 

communities (Hobbs, 1985; Inouye, 1991; Mull & MacMahon, 1997; MacMahon et al., 

2000).  Kelrick et al. (1986) showed that seed selectivity increases at a greater distance 

from the mound.  Similarly, in a seed removal experiment with the harvester ant P. 

occidentals (Mull & MacMahon, 1997), > 30% of seeds were removed within one day 

and removal rates varied with distance from the mound and among foraging trails.   

Rodents also can have significant effects on the species diversity and composition 

of plant communities.  In the Chihuahuan Desert kangaroo rats (Dipodomys spp.) are 

considered a keystone guild because they have major effects on plant species composition 

and biogeochemical processes via seed predation and soil disturbance (Brown & Heske, 
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1990).  Unlike ants, rodents can locate seeds buried in the soil by chance, memory, tactile 

cues, and olfaction.  Rodent species vary in the ability to find buried resources with 

olfaction (Vander Wall et al., 2003).  Further, the detection of seeds by olfaction is 

greatly affected by both seed and soil water content (Vander Wall, 1998).    

The process of seed dispersal, where plant propagules (“seeds”) are placed in 

suitable sites for germination and successful establishment, is of central importance in the 

fields of plant population, community, and restoration ecology (Wilson et al., 1990; 

Schupp & Fuentes, 1995; Schupp, 2007).  Rodent seed moving behaviors have important 

implications not only for seed dispersal of many arid-land plants in natural systems, but 

perhaps also for plants in managed and restored systems.  For decades, rodents generally 

have been considered to negatively affect seed resources due to direct seed predation. 

Although this is often true (see Vander Wall et al., 2005), research also demonstrates the 

positive role rodents can have in plant recruitment in arid environments through seed 

dispersal (West, 1968; McAdoo et al., 1983; McMurry et al., 1997; Vander Wall, 1990, 

1992b, 1993, 1994; Longland et al., 2001; Theimer, 2005).  Heske et al. (1993) have 

shown that in the Chihuahuan desert kangaroo rats have a greater impact on vegetation 

than do livestock because of high levels of seed predation and dispersal, as well as the 

soil disturbances that accompany such activities. 

These animals disperse seeds in two important ways that differ in their potential 

effects on plant population ecology and potentially on the success of restoration through 

re-seedings when these animals are abundant.  Rodents may place seeds either in one or a 

few central locations such as a burrow, which is called “larder-hoarding,” or in shallow 

holes around the surface of their home ranges, called “scatter-hoards,” or “caches.”  
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These caches of seeds are covered with soil and/or litter to conceal their locations.  It is 

scatter-hoarded caches that contribute to seedling recruitment of certain plants, 

sometimes considerably.  Successful germination can occur when rodents either fail to 

recover a cache at all or when they incompletely recover a cache and miss some seeds. 

Longland et al. (2001) reported that seedling recruitment of the native perennial 

bunchgrass Achnatherum hymenoides following initial caching by a single Merriam’s 

kangaroo rat (D. merriami) was significantly greater than for seeds not harvested by 

granivores or for those harvested by ants.  Because a diverse array of plant species are 

reported to emerge from scatter-hoards (Vander Wall, 1990, 1992b, 1994; Longland et 

al., 2001), this process may represent a critical mechanism of seed dispersal and 

subsequent establishment for many plant species (West, 1968; McAdoo et al., 1983; 

Vander Wall, 1994) and it may have an evolutionary basis (Voorhies, 1975; Vander Wall, 

1990; Vander Wall et al., 2005).  Specifically, some desert plants may have evolved to 

rely on rodents for seed dispersal via seed caching in microsites favorable for 

germination (Vander Wall, 1990; Longland & Bateman, 1998; Longland et al., 2001; 

Theimer, 2005). 

 
IV. Relationships among Seed Preference and Seed Attributes 

Because selective seed harvesting and consumption can strongly affect plant 

population and community development, it is prudent to consider factors leading to seed 

choice and selectivity in the context of seed application where granivorous animals are 

present.  In particular, studies of seed characteristics are important when attempting to 

understand how both ants and rodents select seeds. Various characteristics have been 
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evaluated under natural and experimental conditions and subsequently identified as 

affecting preferential selection by granivores.  Kelrick et al. (1986) suggest that 

granivores may select seeds on the basis of either the recognition of differences in the 

qualities of individual specific seed types or due to resource-wide qualities of the 

environment.  A number of seed characteristics have been suggested as affecting the 

quality of individual seeds and therefore seed selection, including seed size (Price, 1983), 

nutritional composition (Kelrick et al., 1986; Jenkins, 1988; Crist & MacMahon, 1992), 

seed water content (Frank, 1988; Hulbert & MacMillen, 1988), seed anatomy and 

morphology (Lawhon & Hafner, 1981), seed chemistry and secondary compounds 

(Kelrick et al., 1986; Kerley & Erasmus, 1991), seed handling time (Bozinovic & 

Vasquez, 1999), and seed-microbial interactions (Crist & Friese, 1993).  At a larger scale, 

resource-wide qualities may include overall seed availability and associated spatial and 

temporal dynamics of the resource (MacMahon et al., 2000; Crist & MacMahon, 1992), 

seed neighborhoods and seed mixtures (Veech, 2000, 2001; Veech & Jenkins, 2005), and 

soil and related edaphic effects (Price & Heinz, 1984) among others.   

Because many characteristics can contribute to seed selection individually and 

synergistically, it is difficult to know what combination of seed characteristics and 

environmental conditions together drive seed selection and removal.  Nevertheless, such 

factors, if understood, could help land managers minimize seed loss to granivorous 

rodents and ants by using specific seeds or seed combinations together with other 

techniques (e.g. altering seeding depth or timing of seeding – see Chapter 7).  In the 

following section we summarize research findings that relate seed characteristics to seed 

selectivity and that may merit consideration in a restoration context.   
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A. SEED CHARACTERISTICS 

1. Seed Nutritional and Water Contents  

Because seeds are the primary food item of desert granivores their availabilities 

and nutritional contents are thought to drive, at least in part, which seeds are taken in 

what quantities.  Price (1983) reported that six species of rodents selected significantly 

larger seeds in laboratory conditions than the sizes of seeds typically available in their 

desert environments and argued that this preference was driven by larger seeds having 

greater amounts of soluble carbohydrates.  Her results also indicated a negative 

correlation with seed lipid content.  This is consistent with Kelrick et al. (1986) who 

argued that seed preferences of desert granivores are strongly influenced by soluble 

carbohydrate content.  Crist and MacMahon (1992) corroborated these conclusions with 

experimental data from Pogonomyrmex occidentalis (Western harvester ant), suggesting 

again that soluble carbohydrates were important in seed selectivity.  It has also been 

suggested (Mattson, 1980) that the nitrogen context of seeds might influence dietary 

choice of some heteromyids, and this factor may be even more important in warm deserts 

(see West & Klemmedson, 1978).   

Some genera of desert rodents preferentially select seeds with greater seed water 

content (Hulbert & MacMillen, 1988), and this selection is likely to vary with season, 

reproductive condition, and geographic region.  Seeds with greater soluble carbohydrates 

also have greater metabolic water yields, which is critical to organisms living in arid 

systems (Frank, 1988).  Kangaroo rats depend on pre-formed water in their diet and water 

that is produced metabolically when food is oxidized. Because the oxidation of different 
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nutrients produces different net amounts of metabolic water, diet selection becomes 

important for overall water balance of the organism (Frank, 1988).  For example, in low 

humidity conditions, carbohydrate oxidation produces a net metabolic water gain, 

whereas lipid and protein metabolism result in net water loss.  In high humidity 

conditions, carbohydrate oxidation is high and protein oxidation again results in water 

loss although lipid oxidation produces large water gains (Frank, 1988).  In contrast, 

Kerley and Erasmus (1991) concluded that seed preferences of none of the South African 

mice species they studied were correlated directly with the free water content of seeds, 

although they did not consider metabolic water.   

 
2. Seed Size 

Results from rodent preference studies suggest that larger seeds are preferred 

relative to smaller seeds (Mares & Williams, 1977).  As noted above, Price (1983) 

showed in laboratory experiments with six species of heteromyid rodents that the 

preferred seed size was 5 mg, which was much greater than the size of seeds the animals 

selected for naturally (0.22 mg).  In contrast, ants appear to prefer smaller seeds due to 

ease of transport and handling (Crist & MacMahon, 1992; Davidson, 1993). Although 

seed size itself can affect selection by affecting handling, seed size alone may not fully 

explain size-based preferences. Optimal seed size for harvest might be predicted by 

applying foraging theory models (Charnov, 1976). For example, because size is 

correlated with energy availability larger seeds potentially have greater available 

carbohydrates and thus offer greater energy gain (Charnov, 1976; Kelrick et al., 1986). 
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3. Seed Anatomy, Morphology, and Secondary Chemistry  

 Differences in physical and chemical qualities of seeds can influence granivore 

preferences.  Many plant species have seeds with physical features to either deter or 

encourage granivores (Janzen, 1969).  The morphology as well as the anatomy of a given 

seed could greatly influence the handling time by the granivore, which would likely 

contribute to seed selectivity (Kelrick et al., 1986).  We report (Chapter 5) that Bromus 

tectorum seeds were removed less than seeds of five native perennial grasses and the 

annual grass Panicum miliaceum (millet).  A plausible explanation for the low preference 

of Bromus tectorum is the increased handling time needed to deal with non-nutritive 

tissues and persistent awns that reduce foraging efficiency (see Kelrick et al., 1986).  A 

specific feature of seed morphology is shape, which might also play an important role in 

preference.  Certain seed shapes (e.g. elongated) may be relatively difficult to transport 

and may be considered less desirable than other shaped seeds (e.g. round) which may 

promote harvest. The roles of shape and surface texture (round, elongate, smooth, 

textured) are largely unknown but potentially important and thus merit further research. 

Important in the evolution of flowering plants was the biochemical coevolution of 

chemically-unrelated compounds (Davidson, 1993).  Many of these compounds are 

thought to play a major role as attractants or repellants of certain plant parts including 

seeds (Janzen, 1969, 1971).  These secondary chemical compounds can act as defense 

against seed eaters, and have been credited in determining relative food preferences of 

these animals. Secondary compounds may affect selection due to toxicity, taste, aversion, 

and/or interference with digestion.  For example, tannins generally are not directly toxic, 
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but function as anti-nutritional substances because they make seeds less digestible and are 

thought to be the main chemical defense against many seed predators (Boesewinkel & 

Bouman 1995).  Sherbrooke (1976) suggested that cyanogenic glucosides in the seeds of 

Simmondsia chinensis (jojoba), a common shrub in the Sonoran Desert, function as a 

defense against seed predation by some species of heteromyid rodents, while other 

rodents might have evolved detoxifying agents that allow them to tolerate these seeds.  

Perhaps this is the reason Kerley and Erasmus (1991) in South Africa found that for the 

mice used in their study the consumption of seeds was not correlated with the polyphenol 

content of the seeds.   

The role of chemicals can be more complex. Fuller and Hay (1983) reported on 

the indirect effect of the production of a glue-like substance by desert annual seeds of 

Salvia columbariae, which significantly reduced predation by granivores.  They 

suggested the mucilaginous substance on the seed coat when moistened allows sand 

particles to bind to the seed and it is the sand coating that reduces predation, further, they 

suggest that predation may be the selective pressure for the glue production.  

Additionally, as already noted seed characteristics likely interact in their effects on seed 

harvesting.  For example, seed length combined with nitrogen content and the levels of 

saponins and non-protein amino acids accounted for nearly 70% of the seed preference of 

the kangaroo rat D. ordii (Henderson, 1990).   

 
4. Fungal and Microbial Considerations 

Microbes, especially bacteria and fungi, play critical roles in vegetation dynamics 

and plant-animal interactions in the arid west, although the extreme diversity and 
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difficulties of studying these organisms limits a full understanding of their function in 

natural communities (Janzen, 1969; Crist & Friese, 1993; Herrera et al., 1997).  Some 

research from eastern Washington State indicates that soil bacteria are 2x more abundant 

and account for 20x active fungal biomass compared to bacteria (K. beard pers. comm.).  

Moreover we know that in arid soils fungi can be highly variable in abundance and 

diversity (Polis, 1991; Polis and Strong, 1996). Although there are conflicting reports 

some authors have reported fungi to be numerically less abundant than bacteria, fungi 

account for the majority of the microbial biomass in these soils (Skujins, 1984; 

Christensen, 1981; Kieft, 1991).  Fungi play an important role in seed dynamics by 

affecting seed viability as well as interactions with seed consumers.  Fungal pathogens, in 

addition to directly killing seeds (see Crist & Friese, 1993), might indirectly affect seed 

survival by affecting seed predator selectivity.  Loss of seeds to pathogen attack can 

potentially shift seed predator selection to non-infected seeds even if they are less 

preferred.  Further, if seed predators selectively avoid seeds infected with fungal 

pathogens that fail to kill the seeds, the seed theoretically is protected from predation by 

the fungus.  Conversely, reports of increased selection of infected food items also exist 

(see Cork & Kenagy, 1989).  As such, fungi associated with seeds can be beneficial or 

detrimental to plant establishment which can be mediated by the seed handling animal 

and may shift with varying levels and/or presence of fungal infection.   

Given the degree to which granivore activity influences soil features, it is not 

surprising that both rodent and harvester ant burrows and mounds (i.e. nests) are 

associated with soil fungi (Herrera et al., 1997) and have even been promoted as hot spots 

for soil fungi (see Hawkins, 1996).  Friese and Allen (1993) concluded that harvester ant 
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(P. occidentalis) mounds are places of microbial enrichment and that the ants promote the 

establishment of mutualistic mycorrhizal associations after mounds are abandoned.  

Similarly, fungal colonies can be five times more abundant in kangaroo rat burrow soils 

than in soils away from burrows (Hawkins, 1996), and rodent dens appear to be areas of 

high microfungal diversity (Herrera et al., 1997).   

Soil fungi can greatly affect soil seed pool reserves and thus plant establishment 

by either increasing or decreasing seed survival and/or rates of seed harvest by 

granivores.  For example, some species of harvester ants reject seeds infected with spores 

of endophytic and saprophytic fungi, while others do not discriminate between infected 

and control seeds (Knoch et al., 1993).  Crist and Friese (1993) placed seeds in fungal 

cultures obtained from soil seeds and presented moldy seeds along with control seeds to 

P. occidentalis, which harvested control seeds at nearly twice the rate of the moldy seeds; 

it was suggested that avoidance of moldy seeds may be due to the presence of the fungus 

Penicillium which is known to produce mycotoxins.   

Many rodent species have evolved behaviors associated with food storing (Vander 

Wall, 1990), and given the ubiquity of fungal spores in soil environments it is not 

surprising that these animals may also have evolved strategies to take advantage of 

beneficial products of fungi while minimizing negative effects of the seed/fungus 

relationship.  Kangaroo rats (Dipodomys spp.) are reported to prefer slightly moldy seeds 

over control and highly moldy seeds, suggesting they might be taking advantage of the 

beneficial effects of molds while avoiding the liabilities (Reichman & Rebar, 1985).  

Moreover, Dipodomys spectabilis actively manages seed reserves in what appears to be 

an effort to promote moderate amounts of fungal colonization (Reichman et al., 1986), 
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moving sterile seeds to places of high humidity while moving seeds with the “preferred” 

level of moldiness to areas of low humidity. In contrast, Eastern woodrats (Neotoma 

floridana) were more likely to consume food items that had high levels of fungal 

infection than food items with either no or intermediate levels of infection (Herrera & 

McDonald, 1997).  Advantages resulting from the management and subsequent ingestion 

of moldy seeds include increased nutritional value and/or increased seed moisture content 

(Rebar & Reichman, 1983; Reichman et al., 1986).  Thus, fungi can indirectly affect seed 

mortality due to predation by granivores, in addition to directly affecting mortality.  

Some research suggests that plant-animal-microbe interactions are important at 

the population and community level within natural systems, which may have implications 

for restoration of these degraded systems.  It is possible that this association could 

positively affect subsequent plant establishment thus influencing patterns of vegetation 

development in seeded areas where high densities of abandoned harvester ant mounds 

occur, as well as by altering rates of seed losses to predators.  Recently, seeds coated with 

mycorrhiza inoculum have become commercially available for wildland restoration.  

How these seeds compare in granivore preference with un-coated native seeds is not 

known and merits investigation.  

 
B. RESOURCE-WIDE QUALITIES 

To better understand, predict, and potentially manage seed removal by granivores 

within the framework of arid-land restoration it is important to also consider resource-

wide factors.  The patterns of seed dispersion in time and space, the overall amount of 

seed present, the combinations of seed species available, and the characteristics of the 
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substrate all potentially influence the seed-seed consumer interaction.  Here we consider 

the potential impact of such factors on seed removal in the heterogeneous arid-land 

environment.  Understanding these effects in conjunction with the effects of factors 

unique to the seed will help predict outcomes and better establish management strategies 

for organisms in the context of reseeding events. 

 
1. Seed Dispersion Patterns 

Although seeds are available year round, and can lie dormant in the seed bank for 

one or more seasons, they generally come in annual pulses and can be variable spatially 

as well (Crist and MacMahon, 1994).  These pulses of seed resources are parallel in many 

ways to the manner in which a reseeding event would occur.  Seed application by drilling 

or broadcasting by plane or tractor in many instances pulses similar seed densities to what 

might occur in natural more intact systems (Longland et al., 2001).  Therefore, evaluating 

how spatial and temporal seed dispersion patterns affect seed removal by granivores is 

prudent.   

Different rodent species may use naturally or artificially available seed resources 

differently.  Longland (1994) reported that heteromyid rodents harvested low density 

seed patches at similar rates to more dense seed patches.  However, Reichman and 

Oberstein (1977) suggested that smaller pocket mice can effectively forage on a dispersed 

resource similarly to a clumped resource, unlike the larger heteromyid species evaluated.  

Given the nature of restoration seedings, species-specific foraging strategies might have 

important implications when the composition of the granivore community is known.  

When reseeding, seeds are ideally placed in a relatively regular pattern that minimizes 
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clumping.  Thus, if smaller pocket mice or a diverse heteromyid community is present at 

the site of reseeding it is possible that large quantities of seeds could be lost to predation 

or secondarily dispersed (i.e. seed caching) by these animals.  It is not clear how rodents 

might negotiate seeds sown by drilling that are in reality quite dense, but in a very long 

and thin linear clump. 

Clumping creates variable seed densities at a small scale, with some patches 

having high densities of seeds (the clumps) and others with few seeds. Density-dependent 

foraging has been well demonstrated in both granivorous rodents and ants in North 

American deserts (Nelson & Chew, 1977; Price & Heinz, 1984; Mull & MacMahon, 

1996; McMurray et al., 1997; Veech, 2001).  Veech and Jenkins (2005) define density-

dependent foraging as the harvest of a greater proportion of seeds from high-density 

patches than from low-density patches.  Greater harvesting from higher density patches is 

presumed to be driven by greater energy gain per unit time (Charnov, 1976).  In at least 

some cases the harvest rate increases uniformly with seed density (Price & Heinz, 1984), 

though such a regular pattern is unlikely to be universal.  However, foraging decisions are 

not driven only by energy gain; for example, foraging behavior can be altered by the 

perceived risk of being eaten (Longland & Price, 1991).  Optimal foraging theory 

(Charnov, 1976) suggests that animals should balance time spent foraging with associated 

costs.  In this light, Bowers (1990) experimentally evaluated these tradeoffs at the scale 

of individual small-scale resource patches and showed that Dipodomys merriami accepts 

proportionately more risk at higher resource levels.    

Beyond small-scale density effects within local seed patches, overall seed density 

within the foraging range of the organisms and satiation effects are also important, 
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especially within the context of reseeding events. Satiation is thought to be an evolved 

interaction among fruiting plants and the animals that eat them.  The predator satiation 

hypothesis suggests that during mast years plants will produce more seeds than can be 

eaten by local seed predators so that some escape predation and germinate (Silvertown, 

1980; Kelly & Sork, 2002).  Implied in this hypothesis is that seed predators will starve 

or move elsewhere during non-mast years, when few or no seeds are produced (Ostfeld et 

al., 1996).  It is unknown how seed supplementation through large-scale seedings affects 

seed survival in terms of seed predator responses in arid-land environments.  This is an 

area of research that merits investigation.  In particular, the effects of seeding densities on 

seed harvesting are critical to understand. 

In addition to seed dispersion horizontally we must also consider how seeds are 

dispersed vertically (i.e. depth).  In drill seeding (see Young & McKenzie, 1982), several 

factors are considered to determine seeding depth (e.g., seed material, soil texture, and 

seasonal precipitation).  Although these variables are generally considered solely in terms 

of how they affect the germination, emergence, and establishment of seedlings, all of 

these can also influence seed detection by rodents.  Rodents can detect seeds in the soil 

by olfaction as well as random searching.  Deeper seeds should be in theory more 

difficult to find by either chance or by smell, although in reality the effect of depth on 

detection is complicated by soil texture and substrate moisture (see below).  As an 

example, Indian ricegrass seeds were harvested in greater quantities by Dipodomys spp. 

when they were more shallowly buried (Longland, 1994).  Ideally, then, depth of burial 

would consider both suitability for germination and emergence of the species as well as 

the effect of depth on seed losses to granivores (see Figure 1.1).  Finding the optimal 
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depth that balances seeding depth where maximal seedling emergence can occur while 

considering the depth were seeds are essentially hidden from seed predators would be 

ideal.  Along these lines, Vander Wall (1993) showed that an overlap occurred between 

chipmunk caching depth and the depth at which bitterbrush (Purshia tridentata) seedlings 

best establish.  Such an approach could help determine suitable planting depths for 

restoration seeds while reducing the likelihood seeds will be located by foraging animals, 

thus helping management decisions.  Note from the hypothetical example in Figure 1.1 

that such a consideration may lead to a different ideal depth of drilling than would be 

selected based only on consideration of seedling emergence as a function of depth. 

 
2. Seed Mixture Effects 

Although seed removal studies are usually based on single seed-species 

experiments, seed mixtures are more representative of natural conditions as well as 

ecological restoration where multiple seed species are applied together on the landscape.  

Seeds in resource mixtures could be preferentially harvested or, conversely, could escape 

harvest as a function of the specific seed neighborhood they are in.  Therefore, relative to 

monospecific seed arrays, the potential outcomes of seed mixtures are threefold: 1) an 

overall increase, 2) an overall reduction, or 3) no change in removal rate or preference of 

any given seed species.  The context-dependent effects of outcomes 1 and 2 will alter 

relative preference, fate, and harvest rates of seeds, resulting in changed patterns of plant 

establishment and, potentially, vegetation structure.   

First consider the case where mixed-seed neighborhoods increase the 

susceptibility of a specific seed species to harvesting.  This negative result, considered by 
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some a form of “apparent competition” (sensu Veech 2000, 2001), occurs when an 

increased quantity of one seed species leads to a decrease in the abundance (increased 

harvest) of the second seed species.  Veech (2000, 2001) and Veech and Jenkins (2005) 

demonstrated short-term apparent competition among seeds of desert plants fed on by 

Heteromyid rodents.  For example, Achnatherum hymenoides had a negative indirect 

effect on Astragalus cicer because rodents foraged less in patches that only contained 

Astragalus cicer than they did in patches with both seeds present (Veech, 2001).   

Similarly, in forests of Chile, harvesting of the less-preferred Nothofagus dombeyi seeds 

increased in the presence of Austrocedrus chilensis seeds (Caccia et al., 2006).  The 

alternative case, “apparent mutualism,” occurs if an increase in one species leads to an 

increase in the second species through reductions in seed harvesting in mixtures.  

Theoretically, a seed forager’s search image could become complicated or confused by 

seed mixtures so that they fail to find as many preferred seeds in mixture.  The same 

outcome can come from a reduced efficiency of locating desirable seeds in diverse seed 

mixtures or among seeds that require increased handling time before the animal can 

perceive its relative desirability.  In this light, the harvesting of several desirable 

perennial restoration seeds was reduced when present with seeds of cheatgrass (Bromus 

tectorum) relative to when present alone (Chapters 4 and 6).  If preference drives these 

patterns such studies demonstrate that granivore-mediated indirect effects can affect seed 

survival patterns depending to the predators’ preferences for alternative seed types when 

present in mixed seed patches. 

Previous work by Veech (2000, 2001) and Veech and Jenkins (2005) have used 

the ecological foundation of indirect effects (i.e. apparent competition and indirect 
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mutualism) as a theoretical framework for explaining the patterns of seed removal in the 

context of seed mixtures versus single seed patches (see Holt, 1977; Holt & Kotler, 1987; 

Caccia et al., 2006).  They use apparent competition and apparent mutualism from the 

perspective of plant population responses, which we argue would be appropriate if the 

data indicate changes in plant population size(s) that are directly due to seed-seed 

interactions mediated by shared predators/dispersers.  However, we suggest that a 

different, similar framework is more appropriate for considering context-dependent 

effects of seed mixtures on seed removal when considering the foraging process itself; 

that is, when the data deal only with the harvesting of seeds, which is the usual case, and 

not with the resultant demography of the plants.  This framework follows the terminology 

used by many authors studying herbivory in monospecific versus mixed vegetation 

assemblages (see Tahvanainen & Root, 1972; Atsatt & O’Dowd, 1976; Rausher, 1981; 

Wahl & Hay, 1995; Callaway et al., 2005; Miller et al., 2007).  In this framework, when 

more seeds are harvested from mixed patches than from monospecific patches there is 

evidence for “associational susceptibility” (sensu Tahvanainen & Root, 1972); the seed is 

more “susceptible” when it is associated with that particular heterospecific seed 

neighborhood.  Other terms used to describe this outcome include “shared doom” and 

“associational damage” (see Thomas, 1986; Wahl & Hay, 1995).  In contrast, when seeds 

have reduced harvesting when in mixture than when alone there is “associational 

resistance”; seeds in mixed patches are more resistant to harvesting in this context (see 

Chapter 3). 

Context-dependent foraging is a broad area of ecological research including 

subjects ranging from humans to hummingbirds.  Density-dependent foraging, granivore 
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preferences for alternative seed types, and prey switching have been suggested as 

potential behavioral mechanisms leading to indirect/associational interactions at the seed 

stage (see Veech, 2001).  However, only a handful of studies have examined patterns of 

seed removal considering seed mixture as a context-dependent effect (Veech 2000, 2001; 

Veech & Jenkins, 2005; see Chapters 3, 5, and 6) for granivores in North American 

deserts.  All previous studies have focused on rodents as the primary granivore, and to 

our knowledge these frameworks have been extended to ants only in this dissertation 

(Chapter, 3).   

We argue for continued evaluation of context-dependent effects among seed 

mixtures, not only in the context of increasing our understanding of basic ecological 

interactions but also in the context of managing reseeding events as part of ecological 

restoration activities.  Altering seed mixtures is potentially a relatively simple task 

managers could use to reduce seed harvesting by granivores.  If the granivores are 

functionally seed predators, the desired outcome would be one of associational resistance 

among the seed materials chosen for reseeding, which would result in overall reductions 

of harvest and presumably increased probabilities of seed germination and seedling 

establishment (see Chapter 7).  On the other hand, if seed dispersal (caching) by rodents 

is beneficial in restoration seedings perhaps a seed mixture that promotes associational 

susceptibility of the species would be desired.  More research investigating how these 

behavioral processes operate in managed systems is suggested.  
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3. Soil and Related Edaphic Effects 

Soil has an important role in seed-seed consumer dynamics as well as within the 

consideration of restoration and more specifically reseeding, because the soil is the 

medium where seed-seed remover interactions occur.  Soil texture (Price & Heinz, 1984) 

may have important effects on both the distribution of desert rodents and ants and on the 

energetic costs of digging burrows and foraging for buried seeds.  Soil texture influences 

the energetic costs associated with the separation of soil particles from the target particles 

(i.e. seeds) within the matrix (Price & Podolsky, 1989).  Additionally, soil texture affects 

burrow humidity and potentially subsequent fungal infection (see above) of stored seeds 

for these fossorial organisms (see Kay & Whitford, 1978; Herrera et al., 1997). 

Understanding how soil texture might relate to predicted seed losses by granivorous 

animals could aid in determining seeding rates to account for expected removal.   

Rake-sorting and gravity-sorting mechanisms are used by rodents to remove seeds 

from the soil matrix (see Price & Podolsky, 1989).  When foraging animals move the 

forefeet forward and then down and back in a raking motion, the claws are spread open 

and larger particles are retained while smaller particles pass, hence “rake-sorting.”  At the 

same time, the sides of the excavation pit cave in and gravity concentrates the larger and 

the less heavy particles on the surface near the bottom of the pit, hence “gravity-sorting.”  

Price and Podolsky (1989) showed that soil texture influences the size of seed selected. 

Moreover, rodents use different methods to extract seeds from soils of different textures 

and species differ in the influence of texture on seed extraction; nonetheless, all species 

evaluated were able to extract seeds best from fine-textured, heavy soils (Price & Heinz, 
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1984; Price & Podolsky, 1989). If seed size selection is in fact influenced by soil particle 

sizes, it may at times be prudent to choose smaller or larger seeds to reduce the removal 

of the target restoration seed by these animals.  If, for example, high seed losses occur 

managers could select seeds that are either of similar or smaller sizes than the soil 

particles, thereby reducing the efficiency of rake-sorting seed extraction.  Such 

application would likely only be an option in sandy or gravely large-particled soils. That 

is, selecting smaller-seeded species might be a good choice when seeding coarser 

textured soils to reduce losses to foraging animals. 

 
4. Substrate Moisture 

Seeds rapidly absorb water when the environment around them becomes moist.  

Soil moisture promotes the release of odorant molecules from seeds otherwise hidden 

from granivores in the soil (Vander Wall, 1994).  For many rodent species, olfaction is a 

primary means for the detection of seeds in the soil.  The North American deermouse 

(Peromyscus maniculatus), Great Basin pocket mouse (Perognathus parvus), and yellow 

pine chipmunk (Tamias amoenus) were able to detect seeds of three palatable species 

significantly better in moist (>99 % discovery rate) than in dry substrate conditions 

(overall a 13 % discovery rate) (Vander Wall, 1994).  Vander Wall (1994) suggests this 

outcome is a consequence of the rodents’ reduced ability to smell seeds in a dry substrate 

as opposed to a potential preference in conditions where seeds are simply easier to detect 

in moist substrates.  However, the species studied differed in the ability to detect seeds in 

dry soil.  Perognathus parvus found more seeds in the dry substrate than did the other 
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two rodent species, which may be evidence for shifting competitive relations among 

granivorous rodents as a function of soil moisture (Vander Wall, 1994).   

 
V. Synthesis 

 Great Basin sagebrush communities are rapidly being converted to non-native 

annual rangelands and consequently occur where ecological restoration practices are 

presently being extensively conducted.  However, the conversion of these landscapes is 

moving faster than the scientific advancement of the field of arid-land restoration.  

Ecologists struggle to find suitable restoration prescriptions to redirect the trajectory of 

degraded landscapes toward systems.  At the same time ecologists realize how little we 

know about the many species that inhabit sagebrush communities let alone how they 

might be affected by these changes and how they might themselves influence the changes 

and the recovery.  Restoration of these arid-lands will require a multi-pronged approach 

that must consider dynamics of undisturbed communities while understanding we are 

working toward a moving target.  Granivory is one such dynamic; it has been shown to 

be an important and potentially even a keystone process in the arid west.  As such, a 

continued research focus on granivory within the framework of ecological restoration is 

suggested. 

 
VI. Preface to Dissertation Research 

The research in this dissertation is centered on two inter-related themes related to 

granivory in the context of sagebrush community restoration.  First we consider the 

community compositions and abundances of granivorous ants and rodents in intact big 
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sagebrush (A. tridentata) communities compared to those in converted cheatgrass (B. 

tectorum)-dominated annual grasslands.  Because sites dominated by cheatgrass 

monocultures are in greatest need of ecological restoration, it is critical to understand the 

composition of granivore communities in these degraded sites relative to those found in 

more pristine sites because the granivore communities will ultimately influence the 

dynamics and patterns of seed removal (see below).  Chapter 2, on ant assemblages in 

intact sagebrush and converted cheatgrass monoculture habitats, reports marked shifts in 

ant community structure, between the two vegetation types, primarily based on large 

changes in the abundance of species.  Shifts in total species richness and diversity were 

not detected.  Chapter 4, on rodent community assembles in Great Basin sagebrush 

communities and converted Bromus tectorum habitat types, shows even more extreme 

differences among vegetation types. This work corroborates the findings of others who 

have reported marked reductions in total abundance, species richness/diversity of rodent 

species in the cheatgrass-dominated monocultures relative to intact sagebrush.   

The second theme of this dissertation is an exploration of factors influencing seed 

removal by ants and rodents.  As such, the remaining data chapters report on three 

separate seed removal experiments (one for ants and two for rodents) with special 

attention to context-dependent effects.  Chapter 3, on associational resistance and the 

importance of among- and within-patch characteristics on seed selectively by Western 

harvester ants (Pogonomyrmex occidentalis), considers the effects of large scale and 

small scale among-patch factors as well as within-patch factors on seed removal patterns 

by this ubiquitous granivorous ant species.  In chapter 5, we use a novel statistical 

approach in the ecological sciences, beta-distributed regression, to evaluate the presence 
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of associational interactions among seed mixtures in a rodent-specific seed removal 

experiment.  In the final data chapter, chapter 6, we ask whether total seed densities and 

relative proportions of two co-occurring seed species affect seed preferences by 

granivorous rodents.  In this chapter we report on evidence for the occurrence of 

associational effects among seed mixtures mediated by rodents.  Chapter 7 provides both 

a template for summarizing this research and a review of granivory in the context of 

restoration that outlines the ecological foundations of granivory while considering the 

management implications.   
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Figure 1.1. Theoretical depiction relating seeding depth to the probability of 
seedling emergence of surviving seeds based only on the effects of depth of seed 
germination and the ability of seedlings to emerge through the soil (solid line), the 
probability of seeds surviving in the soil un-detected by granivorous rodents (dotted 
line), and the probability of recruitment based on surviving and emerging which is 
the product of the first two lines (dashed line).  Note that in this hypothetical 
example the best seeding depth considering the effects of rodents as well as the 
ability of a surviving seed to emerge as a seedling is deeper than would be predicted 
based only on the ability of a seedling to emerge.  
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CHAPTER 2 

 
 

ANT ASSEMBLAGES IN INTACT SAGEBRUSH AND CONVERTED 

CHEATGRASS-DOMINATED HABITATS IN RUSH  

VALLEY, TOOELE COUNTY, UTAH, USA2 

     Abstract.     Biological invasions are considered one of the greatest threats to native 

species in natural ecological systems.  One of the most successful invasive species is 

Bromus tectorum (cheatgrass), which is having marked impacts on native flora and 

ecosystem processes.  However, we know little about the effects of this invasion on 

native animal species in the Intermountain West.  Because ants have been used to detect 

ecological change associated with anthropogenic land use, they seem well suited for a 

preliminary evaluation of the consequences of cheatgrass-driven habitat conversion.  In 

the current study we assessed ant community assemblages in intact sagebrush and nearby 

cheatgrass-dominated vegetation using pit-fall traps.  Ant abundance was about 10-fold 

greater in cheatgrass-dominated than in sagebrush plots although there was no indication 

that ant species diversity differed.  There was a trend for functional group evenness to be 

more homogenous at sagebrush plots compared to cheatgrass-dominated plots, which is 

consistent with results from some other insect community shifts in similar habitat 

comparisons. Further, we noted a general trend that common species/functional groups 

increased in abundance while the un-common species/functional groups seemed to be 

negatively impacted but cheatgrass conversion.  More specifically, most functional 

                                                 
2 Coauthored by Steven M. Ostoja, Eugene W. Schupp, and Kelly Sivy 
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groups had greater abundances in cheatgrass-dominated plots, opportunists and cold 

climate specialists were more abundant in sagebrush plots.  This initial survey of ant 

communities from intact native and altered vegetation types may be suggestive of similar 

trends of biodiversity shifts throughout the Intermountain West where cheatgrass has 

successfully replaced native species.  The implications of ant communities on land 

management activities specifically in the context of arid-land ecological restoration are 

also discussed.   

 
INTRODUCTION 

Initially accidentally introduced in contaminated livestock feed, Bromus tectorum 

(cheatgrass) has become a very successful invader into novel habitats throughout the 

United States (Novak and Mack 2001). Climate change, overgrazing by livestock, and 

general poor management practices initially facilitated invasion by B. tectorum in 

sagebrush habitats (Billings 1990, Fleischner 1994).  However the subsequent conversion 

of sagebrush habitat to annual grasslands dominated by the non-native B. tectorum is 

most closely tied to fires throughout the Intermountain West (D’Antonio and Vitousek 

1992, Fleischner 1994, Brooks et al. 2004).  It is estimated that about 40,000,000 ha have 

been invaded by or converted to near monocultures of B. tectorum within this region (see 

Link et al. 2006).  Because of extensive fine fuels of B. tectorum, invaded communities 

are subjected to recurrent frequent fires that reinforce the conversion (Pellant 1989).   

B. tectorum is proving to be one of the greatest threats to species diversity, 

threatening the historically-rich biotic diversity once a part of the Intermountain West 

(Vale 1975, Billings 1990).  Many animals dependent on sagebrush and associated 
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vegetation are thought to have been greatly reduced or eliminated all together (Pimentel 

et al. 2000).  Reports indicate that the conversion of sagebrush habitat to B. tectorum 

negatively impacts native animal species, such as sage grouse and small mammals 

(Yensen et al. 1992, Wirth and Pyke 2003, Chapter 4), but there is little understanding of 

the effects of conversion on less charismatic species like invertebrates.  Although we 

assume that invertebrates respond similar to mammals and birds, there are few data 

evaluating this assumption.   

 Terrestrial invertebrates can be good indicators of ecological change associated 

with land use activities such as mining, restoration, and grazing (Andersen and Majer 

2004).  Specifically, ants have received much attention from ecologists as bio-indicators 

in land management and restoration because they are thought to respond in ecologically 

interpretable ways to environmental changes associated with disturbances (King et al. 

1998, Hoffmann and Andersen 2003).  Further, it is thought that ants are good indicators 

of the potential responses of a variety of species across very different taxonomic groups.  

For example, Andersen and Sparling (1997) found a relationship between aboveground 

ant activity and belowground decomposition processes at altered sites, and a negative 

correlation between ant species richness and soil microbial biomass across a range of 

undisturbed sites.  This may be suggestive of the consequences of differentiating between 

within-habitat variation due to disturbance and variation across unique habitats when 

selecting for bio-indicators of ecological change (Andersen and Sparling 1997, Andersen 

1997, Andersen et al. 2002).  Thus, in the face of a changing sagebrush desert landscape 

throughout the Great Basin ants are appropriate groups to evaluate. 
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In this study, we evaluated ant communities of intact sagebrush and of adjacent 

areas converted to B. tectorum in the Great Basin of western Utah, USA.  In addition to 

their value as bio-indicators, some species of ants harvest large quantities of seed.  

Because seed application is a frequent restoration strategy in these invaded habitats, ant 

communities was considered especially relevant for understanding the impacts of 

vegetation change.  Our hypotheses were: (1) cheatgrass-dominated sites will differ in 

total ant abundance and species composition from nearby intact sagebrush sites, (2) 

conspicuous species (i.e. Pogonomyrmex occidentalis) will be more abundant in 

cheatgrass-dominated than in sagebrush sites. This second hypothesis is based on a 

previous finding that P. occidentalis mound densities is significantly higher in cheatgrass 

than in sagebrush locations (Ostoja unpublished data), coupled with the finding of 

significantly lower rodent species richness and abundances in cheatgrass monocultures 

(Chapter 4).  Both hypotheses are relevant to ecological restoration.  

 
METHODS 

Study site and species 

Study site - This study was conducted in Rush Valley in west-central Utah in an 

area referred to as Vernon Hills, Tooele County, Utah, USA (12 384335E 4438482N), 

approximately 155 km southwest of Salt Lake City, Utah.  Six study plots were 

established; three 1.5-ha plots were in intact sagebrush vegetation (sagebrush hereafter) 

and three plots were in nearby annual non-native vegetation dominated by B. tectorum L 

(cheatgrass-dominated hereafter).  Although perhaps not initially identical to the 

sagebrush plots, all cheatgrass-dominated plots were previously sagebrush-dominated 
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shrub stands that were converted to their current state by a fire in 1998; some of these 

plots were explored as potential field sites before the fire by the second author.  In 

addition, all plots occur on the Hiko Peak soil series, where the potential plant 

community consists of about 45% perennial grasses, 15% forbs, and 40% shrubs, 

dominated by Wyoming big sagebrush (Artemisia tridentata wyomingensis) (NRCS 

2000).  To our knowledge, no post-fire seeding or other attempts at restoration occurred 

(Dan Washington, Salt Lake Field Office, USDI Bureau of Land Management, 

pers.comm.). 

Vegetation of sagebrush plots was typical of Wyoming big sagebrush 

communities of the Great Basin.  In addition to Artemisia tridentata ssp. wyomingensis 

(Wyoming big-sagebrush), other shrubs such as Atriplex canescens (fourwing saltbush), 

Gutierrezia sarothrae (snakeweed), Chrysothamnus viscidiflorus (yellow rabbitbrush), 

and Ephedra viridis (Mormon tea) were present.  The area between shrubs was 

dominated by the grasses Achnatherum hymenoides (Indian ricegrass), Elymus elymoides 

(bottlebrush squirreltail), Poa secunda (Sandberg bluegrass), Hesperostipa comata 

(needle-and-thread grass), Leymus cinereus (Basin wildrye), Pseudoroegneria spicata 

(bluebunch wheatgrass), and some B. tectorum.   Cheatgrass-dominated plots were 

primarily B. tectorum (≥ 90% standing biomass, Ostoja unpublished data), but also had 

other weedy species including Salsola spp. (Russian thistle), Sisymbrium altissimum (tall 

tumblemustard), and Lepidium spp. (peppercress).  

 
 
Ant Sampling– In each plot, 25 pit-fall traps were placed in a 5 x 5 grid pattern 

with 20-m spacing between traps to sample the ant communities.  A trap consisted of a 

http://plants.usda.gov/java/profile?symbol=SIAL2�
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steel can (78 mm diameter) buried flush with ground level and with approximately 3 cm 

of 1:1 mixture of animal-safe propylene glycol (SIERRA® Antifreeze, Safe Brands 

Corporation) and water. Traps were baited with peanut butter placed near the inside rim 

of the can and on-quarter Pecan Sandie® cookie crumbled on the ground surface around 

the trap. Greenslade and Greenslade (1971) suggested that using bait with traps may bias 

capture rates due to variation in species-specific responses, however bait was used to 

increase the likelihood that of ants would encounter a trap (Marsh 1986).  Trapping 

occurred from June 20-22 in 2004. Traps were set and then retrieved after 48 hr. This 

duration considered as the minimum trapping period to effectively characterize ant 

communities (Bestelmeyer et al. 2000, Borgelt and New 2006).  Trapped animals were 

separated from the ethylene glycol solution, rinsed in purified water, and cold stored in 

70% ethanol until identified.   

 
 

Data analysis – Ants were identified to species using published keys, sorted, and 

counted.  Identifications were verified by E. Sarnat at the Department of Entomology at 

the University of California at Davis. Voucher specimens were deposited at the Plant and 

Restoration Ecology Lab, Utah State University and at the Eastern Oregon Agricultural 

Research Center, Oregon State University.  We were able to positively identify >99% of 

our specimens.  All three “Formica fusca” specimens considered in our data analyses 

were identified to the Formica fusca group, but they could not be identified to species 

with total certainty due to missing critical taxonomic features.   

Identified species were assigned to functional groups according to their species-

group responses to environmental stress and disturbance following previous studies of 
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ants as bioindicators (Andersen 1997).  These groups are dominant Dolichoderinae, 

subordinate Camponotini, hot-climate specialists, cold-climate specialists, cryptic 

species, opportunists, and generalized Myrmicinae. See Andersen (1997) for detailed 

descriptions of functional group designations.    

Ant pitfall data were log-transformed at the trap level, and summed for each plot 

to minimize bias associated with variation in proximity of traps to nests, foraging 

strategies, and colony size (Suarez et al. 2000).  Overall taxon abundances in pitfall traps 

were first assessed by summing the abundances of a species across the three plots in a 

vegetation type (i.e. cheatgrass-dominated or sagebrush).  Simpson’s, Shannon’s, and 

McIntosh indices for diversity and Shannon’s and McIntosh evenness indices were 

calculated for both vegetation types separately by species and by functional group.  We 

used t-tests to compare ant species functional group richness, abundance, diversity, and 

evenness between vegetation types.  Log-normal species abundance curves were used to 

visually compare proportional abundances between vegetation types.  Additional t-tests 

allowed for the comparison of species and functional group abundances among the two 

vegetation types.  All statistical analyses were conducted using SYSTAT 12 (SYSTAT 

2007), unless otherwise noted in the text.  Significance for all analyses was accepted at α 

= 0.05.  Taxa were treated at the species level for richness and other statistical analysis, 

unless treated as functional groups, allowing for ecological interpretation of taxon 

responses to vegetation type (Bestelmeyer 2005).  Mean ± standard errors (SE) are 

presented throughout.  Because data were collected at the southern end of the Rush 

Valley region statistical inferences are limited to the study area (Wester 1992).  
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RESULTS AND DISCUSSION 

 
Patterns of richness, diversity, and abundance 

 
Surprisingly ant species richness was similar between the two vegetation types.  

Sixteen species were identified in this study, 15 in cheatgrass-dominated plots and 14 in 

sagebrush plots (Table 2.1).  Thirteen of these species were trapped in both vegetation 

types. Measures of diversity and evenness for individual species and for functional 

groups were also similar in the two vegetation types (see Table 2.2).  Although indices 

were consistently lower for the sagebrush plots, there were no statistically significant 

differences. 

Although not well studied, limited research suggests cheatgrass-dominated sites 

are a less suitable habitat type for some other groups of animals (birds, Knick and 

Rotenberry 2000; small mammals, Gano and Rickard 1982, Chapter 3; lizards, Green et 

al. 2001, Newbold 2005a and b; snakes, Mull 2008, in press) in the Intermountain West.  

If the present results are suggestive of patterns across a broader geographic range, at least 

in terms of species diversity and evenness, ants may not respond negatively to sites 

dominated by cheatgrass.  However, a closer consideration of shifting patterns in terms of 

species and functional group abundance(s) provides a more complete understanding of 

how cheatgrass conversion affects ant communities.   

Species rank abundance curves indicate that ant communities from both 

cheatgrass-dominated and sagebrush plots follow a lognormal distribution (Fig. 2.1), a 

pattern also documented for North American desert ant communities in southeastern 

Arizona, USA (Chew 1977).  Total ant abundance differed significantly between the two 
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vegetation types, being about 10-fold higher in cheatgrass-dominated plots (10342 ± 682) 

than in sagebrush plots (1075 ± 112), which was opposite the hypothesized pattern 

(Tables 2.1 and 2.3).  In both cheatgrass-dominated and sagebrush plots the most 

abundant species was Monomorium ergatogyna, which was an order of magnitude more 

abundant than the second most common species (Fig. 2.2).  Individual species were not 

equally abundant within either the cheatgrass-dominated (F 15,32 = 23.1; P < 0.0001) or 

the sagebrush plots (F 15,32 = 15.9; P < 0.0001) (Fig. 2.2).  Moreover considering 

abundances at the functional group level, abundance did not differ significantly among 

groups in the sagebrush plots (F 6,41= 2.05;  P = .079), although this difference was highly 

significant in the cheatgrass plots (F 6,41 = 4.94;  P < 0.0001).   

Considering ant community differences in abundance in terms of the biology of 

the functional groups may provide additional insight into the patterns (see Fig. 2.3).  For 

example, particularly in warmer climates of North America, the dominant Dolichoderinae 

(DD) are considered to be active and aggressive species while other functional groups 

(i.e. OPP, CCS) are reported to be subordinate and/or to occur where the DD are not 

abundant.  With a marked relative increase in the abundance of DD in cheatgrass-

dominated plots, all three species within the CCS had relatively lower abundances, as 

would be expected (Fig. 1).  Similarly, although all species of Opportunists (i.e. OPP) 

had low abundances everywhere, one species, Aphaenogaster unita, was significantly 

more abundant in sagebrush than in cheatgrass-dominated plots.  The GM, which are 

thought to be behaviorally dominate to the DD, were in fact more abundant than the GM 

functional group in both vegetation types (Andersen 1997). Thus, there is evidence that 

something about the biology of species interactions and resource uses of the functional 
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groups likely drives not only their community structuring in general, but also their 

responses to cheatgrass conversion. However, continued research is necessary to 

disentangle the suite of potential factors affecting the observed ant community changes.  

We suggest the results of this study be considered in the context of the experimental 

design and limited scope of the study area.  A more comprehensive evaluation of 

invertebrate responses to cheatgrass conversion conducted over a larger spatial area and 

longer temporal period is suggested.   

The greater overall ant abundance in cheatgrass-dominated plots may be related to 

differences in resource availability and/or to competitive release.  Fielding and Brusven 

(1993) reported that grasshopper assemblages of sites dominated by annual vegetation 

(predominately cheatgrass) had relatively high densities of some species, which the 

authors attributed to a preference of these species for cheatgrass as a food item (also see 

Fielding and Brusven 1992).  Not enough data are available on resource use and resource 

availability to make strong conclusions about the present system, though.  However, at 

least for seed-harvesting ants such as Pogonomyrmex and Pheidole spp., competitive 

release from rodent granivores, which are less abundant and diverse in cheatgrass sites in 

this region (Chapter 3), might contribute to their greater abundances in cheatgrass-

dominated plots.  These seed-harvesting ants might increase in abundance due to 

increased resource acquisition potential in the absence of granivorous rodent competitors 

(Davidson et al. 1980).  Arid-land ants and rodents are reported to have extensive diet 

overlap (Brown and Davidson 1977), a pattern corroborated in this dissertation using 

seed removal trials for both groups (see Chapters 4, 5, and 6).  
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Considering ant community differences in abundance in terms of the biology and 

associated features of the natural history of the functional groups may provide additional 

insight into the patterns (see Fig. 2.3).  For example, the dominant Dolichoderinae (DD) 

are considered to be active and aggressive species while other functional groups (i.e. 

OPP, GM, CCS) are reported to be subordinate and/or to occur where the DD are not 

abundant.  However, even with a marked increase in the abundance of DD in cheatgrass-

dominated plots, all three species within the GM, which contains important seed-eating 

species, also had significantly greater abundances in cheatgrass-dominated plots (Fig. 

2.2).  Conversely, although all species of Opportunists (i.e. OPP) had low abundances 

everywhere, one species, Aphaenogaster unita, was significantly more abundant in 

sagebrush plots than in cheatgrass-dominated plots.  Similarly, the CCS, represented by 

the genus Temnothorax at our sites, was as expected more abundant in the sagebrush 

plots (Figs. 2.2, 2.3).  Likewise, the SC which is considered behaviorally submissive to 

DD was significantly more abundant in sagebrush plots. Thus there is evidence that 

something about the biology of species interactions and resource uses of the functional 

groups drives there responses to cheatgrass conversion. However, continued research is 

necessary to disentangle the suite of potential factors affecting the observed ant 

community changes.  We suggest the results of this study be considered in the context of 

the experimental design and limited scope of the study area.   

 
Conservation, restoration, and management implications 

 
Cheatgrass-dominated sites are a major target of restoration in the semi-arid 

western USA.  Because restoration often involves the application of large quantities of 
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seed, it is important to understand how seed harvesting species such as Pogonomyrmex 

spp. and Pheidole spp. are affected by conversion to cheatgrass.  All species within these 

seed harvesting genera were more abundant in cheatgrass-dominated plots than in 

sagebrush plots.  This can have important implications where aerial broadcast seeding is 

used.  Some species of Pogonomyrmex are reported to remove 10% of the annual seed 

production, although they may remove 100% of more preferred seed types (Crist and 

MacMahon 1992, Mull and MacMahon 1997, MacMahon et al. 2000).  Seed losses to 

harvester ant foraging could significantly impact the success of restoration.  

Pogonomyrmex occidentalis is the most conspicuous ant in both habits, but numerically 

dominant in the cheatgrass-dominated versus the sagebrush plots.  Moreover, this species 

has a greater mound density in cheatgrass-dominated habitats than in any of seven other 

vegetation types in the area, including intact sagebrush (Tyler Logan, unpublished data).  

Overall, these results suggest that predation of desirable seeds by ants might be a 

significant problem for aerial seeding efforts in cheatgrass-dominated sites.  However, 

because ants can not locate and harvest buried seeds this should be less of a problem for 

drilled seeds (MacMahon et al. 2000). 

The shifts in the ant communities found in this study could be happening at larger 

scales throughout the Intermountain West where cheatgrass conversion is occurring at an 

alarming rate.  However, given the limited research on how cheatgrass conversion may 

be affecting other invertebrate groups it is difficult to assess whether these ant results 

represent what other groups are experiencing.  Potentially, undetected rare ant species 

may be threatened by cheatgrass conversion, as the observations reported here suggest 

rarer species are more likely than commoner species to be negatively impacted by this 
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habitat conversion.  Because other changes occur with cheatgrass conversion (i.e. soil 

morphology, soil microbial communities, and fire cycle), it is difficult to know which 

direct or indirect factors favor some species while harming others (Belnap et al. 2005).  

These results suggest that the effects of invasion on biodiversity may not be wholly 

negative but point to the continued need to assess animal communities in the face of a 

changing landscape.   
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Table 2.1. Total numbers of ants of identified species from pitfall trap samples by 
vegetation type. Functional groups of species are based on Andersen (2002), Brown 
(2000), and Bestelmeyer (2005) are also shown.  
 
Functional group/Species Cheatgrass-dominated Sagebrush 
Dominant Dolichoderines (DD)   
Notes: Abundant, very active and aggressive species, favor hot and open habitats 
Forelius pruinosus (Roger) 8241 140 
   
Cold Climate Specialists (CCS)   
Notes: Geographical distribution is cooler climates, occur where DD are not abundant.   
Temnothorax nevadensis (Wheeler) 20 25 
Temnothorax rugatulus Emery 8 22 
Temnothorax CA-10* Ward 9 10 
   
Hot Climate Specialist (HCS)   
Notes: Associated with warm climates; demonstrate morphological, physiological, or behavioral 
specializations to aridity.   
Pogonomyrmex occidentalis Cresson 2673 899 
Myrmecocystus hammettensis Cole  8 4 
Myrmecocystus testaceus Emery 88 93 
   
Cryptic Species (CrS)   
Notes: Small, often subterranean taxa which forage predominantly within soil and litter and interact little 
with other groups.   
Solenopsis molesta Say 3140 54 
   
Opportunists (OPP)   
Notes: Submissive taxa that are subordinate to DD and GM, may be locally dominant where these taxa are 
poorly represented.   
Aphaenogaster unita Wheeler 9 69 
Formica fusca  Linnaeus g -- 3 
Formica manni Wheeler 2 -- 
Myrmica tahoensis Wheeler 4 -- 
   
Generalized Myrmicines (GM)   
Notes: Mass recruiting taxa with lower tempo and are often subordinate to DD, may be dominant where 
latter are under represented.   
Monomorium ergatogyna Wheeler 14630 1686 
Pheidole creightoni  Gregg † 385 3 
Pheidole pilifera  Roger †† 1476 103 
   
Subordinate Camponotus (C)   
Notes: Co-occurring but behaviorally submissive to DD, large body size and often nocturnally foraging.   
Camponotus vicinus Mayr 3 46 
Notes: “*” is an un-described species (but see Ward 2005), “g” indicates species 
designations were for the Formica fusca group and, “†“ and “††“ indicate that specimens 
from this taxonomically difficult complex (i.e. “california complex” for P. creightoni) 
and/or the larger group (i.e. “pilifera group”) were assigned with both major and minor 
workers (see Burge 2005, Wilson 2003). 
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Table 2.2. Means for Simpson’s, Shannon’s, and McIntosh diversity indices and 
Shannon’s and McIntosh evenness indices by vegetation type for A) species and B) 
functional group (see Krebs 1999, Magurran 2004). 

 
Index Cheatgrass-dominated Sagebrush 

A) Species   

Simpson’s  diversity 0.69 0.62 
Shannon’s  diversity 1.40 1.35 
McIntosh diversity 0.43 0.37 
Shannon’s  evenness 0.52 0.51 
McIntosh evenness 0.58 0.49 
B) Functional group   

Simpson’s  diversity 0.63 0.57 
Shannon’s  diversity 1.16 1.10 
McIntosh diversity 0.39 0.33 
Shannon’s  evenness 0.60 0.56 
McIntosh evenness 0.62 0.52 
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Table 2.3. Results of paired t-tests comparing  cheatgrass-dominated and  sagebrush plots 
for total ant abundance and for species richness, diversity and evenness indices by A) 
species and by B) functional group (df = 4 for each test).   

 
 SE t P  

A) Species    

Abundance 691.4 13.40 0.001 
Richness 0.47 2.12 0.102 
Simpson’s diversity 0.06 1.34 0.249 
Shannon’s diversity 0.13 0.47 0.656 
McIntosh diversity 0.05 1.22 0.290 
Shannon’s evenness 0.05 0.21 0.845 
McIntosh evenness 0.07 1.26 0.271 
B) Functional group    

Simpson’s diversity 0.06 1.29 0.265 
Shannon’s diversity 0.21 -0.18 0.866 
McIntosh diversity 0.05 1.16 0.310 
Shannon’s evenness 0.06 0.89 0.425 
McIntosh evenness 0.08 1.32 0.257 
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Figure 2.1.  Rank abundance curves for ant species collected in (top) cheatgrass-
dominated plots and (bottom) sagebrush plots. Thirteen species were identified in 
the cheatgrass-dominated and 14 in the sagebrush plots.  Species codes are: Apun 
(Aphaenogaster unita), Cavi (Camponotus vicinus), Fopr (Forelius pruinosus), 
Fofu (Formica fusca), Foma (Formica manni), Moer (Monomorium ergatogyna), 
Myha (Myrmecocystus hammettensis), Myta (Myrmica tahoensis), Phcr (Phiedole 
creightoni), Phpi (Phiedole pilifera), Pogo (Pogonomyrmex occidentalis), Somo 
(Solenopsis molesta), Tene (Temnothorax nevadensis), Teru (Temnothorax 
rugatulus), and CA-10* (Temnothorax sp. CA-10).   
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Figure 2.2 Means (± standard errors) of abundances in pitfall traps by species in 
cheatgrass-dominated (black) and sagebrush (stippled) plots.  **indicates P ≤ 
0.001, * indicates P = 0.05 for t-tests.  Functional Groups: DD = Dominant 
Dolichoderinae, GM = Generalized Myrmicinae, C = Subordinate Camponotus, 
CCS = Cold Climate Specialists, CrS = Cryptic Species, HCS = Hot Climate 
Specialists, OPP = Opportunists; see Fig. 2.1 for descriptions of functional 
groups. 
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Figure 2.3 Means (± standard errors) of abundances in pitfall traps by functional 
group in cheatgrass-dominated (black) and sagebrush (stippled) plots.  **indicates 
P ≤ 0.001, * indicates P = 0.05 for t-test.  See Fig. 2.2 for functional group 
abbreviations.   
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CHAPTER 3 

 
 

ASSOCIATIONAL RESISTANCE AND THE IMPORTANCE OF AMONG- AND 

WITHIN-PATCH CHARACTERISTICS ON SEED SELECTIVITY3 

 
Abstract. The responses of granivorous animals to resource patches are a result of 

the combined influences of (1) the abundances of individual seed species in patches and 

their associated traits and (2) the overall availability of seed resources available to the 

granivores.  In a field experiment we tested the importance of within- and among-patch 

characteristics on the removal of various seeds by Western harvester ants 

(Pogonomyrmex occidentalis).  The within-patch effect considered the interactions 

among seed species in mixed seed patches with special attention to associational effects 

among the seed species in mixtures that are mediated by a shared consumer of those 

seeds.  If a focal seed species incurs an increased rate of removal when present with a 

second seed species the outcome is termed “associational susceptibility.”  Conversely, if 

the focal seed has a lower removal rate when present with the second seed species the 

outcome is “associational resistance.”  Among-patch effects included small spatial scale 

effects of different distances from a focal ant mound and the larger spatial scale effects of 

different background vegetation communities. Selected species of seeds were presented 

in fixed quantities both alone (monospecific treatment) and in mixture with Bromus 

tectorum (cheatgrass) seed (mixed treatments) at four spatial locations with respect to 

active P. occidentalis mounds in adjacent sagebrush and cheatgrass-dominated 

communities in the eastern Great Basin of Utah, USA.  Among-vegetation type 

                                                 
3 Coauthored by Steven M. Ostoja and Eugene W. Schupp 
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characteristics were important determinates of seed removal patterns and selectivity. We 

found greater levels of seed removal in sagebrush plots compared to cheatgrass-

dominated plots for all seed types.  Moreover, the smaller-scale among-patch effect was 

also important in that the spatial location with respect to the mound affected seed 

harvesting, particularly in the cheatgrass-dominated plots.  Within-patch characteristics 

(i.e. seed mixture) were important, but importance differed among the seed types.  

Overall, however, we found a trend for associational resistance of cheatgrass seeds on the 

other species they were mixed with.  These results demonstrate the importance of 

context, such as background vegetation, foraging distance, and seed mixture or resource 

availability, when considering seed removal patterns and rates.    

 
INTRODUCTION 

Large quantities of seed are consumed by granivores (Brown et al. 1979, Brown 

and Munger 1985, Crist and MacMahon 1992, Longland 1994), and selective seed 

predation in arid and semiarid communities can have important direct and indirect effects 

on vegetation (Brown et al. 1979, Davidson et al. 1980, 1985, Brown and Heske 1990).  

This seed-seed consumer interaction can alter probabilities of seed survival, affect seed 

pool reserves, and create shifting patterns of seedling recruitment for both annual and 

perennial plants.  While total resource (i.e. seed) availability affects seed harvesting 

patterns by granivores, selectivity and consumption of individual seed species are 

strongly influenced by the morphological and chemical characteristics of seeds.  In 

simple single-species seed choice experiments it is presumed that these attributes of 

individual seed species explain removal by granivores. However, the scenario is 
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complicated in situations where more than a single seed species is available, as is typical 

in natural environments (Atsatt and O’Dowd 1976, Veech 2001).  Therefore, the 

likelihood of a seed being consumed is not only a function of its own characteristics, but 

also a function of the characteristics of co-occurring seeds in that patch.  Moreover, 

unrealistic seed densities and/or the use of non-native seeds in choice experiments may 

produce results that are difficult to scale to an understanding of how ants influence seed 

pool dynamics in natural environments (Crist and MacMahon 1992). 

Considering indirect interactions among plants, Atsatt and O’Dowd (1976) argued 

that susceptibly to attack is affected by the identity and proximity of neighbors.  

Potentially, a seed species subject to high rates of predation can gain protection when it is 

present with seeds deemed less desirable by generalist granivores. This effectively 

operates as an associational refuge, a form of the associational plant refuge theory (Pfister 

and Hay 1988, Milchunas and Noy-Meir 2002).  This reduction in predation when in 

mixture with other species is termed “associational resistance,” which has been widely 

documented in studies investigating how herbivores respond to focal plants in diverse 

vegetation patches.  Alternatively, a given seed species can suffer increased harvesting 

when in mixed or diverse patches compared to when in single-species patches (i.e. 

attractant/decoy hypothesis, Atsatt and O’Dowd 1976).  This has been called 

“associational susceptibility” (Brown and Ewel 1987), “associational damage,” or 

“shared doom” (see Thomas 1986, Wahl and Hay 1995).  Moreover, such associational 

susceptibility is likely more common than ecological reports indicate (see White and 

Whitham 2000). 
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Whether the outcome in mixed seed patches is associational resistance or 

associational susceptibility may depend on the relative desirability of co-occurring seeds, 

the likelihood of being found by potential seed predators and the scale at which predators 

select patches and seeds.  While the relative palatability of co-occurring species can 

affect whether a given plant (or seed) receives associational resistance or associational 

susceptibility, the exact effect of relative palatability is uncertain.  For example, an alga 

when present with more palatable species had increased susceptibility to herbivory, but 

when present with less palatable species it became resistant to attack (Wahl and Hay 

1995).  But the opposite results have been observed as well, with the presence of more 

desirable neighbors leading to lowered attack rates (i.e. attractant/decoy hypothesis, 

Atsatt and O’Dowd 1976).  This suggests that other variables such as habitat 

characteristics, the scale of patchiness, factors associated with foraging behaviors, and the 

species-specific responses of predators to patchiness might be important as well.  

Consequently, the role of herbivore or predator preference in determining the 

directionality of associational patterns is not clear.   

In addition to attempting to understand the outcomes of seed-granivore 

interactions from the perspective of the seed, the interaction can be further examined 

from the more direct perspective of the forager by incorporating optimal foraging theory, 

which states that animals should forage in ways that maximize energy intake while 

minimizing associated costs of travel, searching, and handling (Charnov 1976).  

Accordingly, harvester ants as single load central place foragers should concentrate 

resource acquisition at high-quality patches near the nest (see Davidson 1977), which 

effectively reduces travel time and predation risk, although such risk may vary as a 
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function of foraging strategy (Davidson 1977).  It is possible, then, that outcomes not 

predicted by the plant-perspective hypotheses above (associational relations) can be more 

thoroughly explained by a simple set of foraging rules. 

Western harvester ants, Pogonomyrmex occidentalis Cresson, are important 

granivores in semiarid systems throughout western North America (Mull and MacMahon 

1997) that can remove up to one-quarter of the viable seed pool per year (Crist and 

MacMahon 1992).  Via their selective seed predation they affect soil seed reserves and 

subsequent patterns of plant community establishment (Crist and MacMahon 1992, 

MacMahon et al.2000).  Sociality concentrates activity around a central space, the nest 

(Andersen 2001, MacMahon et al. 2000), which affects patterns of seed removal (see 

Crist and MacMahon 1992).  Distance from the nest likely affects both the types of seeds 

harvested and the total amount of seed harvested.  Theoretically, individual foragers may 

respond to fine-scale environmental factors (local food patches) whereas resource use 

variation between colonies could be influenced by differing vegetation structure or land 

use patterns (Crist and MacMahon 1991, Bestelmeyer and Wiens 2001).   

In the current study we address two relevant issues with respect to resource 

patches. First, we assessed the effects of among-patch variation in the environment on 

patterns of seed preference and seed removal rates for five native grasses common to 

Great Basin sagebrush communities, for an annual exotic grass often used in seed 

selection experiments (Panicum miliaceum, millet), and for the annual exotic weed 

Bromus tectorum (cheatgrass).  Among-patch factors were considered at two spatial 

scales.  At the larger scale we considered the effects of vegetation type by comparing 

patterns of harvest in intact sagebrush communities versus adjacent highly degraded 
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cheatgrass-dominated communities.  At the smaller scale we assessed the effects of 

distance from the focal mound.  Second, we addressed how within-patch variation 

affected seed removal patterns, where a patch was a group of experimental seeds 

presented in a small constrained seed neighborhood such that the characteristics of the 

entire patch could be assessed rapidly by foragers.  In particular, we compared the 

harvesting of seeds when in monospecific patches versus when in two-species seed 

mixtures.  The focus of this part of the study was whether seed mixtures that included B. 

tectorum seed in a patch resulted in associational resistance or associational susceptibility 

for the other species in the mixture, and whether this result was influenced by the among-

patch effects above.  This study on ant-seed interactions relates to the general ecological 

question of how shifting patterns of vegetation (e.g., cheatgrass conversion) influence 

seed selectivity and rates of removal, both of which can have important implications for 

seed choice and thus successional patterns post-disturbance.  This is of added interest 

given the apparent large differences in ant community composition in intact sagebrush 

communities and converted cheatgrass monocultures (see Chapter 2). 

   
METHODS 

 
Study site 

 
 

This study was conducted around the Vernon Hills in Tooele County, west-central 

Utah, USA (12 384335 E 4438482 N). The site is approximately 155 km southwest of 

Salt Lake City, Utah.  Six 1.2-ha study plots were established, three in intact sagebrush 

vegetation (sagebrush plots hereafter) and three nearby plots in annual non-native 

vegetation dominated by Bromus tectorum L. (cheatgrass; >90% standing biomass, S.M. 
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Ostoja, unpublished data; cheatgrass-dominated plots hereafter).  Cheatgrass-dominated 

plots were previously sagebrush communities that were converted by a fire in 1996 (Bill 

Henderson, USDI BLM Salt Lake Field Office, pers. comm.). Perhaps not originally 

identical to the sagebrush plots, all cheatgrass-dominated plots were previously 

sagebrush-dominated shrub stands that were converted to their current state by a fire in 

1998; some of these plots were explored as potential study sites before the fire by the 

second author.   All six plots occur on the Hiko Peak series, where the potential plant 

community is composed of about 45% perennial grasses, 15% forb, and 40% shrubs, 

dominated by the shrub, Artemisia tridentata wyomingensis (Wyoming big sagebrush) 

(NRCS 2000). The cheatgrass-dominated plots also had other weedy species including 

Salsola spp. (Russian thistle) and Lepidium spp. (peppercress). Vegetation in sagebrush 

plots was typical of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) 

communities of the Great Basin.  In addition to A. tridentata ssp. wyomingensis, other 

shrubs such as Atriplex canescens (fourwing saltbush), Gutierrezia sarothrae (broom 

snakeweed), Chrysothamnus viscidiflorus (yellow rabbitbrush), and Ephedra viridis 

(Mormon tea) were present.  The understory was dominated by Achnatherum hymenoides 

(Indian ricegrass), Elymus elymoides (squirreltail), Poa secunda (Sandberg bluegrass), 

Hesperostipa comata (needle and thread), Leymus cinereus (basin wildrye), 

Pseudoroegneria spicata (bluebunch wheatgrass), and some B. tectorum.    
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Seed species 

 
Seeds of the native perennial grasses A. hymenoides, E. elymoides, P. spicata, P. 

secunda, and L. cinereus were purchased from Granite Seed Company, Lehi, Utah, USA.  

Panicum miliaceum (millet), purchased from Cal Ranch Supply, Logan Utah, USA, 

Seeds of B. tectorum were collected in the vicinity of the research area by the author 

(SMO) in 2004 and 2005.  Bromus tectorum seeds were mechanically cleaned and air 

blown to removal extra coreopsis material from the embryo in the laboratory at Utah 

State University.  The native seed species were selected because they are used in 

reseeding/restoration projects in this region, few studies have used these seed species in 

the present context, and they are common to the west desert region of central Utah.  The 

weed B. tectorum was selected because it is locally common, it is widespread and still 

expanding its range, it alters ecosystem processes (e.g. soil morphology, fire regimes, 

plant-animal diversity), and it might influence target seed choice by granivores (see 

Veech 2000 and 2001).  Panicum miliaceum was also included because is has been used 

extensively in seed removal experiments (see Kelrick et al. 1986, Longland and Bateman 

1998) and has been tested with some native species as a potential decoy seed in reseeding 

projects.  In addition, results of seed preference studies for millet versus other desirable 

seed species (e.g. A. hymenoides) are inconclusive and/or vary as a function of seed 

predator type or vegetation type (see Kelrick et al. 1986, Longland and Bateman 1998).   

We use the term “seed” throughout this paper in reference to all non-ovarian 

reproductive tissues which botanically speaking are fruits.   Because the differing tissues 

among these two structures may either enhance or detract the seeds desirability as a 
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resource this distinction is thought to be a significant factor that could influence 

selectivity by a granivore (Kelrick and MacMahon 1985).   

 
Seed trays 

To quantify seed selection by ants and to determine whether the presence of 

cheatgrass seeds in a mixture affected harvesting of seed species, we designed a cafeteria-

style seed removal experiment using ant-specific seed trays fashioned out of seven-day 

plastic pill boxes with a 10-mm diameter hole placed 5 mm above the bottom of each 

individual day compartment to allow access of ants to seeds while excluding rodents and 

birds (figure 3.1).  In one set of trials seeds of all seven species were offered 

monospecifically (monospecific treatment).  A seed patch was 2 g of one of the seed 

species placed randomly in one of the “day compartments” within the seven-day box.  

Thus all species were presented simultaneously and in very close proximity, but 

individual seed patches within compartments were of only a single specifies. In a second 

set of trials seeds of the five native grasses and of P. miliaceum were presented in 

mixture with B. tectorum seeds (mixture treatments).  A seed patch consisted of 1 g of 

one of these six seed species combined with 1 g of cheatgrass seed.  Each of these distinct 

mixed seed patch types was then placed randomly within one of the “day compartments” 

of the seven-day box, leaving one compartment empty.  This resulted in 13 unique seed 

combinations overall.   

Due to the nature of the experimental design and underlying research questions 

we used seed weights rather than seed density which resulted in different numbers of 

seeds available for removal among the different seed species.  Approximate seeds 
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numbers/2 g quantity of seeds used were 512.8 seeds for A. hymenoides, 669.2 seeds for 

B. tectorum, 363.6 seeds for E. elymoides, 740.7 for L. cinereous, 338.9 seeds for P. 

miliaceum, 3333.3 seeds for P. secunda, and 454.5 seeds for P. spicata.  Mean values are 

based on 100 randomly selected seeds of each species.  

The exact consequences for the quantity of seeds removed are not completely 

clear.  Ants remove seeds one at a time, so the absolute weight removed will be sensitive 

to some extent to individual seed size.  But removal depends on many other 

characteristics besides weight, such as shape, surfaced texture, value as a resource, and 

more (MacMahon et al. 2000).  In addition, the colony can recruit more individuals to 

harvest more resources when more are available and deemed desirable (MacMahon et al. 

2000).  Ultimately, however, because we were primarily interested in understanding if the 

ecological context in which seeds were encountered changed the way ants removed seeds 

our evaluation based on seed weight rather than density is not a large problem for this 

study; the absolute removal as not as important as changes in relative removal with 

changes in context.   

In each of the six 1.2-ha plots a monospecific or a mixture tray was placed at one 

of four distances with respect to an active P. occidentalis mound (nest) in a random 

direction from the mound center.  The distances were: (1) at the edge of the mound 

clearing (mound), (2) 1 m from the mound clearing (1 m), (3) 3 m from the mound 

clearing (3 m), and 4) 5 m from the mound clearing (5 m).  Ants had access to seeds for 

48 hrs and each seed treatment x distance combination was replicated ten times per plot 

during the months of August and September 2005.  At the end of a 48-hr session seed 
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trays were collected and seeds were separated and reweighed by species to determine the 

amount of seed removed by species.   

Ants 

 
 The only invertebrate species found using the seed trays was P. occidentalis.  

Results from an ant community survey indicate that although P. occidentalis was the 

most abundant seed harvester in both vegetation types, it was more abundant in 

cheatgrass-dominated plots than in sagebrush plots (see Chapter 2).  Additionally, 

mounds of P. occidentalis were > 40/ha in cheatgrass-dominated and ca. ≤ 20/ha in 

sagebrush plots (S.M. Ostoja unpublished data). However, it is possible that other species 

of ants occasionally encountered trays and removed seeds.  

 
Statistical analyses 

 We conducted one-way analysis of variances (ANOVA) to compare seed harvest 

among the vegetation types and among seed types within each vegetation type, as well as 

among the distances within each vegetation type.  Three-way ANOVAs of seed harvest 

were performed for all seed types combined in monospecific treatments, for non-B. 

tectorum seed harvest in mixture treatments, and for B. tectorum seed harvest in mixture 

treatments.  Predictor variables were: distance from a focal mound (small scale among-

patch effects), vegetation type (sagebrush or cheatgrass-dominated; large scale among-

patch effects), the interaction between distance and vegetation type, and the trial.  

Response variables were the proportion of seeds removed for each of the seed species. 

Seed harvest from trays was also analyzed with split-plot multivariate analyses of 

variance (MANOVA).  The split-plot factor was vegetation type. We preformed three 
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separate sets of analyses to assess the (1) amount of seed harvested in monospecific 

treatments, (2) the amount of non-B. tectorum seed harvested in mixture treatments, and 

(3) the amount of B. tectorum seed harvested in mixture treatments.  Individual 

MANOVAs tested for differences among seed species in harvest from monospecific seed 

patches.  In the second set of analyses separate MANOVAs tested for differences in 

harvest among non-B. tectorum seed species  when in mixture with B. tectorum.  In the 

third set of analyses separate MANOVAs tested for differences in B. tectorum among the 

different non-B. tectorum background seed species.  In all cases the response variables 

were the proportion of seeds removed.  The predictor variables were: distance from a 

focal mound (small scale among-patch effects), vegetation type (sagebrush or cheatgrass-

dominated; large scale among-patch effects), the interaction between distance and 

vegetation type, and the trial.  The error term for the vegetation effect (main plot) was 

trial within vegetation type, while the error term for the other effects was distance x trial 

within vegetation type.    

 ANOVAs were used to evaluate the harvest of each non-B. tectorum species in 

mixed seed patches relative to the harvest of B. tectorum in the mixture.  The response 

variable was the ratio between the proportion of non-B. tectorum seeds removed and the 

proportion of B. tectorum seeds removed.  The predictor variables and error terms were 

the same as for the MANOVAs.  In all cases the proportions of seeds removed were 

arcsine transformed in order for the data to conform to the assumptions of ANOVA.  

Significance for all analyses was declared at α ≤ 0.05.  Lastly, we qualitatively evaluated 

the mean proportional shift in removal for each non-B. tectorum seed species between 

monospecific and mixture treatments to assess the potential occurrence of associational 
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interactions among the seed species tested.  All analyses were conducted with SYSTAT 

11 (SYSTAT, 2006). 

 
RESULTS 

 
Seed harvest in monospecific treatments 

 
Results of a one-way ANOVA indicated that more seed overall was removed in 

sagebrush plots than in cheatgrass-dominated plots (F1,558 = 240.3, P < 0.001).  One-way 

ANOVAs further indicated that the quantity of seed harvested differed among species in 

both the cheatgrass-dominated (F 6,273= 2.99; P < 0.007) and the sagebrush (F 6,273 = 10.4; 

P < 0.001) plots.   In both vegetation types the most preferred seeds were A. hymenoides 

and P. miliaceum whereas the least preferred seed type was B. tectorum.  Results from 

the three-way ANOVA for all seed species combined indicated that the interaction 

between distance and vegetation type were significant (Table 3.1 A). Moreover, the seed 

type x distance x vegetation type interaction was also significant (Table 3.1 A), indicating 

that both scales of among-patch characteristics interact to influence seed removal patterns 

in the monospecific treatments and that the seed species respond differently to these 

characteristics (Table 3.1 A).   

Considering seed species separately, results from the MANOVA indicate that the 

general trend in cheatgrass-dominated plots was for less seed to be harvested at 

increasingly greater distances from mounds (Fig. 3.2), although the greatest amount of B. 

tectorum seed was removed at the greatest distance from the mounds (Table 3.2, Fig 3.2).  

In contrast to the general results from cheatgrass-dominated plots, seed harvest in 

sagebrush plots tended to be greatest at the mound and at 5 m from the mound, with 



 

 

72
generally less removal at intermediate distances (see Fig. 3.2).  The main effects distance 

and vegetation type were significant for all species while the vegetation type x distance 

interaction was significant for all expect B. tectorum seed (Table 3.2).  

 
Non-B. tectorum seed harvest in mixture treatments 

Similar to the patterns for seed harvest in monospecific treatments, one-way 

ANOVA results indicated that non-B. tectorum seed harvest from mixtures was generally 

greater in sagebrush than in cheatgrass-dominated plots, although the pattern was not 

nearly as strong (F1,478 = 4.32, P = 0.04).  In contrast to the monospecific results, seed 

species did not differ in the proportion harvested in either cheatgrass-dominated (F5,234 = 

2.19, P = 0.055) or in sagebrush plots (F 5,234 = 0.935; P = 0.46).  Results from the three-

way ANOVA in the mixture treatments indicated that removal of non-B. tectorum seeds 

in mixture treatments varied due to the main effects of seed type, distance, and vegetation 

type (Table 3.1 B).  In addition, all interactions were significant except for the seed type 

× vegetation (see Table 3.1 B), and in the overall analysis the seed type × distance × 

vegetation interaction was significant (Table 3.1), indicating again the complexities of 

seed harvesting.   

Using MANOVA to evaluate seed harvest by species, the main effect of 

vegetation type in mixture treatments was only significant for L. cinereus (Table 3.3), a 

very different result than found in monospecific treatments and in the complete model 

with all species together.  In the mixture treatment the main effect of distance was 

significant for all non-B. tectorum seeds except P. secunda (Fig. 3.3, Table 3.3).  In 

contrast to monospecific results the greatest seed harvesting occurred at 1 m, especially in 
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cheatgrass-dominated plots (Fig. 3.3). The effect of distance on removal in the sagebrush 

plots appears to be primarily due to less seed harvested at 3 m (Fig. 3.3) than at other 

distances, an interesting and surprising result that produced a different pattern of removal 

compared to the monospecific treatments.  Similar to the monospecific treatment, the 

distance x vegetation interaction was significant for all species except P. secunda (Table 

3.3).  

 
B. tectorum seed harvest in mixture treatments 

The one-way ANOVA showed that seed harvest of B. tectorum in mixture 

treatments was significantly greater in sagebrush than in cheatgrass-dominated plots (F 

1,478= 179.4, P < 0.001).  Harvest of B. tectorum did not differ as a function of which seed 

species it was mixed with in sagebrush plots (F 5,234= 0.133; P = 0.984).  However, seed 

species did affect B. tectorum harvest in cheatgrass plots (F 5,234= 2.37, P = 0.04).  This 

result is like driven the increased harvest of P. secunda seeds compared to the relatively 

low harvest of the other non-B. tectorum seeds in mixture.  Similarly, results from the 

three-way ANOVA suggest that the distance x vegetation interaction was significant for 

all species expect P. secunda (Table 3.4).  There was no significant effect of seed type in 

the mixture on the harvest of B. tectorum (Table 3.1 C).  The seed type × distance × 

vegetation interaction was not significant (Table 3.1 C) for B. tectorum seed harvest.  

Results from the MANOVA analyses indicated that B. tectorum seed harvest in 

mixture was significantly affected by vegetation in all seed species mixtures and was 

significantly affected by distance when mixed with all species other than E. elymoides 

and P. secunda (Table 3.4). Overall, more B. tectorum seed was harvested from mixtures 
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at 1 m from a mound than at other distances in cheatgrass-dominated plots (Fig. 3.4), 

except for maybe when B. tectorum was present with P. secunda seeds where harvest of 

the weed seed appeared to be relatively similar at the three closest distances to the 

mound. In sagebrush plots, however, the greatest B. tectorum seed harvest was either at 

the mound or at 5 m from the mound while the least harvest was at 3 m (Fig. 3.4), and 

this trend was consistent for all seed combinations (Fig. 3.4, Table 3.4).  

 
Harvest from monospecific versus mixture treatments – evidence for  

associational resistance 

A major interest in the current research was how seed removal by ants might be 

influenced by the seed neighborhood in which a given seed occurred.  In particular, we 

were interested in whether the within-patch effect of seed neighborhood on seed removal 

varied as a function of the among-patch levels of spatial context; that is, vegetation type 

and distance from a mound.  However, in the current experimental framework, statistical 

comparison of the quantity of seed removed from monospecific treatments with 2 g of 

seed available and from mixture treatments with only 1 g of seed available is not 

straightforward.  To address this issue we used two approaches.  Our first approach was 

to analyze least square means of the ratio of non-B. tectorum seed removal to B. tectorum 

seed removal in the mixture treatments.  Means and standard errors of this analysis for 

each seed combination are in Figure 3.5.  If the point is above zero, then more of that 

non-B. tectorum seed type was removed than was B. tectorum seed, whereas if the point 

is below zero then proportionally more of B. tectorum seed was removed.   
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Patterns for this analysis are similar for four of the six seed types, A. hymenoides, 

E. elymoides, P. miliaceum, and P. spicata. All of these species were disproportionately 

harvested relative to B. tectorum seeds in the cheatgrass-dominated plots whereas B. 

tectorum was disproportionately harvest in the sagebrush plots (Fig. 3.5, Table 3.5).  

There appeared to be no discrimination either for or against L. cinereus relative to B. 

tectorum and neither the effect of vegetation nor distance significantly affected the 

pattern of relative harvest (Fig. 3.5, Table 3.5).  A unique pattern emerged in the P. 

secunda/B. tectorum combination treatment, where consistently less P. secunda was 

removed compared to B. tectorum.  The ratio of harvest did not differ among vegetation 

types or at varying distances from the mound, although the interaction between these two 

was significant (Fig. 3.5, Table 3.5). 

 For our second approach we compared the proportion of non-B. tectorum seed 

removed (i.e. percent of total) from the monospecific treatments to the proportion of the 

same seed removed from the mixture treatments, despite the potential importance of 

density dependence of seed harvesting (see Price and Heinz 1984, Chapter 6).  Because 

of the short comings of this approach (see Chapters 5 and 6), we only consider three 

possible qualitative alternative outcomes of ecological interest: 1) no difference in 

proportional removal between the two treatment types (neutral effect), 2) proportionally 

more non-B. tectorum seed removed from mixtures than from monospecific treatments 

(associational susceptibility), or 3) proportionally less non-B. tectorum seed removed 

from mixtures than from monospecific patches (associational resistance).  Seed harvest 

for all species suggests associational resistance, especially in the sagebrush plots (Figure 

3.6).  Interestingly, ants harvested a smaller proportion of the seed when there was less of 
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it initially available (that is, from the mixture treatments), strongly suggesting that the 

results are not due to satiation and that density-dependent harvesting is not biasing the 

results.   

 
DISCUSSION 

 
Generally, it is thought that seed removal patterns for seed harvesting ants like P. 

occidentalis follow two general patterns consistent with foraging theory (Charnov 1976).  

First, because they are trunk-trail or central place foragers more seeds are thought to be 

collected nearer the mound than further from the mound (Crist and MacMahon 1991, 

Anderson and MacMahon 2001).  Second, ant foraging is expected to be concentrated in 

high-density seed patches (Mull and MacMahon 1997, MacMahon et al. 2000).  

Although we did not test the density-dependent expectation, we did show that seed 

removal by harvesting ants varied as a function of distance from the mound, a small scale 

among-patch effect.  In addition we showed that harvesting varied as a function of 

background vegetation, a large-scale among-patch effect, and as a function of seed 

neighborhood, a within-patch effect.  Indeed, the fate of a seed was very dependent on the 

spatial context of the seed in multiple ways. 

 
Seed preferences 

There was a clear preference for the native seeds, especially A. hymenoides, and 

for P. miliaceum, over the non-native B. tectorum seeds, a result consistent with other 

findings (Kelrick et al. 1986, Crist and MacMahon 1991).  Note that these preference 

rankings were not clearly related to weight. The low harvest rate of cheatgrass seeds was 
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likely a combined function of low nutritional value and persistent awns which make 

handling difficult.  Interestingly, B. tectorum went virtually un-harvested from seed trays 

in cheatgrass-dominated plots.  Although we found greater harvest of B. tectorum in 

sagebrush than in cheatgrass-dominated plots, our results reiterate that cheatgrass is a 

relatively undesirable seed for ants. Mull and MacMahon (1996) reported that B. 

tectorum accounted for the majority of seed harvested by P. occidentalis in a sagebrush 

habitat in Wyoming.  Because cheatgrass can be by far the most abundant seeds present 

in such sites (Humphrey and Schupp 2001), one might predict that the search image for 

cheatgrass seed would be keen and that their ubiquitous nature would drive increased 

harvest.  However, the low relative value of B. tectorum seeds and its overwhelming 

abundance in the background seed pool (Crist and MacMahon 1991, 1992, Humphrey 

and Schupp 2001) might help explain the low harvest rates, especially from the seed trays 

in cheatgrass-dominated plots.   

Of the B. tectorum seeds that are harvested by P. occidentalis, large numbers are 

later discarded in refuse piles, and many of these seeds are partially eaten and effectively 

removed from the seed pool (Mull 2003).  For surviving discarded B. tectorum seeds the 

effectiveness of dispersal by harvester ants is a function of how many seeds are 

subsequently relocated from refuse piles to favorable sites for establishment (Schupp 

1993).  In this light, despite the low preference of cheatgrass seeds it has been argued that 

harvester ant activities could indirectly facilitate increased densities of B. tectorum near 

their mounds (see Mull and MacMahon 1997).  Which may be due to the open conditions 

near the mound that are suitable for germination and growth and the high densities of 
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discarded B. tectorum seeds that are dispersed especially to sites (also see Nowak et al. 

1990) where resources are relatively abundant in a patchily distributed resource matrix.  

 
Large-scale among-patch effects: vegetation type  

In the monospecific treatments more seed was harvested in the sagebrush plots 

than in the cheatgrass-dominated plots for nearly all seed types and treatments.  

Differences in harvester ant population sizes do not explain the differences in removal 

among the vegetation types.  The most abundant seed harvesting ant species in our sites 

was P. occidentalis, which was three-times more abundant in pitfall traps in the 

cheatgrass-dominated plots than in the sagebrush plots (Chapter 2).  In addition, harvester 

ant mound density was approximately twice as high in the cheatgrass-dominated plots as 

in the sagebrush plots (see Chapter 2).  So why were more seeds in general being 

harvested in the sagebrush plots despite there being fewer harvester ants?  The 

explanation is not completely clear, but it is likely that the seed resources in the 

background seed pool indirectly influenced what was removed from the seed trays.  More 

seeds in general are likely available in cheatgrass-dominated plots compared to native 

sagebrush plots, even though the quality of the resource was relatively poor (i.e. 

dominated by B. tectorum). 

Differences in competitive interactions between the two community types may 

also influence patterns of seed harvest. Because rodent granivores are greatly reduced in 

cheatgrass-dominated plots (Chapter 4), ants are likely the most important granivore in 

these degraded communities.  Potentially then, in the face of cheatgrass conversion, this 

may shift the competitive interactions for seed resources from an intense ant-rodent to 
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less intense ant-ant one.  It seems logical, then, to think that ants are likely to have the 

dominant impact on seed mortality in cheatgrass-dominated sites, while rodents are likely 

the most important granivores in sagebrush sites.  Evidence for such an interaction is 

noted by Brown and Davidson (1977) who pointed to the important role rodent 

granivores can have in limiting the abundance of seed harvesting ants through resource 

competition.  In the face of intense competition in the sagebrush plots seed harvesting 

ants might forage more efficiently on a per colony basis than those living in cheatgrass-

dominated locations.  Further work assessing the relationship among inter- and intra-

specific competition among granivores in the context of cheatgrass conversion would 

help understand patterns noted in this research.     

 
Small-scale among-patch effects: distance from mounds 

To some degree our results indicate seed removal decreased at increasingly 

greater distances from the mound, although this result was most evident in the cheatgrass-

dominated plots.  Similar patterns of removal were demonstrated in sagebrush habitats in 

Wyoming (see Mull and MacMahon 1997, Anderson and MacMahon 2001).  However, 

in our sagebrush plots the greatest amount of seed removed was at the mound clearing 

and again at 5 m away from the mound.  Why would there be a difference in distance 

effects between sagebrush and cheatgrass-dominated communities?  It is possible that the 

increased density of P. occidentalis in cheatgrass-dominated vegetation could potentially 

produce an increased inter-colony competition for resources effectively shifting foraging 

behavior to locations closer to the central mound in contrast to a more diffuse foraging 

effort in the sagebrush.   
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The nature of the vegetation in each vegetation type may further explain patterns.  

Because P. occidentalis foragers have greater running speeds and net energetic gain when 

using trunks trails, they tend to use cleared paths over vegetated areas (Fewell 1988).  

Because cheatgrass can thickly reinvade cleared ant trails annually, it likely impedes the 

utility of foraging trials in areas with high cheatgrass densities.  In contrast, trails likely 

remain clear for longer periods with less maintenance in native vegetation.  Foraging 

trails radiating from central mounds in cheatgrass-dominated sites are very difficult to 

locate at distances of ≥ 2-3 m, while they are still easily located at distances of ≥ 5 m in 

sagebrush plots (S. M. Ostoja pers. observ). Furthermore, ant workers decline 

exponentially with distance along trunk trails from their central mound (Crist and 

MacMahon 1991).  As a result, seed harvesting decreases with increasing distance from 

the main foraging trail (Mull and MacMahon 1997), and the greater the distance from the 

ant mound, the more likely a seed is to be far from a trunk trail further reducing harvest at 

increasingly greater distances.   

Lastly, it is possible that the true general patterns of seed harvest in terms of 

distance effects were not detected due to limitations of the experimental design.  The 

distances from a focal mound used in the current study might not have been sufficient to 

detect the expected distance-dependent patterns of foraging in our sagebrush sites.  

Others have found that harvest and/or selectivity shifted at distances > 9 m (Kelrick et al. 

1986), 7 m (Crist and MacMahon 1991), and > 10 m (Davidson 1978), from the mound.  

Unfortunately, we were constrained to a 5 m limit in this study due to the very high 

mound densities in cheatgrass-dominated plots.   

 
Combined influence of large and small-scale among patch effects 
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The loss of shrubs in cheatgrass plots could further explain the reduction of seed 

removal at more distant locations from focal mounds found in cheatgrass-dominated plots 

but not in sagebrush plots.  Shrub structure is thought to provide visual references for 

foraging individuals of this species (Crist and MacMahon 1991).  Once sagebrush sites 

are converted to cheatgrass monocultures most if not all shrub “references” would be lost, 

which may indirectly affect foraging patterns, especially with increasing distance from 

the mound.  The combined effect of foraging trails clogged with dense cheatgrass and the 

loss of shrub references could effectively constrain seed harvesting in cheatgrass sites to 

areas near the mound.  This alteration in foraging patterns could feed back into vegetation 

structure by altering the spatial scale at which seeds are being harvested in the 

community.   

Overall, it appears that foraging by P. occidentalis is strongly influenced by 

community-wide characteristics.  Others have found that seed removal patterns by 

Messor harvester ants in Spain are affected by the spatial structure of the ecosystem 

(Azcárate and Peco 2003).  Structural changes in communities invaded by cheatgrass can 

contribute to other ecosystem wide changes (e.g. reductions in other granivore groups).  

Invasion of cheatgrass may lead to a mosaic of microhabitat types differing not only in 

vegetation structure but also microclimate, soil properties, water and nutrient availability, 

productivity, and seed availability.  Such factors can effectively result in foraging 

behaviors and patterns of seed selectivity and intensity of harvesting by ants in 

cheatgrass-dominated systems that are unique from patterns found in native vegetation.  

How such altered foraging behavior might contribute to plant community development 



 

 

82
post invasion and/or contribute to the maintenance of B. tectorum persistence is presently 

unknown. 

 
Within-patch effects: seed neighborhoods 

Generally, the patterns for removal of non-B. tectorum species when present with 

B. tectorum seeds were not similar to the patterns of removal for the focal seeds in 

monospecific treatments, suggesting seed neighborhoods matter greatly.  Moreover, in 

most cases noticeably lower proportion of the seeds were removed when in combination 

with B. tectorum compared to when they were alone in monospecific patches (see 

associational effects section below). To our knowledge this is the first study looking at 

within-patch effects (i.e. heterospecific seed mixtures) on seed removal by seed 

harvesting ants, although several researchers have addressed this issue with rodent 

granivores (see Veech 2000, 2001, Caccia et al. 2006, and Chapters 5 and 6).  For 

example, Veech (2001) found a negative indirect effect of the highly preferred Oryzopsis 

hymenoides (A. hymenoides) seeds on the less preferred Astragalus cicer seeds due to 

rodents having a lower foraging effort in patches containing only A. cicer seeds than in 

patches containing a mixture of seeds.  However the interaction was non-reciprocal, in 

that Astragalus cicer did not affect harvest of O. hymenoides.  In contrast, in the present 

study it was the least preferred seed, B. tectorum, which had a negative effect on the more 

highly preferred seeds.  

In addition to the larger scale among-patch qualities of the environment like 

background vegetation, seed availability, and relative abundance of associated 

heterospecific granivores, the relative preference or palatability of the associated seeds 
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may also play a critical role in influencing the outcome of associational effects among 

seeds in mixed neighborhoods.  In cheatgrass-dominated plots, ants were more likely to 

remove non-B. tectorum seeds than seeds of B. tectorum from the mixed seed patches, at 

least for the most preferred seed types.  In contrast, in the sagebrush plots ants took more 

B. tectorum seed than they took seeds of A. hymenoides, P. miliaceum, and P. spicata, 

although the pattern was affected by distance as well (see Fig. 3.5).   These outcomes 

suggest that among-patch factors can affect how these seed foraging ants respond to 

within-patch mixed seed neighborhoods.  Moreover these results also suggest that 

monospecific preference trials alone may not be an appropriate proxy for predicting how 

seeds will be perceived by harvester ants in mixed seed neighborhoods, reiterating the 

importance of the context-dependence of seed harvesting. 

 
Combined among- and within-patch effects 

We noted differing patterns between the vegetation types of seed harvest of the 

non-B. tectorum seeds when comparing removal from the monospecific treatments to 

harvest from mixtures . Interestingly, the effects of distance on non-B. tectorum seed 

removal were different among the treatment types. Specifically, the removal of non-B. 

tectorum seeds from cheatgrass-dominated plots in mixture treatments was by far the 

greatest at 1 m from the mound (except for P. secunda), with less seed harvested at 

greater distances.  In contrast, patterns from the monospecific treatments showed a more 

gradual decline in harvesting with distance in cheatgrass-dominated plots.  In sagebrush 

plots, harvest of non-B. tectorum seeds in monospecific treatments was greatest near and 

distant from the mound, and lowest at intermediate distances.  Whereas seed removal in 
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the mixture treatment in the sagebrush plots, we noted the relatively uniform pattern of 

seed harvest for all the non-B. tectorum seeds across the distances from the mound.     

These spatial patterns, especially evident in the cheatgrass-dominated plots, 

indicate a greater concentration of foraging for select food items near the mound.  But 

this result was highly dependent on whether it was monospecific or a mixture treatment.  

It is uncertain why the seed trays at the mound had less non-B. tectorum seed removed 

than did the ones located 1 m from the mound in mixture treatments.  In general, the 

patterns of harvest of non-B. tectorum seeds from mixtures in sagebrush plots were 

generally similar to the patterns seen in monospecific treatments when visually compared 

to the dissimilar pattern that occurred in the cheatgrass-dominated plots.   

 
Associational effects  

It has been noted that the susceptibility of a seed species to attack by granivores 

often depends on conditions of the local environment, on its abundance and associated 

traits, and on the availability of other seed types (Veech 2000, Azcárate and Peco 2003).  

The present study further corroborates these results.  In addition, our results indicate the 

importance of neighbor identity in influencing associational effects.  The effects of 

neighbors could be due simply to taxon-specific attributes of the neighbors (Atsatt and 

O’Dowd 1976).  Theoretically, predation on highly desired seeds could be reduced when 

in an unpalatable seed neighborhood that effectively repels seed predators (McNaughton 

1978, Atsatt and O’Dowd, Hay 1986), resulting indirectly in protection from predation.  

Such associational resistance (Tahvanainen and Root 1972), has been documented in 

herbivory studies (Holmes and Jepson-Innes 1989, Callaway et al. 2005), and now for 
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seed harvesting ants.  Overwhelmingly in this study the harvest of non-B. tectorum seeds 

was lower in mixture with B. tectorum seeds than when in monospecific patches, 

demonstrating associational resistance.  However, as noted already the characteristics of 

the seed alone do not completely explain patterns of removal in mixed-patch seed 

neighborhoods, where among-patch factors appear to also be important. 

But what produces the strong degree of associational resistance as demonstrated 

in the results of the current research?  There are several potential explanations based on 

the biology of this ant species that may shed light on understanding these patterns.  Given 

the chemical sensitivity of ants, it is possible that target seeds simply were less detectable 

when in mixture with cheatgrass seeds.  Alternatively, cheatgrass with their persistent 

awns might increase the handling time of the more desirable seeds in mixture, 

diminishing their desirability, as predicted by foraging theory (Charnov 1976). In this 

scenario the seed patch as a whole would be less preferred if handling time increased due 

to the presence of cheatgrass in the patch.     

Interestingly, associational resistance was greater in sagebrush plots than in 

cheatgrass-dominated plots, a result that points to the importance of among-patch context 

in terms of evaluating the strength of within-patch interactions.  This is likely related to 

the overall background seed communities. Cheatgrass-dominated plots clearly had much 

greater quantities of cheatgrass seed in the background seed neighborhood than did 

sagebrush plots.  Thus, in cheatgrass-dominated communities all available desirable seeds 

are likely to be mixed with many cheatgrass seeds so that ants abandoning such mixed 

seed patches are unlikely to gain by encountering a more pure desirable seed patch.  In 

contrast, such mixed patches involving many cheatgrass seeds are probably less 
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widespread in sagebrush communities and abandoning these mixed patches should be 

more likely to lead to encountering higher quality patches with a greater relative 

abundance of the more desirable seeds. 

Although to our knowledge no information exists indicating that associational 

effects among seed patches mediated by granivores could produce otherwise differing 

patterns of plant establishment, it is reasonable to imagine how such dynamics could 

occur.  If the likelihood of germination where greater for some seed types in a mixed 

patch simply due to its resistance derived from the reduced probability of predation in 

that patch, then differing patterns among the plant populations could occur.  The relative 

contribution seed predators might have in producing community wide patterns in terms of 

plant community structure is unknown but such information would be of interest.   

 
Summary 

Our results document the importance of both among- and within-patch 

characteristics for determining patterns of seed harvest.  In cheatgrass-dominated annual 

grasslands, seed harvest rates were generally lower than in sagebrush communities, even 

though seed-eating ant abundance was far greater there (Chapter 2). The importance of 

distance from a mound for seed removal differed among the community types which may 

be largely a function of differing granivore communities, variations in resource 

availability, and the direct negative effect of B. tectorum on the foraging ability of P. 

occidentalis.  Moreover, the influence of seed mixture was not as great in cheatgrass 

communities where that seed type would be the most abundant seed resource for the ants 

occupying those sites; although the directionality of associational susceptibility was 
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consistent between the two vegetation types, the magnitude was much greater in 

sagebrush communities.  In sum, results of this study suggest that the dynamics of seed 

removal by harvester ants may be largely context-dependent  

 
Conservation and management implications 

The differential selection and removal of one seed type over another when in 

mixture can have important implications in both natural and managed systems. If ants 

disproportionately harvest native seeds the implications for native plant reestablishment 

are great, especially when removal results in direct predation.  Considering that native 

seed abundances in cheatgrass-dominated systems are very low (Humphrey and Schupp 

2001) compared to in healthy native systems and native seeds are preferentially 

harvested, the potential for post-disturbance recovery of native plants could be greatly 

hindered.  If desirable native seeds were harvested at greater rates when present in mixed 

seed patches with seeds of low preference the implications for plant establishment into 

degraded landscapes would be especially dire.  However, in the current study the 

desirable native seeds were removed less when in a mixed patches with B. tectorum than 

when in single species seed-patches.  Thus, although there are still great negatives 

associated with an abundant seedbed of cheatgrass, at the least the associational 

susceptibility should increase seed survival in the face of ant predation. 

Associational effects might have further consequences as well.  In a restoration 

context where broadcast re-seeding is used to increase native species diversity in 

cheatgrass-infested rangelands that can not be drill-seeded due to edaphic difficulties or 

regulations, selecting the appropriate seed mixture might help reduce rates of seed 
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predation by ants.  Obviously, seeding desirable seeds with B. tectorum seeds is not 

suggested, but it is possible that some other less harmful species, perhaps even native 

ones, might also provide associational resistance to the desired restoration species.  

Species like P. secunda, which was second only to B. tectorum in its low preference by 

ants, might also provide associational resistance to other native restoration species.  

However, more research using other seed types directed toward the application of this 

framework is needed before it can become useful to management (see Longland and 

Bateman 1998).  
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Figure 3.1. Ant specific seed tray fashioned from 7-day pill box.  10-mm entry holes were 
drilled into both outside walls of each compartment 5 mm from the base to allow free 
access by ants to seeds yet prevent the spilling of seeds out of the compartment and 
denying access to rodents.   
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Table 3.1. Three-way factorial analysis of variance (ANOVA) of seed harvest in A) 
monospecific treatments, B) non-B. tectorum seed harvest in mixture treatments, and 
C) B. tectorum seed harvest in mixture treatments.   

 
A) Seed in monospecific treatments 

Source df MS F P 
Seed type 6 4.51 15.81 ≤0.001 
Distance 3 10.40 35.56 ≤0.001 
Vegetation  1 112.30 394.04 ≤0.001 
Seed type × distance 18 0.87 3.05 0.000 
Seed × vegetation  6 0.31 1.10 0.359 
Vegetation × distance 3 9.90 34.74 0.000 
Seed type × distance × vegetation  18 0.69 2.42 0.001 
Error 504 0.29   
     

 B) Non-B. tectorum seed in mixture treatments 
Source df MS F P 

Seed type 5 0.225 2.515 0.029 
Distance 3 3.809 42.487 ≤0.001 
Vegetation  1 0.571 6.366 0.012 
Seed type × distance 15 0.225 2.512 ≤0.001 
Seed × vegetation  5 0.193 2.152 0.058 
Vegetation × distance 3 1.664 18.558 ≤0.001 
Seed type × distance × vegetation  15 0.164 1.827 0.029 
Error 432 0.090   
     

C) Bromus tectorum seed harvest in mixture treatments 
Source df MS F P 

Seed type 5 0.040 0.648 0.663 
Distance 3 0.763 12.422 ≤0.001 
Vegetation  1 12.851 209.224 ≤0.001 
Seed type × distance 15 0.024 0.392 0.981 
Seed × vegetation  5 0.039 0.633 0.675 
Vegetation × distance 3 1.410 22.948 ≤0.001 
Seed type × distance × vegetation  15 0.029 0.469 0.955 
Error 432 0.061   
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Figure 3.2. Mean (± 1 SE) of the weight of seeds harvested in monospecific 
treatments at each of the sampled distances from focal mounds.  See Table 3.2 for 
statistical results.  Species codes are ACHY, Achnatherum hymenoides; BRTE, 
Bromus tectorum; ELEL, Elymus elymoides; LECI, Leymus cinereus; PAMI, 
Panicum miliaceum; POSA, Poa secunda; and PSSP, Pseudoroegneria spicata.   



 

 

95
 

 

Table 3.2. MANOVA results of the seed-dish experiment examining removal of 
seeds in monospecific treatments including vegetation type (cheatgrass-dominated 
versus sagebrush) and distance from a focal mound.   

 
Source of Variation df MS F P 
A. hymenoides     

Vegetation   1,18 3.78 72.46 ≤ 0.001 
Distance  3,54 0.35 3.43 0.023 
Vegetation × distance  3,54 0.71 7.01 ≤ 0.001 

B. tectorum     
Vegetation  1,18 2.47 27.20 ≤ .0001 
Distance  3,54 0.16 3.46 0.022 
Vegetation × distance  3,54 0.04 0.82 0.489 

E. elymoides     
Vegetation  1,18 3.08 64.90 ≤ 0.001 
Distance  3,54 1.68 27.62 ≤ 0.001 
Vegetation × distance  3,54 0.74 12.19 ≤ 0.001 

L. cinereus     
Vegetation  1,18 3.93 72.42 ≤ 0.001 
Distance 3,54 0.53 5.32 0.003 
Vegetation × distance 3,54 0.51 5.04 0.004 

P. miliaceum     
Vegetation  1,18 5.20 104.57 ≤ 0.001 
Distance 3,54 0.50 7.02 ≤ 0.001 
Vegetation × distance 3,54 0.50 7.27 ≤ 0.001 

P. secunda     
Vegetation  1,18 4.51 92.28 ≤ 0.001 
Distance 3,54 0.34 3.99 0.012 
Vegetation × distance 3,54 0.60 7.03 ≤ 0.001 

P. spicata     
Vegetation  1,18 5.578 103.08 ≤ 0.001 
Distance 3,54 0.273 4.08 0.011 
Vegetation × distance 3,54 0.390 5.815 0.002 
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Figure 3.3.  Mean ± 1 (SE) of the weight of  non-B. tectorum seed harvested in 
mixture treatments in cheatgrass-dominated (black circles) and sagebrush (open 
circles) plots at each of the distances from focal mounds.  See Table 3.3 for 
statistical results.  Species codes are ACHY, Achnatherum hymenoides; BRTE, 
Bromus tectorum; ELEL, Elymus elymoides; LECI, Leymus cinereus; PAMI, 
Panicum miliaceum POSA, Poa secunda; and PSSP Pseudoroegneria spicata. 
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Table 3.3. MANOVA of the seed-dish experiment to examining removal of non-B. 
tectorum seeds in mixture treatments by vegetation type (cheatgrass-dominated versus 
sagebrush) and distance from focal mound.   

 
Source of Variation df MS F P  
A. hymenoides w/ B. tectorum      

Vegetation   1,18 0.03 0.23 0.636 
Distance  3,54 0.76 6.75 ≤ 0.001 
Vegetation × distance  3,54 0.34 2.98 0.039 

E. elymoides w/ B. tectorum      
Vegetation  1,18 0.18 3.87 0.065 
Distance  3,54 1.13 18.17 ≤ 0.001 
Vegetation × distance  3,54 0.71 11.32 ≤ 0.001 

L. cinereus w/ B. tectorum      
Vegetation  1,18 0.97 11.06 0.004 
Distance 3,54 0.47 5.73 0.002 
Vegetation x distance 3,54 0.24 2.92 0.042 

P. miliaceum w/ B. tectorum      
Vegetation  1,18 0.11 1.55 0.229 
Distance 3,54 1.63 14.14 ≤ 0.001 
Vegetation × distance 3,54 0.60 5.24 0.003 

P. secunda w/ B. tectorum      
Vegetation  1,18 0.23 2.39 0.140 
Distance 3,54 0.01 0.14 0.939 
Vegetation × distance 3,54 0.07 0.98 0.408 

P. spicata w/ B. tectorum      
Vegetation  1,18 0.02 0.23 0.641 
Distance 3,54 0.92 10.84 ≤ 0.001 
Vegetation × distance 3,54 0.50 5.85 0.002 
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Figure 3.4.  Mean ± 1 (SE) of the weight of B. tectorum seed harvested in mixture 
treatments in cheatgrass-dominated (black circles) and sagebrush (open circles) plots 
at each of the distances from focal mounds.  See Table 3.4 for statistical results.  
Species codes are ACHY, Achnatherum hymenoides; BRTE, Bromus tectorum; 
ELEL, Elymus elymoides; LECI, Leymus cinereus; PAMI, Panicum miliaceum 
POSA, Poa secunda; and PSSP Pseudoroegneria spicata 
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Table 3.4. MANOVA of the seed-dish experiment examining removal of Bromus 
tectorum seed in mixture treatments by vegetation type (cheatgrass and sagebrush) 
and distance from focal mound.   

 
Source of Variation df MS F P 
B. tectorum w/ A. hymenoides      

Vegetation   1,18 2.29 31.17 ≤ 0.001 
Distance  3,54 0.13 2.85 0.046 
Vegetation × Distance  3,54 0.22 4.91 0.004 

B. tectorum w/ E. elymoides      
Vegetation  1,18 2.68 31.18 ≤ 0.001 
Distance  3,54 0.13 2.71 0.054 
Vegetation × Distance  3,54 0.20 4.06 0.011 

B. tectorum w/ L. cinereus      
Vegetation  1,18 2.65 22.25 ≤ 0.001 
Distance 3,54 0.28 5.78 0.002 
Vegetation × Distance 3,54 0.35 7.27 ≤ 0.001 

B. tectorum w/ P. miliaceum      
Vegetation  1,18 1.97 45.42 ≤ 0.001 
Distance 3,54 0.16 5.89 ≤ 0.001 
Vegetation × Distance 3,54 0.31 11.11 ≤ 0.001 

B. tectorum w/ P. secunda      
Vegetation  1,18 1.22 9.18 0.007 
Distance 3,54 0.03 0.25 0.861 
Vegetation × Distance 3,54 0.21 1.97 0.129 

B. tectorum w/ P. spicata      
Vegetation  1,18 2.24 31.19 ≤ 0.001 
Distance 3,54 0.16 3.81 0.015 
Vegetation × Distance 3,54 0.27 6.57 ≤ 0.001 
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Figure 3.5. Mean ratio of the amount of non-B. tectorum seed harvested to B. 
tectorum seed harvested (± 1 SE) for cheatgrass-dominated (black circle) and 
sagebrush (open circles) plots at each of the four distances from a given focal 
mound.  Values greater than zero indicate more  non-B. tectorum seed relative to 
B. tectorum seed was harvested. Conversely, values below zero indicate that the 
amount of non-B. tectorum seed harvested was less than the amount of B. 
tectorum seed harvested.  See Table 3.5 for statistical results. Species codes are 
ACHY, Achnatherum hymenoides; BRTE, Bromus tectorum; ELEL, Elymus 
elymoides; LECI, Leymus cinereus; PAMI, Panicum miliaceum POSA, Poa 
secunda; and PSSP Pseudoroegneria spicata 
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Table 3.5. ANOVA of the seed-dish experiment examining the ratio of the amount 
of non-B. tectorum seed harvested to the amount of B. tectorum seed harvested in 
mixture treatments by vegetation type (cheatgrass and sagebrush) and distance from 
focal mound.  

  
Source of Variation df MS F P 
A. hymenoides / B. tectorum      

Vegetation   1,18 60.94 43.51 ≤ 0.001 
Distance  3,54 8.48 5.02 0.004 
Vegetation × distance  3,54 5.51 3.26 0.028 

E. elymoides  / B. tectorum      
Vegetation  1,18 15.25 31.27 ≤ 0.001 
Distance  3,54 11.30 22.91 ≤ 0.001 
Vegetation × distance  3,54 4.59 9.30 ≤ 0.001 

L. cinereus / B. tectorum      
Vegetation  1,18 1.00 1.69 0.210 
Distance 3,54 0.88 0.88 0.459 
Vegetation × distance 3,54 2.17 2.15 0.104 

P. miliaceum / B. tectorum     
Vegetation  1,18 53.20 42.36 ≤ 0.001 
Distance 3,54 4.49 2.58 0.063 
Vegetation × distance 3,54 0.98 0.56 0.643 

P. secunda / B. tectorum      
Vegetation  1,18 4.28 2.67 0.119 
Distance 3,54 0.56 0.43 0.773 
Vegetation × distance 3,54 9.20 7.03 ≤ 0.001 

P. spicata / B. tectorum      
Vegetation  1,18 24.40 29.32 ≤ 0.001 
Distance 3,54 7.65 7.08 ≤ 0.001 
Vegetation × distance 3,54 2.23 2.08 0.115 
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Figure 3.6. Relative change in seed harvest in mixture compared to seed harvest 
in monoculture in cheatgrass (black bars) and sagebrush (open bars) plots 
combining all distances.  Relative change was measured as the ratio of mean 
proportion of a non-B. tectorum seed species harvested from a mixture treatment 
to the proportion of that seed harvested in the monospecific treatment.  Positive 
values indicate an overall increase in harvest in mixture compared to 
monospecific treatments (associational susceptibility).  Conversely, negative 
values indicate an overall reduction in harvest when in mixture compared to 
monospecific harvest (associational resistance). 
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CHAPTER 4 

 
 

RODENT ASSEMBLAGES IN GREAT BASIN SAGEBRUSH COMMUNITIES AND 

CONVERTED BROMUS TECTROUM HABITAT TYPES4 

Abstract. Cheatgrass (Bromus tectorum) is fast replacing native sagebrush 

communities throughout the Great Basin and nearby regions, impacting native plant and 

animal communities as well as altering fire regimes, which may be contributing to the 

long term persistence of this weedy species.  In Tooele County, Utah, USA, we 

investigated with Sherman live trapping whether intact sagebrush vegetation and nearby 

converted vegetation dominated by Bromus tectorum differed in rodent community 

composition, diversity, and abundance.  Both rodent abundance and species richness were 

considerably greater in sagebrush plots than in cheatgrass-dominated plots.  Nine species 

were captured in sagebrush plots; five of these nine were also trapped in cheatgrass plots, 

all at much lower abundances than in the sagebrush. Cheatgrass-dominated plots had no 

species that were not found in sagebrush.  This initial survey of rodent communities in 

native sagebrush and in converted cheatgrass-dominated vegetation suggests that 

diversity and abundance of rodents may be shifting, potentially at the larger spatial scale 

of the entire Great Basin where cheatgrass continues to invade and ultimately dominate 

more landscape at an unprecedented rate. 

 
 
 
 
 

                                                 
4 Coauthored by Steven M. Ostoja and Eugene W. Schupp 
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INTRODUCTION 

Non-native species invasions not only threaten ecosystem processes but are 

considered one of the most significant components of global ecological change 

(D’Antonio and Vitousek 1992).  Bromus tectorum L. (cheatgrass) is one of the most 

successful invasive species of the Intermountain West.  This annual Eurasian grass was 

first identified in North America in the late 1800s in areas of Washington, Oregon, and 

Utah (Knapp 1996, Novak and Mack 2001).  The invasion of cheatgrass is generally 

thought to be promoted by disturbances such as overgrazing, but invasion can be 

associated with poorly managed sites in general, such as abandoned fields, eroded areas, 

and recently burned rangelands; it is now estimated to cover about 40,000,000 ha (Knapp 

1996, Novak and Mack 2001, Rimer and Evans 2006).  Once cheatgrass becomes a 

significant understory component of sagebrush communities it provides continuous fine 

fuels allowing fires to easily carry and destroy the native vegetation (Brooks et al. 2004).  

Often all that re-establishes post-fire are near monocultures of cheatgrass effectively 

creating a feedback of a shortened fire return interval that further promotes continued 

annual weed persistence and makes native plant re-establishment virtually impossible.  

The prevalence of B. tectorum raises concerns regarding its potential effects on 

ecosystem structure and function.  Although much effort has focused on the effects of B. 

tectorum invasion on native vegetation and ecosystem processes (e.g., Knapp 1991, 

Belnap et al. 2005, 2006, Rimer and Evans 2006), the impacts on native fauna of 

conversion from sagebrush communities to cheatgrass-dominated mixed weedy 

communities remain poorly explored.   
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For most native fauna we have a limited understanding of both short-term and 

long-term effects of weed invasion.  Although it is assumed that all weed invasions are 

harmful to native animal species (Randall 1996), this may not always be true.  For 

example, species richness might increase with the introduction of non-native vegetation 

due to enhanced habitat or resource availability or because of a reduction in predators.  In 

this light, Ellis et al. (1997) reported greater rodent species richness in exotic riparian 

vegetation than in native vegetation and attributed this to the presence of plant species not 

found in non-invaded habitat.  Conversely, small mammal species captures were lower in 

cheatgrass than in several other native habitat types in Washington State (Gitzen et al. 

2001).  Similarly, Longland (1994) reported marked differences in abundances of four 

rodent species between undisturbed sagebrush and disturbed habitat dominated by the 

non-native annual grass Medusahead (Taeniatherum caput-medusae).  Three of four 

species were less abundant while one species, Peromyscus maniculatus, was more 

abundant in the annual grass-dominated system.  However, to date only limited work has 

addressed the potential shifts in diversity and/or abundances of native rodents as a 

consequence of habitat conversion in the Great Basin, where sagebrush communities are 

rapidly being converted to cheatgrass monocultures (Link et al. 2006).  Indeed, we can 

find no report of rodent communities from intact undisturbed sagebrush vegetation and 

disturbed vegetation dominated by B. tectorum (i.e. cheatgrass monoculture) from this 

region.  

Because rodents can have significant effects on community structure and 

ecosystem processes through seed dispersal, seed consumption, and associated soil 

disturbances (Heske et al. 1994, Gitzen et al. 2001), understanding rodent communities in 
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both intact sagebrush and cheatgrass-dominated communities should have important 

implications for the management and restoration of these systems.  In the current study 

we had the specific goal of quantifying rodent community assemblages in sagebrush and 

nearby converted cheatgrass-dominated stands.  Because this research is part of larger set 

of studies investigating seed-granivore interactions in ecological restoration, granivorous 

rodents are our primary emphasis.   

 
 

METHODS 

Study site and species 

Study Site - This study was conducted in Tooele County, west-central Utah, USA, 

in locations referred to as Vernon Hills (12 384335E 4438482N) and Simpson Springs 

(12 350537E 4437129N). These areas are, respectively, approximately 155 and 172 km 

southwest of Salt Lake City, Utah.  At Vernon Hills, six study plots were established, 

three in typical Wyoming big sagebrush vegetation (Artemisia tridentata wyomingensis; 

sagebrush hereafter) and three in nearby annual non-native vegetation dominated by 

Bromus tectorum L. (cheatgrass-dominated hereafter).  At Simpson Springs four study 

plots were selected, two in sagebrush vegetation and two in nearby cheatgrass-dominated 

vegetation (Total n = 10 plots, 5 sagebrush and 5 cheatgrass-dominated).   

At both Vernon Hills and Simpson Springs cheatgrass-dominated plots were 

previously sagebrush-dominated shrublands that were converted by fire in 1998 and 

1988, respectively, to non-native mixed weed communities dominated by B. tectorum 

(>90% standing biomass; S.M. Ostoja, unpublished data), but with other weedy species 
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including Salsola spp. (Russian thistle) and Lepidium spp. (peppercress).  One of the 

Simpson springs cheatgrass-dominated plots burned again in 2005.  All six Vernon Hills 

plots were on the Hiko Peak soil series, where the potential plant community is about 

45% perennial grasses, 15% forbs, and 40% shrubs (NRCS 2000). The four Simpson 

Spring plots were on the Taylorsflat soil series, where the potential plant community is 

50% perennial grasses, 14% forbs and 35% shrubs.  In both soil series the dominant 

shrub in non-disturbed areas is Wyoming big sagebrush (NRCS 2000).  The area near the 

cheatgrass plots at both sites were also explored by the author EWS in 2002.   

Vegetation of sagebrush plots was typical of Wyoming big sagebrush desert of the 

Great Basin.  In addition to Artemisia tridentata ssp. wyomingensis, the shrubs Atriplex 

canescens (fourwing saltbush), Gutierrezia sarothrae (snakeweed), Chrysothamnus 

viscidiflorus (yellow rabbitbrush), and Ephedra viridis (Mormon tea) were present.  

Interspaces were dominated by the grasses Achnatherum hymenoides (Indian ricegrass), 

Elymus elymoides (bottlebrush squirreltail), Poa secunda (Sandberg bluegrass), 

Hesperostipa comata (needle-and-thread grass), Leymus cinereus (Basin wildrye), 

Pseudoroegneria spicata (bluebunch wheatgrass), with some B. tectorum.    

 
 

Rodents - In each of the 10 plots a 10 x 10 trapping grid with 10-m spacing was 

established.  Sherman live traps (3" x 3-1/2" x 9") were baited with mixed bird seed and 

rolled oats for three consecutive nights on four occasions, twice in 2004 and twice in 

2005 for a total of 3800 trap nights.  The first trapping session for each plot was 

conducted between the months of April and June and the second was conducted between 

the months of July and October.  The second trapping session/year in a plot was 
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conducted at least two months following the first session.  A 2004 trapping event for one 

cheatgrass-dominated plot and one sagebrush plot took place for only two nights due to 

inclement weather.  Trapped animals were identified to species, weighed, sexed, 

individually identified with ear tags, and released at the location of capture.  

 
Data analyses 

Species richness was the number of species recorded in a given vegetation type 

summed across all plots and sessions.  Mean species abundance was the mean of the 

number of individuals captured per session per vegetation type.  Because trapping at 

different times within and between the years we combined all data into one analysis.  We 

used one-way ANOVA was used to compare mean rodent species abundance between 

vegetation types, where vegetation type was the independent variable and MNKA was 

the dependent variable.  These analyses were performed with α ≤ 0.05 for significance.  

Species abundance curves (percent of total) were created using the total combined 

capture data for each vegetation type.  Site and rodent species (mean number known to be 

alive/trapping grid) were arranged based on a non-metric multi-dimensional scaling 

analysis (nMDS), which is suggested for descriptive and/or exploratory purposes only 

(see De’ath 1999).  

 
RESULTS AND DISCUSSION 

Patterns of assembly and diversity 

The rodent community was composed of nine species in sagebrush plots and five 

species in cheatgrass-dominated plots; all species in cheatgrass were also found in 
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sagebrush.  Not only were sagebrush plots more species rich, they also had a much 

greater overall abundance of rodents (Table 4.1).  Considering total captures, 6.1-times 

more rodents were captured in sagebrush plots than in cheatgrass-dominated plots.  In 

both sagebrush and cheatgrass the rodent community was numerically dominated by P. 

maniculatus, which accounted for >50% of all individuals captured (Table 4.1, Fig. 4.1).  

All species found in both vegetation types were captured in greater numbers in sagebrush 

than in cheatgrass-dominated plots, four species significantly so (Table 4.2).   

These large differences in rodent communities likely reflect an overall reduction 

in habitat suitability of cheatgrass when compared to nearby sagebrush habitat.  Intact 

sagebrush vegetation provides a diversity of microhabitats for rodents.  Sagebrush habitat 

is characterized physiognomically by shrubs in the genus Artemisia occurring in a 

relatively regularly-spaced arrangement with an herbaceous understory of perennial 

grasses and forbs in shrub interspaces (West 1983, 2000).  It is thought that such a 

diversity of microhabitats may partially explain rodent diversity and species co-existence 

in this and similar community types where native vegetation remains intact (Davidson et 

al. 1980).  For example, studies of heteromyid rodents have concluded that bipedal 

genera (kangaroo rats, Dipodomys spp., and kangaroo mice, Microdipodops spp.) tend to 

use open areas such as sparsely-vegetated shrub interspaces whereas quadrupedal genera 

(e.g., pocket mice, Chaetodipus and Perognathus spp.) tend to forage mostly under 

shrubs or in areas of abundant grass, forb, or rock cover (see Davidson et al. 1980, Price 

and Brown, 1983; Reichman and Price 1993).   

In this light, we used a nMDS to asses how individual plots and vegetation types 

account for observed differences in species abundances.  Species abundances based on 
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the mean number known alive (MNKA)/plot are most closely associated with plots where 

majority of captured occurred. The first axis depicts a clear separation of the cheatgrass-

dominated and the sagebrush plots as a function of characteristics associated with the 

respective community types (Fig. 4.2).  This axis explained 61% of the total variation in 

the rodent communities and demonstrates that most of the differences in rodent 

communities were due to differences between the two vegetation types rather than due to 

differences among plots within vegetation types.  On the other hand, the second axis 

separated the replicate plots within each vegetation type based on rodent community 

composition.  The tighter cluster of cheatgrass-dominated plots than of sagebrush plots 

suggests a greater homogeneity of the rodent communities in these disturbed, highly 

altered habitats (Fig. 4.2).  Further this result may allow insight to the greater habitat 

heterogeneity among sagebrush plots, resulting in greater variation in rodent communities 

among these plots.   

The removal of shrub structure might account for much of the vast reduction in 

species diversity and abundance within the cheatgrass sites.  Shrub structure might help 

maintain diverse desert rodent communities (see Davidson et al. 1980) by minimizing 

overlap in habitat and/or resource use (Brown et al. 1979).  This is supported by the 

above interpretation of axis two of the MDS analysis in that the less variable cheatgrass-

dominated plots were homogeneously devoid of shrub structure while the more variable 

sagebrush plots were more variable in structure.  

However, shrub structure alone does not appear to completely explain the results.  

For example, nine of 15 D. ordii captured in cheatgrass-dominated plots in 2005 were 

within 0.5 m of an active Pogonomyrmex occidentalis (Western harvester ant) mound,  
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These mounds are characterized by large clearings devoid of vegetation and debris (ca. 2 

m diameter at our sites with reports of >5 m in extreme cases; see MacMahon et al. 

2000), strongly suggesting these rodents were selecting more open areas within the 

cheatgrass, conditions these species are also known to prefer in sagebrush habitat types 

(i.e. shrub interspaces). With mound densities reported to be 15-20/ha (we recorded > 40 

mounds/ha in one cheatgrass-dominated plot), harvester ant mounds might facilitate 

rodent species that prefer open areas like D. ordii by producing a substantial area cleared 

of vegetation. Similarly, recent research suggests (see Mathis et al. 2006) that shrub 

removal alone does not adversely impact small mammal populations as severely as does 

the presence of dense stands of cheatgrass as concluded in other studies (Larrison and 

Johnson 1973).  Lastly, Parmenter and MacMahon (1983) concluded that removal of 

shrubs did not directly negatively impact rodent species other than least chipmunks 

(Tamias minimus).   

Similar to our results, in Washington State (Gano and Rickard 1982, Gitzen et al. 

2001) and in Idaho (Larrison and Johnson 1973) total rodent abundances were greatly 

reduced in areas where cheatgrass dominated compared to nearby native habitat.  These 

authors concluded that it was the combined effect of a lack of shrub structure for predator 

avoidance and the difficulty in moving through the thick herbaceous cover that was 

responsible for the overall paucity of small mammals in sites dominated by cheatgrass.  

Conversely, Wood (1969) reported that rodent populations were greater in annual weed 

communities than in native mesquite or black grama grass communities.  Ultimately, it is 

not really known how such factors (shrub removal and/or cheatgrass dominance) might 

together either directly, or perhaps more importantly indirectly, impact native small 
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mammal populations.  Nonetheless, when sagebrush communities are converted to 

cheatgrass monoculture the combined impacts of shrub loss and of cheatgrass dominance 

could be greater than expected from additive effects.  Clearly, more work is needed to 

understand the mechanisms behind the present results.   

 
Conservation, restoration, and management implications 

 Once ubiquitous, sagebrush communities throughout the Great Basin are now 

threatened by both annual grassland conversion and tree encroachment (Johnson and 

Miller 2006).  The degree to which our results might represent wider ranging shifts in 

rodent community structure as a function of ongoing vegetation changes at the landscape 

level is not known.  However, if these results do accurately reflect large-scale changes in 

rodent communities at the regional level the implications are major.  Many rodent species 

via selective seed removal and associated seed handling behaviors are known to affect 

plants and consequently vegetation structure.  Direct seed predation by rodents can 

clearly negatively impact plant populations. However, rodent granivores can positively 

influence establishment of some desert plant species when un-recovered seed caches 

germinate and establish (see West 1968, Longland et al. 2001, Vander Wall 1993).  

Therefore, the reduction or even loss of these seed predator/dispersal agents might have 

large impacts on some plant populations.  These shifts in rodent communities and vast 

reductions in abundances of more specialized species, like heteromyids, could ultimately 

have wide reaching negative consequences that could potentially be felt system wide (see 

Longland et al. 2001).     
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A better understanding of the interrelationships among rodents and plant seeds 

could have important management implications for the reestablishment of native flora 

into degraded plant communities.  In some instances rodents might be managed to help 

“re-seed” sites to increase plant species diversity.  Further, because cheatgrass-dominated 

communities support some rodents that are dependent on seeds native plant 

reestablishment in these invaded sites could either be promoted or hindered depending on 

the direction of the net effect of the interaction between seeds and granivores.  Of 

primary importance is whether the rodents act primarily as seed dispersers or as seed 

predators. Further, associational effects among seed species might alter the outcome of 

the granivore-seed interaction. It is possible that native seeds might suffer greater rates of 

predation when present in a seed neighborhood dominated by weedy, less preferred seeds 

(Chapters 5 and 6), further hindering the potential for native plant re-establishment.  

Conversely it is possible that native seeds would escape detection in a background of less 

desirable heterospecfic seed mixtures, effectively escaping predation (Chapter 3) thereby 

increasing the germination and subsequent establishment of native seeds. 

Highly degraded sites like those dominated by cheatgrass are frequently restored 

through re-seeding. Thus, a consideration of the rodent community is prudent, especially 

when the community is dominated by heteromyid rodents which are mainly granivorous 

and which surface cache seeds abundantly (Longland et al. 2001).  There is limited 

research investigating the interaction between re-seeding efforts and rodent granivory in 

the Great Basin.  Although it is often assumed that rodent seed predation has significant 

negative impacts on seedings through seed consumption (see Sullivan and Sullivan 1982, 

2002), this might not always be true (Ostoja, Schupp, and Longland unpublished data).  
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Sown seed that is harvested can potentially be re-dispersed and cached, resulting in 

seedling germination and establishment, ultimately aiding restoration success.  Several 

researchers have either promoted theoretical models or applied appropriate techniques to 

minimize seed losses in reseeding events (e.g. diversionary food supplementation) (see 

Sullivan 1979, Kelrick and MacMahon 1985, Archer and Pyke 1991).  If rodent 

harvesting might ultimately be beneficial for some species, these efforts might not be 

warranted.  More research is needed not only to evaluate the many potential outcomes of 

sown seed/granivore interactions on management landscapes but also to explore novel 

approaches to maximizing success in arid land restoration in the context of native rodent 

communities.   
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Table 4.1. The total number of individuals captured per species per vegetation type per 
year, and the abundance of each  species as a proportion of the total rodents captured that 
year in that vegetation type (n = 5).   

 
 

Cheatgrass-dominated Sagebrush Family 
Species 2004 2005 2004 2005 

Cricetidae Abundance Proportion Abundance Proportion Abundance Proportion Abundance Proportion 
Lemmiscus 
curtatus 2 .071 5 .102 6 .025 9 .037 

Onychomys 
leucogaster 0 -- 0 -- 2 .008 3 .012 

Peromyscus 
maniculatus 15 .535 22 .448 119 .512 124 .516 

Peromyscus truei 0 -- 0 -- 1 .004 3 .013 
Reithrodontomys 
megalotis 3 .074 5 .102 9 .038 11 .045 

Heteromyidae      
Dipodomys ordii 7 .250 15 .306 61 .262 58 .241 
Perognathus 
parvus 1 .035 2 .041 29 .125 26 .108 

Sciuridae     
Ammospermophilus 
leucurus 0 -- 0 -- 4 .017 3 .012 

Tamias minimus 0 -- 0 -- 1 .004 3 .012 
Total Abundance  28  49  232  240  
Total Number of 
Species 4  5  9  9  
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Table 4.2. Means (± 1 SE) and standard errors for the number of individuals 
captured/session combining 2004 and 2005 data over all cheatgrass-dominated and 
sagebrush plots.  Values with different letter in the same row are statistically different (P 
≤ 0.05, n = 5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Vegetation Type Family 
Species Cheatgrass-

dominated Sagebrush 

Cricetidae   
Lemmiscus curtatus 0.30 ± 0.12 0.71 ± 0.86 
Onychomys leucogaster -- 0.22 ± 0.52 
Peromyscus maniculatus 1.85 ± 0.47a 12.1 ± 2.80b 
Peromyscus truei -- 0.20 ± 0.52 
Reithrodontomys megalotis 0.42 ± 0.13a 1.23 ± 0.22b 

Heteromyidae    
Dipodomys ordii 1.10  ± 0.31a 5.85 ± 1.92b 
Perognathus parvus 0.15 ± 0.11a 2.75 ± 1.37 b 

Sciuridae   
Ammospermophilus leucurus -- 0.35 ± 0.16 
Tamias minimus -- 0.21 ± 0.11 
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Figure 4.1. Rank abundance curves for rodents species captured in cheatgrass-
dominated plots (a) and sagebrush plots (b) for both years combined.  Species 
codes are: Peromyscus maniculatus (Pema) Dipodomys ordii (Dior), Perognathus 
parvus (Pepa), Reithrodontomys megalotis (Reme), Lemmiscus curtatus (Lecu), 
Ammospermophilus leucurus (Amle), Tamias minimus (Tami), Peromyscus truei 
(Petr) and Onychomys leucogaster (Onle).  
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Figure 4.2. Non-metric multidimensional scaling analysis of rodent species 
composition in two vegetation types in the Great Basin of western Utah. The 
analysis was based on mean rodent captures (MNKA) at five trapping grids in 
each of the two community-types; cheatgrass-dominated plots are denoted by 
black circles and sagebrush plots are denoted by hatched circles.  The first axis, 
which explains 61% of the variation in community structure, separates the two 
vegetation types, whereas the second axis indicates the relative heterogeneity 
among replicate plots within respective given vegetation type. Each species 
point represents its relative association among the ten trapping grids based on 
the MNKA for that grid.  Abbreviations for species codes are shown in the 
legend for figure 4.1.   
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CHAPTER 5 

 
 

ASSOCIATIONAL INTERACTIONS WITHIN SEED MIXTURES: BETA-

DISTRIBUTED REGRESSION AS AN ALTERNATIVE TO 

TRADITIONAL STATISTICAL TECHNIQUES5 

Abstract.      Relative heterogeneity of a resource patch can be an important 

influence on patterns of seed removal by seed-eating rodents. In natural environments, 

seeds are not distributed homogenously but rather are embedded in a heterogeneous seed 

matrix that varies spatially and temporally in overall seed density as well as in the species 

composition of local seed neighborhoods.  Similarly, in an ecological restoration context 

reseeding generally applies seed mixtures rather than single species to the landscape.  

Although the understanding of seed removal in mixed species patches compared to 

monospecific patches is critical, seed removal experiments most often use homogenous 

resource patches.  In this study, we investigated whether seed preference rankings and/or 

removal rates by rodents changed for five native perennial grasses, the exotic annual 

invasive grass Bromus tectorum, and the domesticated annual grass Panicum miliaceum 

when they were presented in mixture versus when available alone in two vegetation types 

in the eastern Great Basin, USA.  Seed removal experiments with fixed seed densities 

often produce data that fail to meet distributional assumptions of traditional parametric 

regression techniques that presume a normal distribution of the response.  To 

accommodate the distributional characteristics of our data, we used a beta regression 

approach which can be well-suited for analyses of ecological response variables that are 

                                                 
5 Coauthored by Steven M. Ostoja, Susan Durham and Eugene W. Schupp 
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restricted to values between 0 and 1 and that may have asymmetric distributions.  We 

present results from normal-distributed regression and from beta-distributed regression.  

Both approaches suggested that rodents demonstrated a marked ranking of preference of 

the 7 seed types when they were available alone.  When combined with B. tectorum, the 

ranking of preferences of the non-B. tectorum seed species shifted.  Additionally, the 

different statistical approaches suggested alternative conclusions about the importance of 

seed mixtures on the removal of target seeds.  We compare results of the two approaches 

in terms of ecological conclusions and management decisions, and we discuss beta 

regression as an alternative statistical approach with special attention to the importance of 

the variance that is inherent in ecological experimental designs with similar approaches to 

the current study.   

 
INTRODUCTION 

Ecological framework 

Many factors contribute to seed selectivity and subsequent removal by granivores.  

In addition to characteristics of the seeds themselves (i.e., size and nutritional and 

chemical traits), seed removal experiments also have considered the importance of 

contexts in terms of seed selection by granivores.  Context-specific seed removal studies 

have most often focused on temporal and spatial variability of seed resources at single or 

multiple scales.  For example, DeCasenave and coauthors (1998) found that seasonality 

and microhabitat were important in explaining patterns of seed removal in the northern 

Monte desert, Chile.  Recently, context dependence in terms of mixed species seed 

patches, or neighborhoods, also has begun to be investigated.  The framework for this 



 

 

124
consideration is critical because seeds are not available in the environment in a single 

species homogenous manner, but rather are found within a highly variable mixed-species 

matrix, and the mixture of seeds available can alter foraging decisions and thus seed fates 

(Veech 2001, Veech and Jenkins 2006).  As a result, rodents potentially induce indirect 

or associational effects among seed species present in mixture.  Thus, the impacts of seed 

predation and/or secondary dispersal by rodents may vary as a function of the context of 

the seed mixture available to rodent seed removers.  Direct and indirect interactions 

among seeds mediated by rodent granivores may ultimately be as important as direct and 

indirect interactions among plants themselves (e.g., resource competition) in determining 

plant community structure and spatial patterns.   

Indirect effects result when one species impacts another through the presence of a 

third species. Seeds of co-occurring plant species do not compete for resources, but they 

may interact indirectly when present in mixed species patches in the presence of 

polyphagous granivores.  In mixed-species patches, seed neighbors can theoretically 

decrease harvesting of a given target seed species by causing the granivore either to fail 

to locate or to reject a seed that would have been harvested in isolation.  Therefore, in a 

multi-species seed neighborhood the presence of some seed species could confer an 

“associational resistance” from seed predators on other seed species in the mixture 

(Tahvanainen and Root 1972, Rand 1999, Chapter 1).  Conversely, mixed-seed patches 

can also increase the susceptibility of a focal seed to harvesting by rodent granivores, an 

interaction referred to as “associational susceptibility” (Chapter 1). Thus, the effects of 

rodent seed harvesting on seed pool composition and plant recruitment might not be 

predictable from simple knowledge of seed preferences developed from typical 
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monospecific cafeteria-style experiments.  To our knowledge, no data presently exist 

showing how variations in associational effects among seeds in mixtures mediated by 

seed predators might differentially be displayed at the plant population level.   In fact, 

only three studies (Veech 2000, 2001, Caccia et al. 2006) have shown evidence of 

indirect effects within a trophic pathway (see Caccia et al. 2006) for seed removal 

experiments; all three studies focused on rodents as the seed remover.  Some other 

studies have shown mixed-species seed patches do not affect foraging patterns of 

granivores in terms of producing associational interactions among co-occurring seeds 

(see Hulme and Hunt 1999).  Thus, additional studies on the consequences of seed 

mixtures may prove important, especially in terms of the consideration of consequences 

for patterns of plant establishment.  

Biotic interactions involving indirect effects among pairs of species have 

important impacts on both ecological and evolutionary patterns in natural and human-

affected systems.  In a recent review of biotic indirect effects, White et al. (2006) noted 

that multi-species interactions are often not considered in studies of interactions between 

alien and native species.  In this context, we have two reasons for attempting to better 

understand seed removal patterns of native seed species common to Great Basin 

sagebrush communities and for seeds of the non-native invasive annual grass Bromus 

tectorum (cheatgrass).  B. tectorum is fast becoming the dominant annual species across 

the entire Great Basin, successfully invading natural communities and effectively 

displacing native vegetation and altering ecosystem processes in ways that promote its 

continued persistence.  Thus, understanding how seed removal of desirable native seeds 

is affected by the presence of B. tectorum has important implications for the conservation 
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and potential re-establishment of native species where B. tectorum occurs.  If the 

presence of B. tectorum seeds alters the patterns of harvesting of native seeds then this 

dynamic has implications for native plant population reestablishment and dynamics in 

communities undergoing invasion.  Second, an understanding of how seed mixtures 

affect seed harvesting can have important implications for restoration because seed is 

applied in multi-species mixtures and the actual mixture used can be selected to some 

extent by the land manager.  These applied seeds are available to granivores and in theory 

these granivores could negatively impact restoration through direct seed predation or 

positively affect restoration through effective secondary dispersal and caching.  In this 

context understanding associational interactions among seeds might be important for 

developing seed mixtures that maximize survival and establishment of the most desirable 

species. 

The current study specifically addressed the following issues: (1) preferences by 

granivorous rodents for seeds of five native grass species, for Panicum miliaceum 

(millet), and for B. tectorum in both intact Wyoming big sagebrush (Art tri wyo) 

communities and in converted cheatgrass-dominated communities; (2) the occurrence and 

type of associational effects of B. tectorum seeds on seeds of the native grasses and of P. 

miliaceum; and (3) whether there is a temporal component to seed removal for the seed 

species considered.  These objectives were addressed with two alternative modeling 

approaches, one based on a normal distribution for the response and the second on a beta 

distribution.  
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Statistical framework 

The primary powerhouse of traditional applied statistics for many ecological data 

sets is the general linear model (LM), which encompasses regression, analysis of 

variance, and analysis of covariance models and assumes that the response variable 

follows the normal distribution.  Although the general LM is suitable in many scenarios, 

the assumption of a normal distribution is not universally appropriate for all ecological 

data.  One approach to the problem of non-normality is to trust in the legendary 

robustness of the general LM to deviations from normality.  A less trusting, but common 

and more sensible solution is to apply a transformation to the response data such that the 

rescaled response better meets the normality assumption.  However, even in the best case 

the use of a suitable transformation still leads to problems with interpretation and 

inference (due to hypothesis testing on the new scale; McArdle and Anderson 2004) and 

with back-transformation of estimates to the original scale; in the worst cases 

transformation may be an inadequate solution.   

As an alternative to making less than satisfactory or, worse, perfunctory attempts 

at molding data to normal-distribution models, we can use a generalized linear model 

(GLM; McCullagh and Nelder 1989).   The GLM allows the probability distribution of 

the response to be discrete (e.g., binary, multinomial, Poisson) or continuous (e.g., 

normal, lognormal, beta); as such, the LM is a special case of the GLM with a normal 

distribution.  In the GLM, the population mean is determined by a linear function of the 

predictor variables (i.e., the linear predictor) through a nonlinear link function.  The link 

function identifies the transformation of the mean (as opposed to a transformation of the 

data) that “links” the linear predictor to the mean.  Consequently, a GLM is able to 



 

 

128
accommodate data with non-normal distributions, to restrict predictions to the natural 

range of values, and to allow various relationships between the mean and the variance of 

the data other than the LM assumption of constant variance. 

 Analyses in seed choice experiments often use proportions as response variables.  

Proportion data have several characteristics that make a normal-distribution model 

potentially problematic.  First, proportion data are restricted to values between (and 

including) zero and one.  The range of the normal distribution is between negative and 

positive infinity, and an LM may produce predictions outside of the [0, 1] range.  Second, 

the variance of proportion data is a function of the mean: maximum variance occurs when 

the mean proportion is 0.5, and variance approaches zero as the mean approaches either 

zero or one.  The LM assumes that variances are constant for all means.  Third, the 

distribution of proportion data may be asymmetric (e.g., skewed left or right, or even 

bimodal).  Normally-distributed data are symmetric, with the mode at the mean.  

Examples of the application of a generalized linear model with a beta distribution 

(hereafter, beta regression) to the analysis of proportion data are found in economics, 

public management, and psychology (see Brehm and Gates 1993, Paolino 2001, 

Smithson and Verkuilen 2006).  Here we extend the application to an ecological data set 

and compare the results to those from a general linear model (hereafter, normal 

regression).  The two-parameter beta distribution provides a flexible class of models that 

can effectively accommodate a wide range of distributions including extreme skewing, 

general bimodality, and symmetry not unlike a normal distribution (see Fig. 5.1 for 

examples).  The main assumptions of two-parameter beta distributions are that the 

response variable is continuous, interval-level, and bounded between zero and one, not 
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including the endpoints.   As such, the beta regression model with modifications for zero 

and one (see below) is very useful for proportions, as result from seed or food choice 

experiments.  We point readers to Smithson and Verkuilen (2006) and the companion 

white paper (Smithson and Verkuilen 2005) for a detailed theoretical and quantitative 

explanation of regression with beta-distributed response variables.  Additional discourses 

on beta regression can be found in Kieschnick and McCullough (2003) and Ferrari and 

Cribari-Neto (2004). 

 
METHODS 

Study site and species 

This study was conducted in northeastern Utah in two sites known as Vernon 

Hills (UTM Zone 12, 384335 East, 4438482 North) and Simpson Springs (UTM Zone 

12, 350537 East, 4437129 North), which are in Tooele County, Utah, USA, 

approximately 155 and 172  km southwest of Salt Lake City, Utah, respectively.  At the 

Vernon Hills site, six 1.2-ha study plots were established; three plots were in typical 

Wyoming big sagebrush vegetation (Artemisia tridentata wyomingensis; sagebrush 

hereafter) and three plots were in nearby annual non-native vegetation dominated by B. 

tectorum (cheatgrass-dominated hereafter).  At the Simpson Springs site four study plots 

were selected: two in sagebrush, and two in nearby cheatgrass-dominated vegetation. In 

each of the 10 plots, six 120-m parallel transects (20 m between transects) with seven 

permanent points per transect (20 m between points on a transect) were established for 

the seed trials. 
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At both Vernon Hills and Simpson Springs the cheatgrass-dominated plots were 

all previously shrublands that were dominated by sagebrush that were converted by fire 

to a non-native mixed annual weed community dominated (>90% standing biomass, S.M. 

Ostoja unpubl data) by B. tectorum (Bill Henderson, BLM Salt Lake Field Office, pers. 

comm.).  It is possible that the cheatgrass plots were not identical to the sagebrush plots 

before disturbance events that promoted their current state.  All six Vernon Hills plots 

occur on the Hiko Peak series, where the potential plant community on this soil is about 

45% perennial grasses, 15% forb, and 40% shrubs (NRCS 2000). While all four Simpson 

Spring plots occur on the Taylorsflat series, where the potential plant community is 50% 

perennial grasses, 14% forbs and 35% shrubs. The important shrub in non disturbed areas 

on each series is Wyoming big sagebrush (NRCS 2000).  

The sagebrush plots had vegetation typical of Wyoming big sagebrush 

communities of the Great Basin.  In addition to Artemisia tridentata ssp. wyomingensis, 

other shrubs present include Atriplex canescens (fourwing saltbush), Gutierrezia 

sarothrae (snakeweed), Chrysothamnus viscidiflorus (green rabbitbrush) and Ephedra 

viridis (Mormon tea).  The interspaces between shrubs were dominated by the perennial 

native grasses Achnatherum hymenoides (Indian ricegrass), Elymus elymoides 

(bottlebrush squirreltail), Poa secunda (Sandberg bluegrass), Hesperostipa comata 

(needle-and-thread grass), Leymus cinereus (Basin wildrye), and Pseudoroegneria 

spicata (bluebunch wheatgrass), along with scattered B. tectorum.   Cheatgrass-

dominated plots consisted mainly of B. tectorum but also had other annual weedy exotic 

species including Salsola spp. (Russian thistle) and Lepidium spp. (peppercress).   
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Granivorous rodents live-trapped at Vernon Hills and Simpson Springs in 2004 

and 2005 were Dipodomys ordii, Perognathus parvus, Reithrodontomys megalotis, and 

Peromyscus maniculatus (Chapter 4).  The rodent community is diverse at the research 

sites but is numerically dominated by P. maniculatus, which accounted for >50% of all 

individuals captured, followed by D. ordii and P. parvus (Chapter 4).  Moreover, 

sagebrush plots had greater rodent diversity and abundance than did cheatgrass-

dominated plots (Chapter 4).   

Seeds of the native grasses A. hymenoides, E. elymoides, P. spicata, P. secunda, 

and L. cinereus were purchased from Granite Seed Company, Lehi, Utah, USA.  Seeds of 

Panicum miliaceum were purchased from Cal Ranch Supply, Logan Utah, USA. Seeds of 

B. tectorum were collected in the vicinity of the research sites by one of the authors 

(SMO) in 2005.  All B. tectorum seeds were mechanically cleaned and air blown to 

removal extra coreopsis material from the embryo.  These native seed species were 

selected because they are common in reseeding/restoration projects in this region, few 

studies have used these seed species in this context, and they are dominant grasses in the 

west desert region of central Utah.  The weed species B. tectorum was selected because it 

is locally common and/or widespread, has been shown to alter ecosystem processes (e.g., 

soil morphology, fire regimes, plant-animal diversity), is increasing in range, and may 

influence seed choice by granivores (see Veech 2000, 2001, Knapp 1996, Brooks et al. 

2004, Chapter 2, 4).  P. miliaceum was included because it has been used extensively in 

seed selection experiments (see Longland and Bateman 1998) and has been tested with 

some native species as a potential decoy seed in reseeding projects.   
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We use the term “seed” throughout this paper in reference to all non-ovarian 

reproductive tissues which botanically speaking are fruits.   Because the differing tissues 

among these two structures may either enhance or detract the seeds desirability as a 

resource this distinction is thought to be a significant factor that could influence 

selectivity by a granivore (Kelrick and MacMahon 1985).   

 
Seed trays 

To evaluate seed selection by rodents in monospecific patches and in mixture with 

cheatgrass we designed a cafeteria-style seed removal experiment using rodent-specific 

seed trays.  Seeds of the five native grasses and P. miliaceum (hereafter, target seed 

species) were presented for removal either alone (monospecific hereafter) or in mixture 

with B. tectorum seeds; in addition, B. tectorum seeds were presented alone.  This 

resulted in 13 unique seed combinations.  Monospecific treatments consisted of 3 g of an 

individual seed species per seed tray, and mixture treatments consisted of 1.5 g of one of 

the non-B. tectorum seed mixed with 1.5 g of B. tectorum seed per seed tray.  In a given 

plot each of the 13 seed combinations was replicated three times during a trial night, 

resulting in 39 seeds trays available during a given night.  The 39 seed trays were placed 

randomly at the permanent points along the transects; three transects had six trays and the 

remaining three had seven trays.  Trays were plastic Petri dishes (14-cm diameter, 1.5-cm 

deep).  The seed trays were made available for seed removal at sunset and any remaining 

seeds were recovered at or before sunrise the following morning. Ant seed predation was 

prevented because ants were not active while seed trays were open.  Seeds were separated 

by species and re-weighed to determine the amount removed by species.    
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Because the underlying research questions were centered on understanding 

potential variations in relative preferences and if context-dependent effects among mixed 

seed neighborhoods occur, seed weight rather than seed density was used.  Consequently 

this resulted in a differing number seeds available for removal among the seed species 

used in the research which, is not a problem given the current experimental design and 

statistical analysis.  We calculated the mean seed weight for each species by weighing 

100 randomly selected seeds.  The approximate seeds numbers/3 g quantity of seeds of 

each of the seeds species used was; 769.2 seeds for A. hymenoides, 1053.8 seeds for B. 

tectorum, 545.4 seeds for E. elymoides, 1111.1 for L. cinereous, 508.35 seeds for P. 

miliaceum, 4999.9 seeds for P. secunda, and 681.8 seeds for P. spicata respectively.  

Because seed harvest by rodents is complex and can vary as a function of seed number or 

availability, seed size and shape, resource value, and more, it is difficult to predict the 

exact consequences of this choice for determining the absolute quantity of seed harvested 

(Price 1983, Kelrick et al. 1986).  However, our primary focus was not on the absolute 

amount harvested and the use of seed weight rather than number allowed for an easy 

comparison of relative seed harvesting as a function of vegetation type, time period, and 

seed neighborhoods.   

From February through September 2005 three trials were conducted in three of 

the cheatgrass-dominated and three of the sagebrush plots each month.  Two trials were 

omitted from analyses due either to precipitation events or to damage to most (>50%) of 

the seed trays from wild or feral animals.  This experimental design resulted in 46 trials 

for all plots combined (22 for sagebrush and 24 for cheatgrass-dominated plots).   
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Seed tray experiments may overestimate absolute rates of seed harvest if the 

animals “learn” to use trays as foraging cues (see Veech and Jenkins 2005).  However, as 

noted above, we were primarily interested in assessing the relative preferences among the 

seed species and, especially, in the difference in relative preference between 

monospecific and mixed seed patches. Our design may not be an appropriate proxy for 

the assessment of natural seed harvest rates, but addresses our objectives sufficiently.   

 
Data analyses 

Inspection of data suggested that removal generally was low early in the study, 

peaked in early summer, and then waned.  To accommodate this temporal trend in a 

simple form, trial nights were assigned to one of three periods, with the first from 2 

February 2005 through 26 April 2005, the second from 27 April 2005 through 27 June 

2005, and the third from 28 June 2005 through 30 September 2005.  Dates defining 

periods were selected to provide reasonable balance in sample sizes.  The mean amount 

of seed removed for each treatment for each plot for each trial night was computed over 

the three seed trays for each seed species, and then these values were used to compute 

means for each treatment for each period over the multiple trial nights within a period for 

each seed species.  The proportion of seed removed was calculated as the mean amount 

of seed removed divided by the amount of seed presented in a seed tray (3 g / species 

monospecific, 1.5 g / species mixture).  These proportions were used as response data in 

the analyses. 
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 Due to the (2 x 6 + 1) treatment structure and to the use of both proportion of non-

B. tectorum seed removed and proportion of B. tectorum removed as response variables 

in mixture treatments, three distinct subsets of data were analyzed:   

(1) The effects of vegetation type, time period, and seed species (a categorical 

fixed-effects factor with 7 levels: 5 native species, B. tectorum, and P. miliaceum) on the 

proportion of seeds removed when presented in monoculture were assessed using an 

analysis of variance of a three-way factorial in a split-split plot design.  Plots, as defined 

above, served as whole plots and were the experimental units for the whole-plot factor, 

vegetation type.  Repeated measurements on plots (subplots) were the experimental units 

associated with the subplot factor, time period.  Multiple measurements on plots in each 

period (sub-subplots) were the experimental units associated with the sub-subplot factor, 

seed species.   

(2) The effects of vegetation type (a categorical fixed-effects factor with 2 levels: 

cheatgrass-dominated or sagebrush), time period (a categorical fixed-effects factor with 3 

levels), and seed species (a categorical fixed-effects factor with 6 levels: 5 native grass 

species plus P. miliaceum) on the proportion of B. tectorum removed when presented in 

mixture with non-B. tectorum seeds were assessed using an analysis of variance of a 

three-way factorial in a split-split plot design as described above.  

(3) The effects of vegetation type, time period, presentation (a categorical fixed-

effects factor with 2 levels: monospecific and in mixture with cheatgrass), and seed 

species (a categorical fixed-effects factor with 6 levels: 5 native species plus P. 

miliaceum) on the proportion of non-B. tectorum target seed removed were assessed 

using an analysis of variance of a four-way factorial in a split-split plot design.  Plots 
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served as whole plots and were the experimental units for the whole-plot factor, 

vegetation type.  Repeated measurements on plots (subplots) were the experimental units 

associated with the subplot factor, time period.  Multiple measurements on plots in each 

period (sub-subplots) were the experimental units associated with two sub-subplot 

factors, presentation and seed species.   

Both normal and beta regression models were fit to each subset.  The factorial 

treatment and experimental design structures of both modeling approaches were identical.  

For statistical analyses using a normal regression model, proportions of seed removed 

were transformed using an arcsine-square root transformation prior to analysis, a 

common method to improve the agreement of proportion data with assumptions of 

normality and homogeneity of variances (Sokal and Rohlf 1981).  The analyses were 

generated using the MIXED procedure in SAS/STAT software, Version 9.1.3 of the SAS 

System for Windows.  

For analyses using a beta regression model, proportions of seed removed were 

transformed from the closed unit interval [0, 1], which includes 0 and 1, to the open unit 

interval (0, 1), which excludes 0 and 1, using 

( )
N

Np 5.01 +−×      

 
where p is the proportion and N is the sample size, as recommended by Smithson and 

Verkuilen (2005, 2006).  Analyses were generated using the GLIMMIX procedure, 

production version dated June 2006, in SAS/STAT software, Version 9.1.3 of the SAS 

System for Windows.  
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RESULTS 

Model selection 

Although statistical results are reported for both normal regression model 

(PROCMIXED) and beta regression model (GLIMMIX) analyses, we emphasize the 

latter of these two models as best representing the results of this experiment.  The beta 

regression model fit the assumptions vastly better.  Fig. 5.2 provides an example from the 

monospecific data set of means and associated standard errors.  The high errors that were 

clearly associated with our data set were better modeled in the beta regression while the 

constrained assumption of homogeneity of variance of normal- regression 

(PROCMIXED) is demonstrated by the unrealistically small standard errors (see Fig. 

5.2).   

Monospecific seed removal 

Differential seed selectivity among the seed species when available in 

monospecific presentations was evident (see Table 5.1).  Removal proportions varied 

among seed species (Table 5.1, main effect of seed species).  Based on least square mean 

comparisons, the most preferred seed species were A. hymenoides and P. miliaceum 

while the least preferred were B. tectorum and P. secunda (Fig. 5.3, left column).  Note 

these rankings are not clearly related to seed size. More seed was removed from 

sagebrush plots than from cheatgrass-dominated plots (Table 5.1, main effect of 

vegetation type; Fig. 5.3, left column).  Additionally, there was a suggestive effect of 

time period (Table 5.1). 
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Importantly, we reach some different conclusions in the interpretation of results 

depending on whether we accept the normal or the beta regression model (Table 5.1).  

Based on the normal regression model, which indicated a very significant interaction 

between vegetation type and seed species, we would have concluded that preference 

rankings of seed species differed between sagebrush and cheatgrass-dominated plots.  

However, the more appropriate beta regression model provided absolutely no statistical 

support for this interaction. 

 
Mixture seed removal – Bromus tectorum 

Only vegetation type significantly affected B. tectorum removal from mixture 

treatments (Table 5.2); more seeds were removed in the sagebrush than in the cheatgrass-

dominated plots.  Removal of the weed seed did not vary as a function of which non-B. 

tectorum it was present with in mixture in either vegetation type (Fig. 5.4).  The main 

effect of presentation was not significant, nor was any two-, three-, or four-way 

interactions with presentation significant.  Therefore, there was no evidence for an 

associational effect of any species on B. tectorum seed removal (Table 5.2).  

 
Mixture vs. monospecific seed removal – non-B. tectorum 

The final model compared non-B. tectorum seed removal in monospecific to that 

in mixture treatments.  Here we were primarily interested in evidence that seed removal 

varied as a function of presentation type (monospecific vs. mixture).  In this model seed 

removal was significantly affected by the main effects of vegetation type, time period, 

and seed species (Table 5.3).   The main effect of presentation was not significant, nor 
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was any two-, three- or four-way interactions with presentation significant, indicating 

associational effects did not occur.  

 Comparing the results from the two models again demonstrates that model 

selection can have a very important effect on the conclusions reached.  The main effect of 

time period was not significant with the normal regression model but was with the beta 

regression model.  However, more interesting was that the seed species × presentation 

interaction was not significant in the more appropriate beta regression model even though 

it was highly significant in the normal regression model.  If this interaction was 

significant it would demonstrate that the species differed in how presentation affected 

their harvest and thus suggest that species differed in associational effects in some 

manner.  The lack of significance of any effect that contains presentation in this analysis 

clearly shows that there were no detectable associational effects.   

 
DISCUSSION  

Patterns of seed removal 

Given the greater diversity and abundance of the rodent community in the intact 

sagebrush plots compared to the converted cheatgrass-dominated plots (see Chapter 4), it 

is not surprising that more seed were removed from the sagebrush plots.  Despite the 

strong difference in overall removal the patterns of relative seed preferences were very 

similar for the two vegetation types, especially in the monospecific seed presentations.  

As noted, the differential seed selectivity among the seed species when available 

monospecifically was likely driven by the combined influence of vegetation type, which 

affects the rodent community, and the inherent seed preferences of the rodents present.  
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Many authors have demonstrated apparent preferences for specific food items by 

granivorous animals of North American deserts (Johnson 1961, Kelrick et al. 1986, 

Anderson and MacMahon 2001, Chapter 3).  Veech (2001) tested the preferences of the 

heteromyid rodents Dipodomys merriami and Perognathus longimembris for eight plant 

species and concluded that the rodents exhibited distinct but variable preferences for 

some seeds and avoidance of others.   Kelrick and MacMahon (1985) pointed to the 

importance of nutritional as well as physical seed characteristics in predicting harvest 

(but see Jenkins 1988).  Others have argued that differences among rodent species in seed 

preference might be understood not only by morphological constraints on seed handling 

but also by variable toxicity sensitivity and nutritional requirements (Jenkins and Ascanio 

1993).  Our results are consistent with other research indicating the high desirability of A. 

hymenoides and P. miliaceum seeds; both species have high soluble carbohydrates and 

have a high ratio of energy gain to handling time (Kelrick et al. 1986, Veech 2001).  

Additionally, at least for A. hymenoides, a long standing evolutionary history with seed-

caching rodents may further contribute to its overall high relative desirability (Longland 

et al. 2001).  Nonetheless, with the exception of P. secunda, all of the native grass seeds 

were removed in substantial quantities.  Because we did not investigate underlying 

mechanisms that might be driving differential harvest we are unable to conclude which 

factor or suite of factors produced the results reported.   

Although there are few studies we can compare our results to, results of seed 

harvest in mixtures have ranged from a lack of associational effects (Hulme and Hunt 

1999) through weak evidence for them (Chapter 3, 6) to strong evidence for such effects 

(Veech 2001).  Visual inspection of the results suggests a slight shift in relative 
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preference for some of the target seeds when presented in mixture versus 

monospecifically.  For example, visually, seeds of P. secunda were removed at greater 

relative proportion in mixture than when alone.  Note that when alone, P. secunda had a 

significantly lower proportional removal than did the other native grasses and P. 

miliaceum, but in mixture removal of P. secunda was similar to the other seeds and even 

greater than L. cinereous.  In addition, it appears that A. hymenoides and L. cinereous 

realized slight reductions in removal in mixture treatments compared to monospecific 

treatments.  Overall, however, the evidence for a change in species preferences in seed 

mixtures was weak.  The interaction of seed species × presentation (monospecific versus 

mixture) was significant for the normal regression model but it was not significant in the 

more appropriate beta regression model.  Thus, despite the visual changes described, 

associational effects were at best very weak in this study. 

Veech (2000) found that apparent competition (sensu associational susceptibility) 

most likely resulted among the species whose seeds were the most heavily harvested (e.g. 

A. hymenoides), whereas we found marginal evidence for it with the species that had the 

lowest rates of predation (e.g. apparently increased removal of P. secunda when present 

with B. tectorum).  In another study Veech (2001) found a negative indirect effect of A. 

hymenoides on Astragalus cicer caused by rodents having a lower foraging effort in 

patches that only contained A. cicer seeds than in patches that also contained A. 

hymenoides seeds.  The results from Chapter 3 and 6 and the weak patterns in the current 

study suggest something other than the overall preference for seeds may explain patterns 

of associational interactions.  In addition to seed preferences, density-dependent foraging 

and prey switching have been suggested as potential behavioral mechanisms leading to 
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associational effects among seeds which may help explain resultant patterns (see Veech 

2001, Wootton 1994).  However, the results of the current study (and see Chapter 3 and 

6) and those of similar design from others (see Veech 2000, 2001) point to potentially 

different causes for resultant patterns.  Factors of the environment, including the scale of 

the patch (spatial) as well as a shifting background seed resource temporally may further 

explain patterns reported here.    

Within-season variation in seed removal by rodents has also been shown by other 

researchers (Veech and Jenkins 2005).  Although we were not able to confirm temporally 

shifting patterns of seed removal for the monospecific treatments, we did in the mixtures. 

Also, we noticed a general trend for increasing removal in the cheatgrass-dominated plots 

over time while seed removal in the sagebrush plots peaked in the middle sampling 

period.  It is possible that some of the apparent differences in temporal patterns of seed 

removal among the two vegetation types are a function of differences in background seed 

resources.  Presumably, the sagebrush plots had a more diverse seed resource background 

that also differed temporally in patterns of availability compared to cheatgrass-dominated 

plots.  While overall seed availability in the cheatgrass-dominated plots is likely greater 

than in the sagebrush due to the abundant seed production of B. tectorum (Humphrey and 

Schupp 2001), especially early in the season when their seeds are released, the 

desirability of those seeds is low.  Furthermore, changing behavioral strategies in terms 

of seed handling could also produce varying temporal patterns of seed harvest.  There is 

some indication that heteromyid rodents shift from predominantly scatter-hoarding seeds 

in shallow caches throughout their home range early in the season to larder-hoarding, 

whereby seeds are more deeply buried in one or a few burrows for use later in the season 
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(Vander Wall 1990, William S. Longland personal communication).  Potentially, then, 

these rodents may be less “choosy” of the types of seeds they select later in the season 

when they are not exposed to the added predation risk associated with caching and 

subsequent re-caching of seeds.  In addition, over time as more and more of the year’s 

seed production is harvested the overall pool of available resources decreases which may 

also contribute to reduced selectivity and overall increased harvest from our trays.  

Therefore, a comprehensive consideration of seed availability, inherent seed desirability, 

the role of both space and time and natural cues influencing behaviors associated with 

seed selection should be assessed in an experimental framework to identify a causal 

relationship, if one exists.   

 
Management implications 

Outside of B. tectorum and P. miliaceum, the seeds considered in this research 

have been and will be used for ecological restoration.  Many of the degraded sites within 

the Intermountain West that will have seed applied as part restoration are also habitats for 

organisms that can consume large quantities of seed.  The consideration of granivory in 

the context of ecological restoration has been promoted to maximize success of 

management actions (Kelrick and MacMahon 1985, Archer and Pyke 1991, Hoffmann et 

al. 1995).  An understanding of the granivores present and their relative seed preferences 

could be an important first step in reducing direct seed losses to granivory (see Chapter 

1).  Although in these cafeteria trials all native grass seeds except P. secunda were 

removed in substantial quantities, how rodents might harvest these seeds in a natural 

large-scale reseedings is generally unknown but merits investigation.   
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Consequences of model selection 

We included a comparison of the alternative models to point to the importance of 

model selection criteria in understanding patterns revealed by the data while maintaining 

ecological relevance.  Like many ecological data sets ours did not fit a central tendency 

or normal distribution assumed for traditional approaches such as normal regression 

modeling as in PROCMIXED.  Due to the nature of the study design and the biology of 

the study organism(s), the resultant data set was bimodal and proportional in nature.  It 

was not uncommon for seeds in a seed tray to be either completely un-removed or else 

completely or nearly completely removed.  The shape of our proportional data 

distribution was better suited for regression with a beta-distributed dependent variable 

than with a normally distributed dependent variable, which did not meet associated 

assumptions.  We have shown that the use of this alternative statistical approach is 

important for differentiating the biologically important effects revealed by the data, 

which would have otherwise drawn our attention to the statistically significant occurrence 

of associational interactions (i.e. associational resistance and/or associational 

susceptibility).  We contend beta regression approach may have a frequent place in the 

evaluation of ecological data where traditional approaches fall short.   
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Table 5.1. Type 3 tests of fixed effects for the proportion of seed removed in 
monospecific treatments for normal regression and beta regression models.  Vegetation 
type compares cheatgrass-dominated to sagebrush plots, time period represents the early, 
mid, and late sample periods, and seed species refers to the seven species of seeds used in 
trials.  a highlights differences in statistical significance between the normal and beta 
regression models.   

 
Normal regression 

Effect df F  P 
Vegetation type 1,8 50.71 < 0.001 
Time period 2,11   2.92  0.096 
Vegetation type × time period 1,11   1.05   0.382 
Seed species 6,114   9.89 < 0.001 
Vegetation type × seed species 6,114   3.67    0.002a 
Time period × seed species 12,114   0.82   0.634 
Vegetation type × time period × seed species 12,114   0.29   0.989 

Beta regression 
Effect df F P 

Vegetation type 1,35 38.59 < 0.001 
Time period 2,28   3.79    0.057  
Vegetation type × time period 1,28   2.25    0.152 
Seed species   6,114   3.10    0.009 
Vegetation type × seed species   6,114   0.34     0.918 a 
Time period × seed species 12,114   0.51    0.909 
Vegetation type × time period × seed species 12,114   0.22    0.997 
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Table 5.2. Type 3 tests of fixed effects for the proportion of B. tectorum seed removed in 
mixture treatments for normal and beta regression models.  Vegetation type compares 
cheatgrass-dominated to sagebrush plots, time period represents the early, mid, and late 
sample periods, and seed species refers to the six target seed species used in trials which 
were present with the B. tectorum seeds.   

 
Normal regression 

Effect df F P 
Vegetation type 1,8 13.12 0.007 
Time period   2,11   0.59 0.572 
Vegetation type × time period   2,11   0.49 0.626 
Seed species   5,95   0.70 0.624 
Vegetation type × seed species   5,95   0.87 0.504 
Time period × seed species 10,95   0.56 0.839 
Vegetation type × time period × seed species 10,95   0.63 0.784 

Beta regression 
Effect df F P 

Vegetation type 1,8 15.42 0.004 
Time period 2,11 1.93 0.192 
Vegetation type × time period 2,11 1.71 0.225 
Seed species 5,95 0.62 0.684 
Vegetation type × seed species 5,95 1.12 0.356 
Time period × seed species 10,95 0.97 0.476 
Vegetation type × time period × seed species 10,95 0.92 0.523 
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Table 5.3 Type 3 tests of fixed effects for the proportion of non-B. tectorum seed 
removed in monospecific and mixture treatments for normal and beta regression models. 
Vegetation type compares cheatgrass-dominated to sagebrush plots, time period 
represents the early, mid, and late sample periods, and seed species refers to the six target 
seed species used in trials.  a and b highlight differences in statistical significance between 
the normal and beta regression models.   

 
Normal regression 

Effect df F P 
Vegetation type 1,8 59.67 < 0.001 
Time period   2,11   2.70     0.113a 
Vegetation type × time period   2,11   0.50    0.622 
Presentation     1,209   0.14    0.704 
Vegetation type × presentation     1,209   0.48    0.490 
Time period × presentation     2,209   0.50    0.609 
Vegetation type × time period × presentation     2,209   2.59    0.078 
Seed species     5,209 12.58 < 0.001 
Vegetation type × seed species     5,209   1.58    0.166 
Time period × seed species   10,209   1.16    0.323 
Vegetation type × time period × seed species   10,209   0.30    0.982 
Seed species × presentation    5,209   3.80     0.003b 
Vegetation type × seed species × presentation    5,209   0.75    0.587 
Time period × seed species × presentation   10,209   0.37    0.958 
Vegetation type × time period × seed species × 
Presentation   10,209   0.55    0.849 

Beta regression 
Effect df F P 

Vegetation type 1,8 53.46 <0.001 
Time period   2,11 4.93 0.039a 
Vegetation type × time period   2,11 2.27 0.150 
Presentation     1,209 0.01 0.914 
Vegetation type × presentation     1,209 0.26 0.612 
Time period × presentation     2,209 0.21 0.811 
Vegetation type × time period × presentation     2,209 1.92 0.151 
Seed species     5,209 6.52 <0.001 
Vegetation type × seed species     5,209 0.23 0.949 
Time period × seed species     5,209 0.79 0.645 
Vegetation type × time period × seed species     10,209 0.17 0.998 
Seed species × presentation     10,209 1.50 0.194 b 
Vegetation type × seed species × presentation     5,209 0.15 0.980 
Time period × seed species × presentation   10,209 0.41 0.942 
Vegetation type × time period × seed species × 
presentation   10,209 0.39 0.950 
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Figure 5.1. Probability density curves demonstrating some of the great variety of data 
distributions that beta regression can accommodate. The horizontal axis represents the 
values of the random variable (often denoted y; in the case of the current study, 
proportion). The vertical axis represents the "density" associated with each values of the 
random variable (y); it is scaled such that the area under the curve is equal to one. The 
data in the present study are most similar to the “bath tub” curve that is relatively flat in 
the middle and peaks at each end.   
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Figure 5.2. Means ± standard errors from the normal regression model based on a normal 
distribution with homogenous errors (a) and from the beta regression model based on a 
beta distribution (b).  The treatment of the means does not differ among the two models, 
but the standard errors are markedly different.  Species abbreviations are Achy, 
Achnatherum hymenoides; Brte, Bromus tectorum; Elel, Elymus elymoides; Leci, Leymus 
cinereous; Pami, Panicum miliaceum; Pose, Poa secunda; Pssp, Pseudoroegneia spicata.  
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Figure 5.3. Least-square means ± standard errors of proportional seed removal of target 
seed in cheatgrass-dominated plots in monospecific (open bars) and mixture (hashed 
bars) treatments and in sagebrush plots in monospecific (gray bars) and mixture 
treatments (gray hashed bars).  Different letters indicates mean seed removal differed 
significantly (α = 0.05) among species within that vegetation type – seed presentation 
treatment combinations.  See figure 5.2 for species abbreviations.   
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Figure 5.4. Least-square means ± SEs of proportional seed removal of Bromus tectorum 
seed in mixture treatments in cheatgrass-dominated plots (open-hashed bars) and in 
sagebrush plots (gray hashed bars).  NS indicates that B. tectorum seed removal did not 
differ (P = 0.05) as a function of the species in was in mixture with.  See figure 5.2 for 
species abbreviations.   
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CHAPTER 6 

 
 

INTER- AND INTRA-SPECIFIC SEED DENSITIES AFFECT SEED  

PREFERENCES BY GRANIVOROUS RODENTS6 

     Abstract.  Rodents are known to forage in a density-dependent manner, increasing 

harvesting in patches with greater seed densities.  In addition, at a set overall density, 

seed harvesting may be context-dependent, with the fates of seeds depending on the 

species identities of other individuals in the seed neighborhood. That is, in mixtures of 

different species, indirect or associational effects may strongly influence species-specific 

seed harvest.  If seed harvest for one species increases due to the association of a second 

seed species the outcome is considered an associational susceptibility for seed species 

one.  In contrast, if the seeds of the first species are harvested less because they are in that 

mixed species patch or in association with a second species the resultant pattern is termed 

associational resistance. To evaluate the occurrence of density-dependent foraging by 

rodent granivores and associational effects among seeds in mixtures we conducted rodent 

seed removal experiments in the eastern portion of the Great Basin desert in west-central 

Utah, USA. Our experimental approach used a completely additive design patterned after 

a two-species competition experiment using either the seeds of Achnatherum hymenoides 

(Indian ricegrass), Leymus cinereus (Basin wildrye), or Pseudoroegneia spicata 

(bluebunch wheatgrass) as the native seed species combined with seeds of the non-native 

exotic annual grass Bromus tectorum (cheatgrass).  The experiment involved placing 0, 1, 

2, 3, 4, or 5 g of the native seeds mixed with 0, 1, 2, 3, 4, or 5 g of B. tectorum seeds, 

                                                 
6 Coauthored by Steven M. Ostoja, Eugene W. Schupp, and Susan Durham 
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resulting in 35 weight (our proxy for density) combinations, omitting the 0, 0 

combination.  We detected density-dependent foraging on the three target seeds and on 

cheatgrass when in monocultures.  The presence of B. tectorum with A. hymenoides or L. 

cinereus seeds did not significantly affect removal of either native species.  However, 

results indicate that the presence of B. tectorum with P. spicata seeds may increase rates 

of removal of this native seeds.  Harvest of B. tectorum seeds was greater when in 

combination with all of the native seed species, indicating an associational susceptibility 

of B. tectorum seeds when present with these native seeds.  These results demonstrate 

that seed fate is determined by both total seed density and the local seed environment, 

suggesting that associational effects between native seeds and cheatgrass can occur in 

field conditions.   

 
INTRODUCTION 

At the most basic level the seed-granivore dynamic is a two-way interaction 

involving seeds of a single species and an individual consumer of those seeds (Janzen 

1971, Howe and Brown 2001, Longland et al. 2001).  Seeds are a resource for the 

granivore, and the granivore, although a seed consumer, is also a potential dispersal agent 

for seeds (West 1968, Janzen 1971, Price and Jenkins 1986, Chambers and MacMahon 

1994, Price and Waser 1985, Hulme 1994, Longland et al. 2001, Theimer 2005, Schupp 

2007).  The intensity of seed harvesting and the resultant consequences for the dynamics 

of plant populations can be complex and often dependent on characteristics of the local 

biotic and abiotic environment (Schupp 1988, Schupp and Frost 1989).  For example, 

species composition, diversity, and structure of vegetation influence seed availability and 
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quality and thus the granivore community and resulting competitive interactions among 

seed eaters (Brown 1973, Brown et al. 1979, Brown 1999, Caccia et al. 2006, Chapter 3 

and 5), which in turn potentially influence seed removal patterns (Schupp and Fuentes 

1995, Caccia et al. 2006).  Moreover, the intensity of seed harvesting among microsites in 

the same community (Price 1979, Jorgensen et al. 1995, Longland 1994, Chapter 3) or 

among nearby plant communities (Brown et al. 1986, Bowers 1990) can be drastically 

different.  The physical environment also influences elements of seed removal.  

Moonlight and lunar cycles (Hay 1986), seasonality (Brown et al. 1979), edaphic effects 

(Price and Podolsky 1989), and soil moisture (Vander Wall 1998) all can affect patterns 

and amounts of seed removal in natural settings (see Chapter 1).   In addition, inherent 

seed characteristics such as chemistry, morphology, and nutrient content might influence 

“choice” by granivores and overall patterns of removal (Kelrick and MacMahon 1985, 

Kelrick et al. 1986).  These biotic and abiotic influences of granivory, combined with 

foraging patterns and seed handling behaviors, all influence granivore exploitation of 

seed resources and in turn affect plant populations (Brown and Heske 1990, Howe and 

Brown 2001).   

Density-dependent foraging has been well-demonstrated for granivorous rodents 

in North American deserts (Nelson and Chew 1977, McMurray 1997, Veech and Jenkins 

2005). Veech and Jenkins (2005) define density-dependent foraging as the harvest of a 

greater proportion of seeds (of a given seed species) from high-density patches than from 

low-density patches, and “overall” seed density as the combined density of seeds of all 

species in a patch.  In this light, Price and Heinz (1984) showed that the number of seeds 

harvested per second increases with seed density.  Density-dependent foraging is 
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predicted by optimal foraging theory (Charnov 1976), which suggests that animals should 

spend more time foraging at more dense resource patches, maximizing gain while 

reducing associated costs of foraging.  Foraging decisions likely involve balancing 

energy gain with the perceived risk of being eaten (Longland and Price 1991).  For 

example, Bowers (1990) showed that Dipodomys merriami accept proportionately more 

risk at higher resource levels.   

In addition to total seed density, the patterns of seed dispersion in time and space 

and the combinations of species of seeds available in particular resource patches can 

potentially influence these seed-granivore interactions.  Because seeds are not 

homogenously distributed in the environment and generally occur in mixed species 

patches, interactions between seed species are likely critical.  In seed neighborhoods with 

mixtures of seeds some seed species may confer an “associational resistance” (sensu 

“apparent mutualism” Holt 1977) from seed predators on other seed species 

(Tahvanainen and Root 1972, Hay 1986, Veech 2000, 2001).  Associational resistance 

would occur if a granivore’s foraging on one seed species was diminished by the 

presence of other seed species in the local neighborhood.  In its simplest form this might 

lead to linked plant population dynamics where an increase in one species leads to an 

increase in another species (Holt 1977, Veech 2000).  Although not as well documented 

for seed removal experiments, plants growing in dense or diverse vegetation are 

frequently less susceptible to herbivory than are isolated plants or plants growing in 

monospecific stands (Tahvanainen and Root 1972, Bach 1980, Rausher 1981, Callaway 

et al. 2005).  Theoretically, a seed forager’s search image could become “confused” by 

mixed-species seed patches, hindering the ability to find its seed prey.  Protection from 
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removal also may result from a reduced foraging efficiency on desirable seeds in diverse 

seed aggregations or with seeds that require increased handling time before the animal 

can perceive its relative desirability.  

Being in a seed mixture also might increase the susceptibility of a specific seed 

species to predation.  This “associational susceptibility” (sensu “short-term apparent 

competition” Holt and Kolter 1987, Veech 2000, 2001, Caccia et al. 2006) occurs when 

an increase in the quantity of the seed of one species leads to a decrease in the abundance 

of the seed of another species.  Veech (2001) and Veech and Jenkins (2005) have 

demonstrated short-term apparent competition among seeds of desert plants fed on by 

heteromyid rodents.  For example, Veech (2001) reported a negative indirect effect of A. 

hymenoides on Astragalus cicer due to a lower foraging effort in patches with only A. 

cicer compared to patches with both seed species.  A dependence of seed harvest on the 

mixed-species context could alter selection and change the fate of all seeds present, 

which could change patterns of germination and establishment and produce patterns of 

vegetation structure different from what would be expected based on responses of rodents 

to monospecific seed patches.   

 Thus, total seed densities and relative proportions of different seed species in 

mixed species neighborhoods can affect seed harvesting and might potentially serve as 

better predictors of seed harvest than traditional monospecific seed density experiments.  

However, the effects of relative proportions and of total seed density on foraging 

behavior and seed removal are largely unexplored to date.  Moreover, to our knowledge 

no study has investigated seed-seed interactions between native and non-native seed 

species.  In this study, we examined the importance of seed density and of relative 
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proportions of seed species in mixtures on the intensity of seed removal of three common 

native perennial grasses (Achnatherum hymenoides, Leymus cinereus, and 

Pseudoroegneria spicata) and one non-native annual grass (Bromus tectorum) by rodent 

granivores in a Great Basin sagebrush community.  The objectives of this seed removal 

experiment were: (1) to determine whether harvesting of seeds of the three native grasses 

and of the exotic grass was density-dependent (i.e. intra-specific foraging effects), using 

seed weight as a proxy for density and (2) to determine whether associational effects (i.e. 

associational resistance or associational susceptibility) occur between seeds of the weed 

B. tectorum and, individually, the three native perennial grasses (i.e. interspecific effects).   

 
METHODS 

Study sites and species 

The study was conducted in west-central Utah, USA, at sites referred to as 

Vernon Hills (12 384335E 4438482N) and Simpson Springs (12 350537E 4437129N), 

which are, respectively, about 155 and 172  km southwest of Salt Lake City, Utah, in 

Tooele County.  The vegetation is typical of Wyoming big sagebrush communities in the 

Great Basin.  Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) is 

dominant, although other shrubs such as fourwing saltbush (Atriplex canescens), broom 

snakeweed (Gutierrezia sarothrae), yellow rabbitbrush (Chrysothamnus viscidiflorus) 

and Mormon tea (Ephedra viridis) are present.  The understory is dominated by the 

grasses Indian ricegrass (Achnatherum hymenoides), bottlebrush squirreltail (Elymus 

elymoides), Sandberg bluegrass (Poa secunda), needle and thread grass (Hesperostipa 



 

 

161
comata), basin wildrye (Leymus cinereus), bluebunch wheatgrass (Pseudoroegneria 

spicata), and cheatgrass (Bromus tectorum).   

Native grass species used in this study were A. hymenoides, L. cinereus, and P. 

spicata. Seeds of these species were purchased from Granite Seed Company, Lehi, Utah, 

USA.  Seeds of B. tectorum were collected in the vicinity of the research areas by the 

senior author in 2005.  The rodent community is diverse at the study sites but is 

numerically dominated by P. maniculatus, which accounted for >50% of all individuals 

captured (Chapter 4).  Other nocturnal granivorous rodents trapped at Vernon Hills and 

Simpson Springs in 2005 were Dipodomys ordii, Perognathus parvus, Reithrodontomys 

megalotis, and Peromyscus maniculatus (Chapter 4).  

 
Seed trays 

 To assess the intraspecific and interspecific effects on removal rates and relative 

preferences by granivorous rodents in two-species seed mixtures we used a cafeteria-style 

seed removal experiment.  Our experimental approach was a completely additive design 

modeled after a two-species plant competition experiment using seeds of one of the 

native species above in combination with B. tectorum.  We placed 0, 1, 2, 3, 4, or 5 g of 

the native species’ seeds with 0, 1, 2, 3, 4, or 5 g of B. tectorum seeds, resulting in 35 

weight (density) combinations (omitting the 0, 0 combination).  Each of seven 1.2-ha 

plots had six parallel 120-m transects (20 m spacing between transects) with six 

permanent points on each transect.  Six of the 35 seed combinations were randomly 

placed at permanent points along each of five transects and the remaining 5 combinations 
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were randomly placed along the last transect.  Each native species-cheatgrass treatment 

was replicated 15 times during the period 4 May to 9 September 2005.   

Because we were primarily interested in how variation in total resource 

availability might affect patterns of seed harvest in mixed seed species neighborhoods we 

used constant seed weight categories rather than constant seed density categories.  Seed 

harvest by rodents is complex and affected by seed number, size, shape, nutritional and 

toxic characteristics, and more, so no single experimental approach is necessarily better 

or more realistic for assessing harvest rates (Kelrick et al. 1986).  However, the use of 

seed weight rather than number does provide an easy and suitable way to assess changes 

in the relative quantities of resources harvested among the different seed mixtures, and it 

is such relative changes rather than absolute harvest rates that are the primary focus of 

this study.   

As a consequence of this experimental approach the numbers of seeds available 

for removal differed among the seed species.  We weighed 100 randomly selected seeds 

for each of the species to determine mean seed weight.  The approximate seeds 

numbers/1 g quantity of seeds of each of the seeds species used was; 256.4 seeds for A. 

hymenoides, 334.6 seeds for B. tectorum, 370.4 for L. cinereous, and 227.3 seeds for P. 

spicata respectively.   

 Plastic Petri dishes (14 cm diameter, 1.5 cm deep) were used to offer seeds to 

rodents.  Seed-tray experiments have been widely used for more than a decade to 

evaluate seed harvest by North American desert rodents.  Seed-tray experiments may 

overestimate absolute rates of seed harvest if the animals “learn” to cue in on trays as 

foraging opportunities.  However, because we were interested in the effects of seed 
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neighborhood on relative intensity of harvest rather than absolute quantity of seed 

harvested this should not be a problem.  Seed trays were set out at sunset and collected at 

or before sunrise the following morning, denying granivorous ants access to the trays.  

Seeds remaining in a tray were separated by species (native versus cheatgrass) and re-

weighed to determine the amount removed.  Trays that were destroyed or damaged by 

pronghorn antelope or wild horse trampling were omitted from the analyses. 

 
Analyses 

 
We used a multiple linear regression with one categorical predictor (target 

species), two continuous predictor variables (native seed density and cheatgrass seed 

density), and their interactions.  Two separate sets of analyses were conducted.  First, we 

analyzed the entire data set with the native species combined to assess the interactions 

between “native seeds” and cheatgrass.  Second, we conducted three separate analyses, 

one for each individual native species-cheatgrass combinations, to assess species-specific 

interactions.  In all cases, we analyzed the effect of both native seeds and cheatgrass 

seeds on native seed harvest and the effects of both native seeds and cheatgrass seeds on 

cheatgrass harvest, using the weight of seed harvested as the response variable. Due to 

blocking and the nature of the study design this multiple regression approach is 

embedded in a mixed design (because individual data points are not independent).  

Graphical analysis of residuals was used to assess assumptions of linearity, normality, 

and homogeneity of variance.  The MIXED procedure in SAS/STAT for Windows 

Release 9.1.2 was used for model fitting. 
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Model predictions of seed harvest are portrayed using topographical isocline 

plots, which depict the projection of the 3-D response surface onto the 2-D (i.e. native 

and cheatgrass) seed density plane using S-Plus.  These figures illustrate how seed 

harvest of either the native species or of B. tectorum is influenced by varying seed 

densities of both species.  For example, refer to P. spicata in the bottom panel of Fig. 6.1.  

The 3.2 g isocline depicts all combinations of initial quantities of P. spicata seeds and of 

B. tectorum seeds that result in 3.2 g of the native seed P. spicata being consumed.  

Looking at it slightly differently, the figure shows that just under 3.2 g of P. spicata seed 

was harvested when 4 g of P. spicata was available alone (0 g of B. tectorum), but only 

about 2.8 g of P. spicata was harvested when the 4 g of P. spicata was available with 4 g 

of B. tectorum.  Specifically, the isoclines have positive slopes when a reduction of target 

seed harvest (y-axis, in this example the native species) occurs with increasingly greater 

amounts of the second seed species (x-axis, in this example B. tectorum); that is, with 

increasing quantities of the second species, more of the target species must be initially 

available for the same amount of it to be harvested.  Such patterns when significant are 

termed associational resistance (Fig 6.1).  Conversely, negative slopes to isoclines signify 

an increase in target seed harvest (y-axis) occurs with increasingly greater quantities of 

the second seed species (x-axis), a pattern termed associational susceptibility.   

 
RESULTS 

Native seed harvest 

In the overall analysis including all three native species in the model, the weight 

of native seeds removed increased greatly as the initial amount of native seeds increased 
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(Table 6.1A), as shown by the isoclines rapidly increasing in value up the y-axis for all 

native species (Table 6.1A, Fig. 6.1). This suggests that intra-specific effects influence 

seed removal.  Because the species effect was non-significant there was no evidence that 

these patterns differed among native species (Table 6.1A).  In the individual species 

analyses native seed quantity also positively affected the harvest of all three native seed 

species, further supporting the lack of a species effect (Table 6.2, Fig. 6.1). In general, 

rodents tended to remove most of the available native seeds, but particularly harvested P. 

spicata over L. cinereus over A. hymenoides, as shown by the values associated with the 

isoclines.   

In contrast to the positive intraspecific effect, the amount of native seed removed 

decreased slightly but significantly as the initial quantity of B. tectorum increased (see 

Table 6.1A), as shown by the shallow but positive slopes of the isoclines (Fig. 6.1).  

Therefore, B. tectorum provides a relatively weak but significant associational resistance 

to the native seeds (Fig. 6.1).  In contrast to the overall analysis, however, native seed 

harvest was not significantly influenced by the amount of B. tectorum seed in the mixture 

for any of the three native species individually (Table 6.1A), further testament to the 

weakness of the effect.   

Although no interactions were significant, the near significance of the P. spicata 

weight × B. tectorum weight interaction (Table 6.2) is interesting.  This interaction 

suggests that with an increasing amount of P. spicata seeds B. tectorum provides 

increasing associational resistance to the harvest of that native species, as shown by the 

increasing steepness of the isoclines as one moves up the y axis (Fig. 6.1).  
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Bromus tectorum seed harvest 

Like the three native seed species considered in this research, harvest of B. 

tectorum seeds increased with intraspecific density in both the overall analysis (Table 

6.1B) and in each of the individual analyses (Table 6.3, Fig. 6.2).  Although highly 

significant, the intraspecific effects on B. tectorum harvest do not appear to be as strong 

as those acting on the native seeds (note that the values of the isoclines increase in value 

more slowly along the y-axis in Fig. 6.2 than in Fig. 6.1), likely indicating relatively 

lower preference of B. tectorum seed compared to the native seeds by the rodents.   

Similarly, the amount of native seed initially available also had a significant 

positive effect on B. tectorum seed removal by rodents in both the overall (Table 6.1B) 

and the individual species (Table 6.3) analyses; this pattern is shown by the negative 

slopes of the isoclines in Fig. 6.2.  Further, in the overall analysis the initial native seed 

weight × species interaction was significant (Table 6.1), suggesting that although all 

native species positively affected B. tectorum harvest, they differed in the exact pattern of 

the effect (Fig. 6.2).  The significant initial native seed weight × initial B. tectorum seed 

weight interaction (Table 6.1) can be viewed as showing that the effect of B. tectorum on 

its own harvest depended on the initial quantity of native seeds, and the significant three-

way interaction (Table 6.1) demonstrated that this relationship varied among the native 

seed species. This last point is clearly seen in the individual analyses where only L. 

cinereus had a interaction between initial native seed weight and initial B. tectorum 

weight, as revealed by the curvilinear nature of the isoclines for this species (Fig. 6.2).  

The curvature of these isoclines suggests that the effect of increasing native density is 

very strong at low native densities (steep isoclines slopes) but that with increasingly 
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greater native densities an equivalent increase in natives leads to less and less effect on B. 

tectorum harvest. 

In general, more B. tectorum seed was removed when in combination with L. 

cinereus and P. spicata, and less when in combination with A. hymenoides (Fig. 6.2).  

More importantly, the consistent pattern of increased B. tectorum harvest when in 

mixture with native seeds is evidence for widespread and relatively strong associational 

effects of natives on B. tectorum seed harvest, as seen in the negative slopes of the 

isoclines in Fig. 6.2.  

 
DISCUSSION 

As expected, when more seed was available, more was taken by rodents.  

Although we evaluated seed weight rather than seed numbers, this reflects an effect of 

intraspecific density, which has been shown in other North American desert systems and 

in laboratory studies with related rodent species (Price and Heinz 1984, Bowers 1990, 

Veech 2001, Veech and Jenkins 2005).  Because foraging behaviors of individual species 

were not evaluated, we contend that these intraspecific density effects are an inherent 

property operating at the community level of seed-eating rodents. We did not detect a 

lower threshold at which the rodents ceased foraging for any of the three native seed 

species.  Therefore the sustained increase in harvest with increased availability of seeds is 

consistent with optimal foraging theory where the forager should maximize energy intake 

per time spent foraging (Charnov 1976).  Granivorous animals of the eastern Great Basin 

live in an environment that is resource (i.e. seed) limited.  These seeds come in annual 

pulses that can further intensify competition for seeds, which likely influences foraging 
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decisions in the face of potential risk of attack.  Thus it would be expected to see 

sustained harvest when increasingly greater quantities of seeds are available; especially 

for the more preferred seed types like the native species used in this study (see Chapter 

5). 

Just as with the native species, more seeds of B. tectorum were removed when 

more seeds were initially available; however, rodents rarely completely depleted the B. 

tectorum seeds as they often did the native seeds.  Moreover, results from another rodent 

removal experiment considering seven types of seeds (see Chapter 5) indicated that B. 

tectorum seeds are the least preferred seed type.  Such low removal rates in field 

conditions are difficult to compare to laboratory experiments (Veech 2001) where risks 

differ and animals come from differing ecosystems where background seed resources 

vary, thus ultimately affecting seed preference in experimental settings.  The relatively 

low removal of B. tectorum could simply be a function of the relatively high amounts of 

B. tectorum seeds available at our research area.  Based on seed pool assays, the amount 

of cheatgrass naturally available for harvest was much greater than what was naturally 

available for any of the three targets used in this research (S. M. Ostoja, unpublished 

data).   

It is also possible that B. tectorum seeds are less preferred due to their 

morphology and/or nutritional quality compared to the native seeds.  For example, unlike 

the three native species used B. tectorum has long awns, which would make collection 

and placement within cheek pouches more difficult and potentially increase the predation 

risk associated with B. tectorum seed processing.  This presumably increased time 

necessary for B. tectorum harvest may help explain the apparently low desirability of 
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cheatgrass.  Considering preference in light of nutrition, Kelrick et al. (1986) reported 

that for nocturnal rodents, B. tectorum seed harvest ranked fourth out of six available 

seed types even though it had the second greatest percentage of soluble carbohydrates.  

Soluble carbohydrates are thought to be a good predictor of the relative desirability of 

seeds in sagebrush communities (see Kelrick and MacMahon 1985, Kelrick et al. 1986) 

because soluble carbohydrates are a water-efficient energy source and their relative 

percentage is a good measure of the available digestible energy available in a given food 

item. 

Context dependence in terms of associational or indirect effects can vary in the 

strength of the interaction.  Research results to date range from strong effects (Veech 

2000) through intermediate effects (current report, Chapter 3) and weak effects (Chapter 

5, Veech 2001) to non-existent effects (Hulme and Borelli 1999).  In the present study, 

we have clearly shown that the type of seed patch influences seed harvest, and that there 

are both intraspecific and interspecific effects on harvesting.  As noted, cheatgrass 

appears to be a low or marginally desirable species.  However, it was removed in greater 

amounts when it occurred in patches with native species, even in low quantities.  Veech 

and Jenkins (2005) reported that more Oryzopsis hymenoides (Achnatherum hymenoides) 

seed was harvested when mixed with a second species than when available alone, and 

suggested density-dependent effects as an explanation (because total seed density 

doubled).  Their results potentially point to the importance of total seed density more so 

than to the seed identify in driving their observed patterns, although both factors are 

credited.  Caccia et al. (2006) found that the removal of the less-preferred Nothofagus 

dombeyi seeds increased when they were present with Austrocedrus chilensis seeds, 
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similar to the results presented here; they also noted that the reciprocal indirect effect was 

not observed, pointing to the importance of seed identity in producing context-dependent 

effects of seed removal.  We found that removal of B. tectorum seed was greater when 

present with any one of the three native seeds used in our research, and that the removal 

of B. tectorum was greater when there was more B. tectorum present. Thus, there were 

clear intraspecific and interspecific effects on the harvest of these relatively undesirable 

seeds.  However, although all native species affected B. tectorum seed harvest 

qualitatively the same; they all differed in the exact pattern of the effect (see Fig. 6.2).  

Again, the identity of the neighbor, not merely the quantity of the neighbor present, is 

important in terms of the fate of associated seeds.     

Theoretically, such context-dependent seed removal could result in context-

dependent seed survival, seed dispersal, and recruitment.  Because we, as have others, 

found that the makeup of seed mixtures or seed neighborhoods to affect harvest rates by 

rodents we would like to note the potential effects on plant population dynamics.  If seed 

harvest depends on several factors including patch density, mixture of patch, as well as 

microhabitat and dynamics of the predator population then so would seedling 

germination. Therefore the seed patch makeup could influence both the size and structure 

of a plant community.  We note that B. tectorum did not affect the harvest of all three 

native seeds in the same way; each varied in terms of identity and overall density 

influences and the same is true for how each native species influenced how B. tectorum 

was harvested.  Therefore the resultant patterns for plant populations is a shifting 

template in both time and space of which could change given variations in the local seed 

neighborhood, amount of seeds and as shown here seed identify.  
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These results have potentially important implications for sites chosen for 

restoration as well as for the conservation and management of sites where B. tectorum 

presently is or potentially will become an important species.  The results of this study 

(and see Chapter 3 and 5) suggest that native seeds will be harvested preferentially over 

cheatgrass when the two occur in field conditions, reducing the establishment of natives 

in weed-dominated communities to the extent that harvesting is predation.  Moreover, 

such selective seed preferences potentially facilitate the persistence of cheatgrass. 

Although the presence of native seeds increases cheatgrass harvest, it is probably 

insignificant given the incredibly high densities of cheatgrass seeds in such systems 

(Humphrey and Schupp 2001). 

 However, the concept of associational effects in general has more far reaching 

implications for restoration. It is common practice to restore disturbed landscapes by 

applying large quantities of seed hoping to revegetate a site with desirable perennial 

plants that are suitable for wildlife habitat, livestock forage, erosion control, water 

infiltration, and more.  Because these sites very often have granivorous rodents present 

(Chapter 4), the potential for seed to be loss via predation to these animals is a real 

concern.  With our increased understanding of the importance of seed mixture contexts to 

seed harvesting, the consideration of which species to put in seed mixtures and the 

relative amounts of each should become an increasingly important aspect of seed material 

selection.  If selected seed mixes could be developed that fulfill traditional goals (e.g. 

rapid establishment, competitive ability) while reducing the rodent harvesting of 

desirable species restoration could become easier.  
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Table 6.1 MIXED procedure regression results for weight of native seeds harvested (A) 
and the weight of B. tectorum seed harvested (B) as a function of varying B. tectorum and 
native seed amounts combining the data from all three species of natives.    

 
A. Native seed harvested 

Effect df F P 
Species 2,43 0.19 0.829 
Initial native seed weight 1,43 626.14 <0.001 
Initial native seed weight × species 2,43 0.02 0.983 
Initial B. tectorum seed weight 1,43 6.29 0.016 
Initial B. tectorum seed weight × species 2,43 0.04 0.965 
Initial native seed weight × initial B. tectorum seed weight 1,1209 0.10 0.754 
Initial native seed weight × initial B. tectorum seed weight × 
species 

2,1209 1.90 0.149 

B. Bromus tectorum seed harvested 
Effect DF F P 
Species 2,43 1.99 0.149 
Initial native seed weight 1,44 63.86 <0.001 
Initial native seed weight × species 2,44 4.85 0.013 
Initial B. tectorum seed weight 1, 42 107.62 <0.001 
Initial B. tectorum seed weight × species 2, 42 0.56 0.577 
Initial native seed weight × initial B. tectorum seed weight 1,1195 9.75 0.002 
Initial native seed weight × initial B. tectorum seed weight × 
species 2,1195 3.17 0.043 
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Table 6.2. Results from the MIXED procedure for the weight of native seed harvested by 
species as a function of the quantity of B. tectorum seed and of native seed in the mixture. 

 
Effect df F P 

Achnatherum hymenoides seed harvest    

A. hymenoides seed weight 1,15 273.48 <0.001
B. tectorum seed weight 1,15 2.56 0.129 
A. hymenoides seed weight ×B. tectorum seed weight 1,415 0.10 0.755 

Leymus cinereus seed harvest    

L. cinereus seed weight 1,14 164.67 <0.001
B. tectorum seed weight 1,14 2.16 0.164 
L. cinereus seed weight × B. tectorum seed weight 1,399 0.67 0.413 

Pseudoroegneria spicata seed harvest    

P. spicata seed weight 1,13 215.66 <0.001
B. tectorum seed weight 1,13 1.79 0.203 
P. spicata seed weight × B. tectorum seed weight 1,396 3.61 0.058 
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Table 6.3. Results from the MIXED procedure of B. tectorum seed harvested by species 
as a function of each of the quantity of B. tectorum and of the native seed in the mixture. 

 
Effect df F P 

Bromus tectorum seed harvest when present with 
Achnatherum hymenoides  

   

A. hymenoides seed weight 1,15 15.87 <0.001
B. tectorum seed weight 1,15 36.48 <0.001
B. tectorum seed weight × A. hymenoides seed 
weight 

1,409 0.12 0.734 

Bromus tectorum seed harvest when present with 
Leymus cinereus  

   

L. cinereus seed weight 1,14 41.50 <0.001
B. tectorum seed weight 1,13 34.26 <0.001
B. tectorum seed weight × L. cinereus seed weight 1,393 12.61 0.004 

Bromus tectorum seed harvest when present with 
Pseudoroegneria spicata  

   

P. spicata seed weight 1,14 9.72 0.007 
B. tectorum seed weight 1,13 37.87 <0.001
B. tectorum seed weight × P. spicata seed weight 1,392 2.25 0.134 
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Figure 6.1. Native seed removal for each of the three native seed species as a function of 
varying native/B. tectorum seed densities. Each individual isocline indicates all density 
combinations of the two species that yield a constant level of seed harvest for a given 
native seed species (y-axis). 
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Figure 6.2. Bromus tectorum seed removal when present with each of the three native 
seed species as a function of varying B. tectorum/native seed densities. Each individual 
isocline indicates all density combinations of that two species mixture which yields a 
constant level of seed harvest for B. tectorum (y-axis). 
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CHAPTER 7 

 
 

GRANIVORY IN THE CONTEXT OF RESTORATION: ECOLOGICAL 

FOUNDATIONS AND MANAGEMENT APPLICATIONS7 

 
I. Abstract 

Through selective seed predation and seed dispersal granivorous animals can have 

important and in some cases keystone effects on plants and their activities are key 

processes affecting plant population dynamics and community structure in North 

American deserts.  Currently, regions home to these organisms have been altered by the 

invasion of exotic species that alter physical and biological dynamics (i.e. shortened fire 

return interval, soil structural/biological changes, shifting inter-specific competitive 

interactions, etc.) in ways that appear to promote their persistence.  As such, the 

restoration of western semi-arid and arid lands has been applied extensively in hopes of 

redirecting disturbed and invaded landscapes toward a trajectory deemed desirable for 

wildlife, agricultural, recreational, and many other values.  Given that restoration often 

involves the application of large quantities of seed, it is important to carefully consider 

the potential impacts of granivores on the process of restoration.  Within an ecological 

context, we present information and ideas, some revisited and some novel, that are 

relevant to granivory in the context of ecological restoration. Additionally, we suggest 

specific ecologically-based strategies that if employed might be useful for minimizing 

negative impacts to the granivore community of restoration activities and minimize the 

negative effects these animals on the success of ecological restoration of western semi-
                                                 
7 Coauthored by Steven M. Ostoja and Eugene W. Schupp 
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arid and arid rangelands  of North America.  Because this is a topic that has rarely been 

considered in detail, many of these ideas have only limited support at this point.  

 
II. Introduction 

 
A. HISTORICAL PERSPECTIVE 

 
 Because nearly all semi-arid and arid rangelands in western North America are 

occupied by rodents and seed harvesting ants (Brown et al., 1979, 1986; Longland, 1993), 

the feeding and associated activities of these animals have remained a concern for 

management and restoration on western rangelands for the better part of the last century 

(Smith & Aldous, 1947; Spencer, 1954; Majer, 1989).  For the most part, these organisms 

have been considered as pests or at least as seemingly undesirable components of the 

range from the perspective of range scientists.  These animals have even been labeled 

“animal weeds” (Osborn & Allan, 1949; Tevis, 1953; Halazon & Herrick, 1956).  This 

negative viewpoint stems from the direct destruction of seeds and seeded plants (i.e., 

granivory) by many rodents and ants.  Not all of these organisms have been considered 

pests; many species are rare, do not graze plants used by livestock or big game, or do not 

interfere with seeding projects.  For example, insectivorous species such as Onychomys 

spp. (grasshopper mice), unlike most other rodent species, have historically been 

considered beneficial as consumers of insect pests (Hansen & Vaughan, 1965).   

Nonetheless, many species of rodents, especially mice (Peromyscus spp., 

Perognathus spp.) and kangaroo rats (Dipodomys spp.), can cause extensive seed 

destruction and can heavily even browse emerging seedlings (Reynolds, 1950, 1958).  In 

fact, Vallentine (1989) suggests that rodents are responsible for more bitterbrush (Purshia 
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tridentata) seeding failures than any other single factor and Clements and Young (1996) 

reported that Dipodomys ordii (Ord’s kangaroo rat) was for a major predator of P. 

tridentata seedlings.  Similarly, D. merriami (Merriam kangaroo rat) found and removed 

large quantities of sown seeds from depths as great as 1 inch (2.54 cm) and North 

American deer mice (P. maniculatus) were primarily responsible for consuming 98% of 

grass seed broadcast in one study (Nelson et al., 1970).  In addition, harvester ants 

(Pogonomyrmex spp.) have been reported to destroy between 15-20% of the vegetation of 

some ranges in New Mexico (Race, 1966).  Bohart and Knowlton (1953) noted that 

because harvester ants harvest seeds at great distances from their mounds (< 30m), the 

likelihood of their impact on perennial grass reseedings and on natural recovery of 

disturbances was great.   It is not surprising, therefore, that actions have frequently been 

taken to minimize the impacts of rodents and ants.   

 Early measures to deal with these “animal weeds” were based on lethal population 

control to halt or prevent further serious damage to range and pasture lands.  The 

principal methods of control included poisoning, trapping, shooting, and exclusion 

(Storer & Jameson 1965).  In the middle part of the last century, Strychnine (LD50 30) 

was widely used as an aboveground toxicant in rodenticide baits.  Others suggested that 

treating seeds with a repellent (e.g. coated seed) might help prevent seed losses 

(Reynolds, 1958).  Poisoning was also directed at insects as well; for example, harvester 

ant control could be accomplished with a carbaryl bait or spray (Vallentine, 1989).  The 

pesticidal bait hydramethylnon was also promoted for use on harvester ants (Vallentine, 

1989).  Today, these measures of reducing the negative impact of these animals on semi-

arid and arid landscapes do not appear to be in widespread use, although it is difficult to 
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evaluate to what degree practices like these are still used because most are illegal, 

socially un-acceptable, or environmentally inappropriate.  In the following sections we 

provide an overview of measures that are ecologically based and that can hopefully help 

minimize the negative impacts of these animals and that should not have system wide 

deleterious affects.     

 
B. AN ECOLOGICAL CONTEXT AND RATIONALE 

As a subdiscipline of ecology, restoration ecology is one that, under ideal 

conditions, integrates theory and application (Jordon et al., 1987).  It has been suggested 

that restoration success could be improved by considering such efforts within a 

framework that is process oriented, attempts autogenic repair, and considers landscape 

interactions (MacMahon, 1987; Whisenant, 1999), all while implementing structural 

components (e.g., plant materials, etc.) as a means toward system-wide functional repair.  

Research that explores the effects of animals on plant establishment fits well within this 

framework of restoration ecology because directing plant community development 

requires an understanding of how ecological processes and interactions can be integrated 

with management application (Majer, 1989; Whisenant, 1999; Howe & Brown, 2001).  

Land managers and ecologists will need technology integrated with appropriate 

resources, as well as a sound understanding of landscape- and ecosystem-level 

interactions to find success in semi-arid and arid land (arid land hereafter) ecological 

restoration (Kelrick and MacMahon, 1985; Jordan et al., 1987; Milton et al., 1994; 

Archer and Pyke, 1991; MacMahon, 1997).   



 

 

185
Perhaps one of the most important yet largely overlooked ecological processes 

that may affect restoration success is “seed eating” or granivory (Wilson et al., 1990; 

Howe & Brown, 2001).  Granivory may be especially important in arid lands in the 

western USA (Parmenter et al., 1984; Brown & Heske, 1990) because nowhere else has 

such a diversity of granivores (Davidson et al., 1980; Kelt et al., 1996).  In addition, these 

granivores can comprise a significant component of the faunal biomass and can exert 

substantial impacts on ecosystems via selective seed dispersal and seed predation 

(Davidson, 1977a; Crist & MacMahon, 1992, 1994; Vander Wall, 1992, 1994; Heske et 

al., 1993, 1994; Polis & Strong, 1996; Kelt & Brown, 1999).  We contend that arid-land 

restoration on western rangelands should include a consideration of the potential positive 

as well as negative impacts of granivores, and ultimately on their management as well.  

The goal should be to minimize the negative effects of granivory on reseeding success 

while acknowledging that in at least some cases the seed dispersal behaviors of 

granivores might aid in restoration where traditional methods are limited in feasibility.  

Restoration of arid lands is at minimum a two-step process.  Site or seed bed 

treatments are often used to reduce the standing biomass and/or seed reserves of 

undesirable species because seeding directly into weedy stands is not often successful.  

Site treatments commonly used include mechanical (e.g., disking, harrowing, mowing, or 

chaining), fire, and/or chemical treatments (i.e., herbicide applications).  Once the site is 

prepared, the application of restoration seeds occurs.  Rangeland drills are the most 

common and successful method of seed application on degraded landscapes (Young & 

McKenzie, 1982; Vallentine, 1989; Monsen et al., 2004).  This process involves seeds 

dropped into furrows created by disk wheels at a specified depth which is dependent upon 
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seeding mix, edaphic properties, regional precipitation, and other factors, all of which 

interrelate to biological and physical features specific to each site.  Alternatively, aerially 

broadcasting seed and then working the seeds into the soil with a harrow or chain are also 

widely used.  At remote sites, sites in wilderness areas with restrictions, or sites with 

challenging topography seeds may be aerially broadcast without working them into the 

soil mechanically. 

The impact of ant and rodent granivores can vary depending on the seeding 

method (i.e. drill or surface broadcast) and on the granivores in question.  Because ants 

cannot locate and dig for buried seeds (Davidson, 1977b; MacMahon et al., 2000), they 

should have little impact on the success of drilled seed, if the drilling is properly done.  In 

contrast, rodents can detect seeds buried in the soil (Vander Wall, 1990; 2003, Vander 

Wall et al., 2001) can detect buried seeds by smell and searching and thus potentially can 

remove large amounts of drilled seeds.  The selective consumption of restoration seeds 

can have profound impacts on immediate restoration success and, by increasing the 

resource base, on granivore communities.  Deer mice (Peromyscus maniculatus), a 

ubiquitous rodent species in North America, can consume an amount of seed equal to 

30%-40% of their body weight, and remove seed equal to 174% of their body weight 

when preferred seed types are available (Everett et al., 1978).  Such an event post seeding 

would result in significant seed loss and consequently severely impact restoration 

success.   

To manage the granivore-seed interaction in ways that maximize restoration 

success, it is important to consider how site treatments, methods of seeding, and resource 

supplementation via seeding might both adversely and positively affect granivore 
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communities. Within an ecological context, we present information to consider these 

animals when they are present and a potential concern within the general framework of 

restoration in western arid-lands predominantly as granivores but graminivory will also 

be treated but to a lesser extent.  In so doing, we extend specific ecologically-based 

strategies that if employed could both minimize negative impacts to granivore 

communities and minimize the negative effects these animals may have on the process of 

ecological restoration.   

 
III. Considerations of Granivory and Restoration – Ecological Context 

 
A. SEED ESCAPE MECHANISMS  

 
A theoretical foundation of seed escape was given originally by Janzen (1971) 

and Connell (1971) in their respective landmark papers (Janzen-Connell hereafter).  

Simply put, this model helps explain a possible evolved pathway allowing seeds to persist 

and ultimately survive in the face of seed predators (Clark & Clark, 1984). As the term 

implies, the seed is “escaping” peril.  Applications of seed escape in a restoration setting 

were to our knowledge first offered by Archer and Pyke (1991) and are herein extended 

with specific examples for direct application.  Elements of the original Janzen-Connell 

idea can be understood in temporal and spatial seed escape scenarios, each of which then 

establishes the template for the appropriate management options.  Therefore, specific 

applications of variations of these ideas are offered that, if successful, can minimize seed 

losses to predation and/or secondary dispersal when such are un-desirable.  In addition to 

these, we consider predator satiation as a form of seed escape. 
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B. SPATIAL SEED ESCAPE 

 
  In the context of Janzen-Connell, seed escape in space occurs when the seed is 

dispersed away from the parent plants. Such dispersal is thought to reduce seed mortality 

by reducing predation by distance-dependent predators concentrating their foraging near 

the seed sources and by density-dependent predators concentrating their foraging in 

higher density seed patches, which are generally assumed to be closer to parents. Note, 

however, that even very far from parents, high densities of seeds can result in very high 

levels of mortality (Schupp et al., 2002).  Similarly, escape in space can occur if seeds are 

dispersed into habitats that are less suitable to seed predators (Schupp, 1993), such as 

when the natural matrix vegetation provides required cover for granivores while the more 

exposed restoration site does not.  Based on these ideas, then, more seeds should escape 

harvesting by rodents when: 1) the seeded area is larger and thus has more area far from 

edges, 2) the seeded area has reduced edge to interior ratio (e.g., round rather than 

elongated) and thus has reduced access across edges and has more of the core far from 

edges, 3) seed density is much less in the restoration site than in the surrounding natural 

matrix, and 4) the seeded restoration site is much less suitable for the seed predators than 

is the natural matrix vegetation. Note that these arguments depend on the natural matrix 

vegetation rather than the restoration site being the major source of granivores, which in 

at least some cases is true (Chapter 4, Longland, 1993). 

 Given this, there are potential applications of the concepts of seed escape in space to 

restoration reseedings, though they have been little explored. The first two points relate to 

project design. If possible, restoration applied to larger and squarer sites might be more 

desirable from the perspective of reducing seed harvesting. However, in many if not most 
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cases the size and shape of the restoration site is not under the control of the restorationist 

but is determined by the disturbance that created the need for restoration. Point three is a 

potential problem in that seeding increases the density of seeds in the restoration site, in 

many cases probably to levels higher than in the surrounding natural matrix. Seeding at 

greatly reduced densities might in some cases reduce losses to granivores (but see section 

D below), but would likely fail to establish sufficiently densely to stabilize the site and 

exclude weeds. However, it might be feasible to aerial seed a buffer zone of surrounding 

natural matrix with sacrifice seeds (see below) to reduce the foraging of granivores out 

into the restoration site.  Point four might be most important to consider in the context of 

planning the restoration project; for example, if you know that the granivore community 

is greatly reduced in the restoration site relative to the natural matrix then seed loss will 

be expected to be less of a problem and the strategies presented above will be more likely 

to succeed than if the granivore community is only slightly reduced.  However, there 

might be management strategies for reducing the suitability of the restoration site to 

granivores even further, such as installing owl perches in the restoration site, especially 

near the perimeter, or promoting predators in some other manner (see below).  

 
C. TEMPORAL SEED ESCAPE 

To apply ideas about seed escape in time to restoration we need to distinguish 

long-term (e.g. multiple years) versus short-term escape mechanisms (e.g. multiple 

occurrences within a single year).  A long-term seed escape framework would suggest 

that seeding be done in years of low seed predator population sizes. Conceptually, this 

technique could be used by applying seeds when seed predator populations were 
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declining or naturally low, such as seeding following a sustained drought or other 

stochastic event that negatively impacts the granivore community.  This technique 

dictates that the restorationist has knowledge of the granivore community and how 

natural disturbances (e.g. fire, drought) might negatively affect the animal population and 

thus provide a window for safer seeding.  An obvious concern is that conditions 

adversely affecting the granivore population(s) can also be unsuitable for the success of 

sown seeds (e.g. drought periods).  Conversely, increased rainfall suitable for re-seeding 

is reported to positively affect native rodent and ant communities (Brown and Ernest 

2002).  Precipitation in desert communities is the primary factor determining plant 

productivity, hence seed production and ultimately granivore population growth; 

however, relationships are complex and vary among habitat types (Ernest et al., 2000; 

Brown & Ernest, 2002).  Nonetheless, increased rainfall following a drought might 

provide a narrow window for seeding when precipitation is suitable for plant 

establishment and granivore communities have not yet fully recovered. 

A common disturbance within the Great Basin desert and other arid systems 

where Bromus tectorum (cheatgrass) and other non-native annual grasses dominate are 

recurrent fires (Pellant, 1989; Brooks et al., 2004).  However, we know very little about 

how rodent and/or ant communities respond to such disturbance events.  There is some 

indication of increased activity of some species of Dipodomys rodents on recently burned 

sites in western Nevada, USA (S. Ostoja unpubl.), at least in the short-term.  Whether 

such shifts in rodent community assemblages persist long-term are not known, though.  

In at least one study, there was little difference in rodent populations between burned and 

unburned plots, although the proportion of bipedal to quadrupedal heteromyids did differ 
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(Fitzgerald et al., 2001).  If bipedal and quadrupedal heteromyids interact with seeds 

differently (e.g. proportion cached as opposed to consumed immediately) such 

community structure changes could be important for seeding success. Understanding the 

responses of the granivores to fire or similar disturbances could help restorationists better 

predict and plan for the types of seed-granivore interactions that will occur with 

reseeding. 

A short-term seed escape framework might be based on rodent foraging activity 

as a function of moon phase and seasonality (Price et al., 1984; Lockard & Owings, 

1974).  Rodent activity (i.e. foraging) is frequently reduced directly before and during full 

moon periods (Kaufman & Kaufman, 1982; Clarke, 1983).  During these “brighter” 

periods of the lunar cycle rodents themselves are more prone to predation and therefore 

reduce their susceptibility by minimizing the amount of time spent foraging (Bowers, 

1988).  Seeding just before full moon could minimize at least initial seed losses and may 

be most effective if done in concert with another strategy (e.g. sacrifice seed application – 

discussed below).  Such an approach might also be especially useful with aerial seeding 

since even a relatively short window of reduced granivore activity should allow at least a 

few more seeds to move into the soil by physical means (Chambers, 2000) and thus be 

less obvious to granivores. 

When seeding a site that has a high proportion of rodents in the family 

Heteromyidae and/or Sciuridae, temporal considerations become more complicated.  

These animals place seeds both in “scatter-hoards” or “caches,” small groups of 

shallowly buried seeds in scattered caches throughout the home range, and in “larder-

hoards,” one to a few hoards of many seeds generally at least relatively deep in the 
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burrow system (Vander Wall, 1990).  It is scatter hoards that are most likely to survive to 

produce plant recruitment while larder hoards are generally equivalent to death. 

Heteromyids appear to spend more time scatter-hoarding in early and mid season, then 

shift to larder-hoarding later in the season in preparation for winter (Murray, 2003).  In a 

laboratory setting Dipodomys merriami (Merriam's kangaroo rat) scatter-hoarded during 

trials conducted at 25° C but nearly exclusively larder-hoarded in a 5° C environment 

(Murray, 2003). Many other seed caching rodents have the same behavior (Vander Wall, 

1990).  

Thus, harvested seeds from fall seedings are likely not to be cached, but rather 

placed in a larder where they are unlikely to geminate or at least establish.  In contrast, 

harvested seeds from seedings earlier in the season could be re-seeded by the rodent via 

seed caching behavior.  There are numerous reports of the successful germination and 

establishment that occur when caches are not recovered by the cacher or pilfered by 

another animal (Longland et al., 2001).  In a large-scale restoration effort in western 

Nevada, USA, seeded species harvested and subsequently cached by either Dipodomys 

spp. or Peroganathus parvus successfully established and ultimately contributed to 

restoration success (S. Ostoja, E. Schupp, and W. Longland, unpubl.).  However, for at 

least two native restoration seed species (Achnatherum hymenoides and Pseudoroegneria 

spicata) experimentally simulated drilled seeds were significantly more likely to 

germinate and establish seedlings than were the same number of seeds that were seeded 

(i.e. cached) by a single D. ordii (Ord’s kangaroo rat) individual in field conditions at an 

experimental range in Utah, USA (S. Ostoja & E. Schupp, unpubl.).  This preliminary 

result suggests that at least for the species involved, the harvesting and subsequent 
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caching of drilled seed could have an overall negative effect on the success of some 

reseeding undertakings, even though establishment results.  However, the effect would 

not be as negative as it is when the rodents involved are more pure seed predators. 

Like rodents, seed eating ants change their foraging behavior seasonally 

(MacMahon et al., 2000).  In many regions of the west harvester ant (Pogonomyrmex and 

related genera) foraging decreases in autumn due to cooler temperatures.  It is reported 

that in the genus Pogonomyrmex, warm desert species forage between March and 

November whereas higher elevation species forage from April to October (MacMahon et 

al., 2000). Therefore, in contrast to expectations for rodents, fall seedings should suffer 

less seed predation by ants than spring or summer seedings. Since mounds of 

Pogonomyrmex spp. can reach densities of 10-40/hectare in disturbed habitats and can 

cover >10% of the land area (Mull & MacMahon, 1996, 1997; MacMahon et al., 2000), 

minimizing there impact can be extremely important. However, because of ant foraging 

behavior these considerations are really only relevant for broadcast seeding.   

Lastly, some granivore species, such as the rodents Dipodomys spp. and Tamias 

spp., can be active all year and therefore may influence restoration more significantly, or 

at least differently, than species that are only active seasonally, such Perognathus spp. 

rodents and seed harvesting ants (Hansen, 1978; Price & Jenkins, 1986; Polis, 1991; 

Mares, 1993; Longland, 1994).  Differences among granivore species in overall seed 

harvesting behavior and in the fate of harvested seeds suggests that an understanding of 

the species composition and knowledge of their behavior is critical for predicting the 

impacts of granivores on restoration success (Janzen, 1969; Mares & Williams, 1977; 

Lawhon & Hafner, 1981; Kelrick et al., 1986).   
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D. MAST SEEDING AND PREDATOR SATIATION 

Mast seeding is an evolved strategy of many plant species which effectively 

reduces seed predation via the production of an overabundance of seeds, generally on a 

supra-annual basis (Kelly & Sork, 2002).  This can operate as years of synchronized mast 

fruit production at the population level or even synchronized fruit production by multiple 

species in the community (Liebhold et al., 2004).  In either case, years of abundant seed 

production can satiate the granivore community and result in high seed survival (Li & 

Zhang, 2003). Additionally, in years of abundant seed production some rodents alter their 

foraging behavior and cache a higher percent of the seeds they handle (Li & Zhang, 

2003), potentially switching from being nearly exclusively seed predators in years with 

few seeds to reasonably effective seed dispersers in years of abundant seeds.  

From a management perspective, if the consumer population sizes are known the 

amount of seed likely to be lost can be calculated form an energetic or perhaps some 

other approach.  At a minimum, this would allow land managers to estimate how much 

seed to apply to have sufficient numbers surviving to establishment without having so 

many seeds that intense competition occurs during seedling establishment or that the 

granivore populations build excessively high.  Moreover, this model of predator satiation 

can also be used when the land manager provides another type of seed in addition to the 

target seed (a form of sacrifice seeding – see below).  As more is learned about the 

interactions between granivores and seeds it might be possible to modify seeding 

strategies in order to also maximize caching behavior of appropriate rodent species. 
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IV. Granivory and Restoration Considerations – Management Application 

A. SEED DISCOVERY CUES 

The manners in which granivores assess their environment to effectively extract 

resources from it are critically important for understanding the interaction between 

granivory and restoration as well as for devising strategies that minimize the impact of 

granivory (Davidson, 1993).  This section considers mechanisms granivores use to find 

seeds, which forms the ecological basis for outlining concepts and models to consider 

with the goal of management to reduce the potential negative impact of granivory and 

associated activities of these organisms. 

Seed harvesting ants are single-load, central place foragers who selectively 

remove seeds from many plant species (Crist & MacMahon, 1991a, 1991b, 1992; 

MacMahon et al., 2000).  Seed selectivity is reported to depend upon many attributes of 

the seeds, including among others abundance, nutritional quality, morphology and size 

(Crist & MacMahon 1991a, 1992).  Moreover, seeds infected with certain pathogens (i.e. 

endophytic and/or saprophytic fungi) have been reported to be selectively rejected by ant 

workers (Knoch et al., 1993).  For example, endophyte-infected Festuca arundinacea 

(fescue) seeds were harvested less frequently than non-infected seeds by two populations 

of Pogonomyrmex rugosus, but not by a population of P. occidentalis; moreover, infected 

seeds that were harvested were mostly placed into refuse piles (Knoch et al., 1993).  

Because harvester ants are central place foragers they are thought to deplete seed 

resources more near their central nest and along trails radiating from the nest (Hobbs, 

1985; Mull & MacMahon, 1996).  Moreover, ants do not dig for seed buried in the soil 
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and thus are only able to remove seeds that are available on the soil surface and that they 

have physically contacted (Mull and MacMahon, 1997; MacMahon et al., 2000).  Once 

an ant comes in contact with a seed it chemically evaluates the seed and determines if it is 

viable and/or deemed worthy of transport back to the colony (Hölldobler & Wilson, 

1990; Mayer et al., 2005).  It is thought that only some small fraction of seed collected 

and returned to the nest by foragers is successfully dispersed (MacMahon et al., 2000).  

Consequently, then, the bulk of collected seed is thought to be effectively removed from 

the seed pool because it is consumed or buried deep in underground chambers 

(Hölldobler & Wilson, 1990). 

In contrast to ants, rodents are able to locate seeds using olfaction and tactile cues 

as well as by random searching.  In addition, many rodent species can also differentiate 

between edible and non-edible seeds using olfaction and tactical cues, which may allow 

for the preferential selection of viable seeds (Vander Wall, 1993, 2003).  Olfaction 

appears to have an especially important role in the ability of rodents to locate and acquire 

seed resources, and a keen sense of olfaction might be an evolutionary adaptation of 

organisms living in arid environments (Vander Wall et al., 2003).  Because substrate 

moisture is known to greatly influence rodent ability to detect buried seeds by olfaction, 

there should be a greater selective pressure placed on olfactory abilities of desert rodents 

living in xeric environments (see Vander Wall, 1993; Vander Wall et al., 2003).  

Moreover, nocturnal rodents can rely less on visual cues for detecting seeds than can 

diurnal rodents and thus should be expected to have an especially keen sense of smell 

(Vander Wall et al., 2003).   
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The odors coming from seeds are important in the pilfering by rodents of caches 

made by other rodents as well as by birds (Vander Wall, 1990), and moist soil increases 

the ability of most rodents to locate buried seeds (Vander Wall, 1993, 1998; Vander Wall 

et al., 2003).  Research suggests that organic molecules are released from seeds as they 

imbibe water in the moist soil (Duke et al., 1983; Simon & Mills, 1983), and rodents use 

these odors as cues that resources are buried below.  As one example, Vander Wall 

(1995) reported that Peromyscus maniculatus (deer mouse), Perognathus parvus (Great 

Basin pocket mouse), and Tamias amoenus (yellow pine chipmunk,) found nearly all 

Purshia tridentata (antelope bitterbrush), Oryzopsis (Achnatherum) hymenoides (Indian 

ricegrass), and Pinus contorta (lodgepole pine) seeds (>99%) buried in a moist substrate, 

but less than 15% of the seeds buried in a dry substrate.  However, there is a large degree 

of interspecific variability when it comes to the rodent’s ability to find buried resources in 

general and in the effect of moisture on this ability (see Vander Wall et al., 2003).  For 

example, Perognathus parvus (Great Basin pocket mouse) in the study above found more 

than 80% of the seeds buried in the dry substrate, which may be suggestive of an 

enhanced olfactory ability compared to the other species (Vander Wall, 1995).   

Overall, these ideas of seed discovery may have important management 

implications when re-seeding.  Increasingly, seeds coated with beneficial fungi are used 

in restoration.  Although no research exists comparing coated versus non-coated seed in 

terms of seed selectivity, one would expect ants to reject these types of restoration seeds 

(Knoch et al., 1993; Crist & Friese, 1993).  Rodents, however, might differentially select 

these fungus coated seeds (Rebar & Reichman, 1983; Reichman & Rebar, 1985; 

Reichman et al., 1986).  For example, it has been shown that D. spectabilis preferentially 
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selected slightly moldy seeds to non moldy and highly moldy seeds (Reichman & Rebar 

1985).   

Considering the keen sense of rodent olfaction, the handling of seeds during 

harvesting and preparation for seeding can increase detection and harvesting by rodents 

(Wenny, 2002). Thus, reducing direct human skin contact with seeds might reduce seed 

harvesting.  It might also be possible to treat seeds in ways that would mask odors that 

rodents use to locate buried seeds.  The use of predator cues such as fox or coyote urine 

scent might not only mask the odor of seeds, but might also discourage rodent foraging 

and ultimately reduce seed losses (see below).  However, there is little evidence that 

natural predator cues alone deter rodent activity (Brinkerhoff et al., 2005; Orrock & 

Danielson, 2004; Orrock et al., 2004).  Alternatively, activated carbon has been shown to 

sequester organic compounds in soil environments (Kulmatiski & Beard, 2006), and thus 

might reduce the amount of volatile organic seed compounds reaching the surface and 

diminish rodents’ ability to use olfaction as means of seed detection and removal.  

Research addressing these interactions with desert granivore species, as well as other 

ways to mask seed odors would be valuable. 

 

B. SACRIFICE SEEDING 

It might be possible to improve the success of restoration by discouraging 

recovery of seeds that have been drill or broadcast seeded by also adding more desirable 

seeds.  This concept is referred to as sacrifice seeding, diversionary food, decoy seeding, 

and dummy seeding (Archer & Pyke, 1991; Longland & Bateman, 1998; Sullivan, 1979; 

Sullivan & Sullivan, 1982, 2004).  Certain commercial seeds such as millet are highly 
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preferred by desert granivores (Price, 1983; Longland, 1994; Chapter, 5).  For rodents 

this concept would rely on them caching both seeds, however selectively consuming the 

less costly decoy seed as the sacrifice seed to reduce predation of less preferred target 

seeds.  Therefore, it should be possible to reduce rodent and ant predation on seeded 

restoration species by supplying a sufficient amount of a preferred commercial seed as a 

sacrifice that would be preferentially consumed, allowing restoration seeds to escape 

predation (Longland & Bateman, 1998).  For example, Longland and Bateman (1998) 

found that Panicum miliaceum was highly preferred to Atriplex canescens, and therefore 

suggested its potential use as a decoy seed when saltbush (Atriplex spp.) is seeded in 

restoration. 

The application of this model is founded on the ecological idea of indirect effects, 

in this case mediated by consumers (Atsatt & O’Dowd, 1976; Holt, 1977; Holt & Kotler, 

1987; Veech 2000, 2001; Theimer, 2005; Miller et al., 2007). Because granivores are 

selective in seed choice, they can induce indirect interactions among the available seeds 

in two major ways.  First, seed predators can induce apparent competition (Veech, 2000, 

2001; Caccia et al., 2006), also referred to as associational susceptibility (Chapter 1).  

This type of indirect interaction occurs when an increase in the quantity of the seed of 

one species leads to a decrease in the abundance (i.e. increased seed harvest) of another 

species.  Second, seed predators can also induce apparent mutualism (Calloway et al., 

2005), also referred to as associational resistance (Wahl & Hay, 1995; Chapter 1).   This 

occurs when an increase in the quantity of seed of one species leads to an increase in the 

abundance (i.e. reduced see harvest) of another species (Holt, 1977; Miller et al., 2007).  
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Sacrifice seeding represents this second type of indirect interaction, where the addition of 

the sacrifice seed leads to increased seed survival of the restoration species.  

Sacrifice seeding might simply reduce initial harvesting of restoration seeds by 

ant and rodent granivores; that is, the granivores would selectively harvest the sacrifice 

seeds leaving more of the restorations seeds untouched. Alternatively, sacrifice seeding 

could operate in more complex ways.  For example, it could be used to minimize 

recovery and consumption of restoration seed caches that had already been made by 

rodents, or to increase the scatter-hoarding rate of restoration seeds and reduce their 

subsequent relocation and removal.  The timing of application of both restoration seed 

species and sacrifice seeds should be considered in the context of the type of restoration 

effort and the nature and diversity of the granivores.  Longland and Bateman (1998) 

suggested that the ideal time to present sacrifice seeds would be sometime after the 

restoration seeding has occurred because rodents would then preferentially select and 

consume the decoy, becoming temporally satiated and thus consume fewer restoration 

seed caches that had already been made.  In contrast, Sullivan and Sullivan (1982) 

simultaneously applied sunflower seeds as sacrifice to reduce predation on pine seeds.  

They applied a ratio of two sunflower seeds to one pine seed which resulted in 50-82% 

survival of pine seed after 3 weeks and 42-72% after 6 weeks, compared with 12-15% 

and 8-10% survival, respectively, in the absence of sunflower (also see Sullivan, 1979).    

Seed material selection for sacrifice seeds should ideally consider a metabolic 

understanding of seed selectivity (i.e. interactions between macronutrients and 

metabolically recovered water, see Chapter 1; Frank, 1988), as well as the means of seed 

discovery and/or rejection (e.g. seeds infected with endophytic fungi, etc.).  In addition, a 
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careful evaluation of selectivity in terms of seed mixtures is important.  Limited research 

suggests varying seed mixtures (combinations of species) can alter removal rates and/or 

types of seed removed, which is a very important consideration in reseeding (Chapter 6), 

especially when considering sacrifice seeding – a “sacrifice seed” that led to increased 

consumption of desirable seeds (i.e. associational mutualism) would be a failure. 

 
C. SEARCH IMAGE DISTRACTION 

Rodents and ants are thought to develop search images for particularly abundant 

seeds in the environment (Brown et al., 1979; Hölldobler & Wilson, 1990; MacMahon et 

al., 2000).  The use of color dyed seeds might reduce seed predator removal rates due to 

the lack of a search image for uniquely colored seeds.  However, we do not have any 

evidence that suggests the application of this technique would work.  If it works at all, 

this is most likely to help with rodent seed predation because ants are not visual foragers.  

In addition, rodents might quickly learn to identify new seed colors as suitable food 

items.  Lastly, research using fluorescent pigments to track seeds in the field, report that 

the powder did not deter heteromyid rodents from using experimental seeds (Longland & 

Clements, 1995) 

 
D. TOP – DOWN MANIPULATION 

It has been suggested (Hall et al., 1981; MacMahon, 1987; Archer & Pyke, 1991) that 

providing artificial perches or nesting structures for predatory birds or approach refugia 

for mammalian predators might help reduce seed predator populations or at least alter 

their behavior to the extent that they harvest fewer seeds.  Several species of birds of prey 



 

 

202
used artificial perches in a northern California alfalfa fields, including Tyto alba (Barn 

owls), Buteo jamaicensis (red-tailed hawks), and Falco sparverius (American kestrel) 

(Hall et al., 1981).  When the perches were set up in a wildlife reserve in the Central 

Valley of northern California additional species used the perches for hunting and feeding, 

including Asio flammens (short-eared owls) and Speotyto cunicularia (burrowing owls).  

Artificial perches around the perimeter of irrigated soybean crops increased the number 

of diurnal raptors visiting and hunting over these crops and this increase reduced both the 

rate of mouse population increase and the maximum mouse population density (Kay et 

al., 1994).  However, there is no data to date that we are aware of on whether this 

technique significantly reduces rodent seed and/or seedling predation, thus allowing for 

increased restoration success.   

 
E. RODENT MEDIATED AUTOGENIC REPAIR 

It is possible that in certain circumstances it could be beneficial to augment the 

“attractiveness” of the repair site (e.g. providing artificial nest boxes and resource 

supplementation) to animals that disperse propgules of desirable species. When dealing 

with large areas or when it is not either physically or economically prudent to conduct 

extensive reseeding activities, other mechanisms to “reseed” an area could prove 

promising.  One such mechanism would rely on the scatter-hoarding behaviors of rodents 

to potentially aid in seed dispersal and seedling establishment and to ultimately increase 

plant diversity in areas where diversity was reduced due to disturbance (e.g. fires, 

overgrazing) and subsequent exotic invasions (e.g. cheatgrass, knapweed) (West, 1968; 

McAdoo et al., 1983; Archer & Pyke, 1991; Vander Wall, 1992; McMurry et al., 1997).  
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Such an approach might be especially useful in situations where the desire is to augment 

diversity in the understory of a degraded shrubland.  In this framework, recruitment could 

be enhanced by rodent seed caching if the probability of seed germination and seedling 

establishment were increased relative to seeds that were not dispersed using such 

techniques (Archer & Pyke, 1991; Longland et al., 2001).  In line with this idea, 

Longland et al. (2001) reported that seedling establishment for a native perennial grass 

was >90% more likely to occur when the seeds were previously handled by a single 

granivorous rodent than if those seeds were handled by either birds or ants or went un-

handled.  On the other hand, it has been suggested that seed caching by rodents is not 

likely to enhance opportunities for colonization and may not move seeds far enough from 

the primary seed source to escape distance responsive seed predators (Hulme, 1994; 

Hulme & Borelli, 1999).  In addition burial of several seeds within a cache can increase 

intra-specific competition among seedling and attract density-dependent granivores.  

Nonetheless, the potential of rodent caching for augmenting species abundance and 

diversity in shrub understories is sufficient to warrant further research, especially into 

techniques designed to increase caching rates and reduce cache recovery rates. 

 
V. Synthesis 

In the better part of five decades, we have come from viewing granivores as 

nothing more than rangeland pests to seeing them more complexly as integral 

components of rangelands that have important effects on many landscapes throughout the 

arid west, some negative and some positive.  A more thorough understanding of 

granivore effects on desirable restoration species as well as on undesirable weeds will 
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greatly aid in the ecological restoration of arid rangelands.  Efforts to realize the greatest 

level of success in restoration while reducing negative impacts to the granivore 

communities should initially consider detailed investigation of the population and 

community dynamics of the granivorous animals specific to the site of restoration.  With 

that base line information, one can better assess species-specific seed preferences, rates of 

direct consumption, rates of removal, dispersal distances, cache sizes, and seed caching 

rates by these granivores animals.   Moreover, research that explores ecologically-based 

strategies to reduce the negative impacts of granivores on restoration efforts is strongly 

encouraged.  Careful consideration of both the effect of restoration activities on 

granivores as well as the effect of granivores on the success of restoration will ultimately 

allow resource managers and ecologists to make more informed choices and improve the 

success of restoration in western landscapes.   

 
VI. Concluding Remarks 

The invasion of B. tectorum initiated an extraordinary amount of research on both 

the impact of B. tectorum on invaded communities and on the restoration of cheatgrass-

dominated landscapes.  At the current rate of invasion and subsequent conversion of 

many community types by cheatgrass we may be witnesses to one of the greatest 

ecologically and economically significant invasions in the United States to date.  

Needless to say this situation is dire, and it is complicated further by changing fire 

regimes that allow for the sustained persistence and the further spread of cheatgrass.  

Despite extensive research on cheatgrass, little attention has focused on the potentially 

key role of granivores in the restoration of these systems. 
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Our research is directly related to the dynamic (cheatgrass invasion/restoration) 

outlined above in two important and inter-related ways.  First, because highly degraded 

landscapes are the focus of ecological restoration activities where seed application is a 

common strategy, it is important to assess the major granivore communities in intact 

sagebrush communities and in nearby communities that had undergone conversion from 

sagebrush to cheatgrass domination.  Second, it was critical to begin developing an 

understanding of patterns of seed harvest by these granivores using a variety of 

experimental frameworks.  These sets of studies are not only of basic ecological interests, 

but are also important for developing management strategies for restoration of these 

degraded lands. 

Research focused on the importance of ant and rodent granivores in arid- and 

semi-arid systems dates back to before the middle of the last century.  However, the 

impact on ant and rodent communities of cheatgrass invasion and subsequent conversion 

of these systems is not well studied.  Our evaluation of rodent and ant communities 

showed interesting and very different responses of these two major groups of granivores 

to cheatgrass conversion.  In chapter 2, we reported on significant increases in total ant 

abundances in cheatgrass communities compared to the sagebrush-dominated 

communities.  While the common groups showed increased numbers, however, the un-

common species/functional groups appeared to be mostly negatively impacted by 

cheatgrass.  In contrast, as has been shown in other similar systems, rodents are 

overwhelmingly negatively impacted by the conversion to cheatgrass domination 

(Chapter 4).  Only 5 of 9 rodent species captured in sagebrush site were found to occur in 

the cheatgrass sites, with great reductions in abundances. 
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The second focus of research was on seed removal by these groups with special 

attention to the possible occurrence of associational effects among seed mixtures as 

mediated by these seed removers.   We found that ant seed removal to be complex and to 

vary according to the scale of the patch; thus, ant seed removal was highly context-

dependent (Chapter 3).  Removal of seeds by ants was simultaneously dependent on the 

background vegetation (large-scale among patch), foraging distance from the nest mound 

(small-scale among patch), and the seed mixture context (within patch).  In particular, we 

were able to show the occurrence of associational effects, specifically associational 

resistance of native seeds when present with cheatgrass seeds in the mixture (within-

patch).  The results from the first rodent seed removal experiment (Chapter 5) used a 

novel statistical technique in the ecological sciences to show that rodents have marked 

preferences for some seeds over others and that more seeds in general where removed in 

sagebrush compared to cheatgrass-dominated sites.  In chapter 6, we demonstrated that 

the amount of total seed initially present and the particular seed mixture both contributed 

to varying patterns of seed removal.  In that chapter we were able to show the occurrence 

of associational susceptibility of B. tectorum seeds in the presence of native seeds in 

mixture.  Although the reciprocal effect may occur, we did not find strong evidence in 

support of it.   

Lastly, the general review provided in chapter 1 highlights factors that contribute 

to seed removal, and the current chapter (Chapter 7) outlined ecologically-based 

techniques that could minimize the negative consequences of granivores in the process of 

ecological restoration.  These reviews provide the framework for the current research as 

well as provide valuable syntheses to guide future research.  
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