
Utah State University

From the SelectedWorks of Scott Budge

May 19, 2015

Textured digital elevation model formation from
low-cost UAV ladar/digital image data
Taylor C Bybee, Utah State University
Scott Budge

Available at: https://works.bepress.com/scott_budge/53/

http://www.usu.edu
https://works.bepress.com/scott_budge/
https://works.bepress.com/scott_budge/53/


Textured digital elevation model formation from low-cost
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ABSTRACT

Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and
disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based
methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (<$20k)
UAV system fitted with ladar and electro-optical (EO) sensors.

A texel camera fuses calibrated ladar and EO data upon simultaneous capture, creating a texel image.
This eliminates the problem of fusing the data in a post-processing step and enables both 2D- and 3D-image
registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small
UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of
position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register
adjacent swaths of texel imagery to create a TDEM.

The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is de-
scribed. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as
the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent),
and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for
accuracy.

Keywords: lidar, ladar, 3D image creation, 2D/3D fusion, texel image, image registration, triangulation,
textured digital elevation model

1. INTRODUCTION

Triangulation of aerial images has been used for decades to produce both orthophotos and digital elevation
models.1,2 One of the more straightforward methods involves finding matching points in calibrated images
corrected for lens distortion, then solving for the relative 3D points.3

Previous work in 3D terrain modeling has included relying solely upon aerial imagery and image processing
techniques. This method works well, but ambiguities exist in the resulting 3D model as there are no direct
measurements made.4 This can be offset to some degree by using ground control points, GPS,5 or human
intervention.6 Another drawback is the computation time involved, but this can be mitigated using sparsity
or sub-map concepts.7 The alternative to using aerial imagery is to use expensive ladar, GPS, and inertial
measurement unit (IMU) equipment that can pinpoint locations precisely while in a large unmanned aerial
vehicle (UAV) or manned aircraft. The major drawback of this method is cost. This paper demonstrates a
compromise between the two methods by incorporating ladar measurements, aerial imagery, and an approximate
location and attitude of each capture in such a way to reduce cost while maintaining accuracy.

A texel camera is an instrument which fuses ladar and imagery upon capture. It combines both a ladar
system and an electro-optical (EO) camera such that the measurements from both sensors are registered in both
time and space. The registration is accomplished through a calibration process which involves mapping each
ladar point to a point on the EO image, and does not change from capture to capture.8

This paper describes a triangulation method that incorporates both 2D EO image data and 3D ladar mea-
surements from a low-cost, small UAV to create TDEMs. As the small UAV flies in a straight and level flight
profile, the ladar scans a series of shots perpendicular (cross-track) to the flight path, as well as a narrow strip or
swath of EO imagery, as illustrated in Figure 1(a). The simultaneous collection of the ladar points and the EO
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Figure 1: Acquisition of texel swaths. (a) Capture of a single texel swath from a small UAV. (b) Pattern of
multiple adjacent texel swaths on the ground.

image are called texel swaths. As the small UAV flies forward, overlapping texel swaths are acquired, as shown
in Figure 1(b). In addition to the texel swaths, the small UAV records the position and attitude of the camera
for each swath with a low-cost micro electro-mechanical system (MEMS) GPS/IMU. The ladar measurements,
however, are only as accurate in the world coordinate system as the position and attitude obtained from the
GPS/IMU . Our goal is to use knowledge present in the aerial imagery to reduce the error in the camera position
and attitude measurements using a unique cost function designed for texel images. This enables the ladar points
to be accurate in the world coordinate system. From these accurate points, a TDEM can be formed.

The remainder of the paper is as follows. Section 2 describes the registration model and the associated image
processing techniques. Section 3 describes the optimization algorithm and the TDEM formation. Section 4
describes the experimental results, and, finally, Section 5 concludes the paper with a summary and ideas for
further work.

2. SELECTION OF PROJECTION POINTS

Texel swaths are potentially gathered several times per second, along with a coarse measurement of the camera
position and attitude made with a low-cost GPS/IMU. These texel swaths are assumed to have some amount
of overlap from one to the next. Because each measured 3D point can be viewed from more than one camera,
triangulation can be used to improve the estimate of the camera locations and 3D ladar points. Once these are
known, the 3D points and the corresponding EO imagery from each swath can be combined with other swaths
to form a TDEM.

Each texel swath j acquires nj ladar points, a set denoted as Ij . By mapping all the ladar points in M
swaths into a common coordinate system O using the GPS/IMU measurements, the entire set of 3D points can
be indexed using i, and each point is represented as a 3D vector of Cartesian coordinates, bi = [bix , biy , biz ].

The total number of 3D points in the system is N = ΣM−1
j=0 nj . A ladar point bi belongs to the texel swath j

if i ∈ Ij . Calibrated 2D projection points are defined as the projection of points bi into the normalized image
plane of texel swath j when i ∈ Ij . These points are determined by the texel camera calibration, and are the
intersection of the ladar ray with the normalized image plane. These calibration values remain constant for a
given instrument. Because the EO camera is calibrated, the pixel locations corresponding to the 2D projection
points are also known.

In order to fuse texel swaths, common points must be identified in several EO images. Each ladar point has
a measured 3D location and a calibrated 2D projection point in one texel swath, as well as projections of the 3D
point into several adjacent texel swaths. The proposed algorithm uses the assumption that a small patch of EO



imagery surrounding the projection of a ladar point can be matched to corresponding patches on several other
texel swaths using simple image processing techniques.

Because the texel swaths are captured very quickly, the scene in the EO image does not change significantly
from one swath to the next. This allows the effective use of normalized cross-correlation (NCC) to find cor-
responding projected image points. A pair of image patches are considered putative correspondences (image
patches potentially representing the same image point) if the NCC score is above a threshold.

In order to reduce the NCC search size to find the matching ladar point image patches, a homography
relationship from swath to swath is found using feature points. This also allows perspective correction of the EO
images for better correlation on ladar point projections. The homography transform is given byc1r1

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 1

c2r2

1

 , (1)

where rm and cm represent the row and column of matching points in the images (in pixel coordinates), and the
hij represent the transform parameters.

A simple Harris corner detector,9 with a response given by Noble,10 was chosen for this application. Once
the Harris feature points are found in each pair of images, a small patch surround each feature point in the first
EO image is compared to a small patch around each feature point in the second EO image. The feature points
with the largest NCC score greater than a threshold are considered putative correspondences. These putative
correspondences are then filtered again by the RANSAC algorithm11 to remove outliers, and a homography is
found using a linear least-squares method.

Once this homography is found, then the calibrated 2D projected image point in a texel swath can be
mapped into other texel swaths, and the image patch around these points can be warped and resampled using
the homography so that the image patches have the same perspective. This serves as a starting point to search
the area using NCC to find the small patch with the highest NCC score which is then considered a “match” for
the projected image point. A homography assumes the scene in which the image points are located are on a
plane. This is not usually the case, which is why an area surrounding the expected location of the ladar point
must be searched. This reduces the effects of parallax.

Normalized cross-correlation fails when there is a rotation between swaths or when significant lighting differ-
ences (such as changing shadows) are present. However, because adjacent swaths are captured nearly simultane-
ously, it can be safely assumed there are no significant lighting changes. If there were significant rotation from
swath to swath, such as from turbulence, then knowledge of the position and attitude between the camera loca-
tions can help remove the rotation between the images. This is done by creating a simple rotational transform
based on the IMU attitude measurements, and rotating the image patches surrounding the Harris points in the
second swath into the space of the first swath, effectively removing the rotation, before the NCC is performed.

This process is summarized in Algorithm 1. Note that the algorithm initially assumes there is no rotation
from image to image, as it attempts to find a homography. If this fails, then the attitude knowledge is used to
remove any rotation, and the process starts again. In practice, Step 4 is not needed often.

Once a homography is found between sets of adjacent swaths, it does not need to be explicitly recalculated
using the method in Steps 1 - 3 for Steps 5 and 6 to find matching ladar projections in swaths not adjacent to
one another. To find these matching ladar image patches, the starting point for the search can be determined
by merely cascading the homographies of the pairs of images between the swaths. The images are warped and
resampled using this cascaded homography. Cascading the transforms significantly reduces computation time.

At the completion of Algorithm 1 for each pair of texel swaths, a set of 2D image points (xij , yij) has been
determined. These constitute the projection of the ith ladar point into the normalized image plane of the jth

texel swath. An example of a few of the (xij , yij) is shown in Figure 2. In the figure, each color corresponds to
projected points from one swath. The line of points down the center of each swath are projected from the ladar
points acquired with that swath. Missing points result when the NCC process does not produce a maximum
above the threshold.



Algorithm 1 Selection of image points in adjacent texel swaths.

1. Find Harris feature points in adjacent swaths.

2. Find corresponding Harris feature points using NCC.

3. Determine the homography using linear least-squares and RANSAC. This step assumes there is no rotation between
the swaths.

4. If RANSAC fails, perform the following.

(a) Use the position and attitude knowledge from the GPS/IMU project the 3D points from each swath into image
of the other swath.

(b) Using these image points, and the corresponding image points known from the calibration process, compute
an initial homography between swaths.

(c) Using the homography, map the second image into the first, and repeat Step 3 with the mapped second image
and Harris points. This enables the Harris feature finding and NCC to work effectively.

(d) The final homography used in Step 5 is the cascade of the homographies in Steps 4b and 4c.

(e) If RANSAC fails again, then assume an identity transform – this may cause the algorithm to fail.

5. Determine the projection of each ladar point in the first image, then map each point and surrounding pixels to the
other image using the homography found in Step 3.

6. Search an area centered around the expected ladar point location using NCC to find each of the matching locations.
Save these locations for optimization.

3. BUNDLE ADJUSTMENT AND TEXTURE CREATION

A given 3D point i can be mapped into the coordinate system of camera j using

χ̂ij =

χ̂ijxχ̂ijy
χ̂ijz

 =


1− 2(q2j2+q2j3)

q2j0+q2j1+q2j2+q2j3

2(qj1qj2−qj0qj3)

q2j0+q2j1+q2j2+q2j3

2(qj1qj3+qj0qj2)

q2j0+q2j1+q2j2+q2j3
2(qj1qj2+qj0qj3)

q2j0+q2j1+q2j2+q2j3
1− 2(q2j1+q2j3)

q2j0+q2j1+q2j2+q2j3

2(qj2qj3−qj0qj1)

q2j0+q2j1+q2j2+q2j3
2(qj1qj3−qj0qj2)

q2j0+q2j1+q2j2+q2j3

2(qj2qj3+qj0qj1)

q2j0+q2j1+q2j2+q2j3
1− 2(q2j2+q2j1)

q2j0+q2j1+q2j2+q2j3


T bix − tjxbiy − tjy

biz − tjz

 , (2)

where the location and attitude of each camera j can be represented using seven parameters: a quaternion rotation
and a 3D translation vector, given by aj = {qj0, qj1, qj2, qj3, tjx, tjy, tjz}.12 These values are referenced to a world
coordinate system O. A quaternion is used because it allows for straightforward optimization resulting in an
orthonormal rotation. Other methods have been developed using Euler angles,13 but employ only projections,
and not measured ranges.

The point can then be projected onto the jth normalized image plane by dividing by the z-coordinate, giving
the 2D projection x̂ij and ŷij . The range to the ladar point λ̂ij is the Euclidean distance between the camera
center and the ladar point. These can be combined into a vector given by

X̂ij =

x̂ijŷij
λ̂ij

 =



χ̂ijx
χ̂ijz

χ̂ijy
χ̂ijz√

χ̂2
ijx

+ χ̂2
ijy

+ χ̂2
ijz


, (3)

which is merely another way to represent a 3D point in space. It represents a point with normalized projection
coordinates and a range value rather than with Cartesian coordinates.
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Figure 2: Image points projected from ladar points found using correlation in adjacent swaths. Colors correspond
to the points projected from ladar points in the current swath and swaths before and after the current swath.
Each color corresponds to points from one swath. The line of points down the center of each swath are calibrated
2D points projected from the ladar points acquired with that swath. (a) First swath (zoomed to show detail).
(b) Second swath (zoomed to show detail).

There are two types of points being projected into a given image plane: those with a measured range value
from the camera j (i ∈ Ij) and otherwise. First, if i ∈ Ij , then there is a range measurement and the projection
error is defined in terms of distance from the calibration point in the image plane to the projection of the point
into the image plane. Secondly, if i 6∈ Ij , then there is no range measurement, and the projection error is defined
in terms of the distance from the correct location as determined by NCC to the projection of the point into the
image plane.

The above errors can be combined into a single cost function given by

E2 =

M−1∑
j=0

∑
i∈Ij

1

σ2
I

[(xij − x̂ij)2
+ (yij − ŷij)2

] +

M−1∑
j=0

∑
i6∈Ij

1

σ2
Ī

[(xij − x̂ij)2
+ (yij − ŷij)2

]

+

M−1∑
j=0

∑
i∈Ij

1

σ2
λ

(λij − λ̂ij)
2
,

(4)

where σ2
I , σ2

Ī
, and σ2

λ are the variances on the 2D calibrated projected points, the 2D points found using
Algorithm 1, and the range measurements, respectively. If the measurements are assumed to be from a Gaussian
distribution, E2 is the log-likelihood of the estimated parameters.

3.1 Nonlinear Optimization using the Levenberg-Marquardt Algorithm

The error for the system is minimized to create a maximum-likelihood estimate of the true camera positions
needed to create an accurate TDEM. We desire to move all cameras aj and points bi such that the total squared



error E2 in the system is minimized. Both camera locations aj and coordinates of each ladar measurement bi
must be adjusted to minimize the error. This is a nonlinear problem, due to the quaternion rotation and image
plane projection, that can be solved using an iterative technique. The Sparse Levenberg-Marquardt Algorithm
(LMA) as described by Hartley and Zisserman3 can be used to do this, as it incorporates the fact that many
relationships between aj and bi are nonexistent and do not contribute to the error in the system. In practice,
the associated terms are merely left out of the sum.

This is an extremely large optimization problem given there are many 3D points and cameras in the system.
The variance values must be selected carefully to ensure that points and cameras move freely, yet stay within the
camera calibration and triangulation constraints. The computation of the solution can be reduced by imposing
a window on the number of swaths before and after the current swath to include in the optimization.

The typical application of LMA uses an initial estimate of the parameters as a seed to the algorithm. This
is provided by the coarse measurements of position and attitude from the GPS/IMU sensor the small UAV.

3.2 TDEM Creation

Once the system error is minimized to the desired degree, the data in each texel swath can be combined in such
a way to form a single point cloud with an overlaid texture. The method in doing this depends on the desired
application of the data. One common motive is to create an orthorectified TDEM.

For an orthorectified image, the camera location is considered to be at infinity, and the texture is merely
the 3D colored surface projected onto a plane by using only (χ̂iOx

, χ̂iOy
). These are then converted into pixel

coordinates using the intrinsic camera calibration parameters.

There are potentially several texel swaths with EO pixels that correspond to each final texture pixel. To
simplify the process of creating the texture, it is assumed that the best pixel value for pixel p is interpolated
from texel swath j, where swath j is determined by the projection of 3D point i such that the pixel p is closest
to the projection of i ∈ Ij . The appropriate interpolated pixel value is determined by a homography relationship
between the final texture and the texel swath j using their projected points. The homography between the final
texture and each texel swath j is computed once at the start of the texturing process. Because a homography
relationship assumes a planar scene, this has the potential to introduce parallax.

Once the TDEM is formed, then the entire system of points, cameras, and textures can be placed anywhere
in space by applying a rigid rotation and translation to each point and camera. One suggestion would be to
identify ground control points in the TDEM and reference those to a global coordinate system.

4. RESULTS

4.1 Test Data

The test data was gathered using a second-generation short-range handheld texel camera as described in Sec. 1.
This texel camera consists of a PMD CamCube 2.0 depth camera (204x204 range pixels) as well as a Mi-
cron/Aptina EO camera (1024x1024 EO pixels) fitted with a VectorNav (VN-100) AHRS. The field of view
(FOV) of the camera is 41◦x41◦. The range error of the camera is about 1 cm, and the attitude error of the
VectorNav is 2◦ in heading and 0.5◦ in pitch and roll. The entire array of range measurements were removed
except a strip near the middle of the EO image to mimic a single scan of ladar data. The EO image was trimmed
around the range measurements, creating a visual “swath”. The AHRS was mounted on the camera to record
the attitude of each capture and a meterstick was used to determine the translation from a reference point. The
camera was placed about a meter from a model landscape, and moved slightly from one capture to the next,
simulating flight of a small UAV. This setup is shown in Figure 3(a). An example EO image of the landscape
captured from the texel camera is shown in Figure 3(b).
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Figure 3: Data Set Acquisition. (a) Texel camera and landscape. (b) Example EO image captured using the
texel camera.

4.2 Metric for Analyzing the TDEMs

The quality of a TDEM is both subjective and objective in nature. Fisher and Tate14 describe sources of error
in DEMs. In order to make data meaningful, it must be presented in a way appealing to the human eye. In
other words, the TDEM must both “look good” and resemble the real world. This is very subjective. However, a
more quantifiable method of determining the quality of a TDEM is to measure the distance between two points
on the model and compare with actual surveyed points. The error is the difference between the two distance
measurements. This then becomes a question of which points are chosen to evaluate the model. To estimate the
average quality, many points can be chosen in throughout the model.

For this paper, to acquire “surveyed” points for the landscape model, a single-frame texel image is captured
and evaluated which has a FOV covering the entire “flight” of the simulated small UAV. The desire, then, is
to achieve registration to within the calibration of the single-frame texel image. This assumes the single-frame
texel image is “ground truth” for measurements on the landscape.

In the following experiments, the error is analyzed by manually choosing ten 3D points on each of two single-
frame texel images (one for each data set) and corresponding points on each of the registered TDEMs. They are
chosen such that they are spread across the scene. The points are combined in

(
10
2

)
= 45 ways, and values for

the error mean, the error standard deviation, and the root-mean-squared error between corresponding points on
the ground truth and the TDEM are determined for each registered TDEM.

4.3 Registration Results and Discussion

4.3.1 Level Flight

This data set consists of moving the camera a few millimeters for each capture approximately one meter away
from the model landscape, and contains 150 texel swaths. The camera maintained a fairly constant attitude,
but a significant translation offset was introduced part-way through the data set.

The parameters used for this optimization include σI = 0.001 (1.36 pixels), σĪ = 0.002 (2.72 pixels), and
σλ = 0.001 m. No windowing was enforced, apart from that caused by the EO trimming. Convergence for the
LMA was determined to be a 0.5% change in successive error, with a maximum number of iterations set at 100.
The EO image width with the ladar strip centered in the EO image was adjusted to determine the accuracy of
the registration if fewer adjacent swaths are seen. The results of these experiments are shown in Table 1. The
errors in the TDEM created from using only the measured translation and IMU data confirm the need for a
registration algorithm to create an accurate TDEM. It is interesting that the errors in the 160 pixel swaths do



Trim Size
(pixels)

Error Mean
(mm)

Error Std Dev
(mm)

RMS Error
(mm)

Comments

Before
Registration

5.24 40.1 40 Includes a significant translation
offset

200 0.690 4.08 4.10 Good registration, LMA converged
relatively quickly

180 0.493 4.13 4.11 Good registration
160 1.02 4.40 4.47 Noticeable errors, but good

registration overall
140 0.214 4.47 4.42 Noticeable errors, but good

registration overall
120 8.10 16.0 17.8 Significant errors

Table 1: Error for Various EO Widths for Level Flight Data Set

not follow the trend for error mean and RMS error. This may be due to the random inlier selection inherent in
RANSAC.

Figure 4 shows TDEMs both before the optimization and after the optimization using the 200 pixel trim
size. The algorithm does very well for correcting the translation offset, especially when the EO image width is
quite wide. Visually, the large translation offset is gone, and there are several minor adjustments to the other
swaths making it visually appealing. As the quantities in Table 1 suggest, these resultant TDEMs are accurate
to within the accuracy of the texel camera, and more accurate as the number of adjacent swaths seen increases.

4.3.2 Turbulent Flight

This data set consists of moving the camera a few millimeters for each capture approximately one meter away
from the model landscape and contains 177 texel swaths. The turbulence consists primarily of “roll” relative to
the landscape. Figure 5 shows the approximate amount of roll present in the data set. Considering the camera
field of view is approximately 40◦, the nearly 30◦ peak-to-peak roll is very significant. The roll is not intended to
exactly replicate the real-world roll of a small UAV; the roll is occurring at a fast rate compared to the forward
motion of the camera and, thus, is an extreme case demonstrating the robustness of the algorithm.

The parameters used for this optimization are the same as for Section 4.3.1. The results of these experiments
are shown in Table 2. The errors in this experiment are greater than in the level flight experiment, however,

Trim Size
(pixels)

Error Mean
(mm)

Error Std Dev
(mm)

RMS Error
(mm)

Comments

Before
Registration

-8.32 28.4 28.1 Contains significant roll

260 7.48 8.83 11.5 Good registration
240 7.86 8.67 11.6 Good registration
220 4.94 12.0 12.9 Good registration locally, but

noticeable errors
200 4.71 12.6 13.4 Good registration locally, but

noticeable errors
180 1.31 15.1 15.0 Good registration locally, but

noticeable errors
160 1.05 13.1 13.0 Good registration locally, but

noticeable errors

Table 2: Error for Various EO Widths for Turbulent Flight Data Set
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Figure 4: Smooth Flight Data Set Registration. (a) Wire-frame before optimization. (b) TDEM before opti-
mization. (c) Wire-frame after optimization. (d) TDEM after optimization.
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Figure 5: Roll profile for the turbulent flight data set.

the proposed registration method significantly improved the registration from the case using only the measured
translation and IMU data.

Figure 6 shows the TDEMs both before and after the optimization, using the 240 pixels wide trim size. The
quantities in Table 2 show that the registration significantly improves the distance error variance from the case
using only the GPS/IMU data, despite the presence of the camera roll. There are, however, artifacts from the
roll, especially when the trim width is small. These artifacts are the “vertical” movement of the swaths (which
do not reflect reality), making the flat parts of the landscape look “bulged.” However, the overlaid texture looks
good, which suggests the projection points from NCC contained some errors.

5. CONCLUSION

The major contribution of this paper is the cost function presented in Section 3 for texel swaths, and the image
processing method to select the points used in the cost function. This cost function enables the Sparse LMA
technique to determine the best location of 3D points and camera locations in terms of minimum squared-error.

The quantitative and visual analysis of the method shows promising performance for the intended scenario.
The method was able to create TDEMS by stitching together swaths of texel image gathered as the simulated
small UAV “flew” across the model terrain. The accuracy of the resulting TDEM was very good, with less
distance error in the level flight simulation than the native accuracy of the range sensor.

The test using an extreme turbulence model also showed promise, with significant improvement over the
TDEM created from the raw IMU and translation measurements. Further refining of the proposed method
should lead to better performance in the presence of motion from turbulence.

Limitations This method assumes there are very small changes from one image to the next, and simple image
processing techniques can be employed. This method also assumes the texel swaths are approximately ordered
by their position on the ground. It also assumes the scene is nearly planar, as a homography is used to determine
both the approximate location of projected points, as well as in the stitching process for the final texture.

It also relies heavily on the accuracy of the points gathered using NCC. These points are susceptible to noise,
perspective difference, and parallax. Techniques must be developed to ensure these points are accurate so outliers
are not introduced into the optimization.

Future Work In this technique the original camera locations and point locations (relative to the associated
camera) are not considered during or after the optimization process, apart from being used as a seed. This means
additional knowledge could be incorporated into the optimization in addition to the methods presented in this
paper.

Further work may also include optimizing the 3D location of points that do not have distance measurements;
in other words, a hybrid between the method described in this paper solely using imagery around ladar points
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Figure 6: Turbulent Flight Data Set Registration. Notice the significant roll motion. (a) Wire-frame before
optimization. (b) TDEM before optimization. (c) Wire-frame after optimization. (d) TDEM after optimization.



and existing methods solely using imagery. Texturing the point cloud needs to be further investigated, includ-
ing incorporating super-resolution techniques in the texture creation. Nonlinear image mapping may also be
employed to mitigate the planar-assumption effects using a homography.

In addition, more reliable image processing techniques can be used to ensure more accurate, or even sub-pixel
accuracy, of matching points in the images. Other research areas may include using surveyed “ground control
points” in the optimization to ensure real-world accuracy.
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