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ABSTRACT 

 

Rank-Data Distribution Method (R-D method) for Daily Time-Series Bayesian  

 

Networks and Total Maximum Daily Load Estimation 

 

 

by 

 

Joon-Hee Lee, Doctor of Philosophy 

 Utah State University, 2008 

 

Major Professor : Dr. David K. Stevens 

Department : Civil and Environmental Engineering 

 

 

Daily time series-based models are required to estimate the higher frequency 

fluctuations of nutrient loads and concentrations.  Some mechanistic mathematical 

models can provide daily time series outputs of nutrient concentrations but it is difficult 

to incorporate non-numerical data, such as management scenarios, to mechanistic 

mathematical models.  Bayesian networks (BNs) were designed to accept and process 

inputs of varied types of both numerical and non-numerical inputs.   

A Rank-Data distribution method (R-D method) was developed to provide large 

time series of daily predicted flows and Total Phosphorus (TP) loads to BNs driving daily 

time series estimates of T-P concentrations into Hyrum and Cutler Reservoirs, Cache 

County, Utah.  Time series of water resources data may consist of data distributions and 

time series of the ranks of the data at the measurement times.  The R-D method estimates 

the data distribution by interpolating cumulative failure probability (CFPs) plots of 



 iv 

observations.  This method also estimates cumulative failure probability of predictions on 

dates with no data by interpolating CFP time series of observations.  The R-D method 

estimates time series of mean daily flows with less residual between predicted flows and 

observed flows than interpolation of observed flows using data sets sampled randomly at 

varying frequencies.   

Two Bayesian Networks, BN 1 (Bayesian Network above Hyrum Reservoir) and 

BN 2 (Bayesian Network below Hyrum Reservoir) were used to simulate the effect of the 

Little Bear River Conservation Project (LBRCP) and exogenous variables on water 

quality to explore the causes of an observed reduction in Total Phosphorus (TP) 

concentration since 1990 at the mouth of the Little Bear River.  A BN provided the fine 

data distribution of flows and T-P loads under scenarios of conservation practices or 

exogenous variables using daily flows and TP loads estimated by R-D method. When 

these BN outputs were connected with the rank time series estimated by interpolation of 

the ranks of existing observations at measurement dates, time series estimation of TP 

concentrations into Cutler Reservoir under two different conservation practice options 

was obtained.  This time series showed duration and starting time of water quality 

criterion violation.  The TMDL processes were executed based on daily TP loads from R-

D instead of mean or median values. 

(263 pages) 

 

 

 

 



 v 

ACKNOWLEDGMENTS 

 

 I would like to thank the LORD because I have worked using the knowledge and 

enthusiasm which the LORD has provided.  I would like thank my advisor, Dr. David 

Stevens. He have advised, taught, and encouraged for a long time, more than 7 years for 

me.  I would like to thank each of my committee members, Dr. Ryan Dupont, Dr. 

Thomas Hardy, Dr. Darwin Sorensen, and Dr. Wayne Wurtsbaugh.  Their comments 

were very helpful to enhance my dissertation.  In addition, taking many courses 

suggested by my committee members was very helpful to get a job.   

 My dissertation research was funded by the U.S. Department of Agriculture 

(USDA).  I also got my post doctoral position at the Agricultural Research Services (ARS) 

in USDA.  I would like to thank the USDA.  I also thank Jeff Horsburgh, who gave me 

much professional assistance.  I thank Dr. Bethany Neilson, who helped and encouraged 

me for my research.  I would like thank to Dr. Guyoung Kang, who introduced me to 

USU and my advisor, Dr. Stevens. 

 Finally, I would like to thank my wife, Grace, for her support and patience.  I 

would like to my patents for their prayers, patience, and support.  I thank my daughter 

Joanne for refreshing me through her entertainment. 

 

Joon-Hee Lee 

 

 

 



 vi 

CONTENTS 

 

    Page 

ABSTRACT…. .................................................................................................................. iii 

 

ACKNOWLEDGMENTS .................................................................................................. v 

 

LIST OF TABLES .............................................................................................................. x 

 

LIST OF FIGURES .......................................................................................................... xii 

 

CHAPTER 

 

1. INTRODUCTION…………………………………………………. ……..1 

 

Overview ............................................................................................ 1 

Research Goal and Objectives ........................................................... 3 

Scope .................................................................................................. 5 

Literature Cited .................................................................................. 7 

 

 2.          REVIEW OF LITERATURE ...................................................................... 9 

 

Total Maximum Daily Load (TMDL) ............................................... 9 

Bayesian  Network ........................................................................... 13 

 

Conditional Probabilities ........................................................... 14 

Probability Calculus for Variables ............................................. 15 

Building BN Models .................................................................. 17 

Application to Water Quality Management ............................... 23 

Limitation of Current Bayesian Network Models ..................... 28 

 

Characteristics of Water Quality Data ............................................. 29 

Problems Associated with Lack of Data. ......................................... 31 

 

Maximum Likelihood Estimation (MLE) .................................. 33 

Nonparametric Methods............................................................. 35 

Mixed Method: Regression on Order Statistics ......................... 39 

 

Literature Cited ................................................................................ 41 

 

 3.          CHARACTERISTICS OF LITTLE BEAR RIVER  WATERSHED ....... 47 

 

Abstract ............................................................................................ 47 

General Information ......................................................................... 48 



 vii 

Sub Watersheds ................................................................................ 49 

Data Analysis Methods .................................................................... 52 

 

Statistical Summaries ................................................................. 54 

Comparisons for Seasonality ..................................................... 57 

Correlations ................................................................................ 58 

Trends over Time ....................................................................... 61 

 

Results .............................................................................................. 64 

 

Summaries.................................................................................. 64 

Seasonality ................................................................................. 67 

Correlations ................................................................................ 67 

Trends ........................................................................................ 73 

 

Discussion ........................................................................................ 76 

Summary and Conclusions .............................................................. 79 

Literature Cited ................................................................................ 80 

 

4.            FILLING DATA GAPS BY A RANK-DATA DISTRIBUTION  .......... 83 

 

Abstract ............................................................................................ 83 

Introduction ...................................................................................... 84 

Ideas ................................................................................................. 85 

Methods............................................................................................ 89 

 

Estimated Distribution from Cumulative Failure Plot ............... 90 

Estimation of CFPs and Conversion to Original Values ........... 92 

 

Validation ......................................................................................... 96 

Discussion ...................................................................................... 105 

Summary and Conclusions ............................................................ 110 

References ...................................................................................... 111 

 

5.            BAYESIAN NETWORK TO EVALUATE EFFECTS                                                                             

OF    THE LITTLE  BEAR RIVER WATER QUALITY     

CONSERVATION PROJECT................................................................ 113 

 

Abstract .......................................................................................... 113 

Introduction .................................................................................... 114 

Methods.......................................................................................... 116 

 

Bayesian Network .................................................................... 116 

Water-Related Data .................................................................. 118 

Bayesian Network (BN) Construction ..................................... 123 



 viii 

Categorizing Variable State for BN 1 ...................................... 128 

Categorizing Variables of BN 2 ............................................... 129 

Bayesian Network Simulation ................................................. 132 

 

Results ............................................................................................ 134 

 

Effects of Conservation Project and Exogenous Factors                                                                               

on TP Load and TP Concentration on the Stream above      

Hyrum Reservoir ...................................................................... 134 

Effects of Conservation Project and Exogenous Factors             

on TP Load and TP Concentration in the Stream below      

Hyrum Reservoir ...................................................................... 140 

 

Discussion ...................................................................................... 146 

Summary and Conclusion .............................................................. 152 

References ...................................................................................... 153 

 

6.            TOTAL MAXIMUM DAILY LOAD (TMDL) FOR TOTAL 

PHOSPHORUS AT THE MOUTH                                                                      

OF THE LITTLE BEAR  RIVER .......................................................... 156 

 

Abstract .......................................................................................... 156 

Introduction .................................................................................... 157 

Methods.......................................................................................... 159 

 

Data Collection ........................................................................ 159 

Rank- Data Distribution Method (R-D method)  ..................... 160 

TMDL Using Load Duration Curve and Total Sum of Daily 

Loads and Flows ...................................................................... 166 

 

Results ............................................................................................ 172 

Discussion ...................................................................................... 177 

Summary and Conclusions ............................................................ 181 

References ...................................................................................... 182 

 

7.            HIGH RESOLUTION BAYESIAN NETWORK                                              

TO EVALUATE EFFECTS OF WATER QUALITY                   

CONSERVATION PRACTICES ........................................................... 184 

 

Abstract .......................................................................................... 184 

Introduction .................................................................................... 185 

Methods.......................................................................................... 187 

 

Bayesian Network .................................................................... 187 

Water-Related Data .................................................................. 189 



 ix 

Bayesian Network (BN) Construction ..................................... 191 

Categorizing Variables of High Resolution BN ...................... 192 

Bayesian Network Simulation ................................................. 194 

Rank-Data Distribution Method (R-D method) ....................... 197 

 

Results ............................................................................................ 199 

 

Effects of Conservation Practice (LBRCP) and Exogenous 

Variables .................................................................................. 199 

TP Concentration Time Series by R-D Method ....................... 201 

 

Discussion ...................................................................................... 204 

Summary and Conclusions ............................................................ 206 

References ...................................................................................... 207 

 

8.            SUMMARY AND CONCLUSIONS ..................................................... 209 

 

Characteristics of Little Bear River Watershed ............................. 209 

Filling Data Gaps by a Rank-Data                                         

Distribution Method (R-D Method).................................………210 

Bayesian Network to Evaluate Effects                                                 

of the Little Bear River Water Quality                                       

Conservation Project….……...………..………………………..211 

Total Maximum Daily Load (TMDL) for Total Phosphorus              

at the Mouth of the Little Bear River …………….. ................... 212 

High Resolution Bayesian Network to Evaluate Effects                     

of Water Quality Conservation Practices ………………………213 

 

9.            ENGINEERING SIGNIFICANCE ......................................................... 215 

 

10.          RECOMMENDATIONS FOR FUTURE RESEARCH ......................... 217 

 

APPENDIX ............................................................................................................ 221 

 

CURRICULUM VITAE ........................................................................................ 244 

 

 

 

 

 

 

 

 



 x 

LIST OF TABLES 

 

 

Table                          Page 

2.1.   An example of a conditional probability table ......................................................... 21 

  

3.1.   Land use of above Hyrum Reservoir and                                                                

above Cutler Reservoir subwatersheds  ................................................................... 52 

 

3.2    The range of summary statistics for TP concentration                                             

from three differences methods ............................................................................... 66 

 

3.3.   Specific conductance summaries ............................................................................. 66 

 

3.4.   Turbidity summaries ................................................................................................ 66 

 

3.5.   The results of Kruskal-Wallis Test for seasonality .................................................. 68 

 

3.6.   Correlation between TP concentration and other parameters at each location ........ 71 

 

3.7.   Correlation between two locations for each parameter............................................ 74 

 

3.8.   Trends for above Cutler reservoir (Location 4905000) comparing before                

and after starting Little Bear River Project .............................................................. 76 

 

4.1.   Sampling summary for test data sets 1992-2002, USGS gage 10105900. .............. 97 

 

4.2.   Estimating and adding peak CFPs ........................................................................... 98 

 

4.3.   The summation of residuals of daily flows ............................................................ 105 

 

4.4.   Total flow for 3554 days ........................................................................................ 105 

 

4.5.   The results of Kruska-Wallis test for predictions from data sets 1,2 and 3. .......... 106 

 

5.1.   Regressions between variables of missing values (response variables) and      

predictor variables .................................................................................................. 121 

 

5.2.   Critical variables for evaluation of conservation project                                              

in the Little Bear River Watershed above Hyrum Reservoir. ................................ 125 

 

5.3.   Critical variables for evaluation of conservation project                                                 

in the Little Bear River Watershed below Hyrum Reservoir. ................................ 127 

 



 xi 

5.4.   The categories of exogenous variables in the                                                         

Little Bear River Wastershed above Hyrum .......................................................... 128 

 

5.5.   Adjustment of category boundaries of variables for BN2                                       

from those for BN1. ............................................................................................... 131 

 

5.6.   The scenarios of variables for each simulation. ..................................................... 135 

 

6.1.   Regressions between extended observations and predictions ................................ 165 

 

6.2.   TMDL, allocation, MOS and reduction percentage                                                        

to meet the 10% frequency violation                                                                             

against numerical criterion (= 0.05 mg/L as P);                                                   

Frequency Targeted method .................................................................................. 176 

 

6.3.   TMDL, allocation, MOS and reduction percentage                                                          

using  0.2σ as MOS; total mass targeted method ................................................... 177 

 

7.1.   Critical variables for evaluation of conservation project                                                   

in the Little Bear River Watershed below Hyrum Reservoir. ................................ 190 

 

7.2.   Category boundary of variables for the BN ........................................................... 193 

 

7.3.   The scenarios of variables for each simulation. ..................................................... 195 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii 

LIST OF FIGURES 

 

 

Figure                          Page 

 

2.1.   Load duration curve for total phosphorus (Neilson et al., 2005). ............................ 11 

 

2.2.   Graphical model of eutrophication in Neuse River Estuary. ................................... 20 

 

2.3.   Complete BN for East Canyon Creek Watershed                                                      

T-P management issue ……………………………………….……………. .......... 24 

 

2.4.   Fully characterized BN for Neuse estuary. .............................................................. 26 

 

3.1.   Little Bear River Watershed located in Northern Utah. .......................................... 48 

 

3.2.   Sampling location and point load discharge at subwatersheds                                    

in Little Bear River. ................................................................................................. 50 

 

3.3.   Land use in Little Bear River watershed .................................................................. 51 

 

3.4.   Sampling time distribution at Location 4905670..................................................... 64 

 

3.5.   Seasonal Box plots for TP concentration ................................................................. 69 

 

3.6.   Probability plot of standardized residuals for MLE correlations                               

of TP  concentration at location 4905740. ............................................................... 69 

 

3.7    Scattered plot between flow and TP concentration                                                     

at location 4905670.  . .............................................................................................. 72 

 

3.8    Scattered plot between specific conductance and TP concentration                             

at location 4905740. ................................................................................................. 73 

 

3.9    TP concentration time series at location 4905670. .................................................. 75 

 

3.10  TP concentration time series at location 4905000. .................................................. 75 

 

4.1    Cumulative failure plot (CF plot) for the entire time series                                       

of daily mean flow (cfs) at USGS gage 10128500. ................................................. 86 

 

4.2    CFP time series of flows at USGS gage station 10128500. ..................................... 87 

 

4.3    The work flow to make a time series by combining                                               

data distribution with CFP time series. .................................................................... 88 



 xiii 

4.4.   Cumulative failure plot of 60 know flows at USGS gage 10128500. ..................... 91 

 

4.5.   The CFP time series of observations (x)                                                                  

and unmeasured vaues (Line) .................................................................................. 93 

 

4.6.   The Steps to assign estimated values to simulation dates. ....................................... 93 

 

4.7.   Estimation of Peak CFP of each CFP cycle extending                                              

largest CFP of known data within each cycle. ......................................................... 94 

 

4.8.   Example daily mean flows for each date at USGS gage 10128500 ........................ 96 

 

4.9.   Log scale Q-Q plot predictions from data sets                                                    

versus original data ................................................................................................ 100 

 

4.10. The linear relation between sum of residual                                                     

between  sum of largest observation residuals                                                         

and sum of residual using data set 1, 2, and 3........................................................ 102 

 

4.11. CFP time series for each data sets.......................................................................... 103 

 

4.12. Time series for each data sets ................................................................................ 104 

 

4.13. Residual sum between predictions and original data                                                 

for  combinations of distribution type                                                                      

and CFP time series type........................................................................................ 107 

 

4.14. Sum of flow residual for each sampling frequency ............................................... 108 

 

4.15. Total suspended solid load estimate for each sampling interval…………..……...110 

 

5.1.   Little Bear River Watershed located in Northern Utah. ........................................ 115 

 

5.2.   Schematic of an anoxia model ............................................................................... 117 

 

5.3.   Sampling locations of Little Bear River watershed. .............................................. 120 

 

5.4    Agricultural land use area in                                                                                       

Little Bear River Watershed. ................................................................................. 123 

 

5.5.   Little Bear River BN 1 (above Hyrum Reservoir)                                                    

for LBRCP and exogenous variable effect evaluation ........................................... 124 

 

5.6.   Little Bear River BN 2 (below Hyrum Reservoir)                                                    

for the LBRCP and exogenous variable effect evaluation ..................................... 126 



 xiv 

5.7.   The outputs from the Little Bear River BN                                                          

above the Hyrum reservoir (BN1)                                                                             

for pre conservation practices condition (OP_CON=Pre) . ................................... 133 

 

5.8.   The outputs from the Little Bear River BN                                                         

below the Hyrum reservoir (BN2)                                                                            

for pre conservation practices condition (OP_CON=Pre).  . ................................. 134 

 

5.9.   The outputs from the Little Bear River BN                                                          

above Hyrum Reservoir (BN1) for D annual precipitation                                      

and Pre LBRCP condition.. .................................................................................... 136 

 

5.10. The probabilities of TP load and TP concentration variables                               

under selected conservation project options (OP_CON).. ..................................... 137 

 

5.11. The probabilities of TP loads and TP concentration variable                                

under selected agricultural landuse category (LAND_AG1)................................. 138 

 

5.12. The probabilities of TP loads and flow variable                                                    

under selected point load category (LOAD_P1) .................................................... 138 

 

5.13. The probabilities of TP load, TP concentration                                                       

and flow variables under selected annual                                                                     

precipitation category (PRECIP). .......................................................................... 139 

 

5.14. The probabilities of subwatershed TP load (LOAD_SW1), TP load          

(LOAD_IN) and TP concentration (TP_IN) variables                                         

under selected annual precipitation category (PRECIP)                                          

and conservation project options (OP_CON).. ...................................................... 141 

 

5.15. The probabilities of TP load and TP concentration variables                               

under selected conservation project options (OP_CON). ...................................... 142 

 

5.16. The probabilities of TP loads and flow variable                                                    

under selected agricultural landuse category (LAND_AG2)................................. 143 

 

5.17. The probabilities of TP loads and flow variable                                                   

under selected point load   category (LOAD_P2). ................................................. 144 

 

5.18. The probabilities of TP loads and flow variable under selected                          

annual precipitation category (PRECIP) ................................................................ 144 

 

5.19. The probabilities of subwatershed TP load (LOAD_SW2), TP load       

(LOAD_5000) and TP concentration (TP_5000) variables at the mouth                  



 xv 

of the Little Bear River under selected annual precipitation                            

category (PRECIP) and conservation project options (OP_CON). ....................... 145 

 

5.20. The probabilities of TP load (LOAD_IN) and TP concentration (TP_IN)              

into the Hyrum Reservoir under selected subwatershed TP load (LOAD_SW1)    

and TP load at confluence of the East and South Fork (LOAD_HW). .................. 149 

 

5.21. The probabilities of TP load (LOAD_5000) and TP concentration (TP_5000)      

into the Cutler Reservoir under selected subwatershed TP load (LOAD_SW2)      

and TP load at effluence of the Hyrum reservoir (LOAD_5650). ......................... 149 

 

6.1.   Little Bear River Watershed located in Northern Utah. ........................................ 158 

 

6.2.   The idea to make time series combining data distribution                                      

with CFP time series.   .......................................................................................... .161  

 

6.3.   The CFP time series of observations (x)                                                                  

and unmeasured values (Line). .............................................................................. 163 

 

6.4.   Symmetry graph between prediction                                                                       

and extended observations of TP load                                                                        

at the Little Bear River TMDL point ..................................................................... 165 

 

6.5.   Regression between prediction and extended observations of TP load                                       

at the Little Bear River TMDL point ..................................................................... 166 

 

6.6.   Flow duration curve at East Fork of Sevier River, UT .......................................... 167 

 

6.7.   Typical loading capacity duration curve at East Fork Sevier River,                   

USGS gage 10183900 ............................................................................................ 168 

 

6.8.   The flow time series at the TMDL location ........................................................... 172 

 

6.9.   The TP load time series at the TMDL location...................................................... 173 

 

6.10. The TP load duration curve for TP. ....................................................................... 175 

 

6.11. Total phosphorus concentration time series at TMDL point.. ............................... 178 

 

6.12. The TP load duration curve for TP during high flow season                                      

in 97-98 water year ................................................................................................ 180 

 

6.13. The TP load duration curve for TP during high flow season                                       

in 2002-2003 water year ........................................................................................ 180 

 



 xvi 

7.1.   Little Bear River Watershed located in Northern Utah ......................................... 186 

 

7.2.   Schematic of an anoxia model (Reckhow, 1999) .................................................. 188 

 

7.3.   Little Bear River BN for the LBRCP and                                                              

exogenous variable effect evaluation ..................................................................... 192 

 

7.4.   The outputs of the high resolution Bayesian Network below                                       

Hyrum reservoir for pre LBRCP condition (OP_CON=Pre).   .............................. 196 

 

7.5.   The process of estimating time series by the R-D method combining data  

distribution with CFP time series. .......................................................................... 198 

 

7.6.   QQ Plot for Scenarios. ........................................................................................... 200 

 

7.7.   Cumulative Failure Plots for Scenario 4………..………….…………………..…202 

 

7.8    QQ plot for Scenarios 5 and 6 comparing the same percentile‟s TP       

concentration for Pre and Post OP_CON…….…………………….……….….…202 

 

7.9.   TP concentration Time series from R-D method for scenario 1 ............................ 203 

 

7.10. TP concentration Time series from R-D method for scenario 5 ............................ 203 

 

7.11. TP concentration Time series from R-D method for scenario 6 ............................ 204 

 

 



CHAPTER 1 

INTRODUCTION 

 

 

OVERVIEW 

 

Nutrient enrichment causes anoxia problems in lakes and reservoirs by 

stimulating the primary producers, primarily algae.  An ecosystem becomes more 

productive by nutrient enrichment, a process known as eutrophication.  In a eutrophic 

ecosystem, nutrient enrichment may cause toxic chemical releases from sediment and by 

cyanobacteria blooms as well as fish kills due to anoxia in the hypolimnion (Dodds, 

2002).   Therefore, nutrient load control is important in water quality management.  We 

need to consider the magnitude of low oxygen problems and toxic chemical release, but 

also important are the frequency, duration and timing of these releases because some 

aquatic life is very sensitive to these fluctuations in water quality.   

While we need to predict the fluctuations of nutrient concentration under different 

nutrient load management options, most water quality models calculate monthly, seasonal 

or yearly nutrient concentrations (Stronge et al., 1997; Worrall and Burt, 1999; Hanrahan 

et al., 2001).  These models cannot provide good enough prediction of water quality and 

nutrient load to manage water quality because higher frequency fluctuations may be 

important within a specific model period.  Daily time series-based models are required to 

provide more accurate estimates of frequency, duration, magnitude and timing of 

loadings.  Some mechanistic mathematical models can provide daily time series outputs 

of nutrient concentration (Bowen and Hieronymus, 2000, Washington State, 2004).  

However, we cannot often calibrate those models accurately because of the large 
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quantities of data required for daily time series simulation for input or calibration.  We 

often have just monthly water quality data in many watersheds.  Although most water 

quality data, model inputs and outputs and management information are quantitative 

when models are used by water quality managers, often we have non-numerical input 

information such as non-point source control options, stakeholder-based management 

scenarios or future land development options.  It is desirable but difficult to incorporate 

non-numerical input data to mechanistic mathematical models. 

 Bayesian networks (BNs) were designed to accept and process inputs of varied 

types of information: observations, model results, expert judgment, scenario type and a 

variety of other non-numerical inputs.  Those inputs are often expressed as the probability 

or chance of a particular scenario.  Water quality model outputs must often be expressed 

as the probability or chance for frequency-based water quality criteria (USEPA, 2000).  

The primary requirement of a Bayesian network is that it can process those probabilistic 

inputs and provide probabilistic outputs.  Therefore, many researchers have developed 

Bayesian network models to support decision making for water quality management 

strategies (Reckhow, 1999; Neilson et al., 2002; Varis and Jussila, 2002; Borsuk et al., 

2003; Ha and Stenstrom, 2003; WRRI, 2004).  Those models provide seasonal outputs or 

yearly outputs because the models‟ time increments are tied to the time increments of the 

data that are available to drive the models. Often those data are only available monthly or 

seasonally.  To address higher frequency fluctuations introduced above, we require large 

time series of daily data to drive daily time series models.  The goal of this research is to 

expand and develop our current view of Bayesian network models to include high 

frequency time series models of nutrient loading and surface water quality responses.    
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 In this dissertation, a Rank-Data distribution method (R-D method) was 

developed to generate the high frequency (daily) flows, Total Phosphorus (TP) loads and 

concentrations using only monthly or weekly frequency observations and predictions.  

Using these daily values, the BNs resulted in the probability of 21 categories for TP 

concentration into Cutler Reservoir in the Little Bear River watershed (Utah) under 

different nutrient load management strategies.  The time series of rank of TP was linked 

with these BN outputs to provide daily time series of TP concentration into Cutler 

Reservoir under different nutrient load management strategies.   We were able to evaluate 

the frequency, duration, magnitude and even timing of TP concentration criteria violation 

in these surface waters using these daily time series.  Our goal is to provide these daily 

outputs with high accuracy and reliability using a new calibration process.  The R-D 

method was able to support the TMDL process concerning daily frequency TP loads. 

 

RESEARCH GOAL AND OBJECTIVES 

 

The goal of this research is to develop a time series
1
-based Bayesian network 

model of nutrient loading and surface water quality responses.  The new time-series BN 

model framework consists of a database, BN software and Rank time series.  The 

database stores and provides the water quality data and quantity data from the R-D 

method.  Bayesian Network software predicts probabilistic results of flow and nutrient 

concentration into the reservoir using Bayesian theory under selected scenarios.  The TP 

concentration data from BN probabilistic outputs are assigned to different simulation 

                                                 
1
 In this dissertation, the term „time series‟ is used in a generic sense; as a descriptive term for the dynamic 

behavior of data. It is not to be confused with the more formalized statistical concept of time series analysis 

using autoregressive, integrated, moving average models, formalized by Box and Jenkins. (1976). 
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dates by Rank Time Series.  The following five research objectives address the time 

series Bayesian Network‟s challenges. 

1) Establish the graphical model structure that can a) expose causal relationships among the 

water quality, water quantity and ecological variables, and; b) connect nutrient load 

management options to water quality variables. 

2) Establish a database of daily water quality values that can support daily based BN model 

simulation.   The database should consist of both existing observations and derived value 

generated based on the statistical characteristics of existing water quality observations.  

3) Develop BN data structures for study sites that can expose the conditional probability of 

the hypothesis variables, information variables, and mediating variables under nutrient 

load management options.  The BN data structure will be the format of Conditional 

Probability Tables (CPTs) and probability graphs. 

4) Demonstrate the BN software to predict the effect of nutrient load managements on 

water quality at study sites.  

5) Construct TMDL processes for TP using daily predictions of flows, TP loads and 

concentrations from the R-D method.   

We have software to calculate probabilities in Bayesian networks (e.g., NETICA 

TM 
, Norsys Software, 1997).  We also collected many water quantity data related to 

nutrient management and water quality.  The most important challenge is to establish the 

water quality database for the new time series BN model and then to produce the daily 

water quality outputs from the BN model. 
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SCOPE 

 

The dissertation consists of five major components and others (an introduction, a 

literature review, a summary and conclusions, and recommendation for further research).    

  The first major component addressed characteristics of the study site, the Little 

Bear River watershed, Cache County, Utah.  This component includes general 

information and water quality characteristics of Little Bear River Watershed.   Statistical 

analysis presents statistical summaries, the correlation among each of the water quality 

parameters, seasonal patterns and trends of the water quality parameters at each sampling 

location and the correlations among sampling locations.   The results of this statistical 

analysis support determination of information and mediating variables of TP 

concentration at the inlets of two reservoirs in the Bayesian Network model.  Many TP 

concentration data of some streams are censored so that modified data analysis methods 

are required to estimate correlations, multi regressions, seasonal effects of water quality, 

and trend analysis.  This component discusses Maximum Likelihood Estimation (MLE) 

and non parametric methods as alternatives to substitution of half detection limit as is 

often used.  

  The second major component focuses on missing data estimation to establish a 

database of daily water quality values that can support daily based BN model simulation.  

It is not easy to link water qualities among different locations due to different sampling 

times for each location.  We need daily water quality data for daily based BN simulation 

to get quantitative results because BN is a statistical probability model.   Therefore, this 

component applies a method for missing data problems, the R-D method, associated with 

non parametric data generation techniques. 
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  The third major component addresses the use of the BN model to evaluate past 

nutrient management practices.  In the Little Bear River watershed, federally funded best 

management practices (BMPs) began in 1990.  It is not easy to evaluate the effect of 

BMPs on water quality of streams because many exogenous influences affect the water 

quality in addition to the BMPs.  Many BNs in water quality management predict the 

effects of pollutant management on water qualities.  This component discusses 

application of BN to evaluate the effect of BMP on the inlet TP concentration of Hyrum 

Reservoir and Cutler Reservoir. This BN model simulates the TP load and concentration 

under the same exogenous factor levels for each different watershed nutrient management 

scenario to help remove the effect of exogenous factors.  These results may be an 

appropriate indicator to evaluate past BMPs.   

  The fourth major component predicts daily TP concentration of the Cutler 

Reservoir‟s inlet under different nutrient load management strategies by the daily based 

BN model using the derived daily water quality data set from the R-D method.  This BN 

model links watershed nutrient management, exogenous factors and water quality.  This 

component discusses validation and calibration of the R-D method using low frequency 

observations and predictions as well as daily time series of TP concentration by linking 

BN model output to rank time series. 

  The fifth major component calculates TMDLs for TP at the inlet of Cutler 

Reservoir under two different watershed nutrient management scenarios.  The daily 

frequency flows, TP loads and concentration from R-D method are used to calculate the 

total annual load for each scenario instead of any statistic representative such as mean or 

median of observations with low frequency.  In this component, two type of TMDL 
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approaches including the violation frequency based approach and the total amount load 

based approach are tested and compared. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

 

TOTAL MAXIMUM DAILY LOAD (TMDL)  

 

 A TMDL is a written plan and analysis established to ensure that an impaired 

water body attains and maintains water quality standards in the event of reasonably 

foreseeable increases in pollutant loads.  Section 303 (d) of the Clean Water Act (CWA) 

requires States and Territories and authorized Tribes to identify and establish a priority 

ranking for water bodies for which technology-based effluent limitation required by 

section 301 of the CWA are not stringent enough to achieve the water quality standard 

and establish TMDLs for the pollutant causing impairment in those water bodies.  States 

and Territories and authorized Tribes must establish TMDLs at the levels necessary to 

implement applicable water quality standards with seasonal variations and a margin of 

safety that aims to take into account any lack of knowledge concerning the relationship 

between effluent limitations and water quality (NARA, 2000).  

The TMDL process consists of five activities.  The first step is to select the pollutant 

to consider.  The second step is to estimate the water body‟s assimilative capacity.  The 

third step is to estimate the pollutant load from all sources to the water body.  The fourth 

step is to predict pollution in the water body and to determine total allowable pollutant 

load.  The fifth step is allocation of the allowable pollutant load among the different 

pollution sources (USEPA, 1991). 

 In the allocation step, the TMDL is calculated by this equation (USEPA, 1997) 

TMDL=   ∑ LA + ∑WLA + MOS         (2.1) 
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in which TMDL= Allowable total maximum daily load found using the Assimilative 

capacity for a particular water body and contaminant, LA = pollutant load allocation for 

non-point sources, WLA= pollutant load allocation for point sources discharges, and 

MOS= Margin of safety.  TMDLs must contain an expression of the pollutant load or 

load reduction necessary to assure that the water body will attain and maintain water 

quality standards (NARA, 2000).   

 Both flow and pollutant concentration from point sources, nonpoint sources and 

background levels into a water body should be predicted to estimate a reasonable load to 

meet the water quality standard in the TMDL process.  We need predictive models for 

this purpose (USEPA, 1991). We also need appropriate pollutant load calculation 

methods. There are three categories for calculation of pollutant load in TMDLs.  

The first category is a monitoring based method.  Typically there is a single 

TMDL value for a specific location using this method.  Since there is no national 

consensus for representing existing conditions, we select a type of statistical 

representation (mean, median, or geometric mean) or a type of critical condition (low or 

high flow event) to generate pollutant loads (Brannam et al., 2005).  A load is then 

calculated by multiplying a pollutant concentration by a flow.  Then the TMDL is 

calculated by multiplying a pollutant water quality standard by a flow from a selected 

statistical representation or a critical condition. As an example, the TMDL project for the 

Little Bear River Cache County, UT used median of historic flows in 1998 and 1999 as 

the representative statistic.  The TMDL of total phosphorus into a specific reservoir was 

then calculated by multiplying the median flow by the state water quality standard, 0.05 

mg/l (Utah DEQ, 2000).   
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A monitoring based alternative with more flexibility is the load duration method.  

Here each actual pollutant load is found by multiplying average daily flow by the 

pollutant concentration on the same day.  Each target pollutant load (TMDL) is then 

found by multiplying each average daily flow by the water quality standard concentration 

to make a cumulative frequency curve that shows each target pollutant load at the 

frequency with which a specific flow value is equaled or exceeded.  Historical loads also 

are plotted on this graph by the same way (Figure 2.1).  If the historical load falls on or 

below the TMDL curve, this means compliance with water quality criteria (Neilson et al., 

2005).  The load reduction is determined based on allowable percentage of loads above  
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FIGURE 2.1. Load Duration Curve for Total Phosphorus (Neilson et al., 2005). 
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the TMDL curve and the margin of safety on the load duration curve. 

. The second category is to use empirical models.    In many cases, we have only 

monthly data for water quality.  This gap between measurements may cause large 

variance when we estimate pollutant loads (Preston et al., 1989; Hodgkins, 2001).  

Sampling dates for flow are often not the same as the sampling dates for pollutant 

concentration so that we can not directly use these flow and pollutant concentrations to 

calculate loads. We need daily mean flow and daily pollutant concentration to avoid these 

problems.  One approach is using regression models.  In some cases, pollutant concentrations or 

loads have strong correlation with flow.  North Carolina Department of Environment and Natural 

Resources used linear regression models between TP load and measured flow for summer and 

winter in Roberson Creek, North Carolina TMDL (NCDENR, 2004). 

Summer: 

TP (kg/day) = 1.79 + 7.45 * Flow (m
3
/s)        (2.2) 

R
2
 = 0.96 

Winter: 

TP (kg/day) = 0.28 + 20.83 * Flow (m
3
/s)        (2.3) 

R
2
 = 0.90 

The third category is to use a loading model.  Loading models require data of 

watershed characteristics including land use, soil information and land management 

practices to calculate pollutant load instead of in-stream pollutant or hydraulic routing 

(Neilson et al., 2005).  An example of this method is the Pollutant Loading Tool 

(PLOAD) (USEPA, 2001).  In PLOAD, we calculate pollutant load using land use GIS 

data and export coefficients.   
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EPA proposed that weekly, monthly, seasonal or annual estimates may be used in 

the expression of TMDLs (NARA, 2000).  However, the simple monthly or seasonal 

simulation output of flow and pollutant concentration cannot represent the characteristics 

of a pollutant load within the entire month or season because the flow and such pollutant 

concentration may have a large variation within a particular month or season.  In addition, 

USEPA recommends identifying appropriate periods of duration and frequency of 

occurrence in addition to magnitude of pollutant concentration.  USEPA does not 

encourage States and Tribes to identify nutrient concentrations that must be met at all 

times, rather a seasonal or annual averaging period is considered appropriate (USEPA, 

2000).  Therefore, the daily outputs of flow and pollutant concentration are required to 

predict pollutant loads more accurately in the TMDL process. 

 

BAYESIAN  NETWORK 

 

 A Bayesian Network (BN) is a probabilistic network model based on a graphical 

representation of the relationships among variables (Castillo et al., 1997).  In a BN, the 

relationships between parent variables and child variables are expressed by a link and 

node structure where the state of the parent node predicts the state of the child node 

(Jensen, 1996).  BNs can satisfy our modeling needs, particularly by providing a useful 

communication medium that clearly displays major influences on water quality criteria; 

combines categorical and continuous variables; connects expert judgment to empirical 

data (Heckerman et al., 1994); and expresses predicted outcomes as likelihoods as a basis 

for risk analysis and risk management (Marcot, 1998).  In addition, a Bayesian Network 

can provide estimation of cost and benefit for risk management when we combine water 
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quality probability and cost and benefit utility tables (Ames, 2002).   Since a BN is a 

probability network model that expresses predictions probabilistically, it can support 

consideration of frequency-based standards such as violation on 10% of the days in a year 

(Smith et al., 2001). 

 

Conditional Probabilities 

 

 The basic concept in Bayesian propagation of certainties in causal networks is 

conditional probability (Jensen, 1996).   The probability, P(A), of an event A is  a number 

between 0 and 1.    For example, „the probability of a die turning up 5 is 1/6‟.  However, 

this statement is contingent on the unstated assumption that the die is fair.  Therefore, the 

statement should be „Given that the die is fair, the probability of the die turning up 5 is 

1/6‟.   In the same way, a conditional probability statement is of the following kind: 

 Given the event B, the probability of the event A is x. 

This probability is denoted by p(A|B)=x. 

 There are fundamental rules for probability calculation (Jensen, 1996). 

 

P(A|B)P(B)=P(A,B)                                                                                                       (2.4) 

P(A|B) =  The probability of the event A, given the event B 

P(A,B) =  The probability of the joint event A∩B. 

 

If the probabilities are conditioned by a context C, the formula should read 

 

P(A|B,C)P(B|C) = P(A,B|C)                                                                                           (2.5) 
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From Equation (2.4)  

P(A|B)P(B)=P(B|A)P(A)=P(A,B)                                                                                   (2.6) 

 Equation (2.6) yields Bayes‟ rule: 

)(

)()|(
)|(

AP

BPBAP
ABp                                                                                             (2.7) 

                    

If the probabilities are conditioned by C, Bayes‟ rule reads 

 

)|(

)|(),|(
),/(

CAP

CBPCBAP
CABP                                                                                  (2.8) 

 

Probability Calculus For Variables 

 

 The rules for calculation of probabilities related to each event can be applied to 

the probability of variables (Castillo et al., 1997).  We define {X1,…..Xn} as a set of 

discrete random variables and {x1,…..xn} as a set of their possible realizations or 

instantiations.   Also, we define p(x1,…..,xn) as the joint probability distribution of 

variables in a variable set X.  That is 

 

p (x1,…,xn)=p(X1=x1,…,Xn=xn)                                                                  (2.9) 

 

We define X and Y as disjoint subsets of variables such that p(y)> 0.  Then, the 

conditional probability distribution of X given Y=y is  
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p(X=x|Y=y)=p(x|y)=
)(

),(

yp

yxp
                                                                            (2.10) 

We define xi as a state of X and there are m different events in state xi.  If the events,  

(xi,y1)….(xi,ym) are mutually exclusive, the marginal probability distribution is 

 

p(xi)= 
m

j 1

 p(xi,yj)                                                                                                        (2.11) 

                

 

When X is a single variable and Y is a subset of variables, we obtain a particular case of 

Equation (2.10). 
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So that from Equation (2.11), 
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  which is the conditional probability distribution of Xi, given a subset of variables 

{X1,….Xk}. 

The marginal probability distribution is then obtained as 

 

p(xi)=p(Xi=xi)= 
nii xxxxx ...,....., 1121

p(xi,x1,……..,xn) 

                       = 
nii xxxxx ...,....., 1121

p(xi |x1…,xk)p(x1,……,xk)                                               (2.14) 
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In a Bayesian network water quality model, we use Equations (2.12), (2.13) and (2.14) to 

estimate the probability distribution of an endpoint using information variables.  For 

example, if the endpoint is the total phosphorus concentration into a lake and we have 

data of headwater flow, headwater total phosphorus concentration, and point source flow 

and point source total phosphorus under Best Management Practices for the non-point 

source control and biological treatment for the point source, we can estimate the total 

phosphorus distribution into the lake using these variables with probability Equation 

(2.14) (Ames, 2002). 

 

Building BN Models  

 

 The process to structure a Bayesian Network Model consists of problem 

definition, model inference and model validation (Ames, 2002).  In problem definition, 

we have the following steps. 

1) Identify hypothesis events and hypothesis variables.   

 When we organize a Bayesian model for a decision support problem, the purpose 

is to give estimates of certainties for some event we are interested in, known as the 

hypothesis event.  The hypothesis event is organized into a set of variables and the 

variables are hypothesis variables (Jensen, 1996).  For example, we may be interested 

in the violation of a total phosphorus concentration criterion at the inlet to a reservoir.  

If the criterion is 0.05 mg/L, the hypothesis event is whether the total phosphorus 

concentration is over 0.05 mg/L or not and total phosphorus concentration is the 

hypothesis variable. 
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2) Identify the load management option.    

 The concentration of contaminants from runoff is dependent on land use (Ha and 

Stenstrom, 2003).  We use headwater management such as Best Management 

Practices (BMPs) and point load management such as a biological process at a 

wastewater treatment plant (WWTP) to reduce contaminant load.  Therefore, head 

water management options and point source management options should be identified 

as information variables. 

3) Identify information variables and mediating variables.   

We use much information in modeling tasks.  Some information may reveal 

something about the state of some hypothesis variable.  This revealing is done by 

certain variables and these variables are information variables (Jensen, 1996).  For 

example, if we have data of headwater flow of the stream into a reservoir, these 

headwater flows are information variables for the TP concentration of the inlet to the 

reservoir because headwater flow affects the TP concentration of the inlet to the 

reservoir. 

Some variables in a BN model are neither hypothesis variables nor information 

variables but these variables affect the state of hypothesis variables.  We call these 

mediating variables.  For instance, if the flow dominantly affects TP in a tributary and 

we do not have any information about TP under each flow category, the TP in the 

tributary is a mediating variable for TP of the inlet into a reservoir. 

4) Identify data sources and categories of variables.   

 We use existing data, results of the model simulation and expert judgment as data 

sources in a Bayesian Network design (Varis and Jussila, 2002; Neilson et al., 2002). 
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Data sources should be identified and states or categories for all variables must be 

defined (Ames, 2002).  For instance, Ticehurst et al. (2007) categorized phosphorus 

load from a catchment to the Cudgen Lake as <600 kg/yr, 600 – 800 kg/yr, 800 – 

1000 kg/yr, 1000 – 1200 kg/yr and >1200 kg/yr. 

5) Identify evaluation criteria related to probabilistic results. 

 After calculating the probabilities of each state of the hypothesis variables, we 

have to evaluate if this probability is acceptable.  For instance, if such a model 

predicts a 25% probability of a major summer fish kill in a study of low oxygen 

effects on fish kills, we need to decide if this risk is acceptably low or not (Borsuk 

and Reckhow, 2004).   Therefore, we need to identify criteria of acceptable 

probabilities. 

6) Make the graphical model.    

  A graphical model represents the variables and relationships among variables 

using nodes and links (Figure 2.2).  This graphical model is developed through a joint 

process of stakeholder involvement and scientific characterization (Borsuk et al., 

2001). 

In model inference, we need the following steps.  

1) Data arrangement.   

 Researchers arrange data for important variables according to categories which 

are made during problem identification.  This helps us make conditional probability 

tables. 
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FIGURE 2.2. Graphical Model of Eutrophication in Neuse River Estuary (Borsuk et al., 

2003). 

 

2)  Make conditional probability table. 

 After collecting data, we need to compute conditional probability distributions.  

Usually, conditional probability tables (CPTs) represent the probability of empirical 

information, expert judgment and mechanistic model simulation results.  CPTs are the 

tables that represent the probability or frequency with which a node takes on each 

discrete state, given the states of any parent nodes (Marcot et al., 2001).  Researchers 

make conditional probability tables for important variables based on data categories 

and the probabilities for each category combination (Table 2.1). 

3) Calculate probability of a hypothesis variable.    

BNs calculate the probability of hypothesis variables using CPTs and probability 

equations.  The CPTs of variables that are given as conditions of hypothesis variable 
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TABLE 2.1. An Example of a Conditional Probability Table (Neilson et al., 2002). 

 (Numbers are categories of each variable) 

 

are linked to CPTs of the hypothesis variable.  For instance, Neilson et al. (2002) 

studied the effect of flow and Total Phosphorus (PH in Table 2.1) concentration of a 

point source and headwater of reservoir influent under nutrient load management 

options in East Canyon, Northern Utah.  In this research, they constructed CPTs of 

head water flow (FL_HW) and wastewater treatment plant (WWTP) flow (FL_TP) 

for each season, total phosphorus concentration of the WWTP discharge (PH_TP) 

under each wastewater treatment technology option, and head water total phosphorus 

concentration (PH_HW) under non-point load management options.  They made 

CPTs of reservoir influent TP concentration (PH_ST) related to FL_HW, PH_HW, 

FL_TP and PH_TP.   They then estimated the probability to meet a 0.05 mg/L, total 

phosphorus water quality criterion in the inlet to East Canyon Reservoir (PH_ST) 

under each WWTP and headwater total phosphorus management option linking the 

upper CPTs. 
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       4) Calculate probability of additional endpoint variables 

BNs may use a hypothesis variable for a water quality parameter as a parent node 

for an ecological variable that stakeholders are interested in.  For instance, the 

probability of a fish kill (ecological) can be predicted using the results of 

chlorophyll-a concentration and oxygen concentration (water quality) 

probabilities (Reckhow, 1999). 

 Validation is required for all models to declare the model to be reasonable for decision 

support (Stow et al., 2003).  Predictions of BN models consist of full probability 

distributions, rather than single values.  For validation of probabilistic models, 

researchers have used median values as the point prediction (Scavia et al., 1981; Stow et 

al., 2003).  They compared these predicted median values to observed values and 

evaluated the errors using the correlation coefficient, reliability index, and the average 

absolute error between the model predictions and observations (Stow et al., 2003).  

Bowen and Hieronymus (2000) compared the frequency of predicted salinity to the 

frequency of observed salinity for model validation in their Neuse River Estuary 

modeling research.  They found that the model underpredicted salinities by about 1.0 g/l 

for cumulative frequencies less than 0.9 and by 0.5g/l for cumulative frequencies in the 

upper 10% after calibration based on comparison between observations and predicted 

value using time series trends.  They used a mechanistic model, CE-Qual-W2 (Cole and 

Buchak, 1995) in their research but this validation method may also be useful for 

probabilistic models. 
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Application to Water Quality Management 

 

  This section shows three specific examples of application of Bayesian Networks 

for water quality management.    

East Canyon Creek Bayesian Network Case Study.  East Canyon Creek is 

located in Northern Utah and flows north 26 km from Kimball Junction into East Canyon 

reservoir.  High phosphorus loading caused eutrophication in the reservoir and the 

loading source are Snyderville Basin wastewater treatment plant (WWTP)‟s discharge 

and non-point sources including agriculture, recreation and residential areas (UWRL, 

2000).   

Neilson et al. (2002) studied the effect of flow and total phosphorus (TP) 

concentration of the WWTP effluent and the headwater on reservoir influent TP under 

nutrient load management options in East Canyon.  In this research, the hypothesis 

variable was reservoir influent total phosphorus concentration and the hypothesis event 

was whether the reservoir influent phosphorus was below 0.05 mg/L.  WWTP 

management options were: 1) no biological treatment; 2) biological treatment; 3) 

advanced technology for effluent TP concentration of 0.1 mg/L and; 4) advanced 

technology for effluent TP concentration of 0.05mg/L.  Headwater management options 

were: 1) no best management practice, and; 2) execution of best management practice.  

They assumed that WWTP TP concentration depended on WWTP management options, 

the headwater TP concentration depended on the headwater management option and flow 

of the headwater depended on season (Figure 2.3).   They produced CPTs linking season 

to flow of the headwater, CPTs linking the WWTP management option to the WWTP TP 

concentration and CPTs linking the headwater management option to the headwater TP 
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concentration.  These loading CPTs were based on existing data but CPTs of reservoir 

influent TP concentration, under given headwater TP concentration and flow and WWTP 

TP concentration and flow were based on results of a water quality model (QUAL2E, 

Brown and Barnwell, 1987) simulation using these loads as inputs.  They calculated 

probabilities of meeting 0.05mg/L TP in the inlet of East Canyon Reservoir using CPTs 

under WWTP and headwater TP management options during summer.  In addition, 

combining these probabilities to a utility table for costs and number of visitors related to 

TP concentration, they calculated costs and benefits of sets of WWTP and headwater 

management options during summer (Neilson et al., 2002). 

Neuse River Estuary Bayesian Probability Network Model.  The Neuse River 

Estuary, North Carolina has experienced severe consequences of eutrophication including 

algal blooms, fish kills and extensive hypoxia and anoxia.  Nitrogen has been identified 

as the major factor limiting algal biomass in the Neuse River Estuary. 

 

 

FIGURE 2.3. Complete BN for East Canyon Creek Watershed TP Management Issue      

(Neilson et al., 2002). 
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Therefore, a TMDL for total nitrogen is being established.   Borsuk et al. (2003) 

established Bayesian network models for this TMDL.  They established a graphical 

model representing the variables and relationships important to eutrophication.  In this 

step, they used a joint process of stakeholder involvement and scientific characterization 

(Borsuk et al., 2001).   The hypothesis variable was fish kill and the hypothesis event was 

if fish kills are reduced under nitrogen input reduction.   Each submodel simulated each 

variable and the probabilities characterized by various submodels were joined into one 

integrated Bayesian network.  The information variables were nitrogen inputs, river flow, 

water temperature and duration of stratification.  These variables were marginal variables 

without a parent node and were derived from historical data.  When these variable 

distributions were specified, the predictive distributions of all the remaining variables 

were calculated from a network of regression submodels (Figure 2.4).   They evaluated 

five possible scenarios corresponding to nitrogen input reduction of 0, 15, 30, 45 and 

60% relative to 1991-1995 baseline inputs under the same conditions of all variables 

except nitrogen inputs.  The integrated model prediction showed that the annual average 

chlorophyll-a concentration in the middle region of the estuary was expected to be 

around 20 μg/L but the state chlorophyll standard of 40 μg/L will most likely be violated 

on more than 10% of the days in the year under the base line conditions.  As nitrogen 

inputs are reduced, frequency of chlorophyll standard exceedence was expected to 

decrease as well as average chlorophyll concentration.   

Consequently, exceedence frequency met the state standard, the exceedence of 

chlorophyll concentration of 40 μg/L on 10% of day in a year at 45% nitrogen reduction 

with 50% confidence.  However, the frequency of fish kill was not expected to change 
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substantially with nitrogen reductions.  While carbon production was predicted to 

decrease with nitrogen reduction, this effect was dampened-out through the down causal 

chain (Figure 2.4), so that the reduction in the number of days of resulting summer time 

hypoxia with nitrogen reduction was predicted to be insignificant (Borsuk et al., 2003). 

Water Resources Development In The Lower Senegal River Basin.  The 

Senegal River conveys water over a distance of 1,800 km supplying water to 5 million 

people in a region of 500,000 km
2
 in Western Africa.  Lac de Guiers is the most 

important lake fed by the Senegal River and is used for city water supplies and  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.4. Fully Characterized BN for Neuse Estuary (Borsuk et al., 2003). 
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agriculture.  Until 1986, when Diama Dam was completed between the lake and river 

mouth, seawater entered the lake, causing an increase in salinity during the dry season 

while the lake was filled by low salinity water from the Senegal River during the rainy 

season.  The expansion of sugar cane plantations caused eutrophication in the lake.  Since 

the watershed around Lac de Guiers has high population growth, both development and 

conservation of water resources were required (Varis and Jussila, 2002).   

Varis and Jussila (2002) used a Bayesian network model to study the conflicting 

interests among the various stakeholders, and the environmental and social concerns.  

They defined stakeholders concerns including the effect of city water supplies, 

agricultural water uses, cattle breeding and fishing as hypothesis variables, plus 

environmental factors such as plankton, macrovegetation, nitrogen, phosphorus and 

conductivity.  They established five scenarios, combining water management policy 

options and tested these scenarios using a Bayesian network and documented data of the 

local ministries.  The policy options were the methods of extension of water withdrawal 

for Dakar city, control method of the irrigated sugar cane industry, control of land use 

surrounding the lake, control of seasonal fluctuation pattern to the lake level and control 

of macrovegetation. 

 This Bayesian network model represents impacts of water management options 

such as conductivity increasing or fisheries being worse using probabilistic outputs.  

According to the results from this model, they recommended keeping the water level 

constant, implementing local aquatic vegetation management, locating the water intake in 

the southern part of the lake and construction of a diversion pipeline or canals to redirect 
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the saline and nutrient rich water caused by the sugar cane industry from the lake to the 

Senegal River (Varis and Jusilla, 2002). 

 

Limitation of Current Bayesian Network Models 

 

 Bayesian network models have been found to be useful for frequency based water 

quality evaluation, the effect of water management policy options and stakeholder‟s 

concern hypothesis in many applications.  However, current BN models have limitations.   

 First, most Bayesian networks give seasonal- or yearly- based results (Neilson et 

al., 2002; Borsuk et al., 2003; WRRI, 2004).  Seasonal BN models are not useful for 

duration- and timing-based evaluation of water quality in rivers and streams.  We can 

realize how frequently the water quality parameter violates the water quality criteria in 

specific seasons using seasonal BN model but we cannot predict what month is most 

critical to water standard violation or the duration of continuous water quality criteria 

violation.  We require daily-based simulation results and large time series of daily data to 

drive daily time series models.  

 Second, some BN models provide good information on the sensitivities and 

relative importance of different impacts of the water management options but not 

quantitative predictions of water management options due to a lack of data (Varis and 

Jussila, 2002).  We need quantitative predictions to estimate costs and benefits as well as 

sensitivity analysis (Ames, 2002).    

 Third, in most reviewed BN models, validation was discussed but calibration was 

not discussed (Ames, 2002; Stow et al., 2003).  Most mechanistic mathematical models 

use one data set for calibration and another data set for validation.  We need to calibrate 
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BN models as mechanistic mathematical models to increase the accuracy and reliability 

of their predictions.   

These three problems are caused by a general lack of water quality data. New 

methods are required to reduce the uncertainties by a lack of data in BN models.  The 

goal of this research is to develop a time series-based Bayesian network model of nutrient 

loading and surface water quality responses to overcome a lack of data.  This new BN 

model will provide daily-based prediction of nutrient load and concentration from 

monthly water quality data using a data generation technique.  The new BN model also 

will provide both sensitivity and quantitative predictions related to nutrient managements 

using daily probability output and have high accuracy and reliability by a calibration 

process.  Therefore, the daily-based result will support duration- and timing-based water 

quality evaluation and TMDL processes. 

 

CHARACTERISTICS OF WATER QUALITY DATA 

 

Generally, water quality data have the following characteristics.   

First, water quality data always have uncertainty.  Since various errors occur 

during sampling, analysis and data collection, all water quality data are only estimates of 

some condition.  Total error consists of sampling error and non-sampling error.  

Sampling error includes errors originating from inherent sample variability, errors 

originating from population variability, sampling design errors and field procedure errors.  

Non-sampling error includes laboratory errors (errors caused by improper sample storage, 

improper preparation or analysis procedure, and incorrect analytical data interpretation) 

and data management errors (Popek, 2003).  Concerning the uncertainty of water quality 



 30 

data, a distribution of water quality data can represent the population more efficiently 

than one value.   

Second, water quality data are usually dynamic in nature, but most water quality 

databases are populated with low-frequency data. It is easy and inexpensive to collect 

daily flow or temperature data but the frequency of the water chemical data is once or 

twice a month in historical data sets and sampling plans for many study sites.  For 

instance, the sampling period of phosphorus and nitrogen was every 2 weeks in the 

sampling plan of Weber River Basin Project (UWRL, 1998) and every 3 weeks in the 

sampling plan of the Nooksack watershed TMDL project (Cusimano et al., 2002).  The 

WQ sampling sites at Weber River near Plain City have just 23 data points of Total 

phosphorus from October, 1999 to September, 2000 (Stevens, 2004) even though the 

USGS gage near the WQ sampling location has daily observations during the same 

period (USGS, 2004). 

Third, many water quality data sets have non-normal distributions.  While many 

statistical analyses assume data follow a normal distribution, water quality data often 

follow skewed data distributions (Helsel and Hirsch, 2002).   Turbidity distributions of 

the Little Bear River at Mendon road from 1990 to 2004 are approximately log-normally 

(USEPA, 2005).  Fecal coliform data of Nooksack River at Kamm Creek, Washington in 

the combination of 1994, 1995 and 1996 year data was very close to log-normal 

distribution (Mathews, 1994, 1995).  Therefore, some data sets are required 

transformation before normal theory statistical analysis.  Some researchers demonstrated 

nonparametric procedures, free from data distribution assumption, to environmental 

studies (Gilbert, 1987; Helsel and Hirsch, 2002).  
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Fourth, data are reported only above some threshold, while some observations are 

reported only as below that threshold (censored data) –that is we cannot know actual 

measurement values for a portion of the population. Censoring may occur when  the 

pollutant concentration is very near or below the measurement limit of detection (Gilbert, 

1987).  

Fifth, water quality data often have seasonal patterns.  The pollutant 

concentrations tend to be higher or lower in certain seasons of the year (Helsel and 

Hirsch, 2002).  The seasonal cycles makes it difficult to detect long-term trends (Gilbert, 

1987).  For example, turbidity was low during winter but increased significantly in spring 

at Stoddard, Weber River, UT from October 1994 to September 1995 (UWRL, 1998).  

Nitrate concentration had seasonal cycle with high concentrations found in fall and winter 

for long term from 1960s and 1980s at North Cedarville of Nooksack River, Washington 

(USU, 2001).  

 

PROBLEMS ASSOCIATED WITH LACK OF DATA 

 

There are three types of lack of data problems that make it difficult to execute 

data analysis and modeling in water quality.  

The first is unbalanced data sets.  We have the problems of empty cells in 

designed experiments and the estimation of variance components with unequal cell 

frequencies (Hartley and Hocking, 1971).  For example, we have data of TP, pH, Specific 

conductance and flow with same sample date in 1990 and 1991 but we don‟t have any 

turbidity data in those years at the location 4905740 of South Fork Little Bear River in 
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Cache County, UT (EMRG, 2005). In this case, it is not possible to get the correlation or 

regression among turbidity and other parameters. 

The second is censored data.  We have many specimens for which the 

concentration is reported as “not detected” or “below the analytical method detection 

limit”.  These data are called censored data (Berthouex and Brown, 1994).  Censored data 

make it difficult to summarize and compare data sets and can cause biased estimates of 

means, variances, trends and other population parameters.  Some statistical analysis 

cannot work for data sets with censored values (Gilbert, 1987).  Deleting censored data 

can obscure the information in graphs and numerical summaries (Helsel, 2005).  We need 

better ways for statistical analysis of data sets with censored values. The most common 

method in environmental engineering for censored data is substitution of one-half the 

detection limits, multiplying limit values by 0.5 (Nehls and Akland, 1973)  but some 

literature shows that this method is not good for interpreting censored data in comparison 

with other methods (Gleit, 1985; Helsel and Cohn, 1988). Helsel (2005) showed some 

application of Maximum Likelihood Estimation (MLE) and non parametric methods as 

alternatives for environmental data analysis with censored values.  

The third problem is low and irregular frequency of measurements.  The most 

common frequencies of water quality data are at weekly or monthly intervals.  The low 

and, often, irregular frequencies of these measurements makes it difficult to fully 

characterize the dynamics of water quality in natural waters, and to calibrate and 

corroborate dynamic water quality models.  Low frequency data are not sufficient to 

simulate high frequency statistical water quality models.  High frequency sampling and 

measurement is one solution of this problem but this solution requires much money and 



 33 

time (Cusimano et al., 2002).  The better way is to estimate more unmeasured water 

quality values based on the distribution of water quality measurements. 

The fourth is the gap between sampling dates.  In water quality data sets, we often 

find long periods with rare water quality data between two specific times.  For example, 

we have a lot of total phosphorus data from 1991 to 1993 and from 1997 to 1999 but we 

have no TP data from 1994 to 1997 at East Fork Little Bear River, Cache County, UT 

(USEPA, 2005).  Trend analysis may be sensitive to this data gap in some cases.  For 

example, if the study period is from 1970 to 1985 but we have records running from 1976 

through 1984, it is probably prudent to use these records on this study because record for 

first 6 years and last one year were lost (Helsel and Hirsch, 2002). 

In this dissertation, applications of several statistical methods to lack of data 

problems were studied.  While some researchers have used these methods mainly for 

censored data problem, here these methods were applied to other lack of data problems as 

well as censored data. It will be shown how to use these methods in lack of data problems 

in Chapters 3 and 4. 

 

Maximum Likelihood Estimation (MLE) 

 

MLE is an optimization method to estimate parameters in distribution functions.  

MLE requires the specification of data distributions such as normal and lognormal.  

Optimization of the parameters of the data distribution function produces the specific 

distribution that best fits the observed data.  MLE methods solve a likelihood function L, 

where for the data distribution with two parameters β1 (mean) and β2 (variance), L is a 

function of β1 and β2 and defines the likelihood of matching the observed distribution of 
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data.  The fit between the estimated distribution and the observed data is best when the 

function L is the maximum. In practice the natural logarithm ln(L) is used rather than L 

itself and maximizing ln(L) is calculated by setting the partial derivatives of ln(L) with 

respect to the two parameters equal to zero (Helsel, 2005).   
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Hartley (1958) estimated missing frequencies by MLE method assuming Poisson 

and binomial distributions.  Some researchers applied MLE method to environmental 

studies with censored data under lognormal data distribution assumption (Shumway et al., 

1989: Charles and Stedinger, 1996).  The MLE method for statistical studies with 

censored data uses three pieces of information: a) data above detection limits, b) the 

proportion of data below each detection limit, and c) the equation for an assumed 

distribution.  In the general cases of environmental studies, we can consider L as the 

product of two pieces.  

L= П p[xi]
δi
 ● F[xi]

1-δi
                                 (2.16) 

 

where p[x] is the probability density function (pdf) estimated from the observations equal 

to or above detection limits, F[x] is the cumulative distribution function estimated from 

left-censored observations which are below detection limits and δ is the indicator of 

censored (0) or detected (1) data.  p[xi] and F[xi] are determined by assumption of the 

distribution.  The likelihood function L is used in the Equation (2.15) to estimate 

parameters, β1 (mean) and β2 (variance).    β1 (mean) and β2 (variance) are the parameters 

that produce assumed distribution with the highest likelihood of producing the observed 
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values for the detected observations and the observed portion of the data below each of 

the detection limits (Helsel, 2005). 

MLE can be used for hypothesis test including comparing groups, correlation and 

regression as well as computing summary statistics concerning detection limits (Slymen 

et al., 1994).  However, MLE is strongly dependent on the data distribution type and does 

not give reasonable results when the detected sample size is small (Gleit, 1985; Shumway 

et al., 2002). 

 

Nonparametric Methods 

 

A nonparametric method is a statistical method with certain desirable properties 

that hold under a relatively mild assumption regarding the underlying population from 

which the data are obtained.  Nonparametric methods do not involve a specific data 

distribution.  For this characteristic, nonparametric methods allow analysts to obtain more 

reliable p-values in hypothesis tests than parametric methods in many situations.  

Nonparametric methods are applicable in many situations where normal theory cannot be 

used by using ranks of observations rather than the actual magnitude of the observations.  

Nonparametric methods are relatively insensitive to outlying observations (Hollander and 

Wolfe, 1999).  However, commercial computer software does not support many 

nonparametric methods even though development of the computer made time-consuming 

computations possible.  For example, most software does not support Kendall‟s method 

or Akintia-Theil-Sen method to estimate trend slope in standard statistics packages 

(Helsel, 2005)  
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 The Kaplan-Meier method (K-M method) produces survival function plots by 

nonparametric estimation.  The Kaplan-Meier estimator of a survival function at time t is 

calculated using the following equation (Kaplan and Meier, 1958).  

i

i
i

n

d
tp

1
)(              (2.17) 

     

where ni = number of patients who have not died or been censored before ti, di = number 

of deaths (failure) at time ti and p(ti)= survival probability. 

  Even though the K-M is the fundamental method for survival analysis, it is often 

overlooked when a left or right censored data arises (Ware and Demets, 1976).  

Concentration below detection limits are left-censored while survival data are related to 

right censored.  Many statistics software implement the K-M method for survival analysis 

recognizing right censored data but not left censored data.  However, we can transfer left 

censored data to right censored data by flipping. 

 

Flipi=Mi-xi                  (2.18) 

 where, Mi= Flipping Constant, xi=observation data, Flipi=Flipped value. 

Using the flipped values, we assign ranks to all detected observations from small 

to large, accounting for the number of censored data between each set of detected 

observations.   In order to use Equation (2.17) for water quality data, redefinition of each 

term is required.  The time ti represents a flipped concentration value, ni is the number of 

observations, both detected and censored, at and below each detected concentration, and 

di is the number of detected observations at that concentration (Helsel, 2005).  We can 
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make a survival function plot using probability from Equation (2.17).   When we have 

several observations at the same value, the mean of n observations is follows. 

i
i
x

n

f
                         (2.19) 

  

where fi is the number of observation at each of  the i unique values of x, n is total 

number of observation.  This mean is same as the result of integrating under the K-M 

survival curve (Helsel, 2005).   

Mann-Kendall‟s method is useful for regression, trend analysis and correlation 

analysis of water quality with censored data.  First, the data are listed in the order by 

sampling time: x1,x2,x3,…….,xn,  xi is the datum at sampling time i. Then we calculate the 

sign of the differences between all possible pairs of data (Kendall, 1970). 

 

 sgn(xj-xk) =  1 if xj-xk >0             (2.20) 

                 =  0 if xj-xk = 0 

                 = -1 if xj-xk <0  

 

The sum of all these sgn(xj-xi) is the Mann-Kendall statistics 

 

S=  Σ Σ sgn(xj-xk)              (2.21) 

 

where,   j>k   

Variance of S is calculated by the following equation (Kendall, 1970) 
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  where n = number of data and  tj = the size of the jth tied group. 

And then we calculate Z using S and VAR(S) 
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If Z value is positive, there is an upward trend. If Z value is negative, there is a downward 

trend.  We can reject null hypothesis, H0 of no trend if the absolute value of Z is greater 

than Z 2/1  (Gilbert, 1987).  Since we may assign same the rank to censored data, 

censored data problem is reduced to the problem of tied data (Hirsch and Slack, 1984).   

The seasonality is a common phenomenon with water quality data (Hirsch et al., 

1982).  Since water quality parameters often have the pattern with one year period, 

comparing January data with May data does not give specific information about the 

existence of a trend (Smith et al., 1982).  The Seasonal Kendall test is the Mann-Kendall 

test generalized for the seasonality problem.  In this method, we compute the Mann-

Kendall statistics and it‟s variance, VAR(S), separately for each season with data collected 

over years.  Then we sum these seasonal statistics and calculate Z based on the summed Z 

and VAR(S) (Gilbert, 1987).   
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The slope of a trend for data set (xi,Yi) is estimated from individual sample slope 

for each pair of data (Theil, 1950). 

 

ij

ij
ij

xx

YY
S , 1≤i<j≤n                                                                                         (2.24) 

β = median {Sij, 1≤i <j≤n }              (2.25) 

 

where Sij=the individual slope between i th data and j th data, n=number of observations. 

If there is a significant seasonality in the data, after calculation of individual sample slope 

for each pair of data separately for each season with data collected over years, we select 

median slope as the overall slope from all individual sample slopes (Gilbert, 1987).   

 

Mixed Method: Regression on Order Statistics 

 

 Regression on Order Statistics is a method to calculate summary statistics with a 

regression equation on a probability plot (Helsel, 2005).  If the data or transformed data 

are normally distributed, the plotting position, pi are converted to normal order scores. 

Ri=F
-1

(pi)                  (2.26) 

 

where Ri is normal order score, F
-1

 is the inverse cumulative normal probability 

distribution and pi is the plotting position of ith ranked observation.  The linear regression 

model is constructed using normal order scores of observed values (Berthouex and 

Brown, 1994). 

 

Yi=β1+β2Ri+ei                     (2.27) 
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 where Yi is observed values, Ri is normal order score, ei is the deviation for the fitted line 

and observed values and β1, β2 are coefficients.  We use Ri of the non-censored portion of 

the data to estimate β1, β2.  Helsel and Cohn (1988) showed the equation to calculate pi, 

plotting position. 

If the ith observation is uncensored, 
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If  ith observation is censored, 
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 where 

       Aj = the number of uncensored observations between the jth threshold and j+1th 

threshold. 

       Bj = the number of observations, uncensored and censored, below the jth threshold. 

       pe,j = the probability of exceeding the jth threshold 

        ri = the rank of the ith observation among the Aj observations above jth detection 

limit. 

        r’(i) = the rank of the ith observation among the censored values known only to be 

less than jth threshold          

        p(i) = plotting position of ith uncensored observation 
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        pc(i) = plotting position of ith censored observation among the censored values 

known only to be less than jth threshold. 

  After calculating each p(i), we can get a specific Ri value for each detected value 

(Yi) and then estimate β1, β2   in Equation (2.26) and Equation (2.27).     Censored data 

show interval values but not specific values.  A specific value between intervals of each 

censored observation is estimated by inputting the plotting position of each censored 

observation into this regression and the summary statistics is calculated using the values 

estimated for each censored value as well as uncensored observations. 
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CHAPTER 3 

CHARACTERISTICS OF LITTLE BEAR RIVER WATERSHED 

 

ABSTRACT 

 

 The Little Bear River, Cache County, UT, has two head waters, the South Fork 

and East Fork and three major reservoirs, Porcupine Reservoir, Hyrum Reservoir, and 

Cutler Reservoir.  Data analysis focused on seven parameters, Total Phosphorus (TP), 

Dissolved Oxygen (DO), pH, turbidity, specific conductance, temperature, and flow, at 

the head water outlets and inlets of Hyrum and Cutler Reservoirs.  The South Fork and 

East Fork subwatersheds above the study reaches are mainly forest and range land and 

have good water quality. The stream below the South Fork and East Fork confluence 

within the study reaches was impaired and agricultural land occupied 41 to 50% of these 

subwatersheds. In order to handle censored data (below detection limit) for phosphorus 

concentration, this chapter explains Maximum Likelihood Estimation (MLE), the 

Kaplan-Meier Method, the Kruska-Walis Method, the Kendall‟s tau, and the modified 

seasonal Kendall trend as alternative methods.  The difference between medians and 

standard deviations were significant among different analysis methods in case of TP 

concentration in the East Fork subwatershed with up to a 71% censored rate.  Most 

parameters were seasonality variable except TP concentration.  Most parameters had 

significant correlations among parameters at the same analysis location and between 

downstream and upstream locations for the same parameter.  Trend analysis showed 

significant downward trends of TP and dissolved phosphorus (DP) concentrations above 
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Cutler Reservoir since 1990, the starting point of the Little Bear River Conservation 

Project. 

 

GENERAL INFORMATION 

 

  The Little Bear River (Figure 3.1) is in Cache County, Northern Utah. It flows 

from southeast to northwest, bounded by mountains and drains to Cutler Reservoir.  This 

watershed has two major headwaters, East Fork and South Fork.  

 

 

FIGURE 3.1. Little Bear River Watershed Located in Northern Utah. 
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The Little Bear Watershed has a drainage area of approximately 196,432 acres.  

Approximately 70% is range and forest, 26% is cropland (Chess, 2000). The range of 

Elevation is from 4401 ft to 9356 ft (DeLorme, 1993; EMRG, 2005).  

The Little Bear River watershed is on a high-priority list of watersheds that are 

being adversely affected by nonpoint source pollution (Chess, 2000).  The Little Bear 

River Steering Committee found cropland and pastures were significant sources of 

nutrients in the Little Bear River watershed (Chess, 2000). A Total Maximum Daily Load 

(TMDL) for the Little Bear River targets reduction of phosphorus.  In 1990, USDA 

started the funding to establish a hydrologic unit area (HUA) planning effort to reduce 

non-point source pollution in the Little Bear River watershed (Chess, 2000). The Little 

Bear River Conservation Project included activities to reduce erosion and sediment 

loading such as stream channel and bank restoration as well as activities to reduce 

nutrient loading such as grazing land improvements and animal waste management 

systems (Chess, 2000). 

 

SUBWATERSHEDS 

 

 The Little Bear River watershed has two main headwater drainages (East Fork 

and South Fork) and two main reservoirs (Hyrum Reservoir and Cutler Reservoir).  The 

entire watershed was divided in four subwatersheds, East Fork, South Fork, Above 

Hyrum Reservoir, and Above Cutler Reservoir, by these main headwater drainages and 

main reservoirs to show the characteristics of flow and water quality.   Water quality 

station data for each subwatershed outlet were used to identify flow and water quality 

characteristics for each subwatershed because water from all tributaries in the  
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FIGURE 3.2. Sampling Location and Point Load Discharge at Subwatersheds in Little 

Bear River. 

 

subwatershed comes together to the outlet point (Figure 3.2). Location 4905670 has more 

water quality data than any location closer to inlet to Hyrum Reservoir. For this reason, 

location 4905670 was main sampling station for the analysis.  Other locations, location 

4905000, 4905740 and 4905750 were the closest water quality stations to the outlet of the 

subwatersheds.  Flow and water quality data used in this chapter were obtained by Utah 

Department Water Quality (Utah DEQ) from 1976 to 2004 and stored in USEPA 

STORET (USEPA, 2005). 

There are no permitted point source discharges for compliance in East Fork or South 

Fork subwatersheds (Figure 3.2).   The subwatershed above Hyrum had two permitted 
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discharges, Trout of Paradise 001 and Trout of Paradise 002.  The subwatershed above 

Cutler has two permitted discharges, Wellsville Lagoons and Northern Utah Manufacture, 

and there are three more point source discharges to Spring Creek, which meets the Little 

Bear River above the Cutler Reservoir.  

While over 98% of East Fork and South Fork subwatersheds are forest and 

rangeland, subwatershed above the Cutler Reservoir has large amounts of agricultural and 

residential areas (Figure 3.3).  The irrigated agricultural area is bigger than the non-  

 

 

FIGURE. 3.3. Land Use in Little Bear River Watershed (Utah DNR, 2004). 
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irrigated agricultural area in above the Cutler Reservoir subwatershed while the irrigated 

agricultural area is smaller than the non irrigated agricultural area in the above Hyrum 

Reservoir subwatershed (Table 3.1). The above Cutler Reservoir subwatershed has 

especially large amounts of irrigated pasture (Table 3.1). 

 

DATA ANALYSIS METHODS 

 

Total phosphorus (TP) is the target pollutant identified in the TMDL process for the 

Little Bear River Watershed.  The data analysis studied flow, turbidity, dissolved oxygen 

(DO), specific conductance (SC), temperature and pH as well as TP concentration 

because these parameters are associated to the phosphorus cycle in freshwater ecosystem.   

 

TABLE 3.1. Land Use of Above Hyrum Reservoir and Above Cutler Reservoir 

Subwatersheds (Utah DNR, 2004). 

 Above Hyrum Reservoir Above Cutler Reservoir 

Urban (Industrial, commercial 

and urban residential Area) 

2.4 % 5.8 % 

Others (Forest, Range Land) 56.3 % 43.8 % 

   

Agriculture 41.3 % 50.4% 

   

       Irrigation (41.8 %) (61.2 %) 

   

          Grain (10.7 %) (8.9 %) 

            Alfalfa (20.8 %) (24.3 %) 

            Grass Hay (2.9 %) (5.7 %) 

            Pasture (6.2 %) (20.1 %) 

            Others (1.2 %) (2.2 %) 

   

  Non Irrigation (58.2 %) (38.8 %) 

   

           Dry Grain Beans/Sees (31.2 %) (21.6 %) 

           Dry Alfalfa (11.5 %) (7.7 %) 

           Dry Pasture (9.1 %) (3.9 %) 

           Dry Idle (5.3 %) (3.3 %) 

           Other (1.3 %) (2.3 %) 

(  ) is area percentage of agricultural land. 
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Primary production is limited by phosphorus in many aquatic habitats.  Excessive 

phosphorus may cause algal growth (Dodds, 2002). The algal growth rate is associated 

with water temperature (Chapra, 1997). Algal growth may cause not only low oxygen 

and high turbidity but also high pH (Kann and Smith, 1999; Dodds, 2002).  Phosphorus 

exists in natural water in three main forms, phosphate, dissolved organic phosphorus and 

particulate phosphorus (Dodds, 2002). 

Data analysis included statistical summaries, the correlation among parameters, 

seasonal patterns and trends of each parameter at sampling locations of the four 

subwatersheds.  Data analysis also included correlations among sampling locations.  One 

challenge of data analysis is handling censored data for TP concentration in statistical 

procedures. When the concentration is reported as “not detected” or “below the analytical 

method detection limit,” these data are called censored data (Berthouex and Brown, 

1994).  The detection limit of the analytical method for TP concentration (USEPA 

method 365.1) is 0.01 mg/l (USEPA, 1993) but the practical quantitation limit is 0.02 

mg/L.  All of TP concentration below 0.02 mg/L are marked as „non-detect‟ in USEPA 

STORET (USEPA, 2005).   

The most common method for analysis of censored data is substitution of one-half 

the detection limits in environmental studies (Nehls and Akland, 1973) but some 

literature shows better methods (Gleit, 1985; Helsel and Cohn, 1988).   This chapter 

shows how to apply modified data analysis methods to water quality data sets with 

censored data. 
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Statistical Summaries 

 

 Statistical summaries include mean, variance and median or other percentiles. We 

used one-half the detection limits and two alternative methods, Maximum Likelihood 

estimation (MLE), the Kaplan-Meier Method (K-M method) for censored data because 

MLE or K-M methods is recommended for summaries of over 50 observations with 50-

80 % censoring (MLE) or less than 50% censoring (K-M method) (Helsel, 2005).  The 

data analysis by ignoring all data below quantitation limit (BQL) are used to evaluate 

how much bias ignoring censored data can cause in statistical summaries.       

 Maximum Likelihood estimation (MLE) is a parametric method, which has some 

distribution type assumption such as normal or lognormal.  We find the parameter values 

(mean and variance) at which the likelihood function is the maximum.  The lognormal 

distribution has been shown to be an acceptable assumption for low river flows (Vogel 

and Kroll, 1989) and many types of water quality data (Gilliom and Helsel, 1986).  

Considering an ordered censored data set X1 ≤ X2 …….≤ XC ≤ XC+1 ≤ Xn, where the first C 

observations are censored, the likelihood function for the data lognormally and 

independently distributed (Cohen, 1991) is 
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where   Φ is distribution function (cumulative probability function) of standard normal 

variate,   is density function of standard normal variate, Yi is ln(Xi),  T is the log of the 

measurement threshold, Y  is the mean of log-transformed data and σY is the standard 

deviation of the log transformed data.  One can get the best fit 
Y

and 
Y

by taking the 
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logarithm of Equation (3.1) and setting the partial derivatives with respect to μY and σY to 

zero (Cohen, 1991).  Following are traditional formulas recommended for re-conversion 

of μY and σY (Aitchison and Brown, 1957; Gilbert, 1987). 

2
exp

2
Y

YX
           (3.2) 

2/122 1)exp( YXX                  (3.3) 

 The percentile of original scale is obtained by (Helsel, 2005) 

)exp( YkYk zp               (3.4) 

where kp  is the kth percentile value on the original scale, and zk is the kth percentile of a 

standard normal distribution.     

 The K-M method is a nonparametric method, which produces a survival function.  

Because survival analysis is related to right censored data, flipping is required to transfer 

left censored data (concentration) to right censored data (Flipped data). 

 

Flipi=Mi-xi                                                       (3.5) 

 

where, Mi= Flipping Constant, xi=observation data (concentration), Flipi=Flipped value.  

After flipping, the Equation (3.6) is used to estimate survival probability (Kaplan and 

Meier, 1958).  

i

i
i

n

d
tp 1)(              (3.6) 

 where ti  is flipped concentration, ni is number of flipped observations which are not 

smaller than ti, or are censored with flipped detection limit equal to or larger than ti 
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(number at risk), di is the number of detects with ti and p(ti) is survival function 

probability at ti, which is the probability equal to or grater than ti.  Because the survival 

function estimates the probability of each flipped value, percentiles are obtained directly 

on the survival curve which is survival probability vs. flipped value.  The standard error 

of survival function is obtained by (Collett, 2003) 

k

j jjj
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dnn
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pp
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].[s.e                       (3.7) 

where s.e.[p] is the standard error of the survival function, nj is the number at risk and dj 

is number of detects at each of the k values for detected observations.  The mean is 

obtained by 

 

i

i x
n

f
            (3.8) 

where is the mean, fi is the number of observation at each of  the i unique values of x, n is 

the total number of observations.  This mean is found by integrating the area under the K-

M survival curve (Helsel, 2005).  The standard deviation is obtained by  

 

s.d.= s.e.[mean] n                (3.9) 

where s.e.[mean] is standard error of mean and n is the sample size.  For statistical 

summaries involved for TP concentration, Minitab
®
 version 14 (Minitab Inc., 2006) is 

used to handle censored data.  For other statistical summaries, Little Bear River Data 

Viewer (EMRG, 2005) was used.  Data from 1990 to 2004 from STORET were used for 
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the sampling locations 4905000 (Above Cutler), 4905670 (Above Hyrum), 4905740 

(South Fork), and 4905750 (East Fork). 

 

Comparisons for Seasonality 

 

 The comparisons among seasonal water parameter data show seasonality at each 

location.  In this dissertation, January, February, and March were defined as winter, and 

April, May, and June were defined as spring, July, August, and September were defined 

as summer, and October, November, and December were defined as fall.  Analysis of 

Variance (ANOVA) is the conventional method for comparisons but some cases violate 

the distributional assumption of ANOVA.   In order to apply ANOVA to evaluation of 

the hypothesis of μ1= μ2= μ3= μ4, the variance of each group should be the same (σ1= 

σ2= σ3=σ4 ) and each of the k samples should come from a normal population.  Also, in 

order to apply a two-sample t-test to evaluation of the hypothesis of μ1= μ2, both samples 

should come at random from normal populations with equal variances (Zar, 1999).  These 

assumptions may be invalid in real water resources data in many cases.   In this chapter, 

the Kruskal-Wallis test (Kruskal and Wallis, 1952), a nonparametric method, is used to 

compare groups (seasons) for each water parameter because this Kruskal-Wallis test is 

free from distribution assumptions of the same variance of all comparison groups.  The 

Kruskal-Wallis test statistic, H is 
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where  ni is the number of observations in group i (season i), N is the total number of 

observations in all k groups (4 seasons), and Ri is the sum of the ranks of the ni 
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observations in group i.  If the calculated H value is greater than the H value for α= 0.05, 

the null hypothesis of no seasonality is rejected.  H values  for a specific α are in H 

distribution table for five or less groups but H may be considered approximated by χ2
 

with k-1 degrees of freedom (Zar, 1999). 

Using this method, all censored data are replaced by 0.01 to assign tie ranks to 

censored data for TP concentration.  Minitab
®
 14 executed the Kruskal-Wallis test for 

comparisons among water parameter values of four seasons and comparisons between 

water parameter values of two seasons.  Data from 1990 to 2004 from STORET were 

used for the sampling locations 4905000 (Above Cutler), 4905670 (Above Hyrum), 

4905740 (South Fork), and 4905750 (East Fork). 

  

Correlations 

 

 Because total phosphorus is a grab sampling parameter, it is not easy to measure 

TP concentration continuously with high frequency.  Flow, turbidity, dissolved oxygen, 

specific conductance, temperature and pH may be measured continuously by on-line 

equipment.  These parameters are associated with the phosphorus cycle in fresh water 

ecosystems (Dodds, 2002).  Therefore, the purpose of correlation is to show the 

possibility of replacing TP sampling and analysis with continuous measurement of other 

parameters. 

 While the most traditional method of correlation between two parameters is 

Pearson‟s r, it is not appropriate for censored data (Helsel, 2005).   The MLE (Allison, 

1995), Kendall‟s tau-b (Kendall, 1970) and Spearman‟s rho (Spearman, 1904) methods 



 59 

were used for correlation between TP concentration and other parameters including flow, 

turbidity, dissolved oxygen (DO), specific conductance, temperature and pH for censored 

TP concentrations (Helsel, 2005).  The p-values from those methods were compared to p-

values from Pearson‟s methods.   Because censored data are expressed by the range of 

values or an indicator (e.g. 0 means censored data 1 means detected data), those are not 

accessible to Pearson‟s correlation method.  Replacing censored data with the half value 

of censored level is recommended by USEPA (USEPA, 1998).  Censored TP 

concentrations were replaced with 0.01 mg/L (the half value of censored level) when the 

Pearson‟s r was calculated.  There are two categories in correlation analysis, linear 

correlation and nonlinear monotonic correlation.  When a dependent variable generally 

increases or decreases as the independent variable increases, the two variables are said to 

possess a monotonic correlation.  This correlation is not always linear.   Therefore, we 

used MLE as a linear correlation method and Kendall‟s tau and Spearmen‟s rho based on 

ranks, as the monotonic non linear correlation methods (Helsel and Hirsch, 2002). 

 The MLE method uses the likelihood  r
2
 as the criterion of correlation (Allison, 

1995):  

 Likelihood r
2
 = 1- exp (-G0

2
/n)                                                                                   (3.11) 

G0 = -2log-likelihood=-2*(L null – L full model)                                                               (3.12) 

where n is number of paired observations (x,y), L is the log of the likelihood for each 

situation.  MLE works for linear correlation assuming a normal residual distribution.  We 

compare all residuals of data or transformed data above quantitation limits to normal 

distribution line on a probability plot for standardized residuals to check for distribution 

assumption violations.  When some residuals were out of the 95% confidence interval 
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(Helsel, 2005), we determined that the data violated the distribution assumption and then 

we executed Kendall‟s tau and Spearmen‟s rho correlation analysis.   In the MLE method, 

we evaluate the null hypothesis of the slope equals 0, just as in ordinary linear regression.  

When the p-value was equal to or greater than 0.05, we do not reject the null hypothesis.  

In this case, we cannot say “ There is  a significant linear correlation between two 

parameters.”  

  Kandall‟s tau-b is a nonparametric and nonlinear correlation method described by 

(Kendall, 1970) 
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where Nc is the number of concordant data pairs, Nd is the number of discordant data 

pairs, TX is the number of ties in the X variable comparisons and TY is the number if ties in 

the Y variable comparisons.   The significance of b  is tested by 

 

S =  Nc - Nd                (3.14) 
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where n = number of observations, m = the number of tied groups and tj = the size of the 

jth tied group (Kendall, 1970). 

We then calculate Z using S and VAR(S) 
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If the Z value is positive, there is an positive correlation. If Z value is negative, there is a 

negative correlation.  We can reject the null hypothesis,H0 of no correlation if ІZІ > Z1-a/2, 

where  Z1-a/2 is found in Gilbert (Gilbert, 1987).   

Spearman‟s rho is simply the classical Pearson‟s r applied to the ranks instead of 

the actual observations (Hollander and Wolf, 1999).  The Spearman‟s rho is calculated by 

Equation (3.17) (Spearman, 1904). 
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where Ri is the rank of ith independent variable (Xi), and Si is the rank of ith dependent 

variable (Yi).   

In Kendall‟s tau and Spearmen rho, a tie rank is assigned to “all less than a 

specific threshold” and the tie rank is lower than any detected value at or above the 

threshold (Hirsch and Slack, 1984).  Data from 1990 to 2004 at STORET were used for 

each location. 

 

Trends Over Time 

 

 We evaluated the time trends for TP, Dissolved Phosphorus (DP), Flow and 

turbidity at sampling locations 4905000 (Above Cutler), 4905670 (Above Hyrum), 

4905740 (South Fork) and 4905750 (East Fork).  The nonparametric seasonal Kendall 

test is used as trend method because this method can handle trends in water resources 
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data with seasonal cycles (Hirsch et al., 1982).  In this method, the “less than a specific 

threshold” values are considered to be smaller than any numerical value equal to or 

greater than the specific threshold.  A tied rank is assigned to all “less than” values.  We 

compute the Mann-Kendall statistic and its variance, VAR(S), separately for each season 

with data collected over years (Equations 3.18 and 3.19) and then summed S and VAR(S) 

for each season to get S‟ and VAR(S‟) by Equations 3.19 and 3.20 (Gilbert, 1987). 
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where  j>k,  ni is number of data for the ith season and the tij is the size of the jth tied 

group for the ith season.  

S’ =∑ Si                                           (3.20) 

Var[S’] = ∑ Var[Si]                         (3.21) 

Z is calculated using S‟ in Equation (3.22). If ІZ І  > Z1-a/2, we can reject the null 

hypothesis H0 of no trend. Z1-a/2 is found in Gilbert (Gilbert, 1987). 
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One challenge in the trend analysis for water quality data is estimation of slopes 

with both censored data and seasonal cycles.  The Theil-Sen slope is recommended as 

slope estimation with censored data (Theil, 1950; Helsel, 2005).  The seasonal Kendall 

slope estimator is recommended for data with seasonal cycle (Gilbert, 1987).  In this 

dissertation, two slope estimators are mixed to handle both censored data and seasonal 

cycle.  We calculate slopes for all possible data pairs for each season separately. 

 

ijik

ijik

ijk
xx

YY
S ,   1≤j <k≤n            (3.23) 

   

  where Sijk = the individual slope between the the jth data and the kth data for the ith 

season, Yik is the k th parameter data for ith season, xik is the k the sampling period for the 

ith season and n is number of data for the ith season. 

For censored data, the slopes may be interval values between 0 and a specific 

threshold (Helsel, 2005).   After calculation of the slopes for each season, we made an 

interval table for all slopes from each season including the start and end points.  When no 

censored data are involved, start point is equal to the end point.  When any censored data 

are involved, start point may not be equal to the end point.  We then estimate the median 

slope of all slopes by Turnbull‟s method, which can generate survival probabilities for 

interval data (Turnbull, 1976).   

The Nooksack trend analysis program (Stevens, 2006) executed the seasonal 

Kendall Test based on a FORTRAN implementation by Gilbert (1987).  Minitab
®
 14 was 

used to estimate the slope (Minitab Inc, 2007). 
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The Little Bear River Conservation Practice (LBRCP) began in 1990 and the 

trend was calculated for each parameter before LBRCP, from 1976 to 1989, and after 

starting LBRCP, from 1990 to 2004, separately (Helsel and Hirsch, 2002). 

 

RESULTS 

 

Summaries 

 

The statistical summaries were calculated for each parameter comparing values for 

four sampling locations, East Fork, South Fork, Above Hyrum Reservoir, and Above 

Cutler Reservoir.  Since sampling frequencies for each parameter among locations are 

different and there are often gaps in sampling times (Figure 3.4), the statistical summaries  
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FIGURE 3.4.  Sampling Time Distribution at Location 4905670 (EMRG, 2005).  
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may not be fully representative of water quality and quantity.  Statistical summaries of 

TP concentration required special handling because of censored data.  The results from 

the four approaches, 1) ignoring all data below the quantitation limit, 2) half of the 

quantitation limit, 3) MLE and 4) the KM methods are found in Appendix A. 

The difference among the four analysis approaches for TP concentration is 

biggest at location 4905750 (Above Hyrum Reservoir), which has the most censored data.  

The range of each descriptive statistic from three approaches, half of the quantitation 

limit, MLE and the KM method are provide to help coarse evaluation of water 

characteristics (Table 3.2).   According to the 90
th

 percentiles of TP, the East Fork 

(4905750) and the South Fork (4905740) are relatively clean but the water below the 

confluence of the East and South forks is relatively contaminated.  In location 4905750, 

the mean of the KM method was significantly larger than the MLE or half of below 

quantitation limit method, and the standard deviations of the MLE was significantly 

smaller than other methods (Appendix A). There was no large difference among 25
th

 

percentiles (Q1), 75
th

 percentiles (Q3), means, medians and standard deviation of three 

methods at location 4905670 (Above Hyrum Reservoir) and location 4905000 (Above 

Cutler Reservoir) (Table 3.2).    The censored rate was 71% at location 4905750, and the 

high censored rate may cause the large differences among means and deviations of half of 

below quantitation limit, MLE and the KM methods at location 4905750.  

The arithmetic mean, median and geometric mean of specific conductance of 

location 4905000 (Above Cutler) were higher than those of the East Fork, the South Fork 

or Above Hyrum Reservoir (Table 3.3). This means the concentration of dissolved matter 

at location 4905000 was higher than at other locations. The median and geometric mean  
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TABLE 3.2.  The Range of Summary Statistics for TP Concentration from Three 

Differences Methods. (Detail statistics are in Appendix A). 

 # of 

Observ

a-tion 

 

 

# of 

censored 

data 

Range 

of 

Year 

Mean Median Standard 

Deviation 

Q1 Q3 90 % 

4905740 68 26 1990- 

2004 

 

0.0333-

0.0371 

0.0247- 

0.0250 

0.0303- 

0.0327 

BDL-

0.0144 

0.038-

0.0423 

0.068-

0.069 

4905750 75 53 1990- 

2004 

0.0190- 

0.0296 

BDL- 

0.0111 

0.0262- 

0.0449 

BDL-

0.010 

0.0223-

0.0230 

0.037-

0.042 

4905670 79 9 1990- 

2004 

0.0582- 

0.0594 

0.0450- 

0.0457 

0.0465- 

0.0475 

0.027-

0.0284 

0.0736-

0.078 

0.107-

0.113 

*4905000 145 3 1990- 

2004 

0.1192- 

0.1194 

0.1000- 

0.1000 

0.1673- 

0.1676 

0.0540- 

0.0560 

0.1425- 

0.1410 

0.176-

0.182 

* reject the result by MLE for distribution assumption violation. 

TABLE 3.3  Specific Conductance Summaries.              (Unit:umho/cm)  

Location # of 

Obser-

vation 

 

 

Range  

of  

Dates 

Mean Median Standard 

Deviation 

Geometric 

Mean 

4905740 68 1990- 

2004 

339.2 350.5 109.3 321.5 

4905750 83 1990- 

2004 

394.3 396 63.77 388.7 

4905670 80 1990- 

2004 

417.6 431.4 93.32 406.4 

4905000 155 1990- 

2004 

550 564 127.8 537.1 

* Number of censored data is 0 at all four locations 

 

TABLE 3.4. Turbidity Summaries.                                           (unit: NTU) 

Location # of 

Obser-

vation 

 

 

Range 

of 

 Dates 

Mean Median Standard 

Deviation 

Geometric 

Mean 

4905740 28 1993- 

2004 

 

10.67 3.645 19.12 4.0 

4905750 26 1998- 

2004 

21.8 1.85 63.96 3.0 

4905670 29 1992- 

2004 

15.04 4.5 

 

31.29 4.9 

4905000 132 1990- 

2004 

13.4 11.85 9.23 10.5 

* Number of censored data is 0 at all four locations 
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of turbidity of location 4905000 were higher than those of the East Fork, the South Fork 

or Above Hyrum Reservoir (Table 3.4). This means the concentration of particulate 

matter at location 4905000 was higher than at other locations. 

 

Seasonality 

 

The null hypothesis for the Kruskal-Walls test is that a parameter value is the 

same in all four seasons.  The criterion to reject null hypothesis is α = 0.05.  Location 

4905000 (Above Cutler) has significant seasonality for all seven parameters including TP, 

flow, DO, SC, temperature, pH, and turbidity. 

At location 4905750 (East Fork), there were significant differences among the 

four seasons in DO, flow, SC, and temperature.  At location 4905670 (Above Hyrum 

Reservoir) and 4905740 (South Fork), there were significant differences among four 

seasons in DO, flow, SC, temperature and turbidity (Table 3.5).  The most interest thing 

is no significant seasonality of TP concentration at location 4905670, location 4905740  

and location 4905750 (Figure 3.5 a; Table 3.5). For location 4905000, the TP in summer 

was significant higher than spring or winter according to the results of Kruskal-Walls test 

between summer and spring, and between summer and fall (Figure 3.5 b). 

 

Correlations 

 

The purpose of correlation is to show the possibility of replacing infrequent TP 

sampling and analysis with continuous measurement of other parameters.  MLE was used 

to calculate correlation between TP and other parameters under the lognormal 

distributional assumption (except correlation between TP concentration and specific 
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TABLE  3.5. The results of Kruskal-Wallis Test for Seasonality (H-value, ( ) is p-value, 

/Number of Winter, Spring, Summer, Fall Observations). 

         Location  

Parameter 

4905740 4905750 4905670 4905000 

TP 7.05 (0.070) 

/13,28,15,12 

6.71 (0.082) 

/17,31,16,11 

3.89 (0.273) 

/13,32,24,10 

11.5 (0.009) 

/38,55,27,25 

 

DO 22.15 (<0.001) 

/13,29,14,12 

28.71 (<0.001) 

/18,35,19,12 

17.29 (<0.001) 

/13,33,22,10 

45.33 (<0.001) 

/38,57,31,28 

 

Flow 12.66 (0.005) 

/12,28,13,11 

11.38 (0.01) 

/16,35,23,12 

20.98 (<0.001) 

/8,25,16,4 

23.54 (<0.001) 

/26,37,28,21 

 

pH 0.73 (0.866) 

/13,29,15,12 

1.59 (0.661) 

/18,35,20,12 

1.43(0.699) 

/13,33,23,10 

11.47 (0.009) 

/39,57,32,28 

 

Specific 

conductance 

 

32.11 (<0.001) 

/13,29,14,12 

21.60 (<0.001) 

/18,34,19,12 

42.32(<0.001) 

/13,33,23,10 

58.55 (<0.001) 

/39,57,31,28 

Temperature 38.97(<0.001) 

/13,29,15,12 

49.78 (<0.001) 

/18,35,20,12 

45.62(<0.001) 

/13,33,23,10 

108.86 (<0.001) 

/39,57,32,28 

 

Turbidity 15.54(0.001) 

/6,10,6,6 

*3.92 (0.271) 

/6,10,6,4 

11.02(0.012) 

/7,11,6,5 

20.61(<0.001) 

/33,45,30,24 

*Minitab 14 
®
 (Minitab Inc., 2006) gave small sample note.  

 

conductance at location 4905000) because lognormal distribution was suitable for MLE 

correlation of TP concentration according to the probability plots of residuals.  For 

example, all standardized Residuals of TP concentration at location 4905740 were inside  

the 95% confidence interval of a normal line after transformation of TP concentration to a 

log scale (Figure 3.6).  The normal distribution was suitable for correlation between TP 

concentration and specific conductance at location 4905000. 

 The criterion to reject the null hypothesis of no correlation was p = 0.05.  

Kendall‟s Tau-b, Spearman‟s rho and MLE under the lognormal assumption showed   
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     a)                                                                   b) 

   

FIGURE 3.5. Seasonal Box Plots for TP Concentration a) at Location 4905670 and b) at 

Location 4905000.  Season 1 is Winter, season 2 is Spring, Season 3 is Summer, and 

Season 4 is Fall. ( ▬: Censored Level :0.02 mg/l, * outlier beyond whiskers, box: range 

from 25 (Q1) to 75 (Q3) Percentiles, Center Line in Boxes: Median, Upper Limit of 

Whisker : Q3+1.5(Q3-Q1), Lower Limit of Whisker : Q1-1.5(Q3-Q1)). 

 

a)                                                                  b) 

     

FIGURE 3.6.  Probability Plot of Standardized Residuals for MLE Correlations of TP 

Concentration at Location 4905740, a) Assuming Normal Distribution b) Assuming 

Lognormal Distribution. 
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significant correlation between flows and TP concentrations at each sampling station 

except correlation between flow and TP at location 4905670 (Table 3.6).  DO has a 

significant correlation with TP at locations 4905670 (Above Hyrum Reservoir) and 

4905000 (Above Cutler Reservoir) but not at locations 4905740 (South Fork) or 4905750 

(East Fork).  

Flow had significant correlation to TP in all locations except 4905670 (Above 

Hyrum).  Even though there were significant differences between nonparametric methods 

and the MLE in correlation between TP and flow in location 4905670, the scatter plot of 

TP versus Flow showed no significant correlation (Figure 3.7).  The correlations between 

pH and TP concentration at locations 4905740 (South Fork), 4905670 (Above Hyrum) 

and 4905000 (Above Cutler) were significant, but not significant at location 4905750 

(East Fork).  Specific Conductance had a significant correlation with TP concentration at 

4905000 but not a significant correlation at locations 4905750 and 4905670. 

Even though there were differences between the nonparametric and MLE method 

in correlation between TP and SC at location 4905740 (South Fork), the scatter plot of TP 

versus specific conductance showed a non linear monotonic correlation (Figure 3.8).  

There were significant correlations between water temperature and TP concentration at 

location 4905000 (Above Cutler) and location 4905750 (East Fork) but not a significant 

correlation at location 4905670 (Above Hyrum) and location 4905740 (South Fork).   

There was strong correlation between Turbidity and TP concentration at all sampling 

locations.  Linear correlation between TP concentration and other parameters differ from 

non linear correlation at location 4905000 (Above Cutler) because of two outliers for TP 

concentration of 0.79 mg/l and 1.88 mg/l.  After removing outliers, the linear correlations 
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TABLE 3.6. Correlation Between TP Concentration and Other Parameters      

at Each Location. 

                                                                                                                               (p-values) 

Location Statistic TP vs  

DO 

TP vs 

Flow  

TP vs 

pH 

TP vs 

S.C. 

TP vs 

Tempe-

rature 

TP vs 

Turbi-

dity 

4905740 No.of pair
1)

 25/67 25/63 26/68 26/67 26/68 15/28 

 Pearson‟s 

r
2
 

<0.001 

(0.985) 

0.248 

(<0.001) 

0.264 

(<0.001) 

0.038 

(0.115) 

<0.001 

(0.530) 

0.808 

(<0.001) 

 MLE  r
2
 0.006 

(0.25<p<

0.5) 

0.177 

(<0.001) 

0.236 

(<0.001) 

0.017 

(0.25<p 

<0.5) 

0.000 

(0.9<p 

<0.95) 

0.487 

(<0.001) 

 Kendall‟s 

τb 

-0.058 

(0.513) 

0.187 

(0.038) 

-0.340 

(<0.001) 

-0.182 

(0.038) 

0.026 

(0.772) 

0.445 

(0.002) 

 Spearman‟s 

ρ 

-0.083 

(0.505) 

0.246 

(0.050) 

-0.477 

(<0.001) 

-0.238 

(0.052) 

0.054 

(0.662) 

0.648 

(<0.001) 

4905750 No.of pair
1)

 52/74 51/73 53/75 53/74 53/75 19/26 

 Pearson‟s 

r
2
 

0.006 

(0.514) 

0.009 

(0.412) 

<0.001 

(0.999) 

0.010 

(0.390) 

0.014 

(0.315) 

0.982 

(<0.001) 

 MLE  r
2
 0.01 

(0.5<p 

<0.75) 

0.424 

(0.025<p

<0.01) 

0.101 

(0.05<p 

<0.1) 

0.027 

(0.1<p 

<0.25) 

0.215 

(0.025<p

<0.05) 

0.548 

(<0.001) 

 Kendall‟s 

τb 

-0.004 

(0.970) 

0.314 

(<0.001) 

-0.164 

(0.064) 

-0.097 

(0.2758) 

-0.182 

(0.038) 

0.614 

(<0.001) 

 Spearman‟s  

ρ 

0.013 

(0.912) 

0.421 

(<0.001) 

-0.204 

(0.079) 

-0.134 

(0.256) 

-0.244 

(0.035) 

0.718 

(<0.001) 

4905670 No.of pair
1)

 9/76 5/52 9/77 9/77 9/77 7/29 

 Pearson‟s 

r
2
 

0.078 

(0.015) 

0.205 

(0.001) 

0.04 

(0.081) 

0.026 

(0.163) 

0.013 

(0.328) 

0.876 

(<0.001) 

 MLE  r
2
 0.176 

(<0.001) 

0.136 

(0.005<p

<0.01) 

0.238 

(0.025<p

<0.05) 

0.012 

(0.25<p<

0.5) 

0.072 

(0.1<p<0

.25) 

0.571 

(<0.001) 

 Kendall‟s 

τb 

-0.226 

(0.005) 

0.062 

(0.522) 

-0.157 
2)

 

(0.143)
 2)

 

-0.019 

(0.809) 

0.151 

(0.055) 

0.472 

(<0.001) 

 Spearman‟s  

ρ 

-0.332 

(0.003) 

0.103 

(0.465) 

-0.228 

(0.046) 

-0.017 

(0.880) 

0.211 

(0.066) 

0.557 

(0.002) 

4905000 
3)

 No.of pair
1)

 2/139 0/99 3/141 3/141 3/141 1/123 

 Pearson‟s  

r
2   4)

 

0.096 

(<0.001) 

0.104 

(0.001) 

0.065 

(0.002) 

0.173 

(<0.001) 

0.059 

(0.004) 

0.121 

(<0.001) 

 MLE r
2
 0.114 

(<0.001) 

0.095 

(0.001<p

<0.005) 

0.066 

(0.001<p 

<0.005) 

0.138 

(<0.001) 

0.076 

(<0.001) 

0.149 

(<0.001) 

 Spearman‟s  

ρ 

-0.296 

(<0.001) 

-0.360 

(<0.001) 

-0.3 

(<0.001) 

0.48 

(<0.001) 

0.249 

(0.003) 

0.421 

(<0.001) 

Lognormal distributional assumption for TP concentrations was used for MLE. Statistic 

values and p- values are shaded when p< 0.05. 
1) 

Number of pairs (Censored TP/Total 

Pairs). 
2)

 1993-2004. 
3) 

No Kendall‟s τb was obtained because Minitab Macro would not 

converge (over 12 hours).  
4) 

Outlier for 4905000: TP 0.79 mg/l , 1.88 mg/l.  
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FIGURE 3.7.  Scattered Plot between Flow and TP Concentration at Location 4905670.  

( ● : pairs of detected (non censored) flow and TP concentration, --- pairs of detected flow 

and censored TP concentration). 

 

are similar to non linear correlations at location 4905000 (Table 3.6). 

The p-values from the Pearson‟s correlation coefficient differed from other 

correlation methods for location 4905750, but there was no significant difference 

between Pearson‟s correlation and other methods for locations 4905670 and 4905000.  

High censored percentage may affect the correlations at location 4905750 (Table 3.6). 

Correlations between two locations for TP concentration have censored data not 

only for the response variable (Y) but also for the predicted variable (X).  Kendall‟s tau-b 

test can handle these cases called doubled censored.  Since Minitab 14 
®
 did not support 
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FIGURE 3.8.  Scattered Plot between Specific Conductance and TP Concentration at 

Location 4905740 ( ● : pairs of detected (non censored) flow and TP concentration, --- 

pairs of detected flow and censored TP concentration). 

 

MLE for doubled censored correlations, Pearson‟s r is used for the linear correlations.  

Half of quantitation limit is used for censored TP concentration using Pearson‟s r.  All 

linear and nonlinear correlations between two locations‟ parameter were significant 

except turbidity between location 4905000 and location 4905670, and specific 

conductance between location 4905670 and 4905750 (Table 3.7; Appendix B). 

 

Trends 

 

Locations 4905740 (South Fork) and 4905750 (East Fork) have no data before 

1990, and these locations have two sampling time gaps of more than 3 years from 1991 to 

2004 for TP concentration.  Location 4905670 (Above Hyrum) has data before 1990 but 
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TABLE 3.7. Correlation Between Two Locations for Each Parameter                              

(p-values by Kendall‟s tau-b test). 

Location Method TP Flow Turbidity Specific 

Conductance 

4905740  

 vs 

4905670 

Pearson‟s 

r 

0.599 (<0.001) 0.807(<0.001) 0.859(<0.001) 0.85(<0.001) 

Kendall‟s 

 τb 

0.477(<0.001) 0.660(<0.001) 0.633(<0.001) 0.741(0.001) 

# of Data 

Pair 

59 40 24 59 

4905750 

 vs 

4905670 

Pearson‟s 

r 

*0.548(<0.001) 0.904(<0.001) *0.813(<0.001) 0.140(0.290) 

Kendall‟s 

τb 

0.267(0.007) 0.444(<0.001) 0.464(0.002) 0.0469(0.605) 

# of Data 

Pair 

59 46 23 59 

4905670 

 vs 

4905000 

Pearson‟s 

r 

0.584(0.001) 0.689(0.002) 0.117(0.666) 0.547(0.001) 

Kendall‟  

τb 

0.393(0.002) 0.607(<0.001) 0.167(0.392) 0.479(0.0002) 

# of Data 

Pair 

31 17 16 31 

* Outlier :TP 0.39 mg/l, Turb 325 mg/l  at location 4905750. 

 

the number of observations is small, only 23 observations for TP concentration from 

1977 to 1991.  Location 4905670 has one or two sampling time gaps of more than 3 years 

from 1991 to 2004 (Figure 3.9).   On the other hand, location 4905000 has many 

observations without significant sampling gaps from 1977 to 2004 (Figure 3.10).  

Therefore, trends are emphasized for TP at location 4905000.   

The result of Seasonal Kendall trends showed no trend in TP concentrations 

before starting the Little Bear River Conservation Project (1974-1989) but a downward 

trend in TP concentrations for 15 years after starting the Little Bear River Conservation 

Project (1990-2004).  There was a downward trend in DP concentrations after starting the  
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FIGURE 3.9.  TP Concentration Time Series at Location 4905670. 
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FIGURE 3.10. TP Concentration Time Series at Location 4905000. 

Before starting 

conservation 

project 

After starting 

conservation 

project 



 76 

Little Bear River Conservation Practice (LBRCP).  There was no trend in turbidity before 

and after starting the LBRCP (Table 3.8).  Flow had a downward trend during from 1983 

to 1989 before starting the LBRCP.  

The TP concentration decrease rate after 1990 was 0.00434 mg/l/yr.  The DP 

concentration decrease rate was 0.00275 mg/l/yr. (Table 3.8).  PP concentrations were 

calculated by subtracting DP concentration from TP concentration.  The decrease rate of 

these calculated PP concentrations was 0.0015 mg/l/yr. 

 

DISCUSSION 

 

 The summary statistics showed a big difference between water quality above and 

below confluence of the South fork and East fork of the Little Bear River.  The different 

land use patterns may cause this difference.  Forest and range land mainly occupy the 

South and East Fork subwatersheds while agricultural land occupied the Above Hyrum 

Reservoir and Above Cutler Reservoir subwatersheds.  Especially, 41.1 % of the 

agricultural area is irrigated crops and 20.1 % of agricultural area is irrigated pasture in 

the Above Cutler Reservoir subwatershed.  

 

TABLE 3.8 Trends for Above Cutler Reservoir (Location 4905000) Comparing Before 

and After Starting Little Bear River Project. (p-value : probability of slope=0)  

 1977-1989 (Before Project) 1990-2004 (After Project) 

 # of obs. p-value Slope (/yr) # of obs p-value Slope(/yr) 

TP (mg/l) 95 0.554 -0.0009 144 <0.01 - 0.00434 

DP (mg/l) 0 N/A N/A 138 <0.01 - 0.00275 

PP (mg/l) 0 N/A N/A 125 0.029 -0.00150 

Flow (cfs) *49 *<0.01 *-15.09 111 0.012 3.75 

Turbidity 

(NTU) 

91 0.459 - 0.12 131 0.232 -0.174 

 *1983-1991 data, N/A: Not available. 
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The TP concentration‟s summary statistics by the half of detection limit method, 

MLE and the KM are close to one another at locations 4905000 (Above Cutler), 4905670 

(Above Hyrum) and 4905740 (South Fork) (Appendix A).  The mean of TP 

concentrations by the KM method was significantly larger than the mean by half of limit 

or MLE at location 4905750 (East Fork). The standard deviation of TP concentrations by 

the MLE method was significantly smaller than the mean by half of limit or KM at 

location 4905750.  The percentage of censored data was 71% for TP concentration at 

location 4905750.  Some literature shows that estimation errors increases dramatically 

between 60% and 80% censoring (Gilliom and Helsel, 1986; Kroll and Stedinger, 1996; 

Shumway et al., 2002).  The K-M method did not provide median TP concentration at 

location 4905750. Since over 50% of TP concentrations were censored at this location, 

the median was “below detection limit” and the nonparametric KM method could not 

find a specific median TP concentration.  

TP concentration had strong linear correlation to turbidity at each location.  This 

correlation shows that easily measured turbidity may be an indicator of TP concentration 

in the Little Bear River watershed.  Turbidity is the parameter which can be measured 

continuously in the field while TP concentration is a grab sampling parameter.  If 

turbidity is used as an indicator of TP concentration, the sampling time gap problems 

may be relieved.  

All linear and nonlinear parameter correlations between the upstream and 

downstream sampling locations were significant except turbidity between locations 

4905000 (Above Cutler) and 4905670 (Above Hyrum), and specific conductance 

between locations 4905670 and 4905750 (East Fork).  This suggests the possibility that 
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the correlation between downstream and upstream for each parameter may be used to fill 

in data gaps. 

Trends at location 4905000 (Above Cutler Reservoir) showed a significant TP 

concentration downward trend after starting LBRCP and no significant TP concentration 

trend before starting LBRCP.  If all of conditions are the same between before starting 

LBRCP and after starting LBRCP at location 4905000 except non point source 

management, it may be concluded that LBRCP have reduced TP concentration.  Analysis 

for other factors to affect TP concentration is required to conclude that LBRCP have 

reduced TP concentration.  The sampling time gap increased the uncertainty of trends at 

all locations except location 4905000. 

Some literature recommends step trends, a comparison of two non-overlapping 

sets of data, to avoid the sampling time gap problem (Helsel and Hirsch, 2002).  In this 

method, the U value from the Mann-Whitney test (Zar, 1999) is the criterion to reject the 

null hypothesis of no difference between data in the “early” and “late” period.  There is 

no specific rule about how long the gap should be to make this method the preferred 

procedure (Helsel and Hirsch, 2002). When a known event has occurred at a specific time, 

we can determine the specific “early” and “late” periods.  For example, the record may be 

divided into “before” and “after” period at the time of completion of wastewater 

treatment plant improvements (Helsel and Hirsch, 2002). 

In the trend for location 4505000 (Above Cutler), the slope for TP concentration 

was -0.00450 mg/l/yr and the slope for DP concentration was -0.00322 mg/l/yr.  The 

slope for PP was -0.00150 mg/l/yr (Table 3.8).  The DP reduction was faster than PP 

reduction during the conservation practice.  The turbidity had not decreased significantly 
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after LBRCP even though turbidity had significant correlation to TP concentration (Table 

3.8).  This is because, even though the correlation was statistically significant, it is not 

strong enough (r
2
 = 0.121) to reflect the downward trend in TP concentration (Table 3.6).   

Therefore, it can be conclude that DP reduction mainly decreased TP concentration rather 

than Particle reduction. 

 

SUMMARY AND CONCLUSIONS 

 

The two head waters, East Fork and South Fork of the Little Bear River, have 

good water quality according to summary statistics while the Little Bear River below the 

confluence of these waters was impaired with TP.  

Location 4905000 (Above Cutler Reservoir) had significant seasonality in all 

parameters. Other locations did not show a significant seasonality in TP or pH while 

there was significant seasonality in other parameters. 

TP concentration had strong linear correlation to turbidity at each location.  This 

correlation shows that turbidity may be an indicator of TP concentration in the Little Bear 

River watershed.  There were significant correlations between water quality of upstream 

and down but the turbidity did not have any significant correlation between above and 

below Hyrum Reservoir. 

Trend analysis showed a significant downward trend of TP and DP concentration 

after starting LBRCP, but did not show any trends of TP concentration before LBRCP.  

DP reduction was faster than PP reduction at location 4905000 (Above Cutler Reservoir). 
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CHAPTER 4 

FILLING DATA GAPS BY A RANK-DATA DISTRIBUTION METHOD      

(R-D METHOD) 

   

ABSTRACT 

 

 High frequency data are required to populate high frequency statistical water 

quality models, but the most common intervals between water quality samples are weekly 

or monthly and are irregular.  The Rank-Data distribution method (R-D method) was 

developed based on the concept that time series of water resources data consist of data 

distributions and time series of the ranks of the data at the measurement times, and that 

the distribution of a full high frequency data set, including both observations and 

unknown values, is identical to the distribution of the observations.  Cumulative Failure 

Probabilities (CFPs) of unknown values for dates with no observations were estimated by 

interpolating time series of the CFPs of the observations to create a daily time series of 

CFPs.  This estimated time series of CFPs was then linked to the data distribution to 

obtain the flow time series.  In tests, time series of mean daily flows from the R-D 

method were better estimates of time series of measured flows from the original daily 

data set than from simple interpolation between observations.  These tests demonstrated 

the promise of generating time series of water quality or water quantity by combining the 

probabilistic results from Bayesian Networks to the CFP time series from the R-D 

method. 
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INTRODUCTION 

 

The most common frequencies of water quality samples are weekly or monthly.  

These low frequency data are not usually sufficient to populate high frequency statistical 

water quality models.  Especially, Bayesian Networks (BNs) require large amounts of 

data because BNs use data under specific combinations of conditions to build 

contingency tables.  For example, when a BN is used to estimate the total phosphorus 

distribution in a specific stream under high precipitation and high agricultural land use 

conditions, the BN uses only TP load and flow data under these conditions.  High 

frequency sampling and measurement is one solution to this problem but this solution 

requires much money and time (Cusimano et al., 2002).  A better way may be to estimate 

unmeasured water quality values based on the distribution of a smaller number of water 

quality measurements.    

This chapter concerns estimation of high frequency time series of water-related 

variables using low frequency observations at the same location, and consists of three 

sections: Ideas, Methods, and Validation using specific data sets.  Ideas develops the new 

approach to estimating these time series.  Methods shows the detail of the procedure, and 

Validation shows how well the new approach works. 

Our goal is to estimate high frequency water quality constituent fluxes in streams 

using low frequency observations.  Though high frequency stream water quality 

observations are required to validate this new approach for our goal, those observations 

are not available for constituents that require manual sampling and lab analysis. However, 

high frequency flow observations are widely available and they will be used here to 

develop and test this new approach. If the pattern of seasonal cycles and fluctuations of 



 85 

flow are similar to those of nutrient loads, the new approach to flow is applicable for 

nutrient load in a similar fashion. 

 

IDEAS 
 

  Water resources data consist of four components: magnitude, duration, timing and 

frequency.  In order to evaluate all of these four components simultaneously, time series 

are required in addition to distributions. The key to this new approach is to decompose 

the time series in two components, the data distribution and the time series of rank.  As a 

test case, 3603 daily mean flow observations at USGS gage 10128500, Weber Basin, 

Utah from November 1991 to October 2000 were considered.   

 Water quality data may fall below the detection limit (censored data) (USEPA, 

1998).   Because censored data provide information, deleting censored data may cause 

errors (Hesel, 2005).   Helsel (2005) recommended the non parametric Kaplan-Meier 

method (K-M method (Kaplan and Meier, 1958)) for summary statistics with censored 

data.  In this chapter, the K-M method was used to estimate flows on dates with no data 

(data gaps).  The K-M method was used for the data distribution.  The cumulative failure 

probabilities (CFPs) of flows are calculated using the K-M method. 

   
i

ii

i
n

dn
tf 1)(                                                            (4.1) 

where ti is flow, ni is the number of flow observations which are not smaller than ti or are 

censored with detection limit equal to or larger than ti, di is the number of detects with ti, 

and f (ti) is Cumulative Failure Probability (CFP).  The Cumulative Failure plot (CF plot) 

of these daily mean flows shows the probability associated with values not larger than a 

specific flow (Figure 4.1).  
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FIGURE 4.1. Cumulative Failure Plot (CF Plot) for the Entire Time Series of Daily Mean 

Flow (cfs) at USGS Gage 10128500. 

 

 Each flow has a specific rank among all flows.  For example, the flow on June 14, 

1991, 1640 cfs is the 33rd largest flow (3571
st
 smallest flow) and the CFP is 

0.99 )
3603

35713603
1( . The time series of the rank shows the timing of maximum and 

minimum values (Figure 4.2).  If we know the all ranks of the measurement times and the 

data distribution, the flow time series may be reconstructed. For example, if the CFP on 

July 2
nd

, 1995 is 0.98 on the time series of the rank and the flow for CFP 0.98 is 1370 cfs 

on the CF plot, the flow on July 2
nd

 , 1995 is 1370 cfs.  This process is shown in Figure 

4.3.  

Two assumptions are used to estimate the values for dates on which data are not 

available.  The first assumption is that the distribution of all values including both 
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FIGURE 4.2. CFP Time Series of Flows at USGS Gage Station 10128500. (▬: CFP, ----: 

June 14, 1991). 

 

observations and unmeasured values is identical to the distribution of the observations 

alone.  Under this assumption, we can generate an unlimited number of values using the 

CF plot of observations.  The second assumption is that the interpolation or extrapolation 

between the CFPs of two observations on the CFP time series is identical to the true CFP 

for the prediction date (Equation 4.2).  

 

11

12

12 )( ptt
tt

pp
p ii                                                         (4.2) 

where t1 and t2 are two sampling dates of closest observations from prediction date, ti is 

the date of prediction, p1 is CFP of observation t1, p2 is CFP of observation at t2 , pi is the 

CFP of prediction at ti.  For example, if the flow CFP on November 5 (309
th

 day), 1990
 
is 

0.133 and the flow CFP of December 8 (342
nd

 day) is 0.017, the flow CFP on November  

Date 
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a)  Rank Time Series                                     b) Data distribution of flows as CFP. 
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                                      c) Constructed Time Series of Values     

 

FIGURE 4.3. The Work Flow to Make a Time Series by Combining Data Distribution 

with CFP Time Series. 
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25 (329
th

 day) is 0.063 ( )133.0)309329(
309342

133.0017.0
, the interpolation value 

between flow CFPs on November 5 and on December 8.  In the same way, all the CFPs 

of predictions may be calculated.  The section 4.4 will show how well these two 

assumptions work to construct the flow time series. 

 This Rank-Data distribution method (R-D method) is beneficial for BNs and 

TMDL calculation.  BNs provide the data distribution under the specific conditions. If 

these BN outputs are connected with the rank time series estimated by interpolation of the 

existing rank under similar conditions, we can generate time series values under the 

specific conditions.  This time series BN output may show the effect of changing 

condition on the timing and duration of water quality as well as frequency and magnitude.  

Chapter 7 will describe the use of the R-D method for Bayesian Networks. 

Some monitoring-based Total Maximum Daily Loads (TMDLs) used statistical 

representations, mean and geometric mean to estimate loads (Brannan et al., 2005).  If we 

estimate daily flows and nutrient loads from monitoring data by the R-D method, we may 

calculate TMDLs based on daily observations and predictions but not statistical 

representations. Chapter 6 will describe how to estimate true TMDLs using the R-D 

method. 

 

METHODS 

 

 We used two approaches of estimation for data distributions, parametric and non-

parametric.  In this dissertation, the non parametric KM method was used to avoid 

violating distribution assumptions required by parametric methods. Daily mean flow data 

at USGS gage 10128500, Weber River near Oakley, UT from October, 1991 to 
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September, 2000 were used to develop the R-D method.  The MINITAB version 14 

(Minitab Inc, 2006) statistical software was used to calculate cumulative failure 

probability (CFP) for flows and Microsoft Excel (Microsoft Inc, 2004) was used to 

generate flows using the CF plot.  Sixty flows (Observations) were selected from 3653 

flows (Original data).  Each flow was randomly selected within each 2 month sampling 

block.  The time blocks were October to November, December to January, February to 

March, April to May, June to July and August to September in each water year. The 

purpose of the procedure is to develop an approach for reconstructing the full time series 

of daily flows for 10 years (3603 flows) from these 60 selected observations. 

  

Estimated Distribution              

from Cumulative Failure Plot 

 

 The simulation period is from November 5, 1990, the earliest date, to September 

15, 2000, the latest date, of selected sampling flows (Observations).  The goal was to 

reconstruct the time series of 3603 flows from November 5, 1990 to September 15, 2000 

using 60 observations.  These 60 observations on which the reconstruction was based 

were regarded as “detected” in the context of K-M method, keeping their original value.  

The remaining flows were regarded as censored flows with censoring level at the highest 

observation flow, 1,870 cfs. 

 The K-M method was designed for right censored (above detection limit) and 

detected data only, but not left censored (below detection limit) data.  Because 3,543 (= 

3,603-60) unmeasured values are left censored, the flows were flipped to make a CF plot 

by the K-M method (Helsel, 2005).  
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iii xMFlip                                                                                       (4.3) 

where Flipi is the Flipped value, Mi is the Flipping Constant, xi is the observation. 

 Minitab
TM

 (Minitab Inc, 2006) was used to calculate the survival probability (= 1- 

CFP) of the flipped values using the K-M method. After the flipped values were returned 

to the unflipped scale, the CFPs were estimated (Figure 4.4).  Both detected 

(observations) and censored value (unmeasured values) were estimated based on this 

cumulative failure plot.  For example, if the simulation period is 3,603 days and we 

estimate mean daily flow for each day, the failure probability of the smallest flow equals 

1-(3602/3603)= 0.00028.  The CFP of the 2
nd

 smallest flow equals 1-(3601/3602)*(1-

0.00028) = 1-(3601/3603)= 0.00056, and so on.  The flow with CFP 0.00028 on the 

cumulative failure plot is assigned to the smallest flow and the flow with CFP 0.00056 is 
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FIGURE 4.4. Cumulative Failure Plot of 60 Know Flows at USGS Gage 10128500. 
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assigned to the 2
nd 

smallest flow.  The 3603 CFPs and flows (estimated distribution) may 

be estimated from the smallest flow to largest flow in the same manner. 

 

Estimation of CFPs and Conversion                                        

to Original Values 

 

 The CFP for each value was calculated within the observations using Equation 

(4.4) 

 

CFP =
N

r 1
1                                                                                             (4.4) 

where r is rank and N is total number of observations (= 60). 

The interpolation of the CFPs of observations (observed CFPs) estimates the CFP 

of the unmeasured values (interpolated CFPs) between two measurement dates (Figure 

4.5).  All of the CFPs including observed CFPs and interpolated CFPs were converted to 

a single set of estimated ranks.  The CFPs were then recalculated by these estimated 

ranks because the number of CFPs increase by interpolation (estimated CFPs).  After 

finding the value with a rank within the estimated distribution, the value (prediction) was 

assigned to the date with the same rank within the estimated CFP time series.  For 

example, the interpolated CFP for the mean daily flow on October 10, 1991 was 0.59 

corresponding to rank 1644 within the 3603 estimated CFP time series.  The 1644
th

 flow 

(1644
th

 prediction) within the estimated distribution, 81.84 cfs is then assigned to the 

flow on October 10, 1991 (Figure 4.6). The procedure is carried out for all data to 

produce a time series of daily mean flows. 
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FIGURE 4.5. The CFP Time Series of Observations (x) and Unmeasured Values (Line). 

 

 

 

             

FIGURE 4.6. The Steps to Assign Estimated Values to Simulation Dates. 

Find Same Rank (1) 

Input Same Flow (2) 
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It is recognized that the data set with flow observations for a particular year may 

not necessarily include the peak flow during spring runoff for that year.  Peak CFPs were 

approximately added to observed CFP time series before interpolation in order to 

improve the estimates of these peaks.  The peak CFPs were estimated under the 

assumption that the dates of the peak CFP for each cycle are known.  The steps to 

estimate those peaks and improve CFP time series 

1) Calculate of the steeper slope of the two sides of the largest observed CFP in each 

yearly cycle of observed CFP time series (Sa1, Sa2, Sa3,……San in Figure 4.7). 

2) Estimate the peak CFPs.  The largest observed CFP in each yearly cycle is extended 

to the peak CFP with the minimum slope of yearly steeper slopes calculated in 1) 
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FIGURE 4.7. Estimation of Peak CFP of Each CFP Cycle Extending Largest CFP of 

Known Data Within Each Cycle. The Slopes of ---- Are Extended Slopes. 

 



 95 

 (Ssi = minimum of Sa1, Sa2, Sa3,……San in Figure 4.7).  The line from the largest 

observed CFP to the estimated peak CFP is defined as the extended CFP line and 

the slope of these extended lines is defined as extended CFP slopes.  Because we 

know the date of the peak CFP in each yearly cycle, the estimated peak CFP is 

where the extended line meets the peak date in each cycle.  The same extended 

slope is used for all yearly cycles (Figure 4.7).   

3) Rank adjustment. The estimated peak CFP may be greater than 1.0 because the CFP 

is calculated by extension of the largest observed CFP in each yearly cycle.  Since 

the total number of CFPs increases after adding the approximate peak CFP, the 

CFPs are recalculated based on the rank of CFPs in this extended flow CFP set 

(extended CFPs). 

4) Evaluate the initial extended CFP slope. After getting time series for all simulation 

dates by connecting the extended CFP time series with the estimated distribution, 

the sum of absolute differences between the largest observation and the prediction 

for that date in every yearly cycle (sum of largest observation residual) are 

calculated (Figure 4.8). 

5) Optimize extended CFP slope.  The extended CFP slope value is optimized by 

increasing Ssi (Figure 4.7) to minimize sum of the largest observation residual 

(automatically using a program written in Visual Basic for Applications in MS 

Excel).  The extended CFP slope is varied from the minimum to maximum values 

calculated in 1).  Steps 2), 3) and 4) are repeated replacing extended CFP slopes. 
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FIGURE 4.8. Example Daily Mean Flows for Each Date at USGS Gage 10128500 (▬: 

Estimated Values, Δ: Obersvations, ----: Largest Observation residual between 

Observation and Prediction). 

 

The time series of flow CFPs using the peak CFPs estimated by the extended CFP slope 

to minimize sum of the largest observation residual is defined as optimized CFP time 

series.  This optimized CFP time series is used for predictions. 

 

VALIDATION 

 

USGS gage station 10105900, Little Bear River near Paradise, UT has 3,652 daily 

mean flows from October 1, 1992 to September 30, 2002 (original data).  We sampled 

these flows (observations) randomly using three different sampling period blocks.  The 

first is a two month block- data were selected randomly from every two month block of 

original data‟s time series (data set 1).  For example, the daily mean flow on November 
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30, 1992 is selected randomly from the time block of October and November, 1992.  The 

second set used a 1 month block (data set 2), and the third used a 2 month block for low 

flow season and a 1 month block for high flow season (March, April, May, and June) 

(data set 3). These three different data sets were handled independently (Table 4.1).  We 

then reconstructed the 3554 original data‟s time series (original time series) from 

November 5, 1990, the earliest date to September 15, 2000, the last date of observations.  

All steps in section 4.3 were followed.  

Minitab (Minitab Inc, 2006) was used to estimate the CFP for each observation by 

the K-M method after flipping the flows (Appendix C).  A program written in Visual 

Basic for applications in Microsoft Excel estimated the 3554 estimated distributions 

from the CF plot using data sets 1, 2 and 3 by interpolation (Appendix D).    

 In order to evaluate the agreement of estimated distribution with distribution of 

original data, log scale Quantile-Quantile plots (USEPA, 1998) or Q-Q plots were used 

because log scale graph may be a better expression for extremely high flows.  According 

to the Quantile-Quantile plots (USEPA, 1998) or Q-Q plots (Figure 4.9), the agreement  

 

Table 4.1. Sampling Summary for Test Data Sets 1992-2002, USGS Gage 10105900. 

 Data Set 1 Data Set 2 Data Set3 

Sampling Period Block 2 month 1 month 1 month (Mar.-Jun.) 

2 month (Jul.-Feb.) 

Total number of 

estimated distributions 

 

3554 3554 3554 

Number sampled 

observations 

 

60 118 78 

Maximum Flow (cfs) 436 685 685 
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of the estimated distributions from data set 1 with the distribution of original data was 

appropriate when the range of prediction was 11 cfs (1 percentile value) to 425 cfs (96 

percentile value) but estimation of extreme low or high flows were biased (Figure 4.10 a).  

While the agreement of the estimated distribution with the distribution of original data 

was appropriate over most the prediction‟s range, the estimated distribution from data set 

3 deviated from the distribution of original data over most of the prediction‟s range 

(Figure 4.9 b, c).  The inappropriate estimation may be caused by collecting more 

observations during high flow.  Because the prediction flows are estimated by linking the 

flow distribution and CFP time series in the R-D method, an erroneous flow distribution 

may cause large error (difference between predictions and original data set).  For this 

reason, the estimated distribution from data set 1 (instead of the estimated distribution 

from data set 3) was connected with CFP time series of data set 3 to estimate predictions 

in data set 3. 

A program written in Visual Basic for Applications in Microsoft Excel was used 

to estimate CFP time series interpolating observation CFPs (Appendix E).  The optimum 

annual peak CFPs at known peak times were estimated by selecting the optimum 

extended CFP slope (Figure 4.7) to minimize the sum of the largest observation residuals.  

These estimated annual peak CFPs are added to observed CFP time series to get 

optimized CFP time series (Table 4.2).  The optimized CFP time series was then  

 

Table 4.2. Estimating and Adding Peak CFPs. 

 Data set1 Data set2 Data set3 

Sampling Period Block 2 month 1 month 1 month+2 month 

Slope Range (cfs/day) 0.003 – 0.025 0.001-0.026 0.002 – 0.025 

Optimum Slope (cfs/day) 0.005 0.001 0.002 

Added peak CFP (points) 14 14 14 
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converted to a rank time series.  The optimized CFPs are recalculated by these ranks after 

the number of CFPs increased by interpolation to estimate unmeasured CFPs (Optimum 

CFP time series).  After finding the value with a rank within an estimated distribution, the 

value was assigned to the date with that rank within optimum CFP time series. 

The sum of the absolute values of the residuals was used as the criterion to evaluate 

the accuracy of the R-D method (Equations (4.5), (4.6)).   

 

Sum of residual = || ii PO                                    (4.5) 

Sum of largest observation residuals = || yy PQ              (4.6)  

 

where Qi is the observation at date i, Pi is the prediction from R-D method at date i,  Qy is 

the largest observation during year y and Py is the prediction from the R-D method 

corresponding to Qy. 

Because the sum of the largest observation residuals (Figure 4.8) was positively 

correlated with the sum of the residuals (Figure 4.10), the extended CFP slope that 

minimized the largest observation residual may be used to estimate the optimum 

predictions.   

Three different methods were used to construct flow time series.  Method 1 was 

simple interpolation of observations, method 2 was an R-D method connecting data 

distribution to estimated CFP time series without peak CFPs and method 3 was an R-D 

method connecting the data distribution to optimum CFP time series with peak CFPs.   

 



 100 

1

10

100

1000

1 10 100 1000

Predictions (cfs)

O
ri

g
in

a
l 

D
a
ta

 (
c
fs

)

 

1

10

100

1000

1 10 100 1000

Predictions (cfs)

O
ri

g
in

a
l 

D
a

ta
 (

c
fs

)

    

1

10

100

1000

1 10 100 1000

Predictions (cfs)

O
ri

g
in

a
l 

D
a

ta
 (

c
fs

)

 
FIGURE 4.9. Log Scale Q-Q Plot Predictions from Data Sets versus Original Data.  a): 

Data Set 1 (2 Month Sampling Block), b) Data Set 2 (1 Month Sampling Block), c) Data 

Set 3 (1 Month + 2 Month Sampling Block).  

 

a) 

b) 

c) 
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The agreement of the CFP time series from the R-D method with original CFP 

time series for 3554 original data was improved by method 3 (using peak CFPs), using 

data set 1 (Figure 4.11).  The agreement of the time series of predictions by R-D method 

with the time series of original data was improved (Figure 4.12) and the sum of residuals 

decreased for data set 1 when the optimum CFP time series (method 3) was used (Table 

4.3).  Because the agreement of the CFP time series from R-D method with the original 

CFP time series was not significantly improved by method 3, using data sets 2 and 3 

(Figure 4.11), the agreement of the time series of predictions with original time series 

was not improved (Figure 4.12) and the sum of residual did not decrease (Table 4.3).  

When comparing the sum of residuals from method 2 (R-D method without peak CFPs) 

to that from method 1 (simple interpolation), flow estimation might not be improved by 

method 2 (Figure 4.12, Table 4.3). 

The total flow for 3554 days was 227,760 million gallons (MG).  The flow time 

series reconstructed by the R-D method (methods 2 and 3) is closer than the flow time 

series by simple interpolation (method 1) of observations to original flow time series on 

the test using data set 1 and data set 3 but there was no significant change of flow time 

series on the test using data set 2 (Figure 4.12). 

The differences between total flows from the original data set and the predictions 

(error) for 3554 simulation days from the R-D method (methods 2 and 3) was larger than 

those from simple interpolation  using data sets 1 and 3 (Table 4.4), even though the flow 

time series from methods 2 and 3 was a better estimation than method 1.  There was no 

significant difference in the total flow between the method 1 and the R-D methods 
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c) Data set 3 

 

FIGURE 4.10. The Linear Relation Between Sum of Residual between Sum of Largest 

Observation Residuals and Sum of Residual Using Data Set 1, 2, and 3. 
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FIGURE 4.11. CFP Time Series for each Data Sets (Black: Original CFP Time Series, 

Red: Using Estimated CFP Time Series (Method 2), Green: Using Optimum CFP Time 

Series (Method 3). 

 

a) Data set 1 (2 month block) 

 

b) Data set 2 (1 month block) 

 

c) Data set 3 (1 month + 2 month block) 
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FIGURE 4.12. Time Series for each Data Sets (Black: Original Time Series, Blue: 

Estimated by Simple Interpolating Observations (Method 1), Pink: Estimated Using 

Estimated CFP Time Series (Method 2), Green: Estimated Using Optimum CFP Time 

Series (Method 3)). 

a) Data set 1 (2 month block) 

 

c) Data set 3 (1month + 2 month block) 

 

b) Data set 2 (1 month block) 
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Table 4.3. The Summation of Residuals of Daily Flows.  

(Unit: MG)  

 Data set 1 Data set 2 Data set 3 

Method 1 92,439 55,053 68,808 

Method 2 90,974 60,213 63,429 

Method 3 69,643 55,413 60,738 

 

Table 4.4.  Total Flow for 3554 Days, (    ) is Error by Subtracting Observed Total Flows 

by Predicted Total Flows.                                                                                  (Unit:MG) 

 Data set 1 Data set 2 Data set 3 

Method 1 216,067 (-11,693) 221,502 (-6,258) 238,694 (10,935) 

Method 2 204,585 (-23,175) 223,017 (-4,742) 204,597 (-23,163) 

Method 3 204,589 (-23,171) 223,044 (-4,716) 204,613 (-23,147) 

 

(method 2 and 3) using data set 2 (Table 4.4).  The range of percent error for 10 year flow 

total was 2.1% to 10.2% for methods 2 and 3, and 2.7% to 5.1% for method 1 (Table 4.4).  

Because the positive and negative residuals canceled each other, the error of estimated 

total flow for 3554 days was reduced.  It is possible for method 1 to estimate the total  

flow with less error even though method 1 caused a large sum of flow residuals using 

data sets1 and 3. 

 

DISCUSSION 

 

The validation of the R-D method shows the following.  First, the estimated 

distribution from the CF plots of data sets did not deviate significantly from the 

distribution of the original data using data sets 1 and 2.  The p values were very high for 

data sets 1 and 2 using the Kruskal-Wallis test (Kruskal and Wallis, 1952; Chapter 3) 

where the null hypothesis was that the flow was the same in the estimated distribution 

and original data (Table 4.5).  This means the distribution of observations for a long time 

period such as for 10 or 20 years at low sampling frequency may be a good estimate of  
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Table 4.5 The Results of Kruska-Wallis Test for Predictions from Data Sets 1, 2, and 3. 

Basis data set Data set1 Data set2 Data set3 

Sampling Period Block 2 month 1 month 1 month+2 month 

Number of Predictions 3554 3554 3554 

Median 
1)

 52.58 (50.00) 50.53 (50.00) 68.04 (50.00) 

Average Rank 
2)

  3535.1 (3573.9)     3541.3 (3567.7) 3828.8 (3280.2) 

H-value  0.63 0.29 127.05 

p-value 0.426 0.588 <0.001 

1) The median of predictions from each data set (median from original data). 

2) The average rank of predictions from each data set (average rank from original data). 

 

the distribution of the daily observations.  It is very difficult to get daily frequency water 

quality data but in many cases low frequency water quality data for 10 years are available.  

The estimated distribution of a mixed block (data set 3), in which data were collected 

with a one month block for high flow and with a two month block for low flow, was a 

poor strategy for estimating the distribution of original data because the p value was < 

0.001 in the Kruskal-Wallis test (Table 4.5).  More frequent measurement during high 

flow shifted the cumulative failure plot for the 95 percentile (433 cfs) or smaller 

observations to right side in Figure 4.9 (c). 

Second, the disagreement of the optimum CFP time series with the original CFP 

time series had a large negative effect on the sum of residuals while the disagreement of 

the estimated distribution with the original data distribution had a small negative effect.  

The estimated time series using the original data distribution and original CFP time series 

(category D0T0) is identical to the time series of original data and the sum of residual is 0 

(Figure 4.13).  While the sum of residual of the estimated time series using original data 

distribution and optimum CFP time series of data set 1 or 2 (category D0T1 or D0T2) 

was very high, the sum of the residual of the estimated time series using the estimated  
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FIGURE 4.13. Residual Sum Between Predictions and Original Data for Combinations of 

Distribution Type and CFP Time Series Type.  (D0,D1,D2: Using Data Distribution 

 from Original Data Set, Data Set 1 and Data Set 2; T0,T1,T2,T3: Using CFP Time 

 Series from Original Data (T0) and CFP Time Series by Method 3 from Data 

 Sets 1 (T1), 2 (T2), and 3 (T3).) 

 

 

data distribution of data set 1 or 2 and original CFP time series (category D1T0 or D2T0) 

was low.  It may be concluded that the effect of the disagreement of the estimated 

distribution over the 93
th

 percentile value with the original data distribution on sum of 

residual was small as long as the optimized CFP time series is accurate.   

Third, optimizing the CFP time series by adding annual peak CFPs was effective 

to enhance the simulation accuracy of the R-D method.  This means we may be able to 

predict good CFP time series of flow or water quality even though the CFP time series of 

observations suffers from low frequency or high randomness of the sampling period.  

Fourth, the R-D method was beneficial when observations were more random and 

less frequent.  The difference between the sum of the residual from the R-D method and 

interpolation is large for the data set with a two month sampling block. The difference is 
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significant for the data set with combination of a one month sampling block during high 

flow and a two month sampling block during low flow but there is no significant 

difference in the data set with one month sampling block. The R-D method appears to be 

less sensitive to sampling conditions than interpolation.  

 Fifth, when the R-D method is used, we may reduce the sampling frequency and 

keep same flow sum of residuals.  The measuring frequencies were 6 times, 12 times and 

8 times per year for data sets 1, 2, and 3 (Table 4.1).  Plots of sum of residuals versus 

measuring frequency show the frequency of interpolation and the R-D method 

corresponding to the same sum of residuals (Table 4.3, Figure 4.14).  For example, in the 

validation data sets, the sampling frequency of the R-D method should be 8 times/year 

corresponding to 61,000 MG sum of residual for 10 years while the sampling frequency  

  

FIGURE 4.14. Sum of Flow Residual for Each Sampling Frequency (■: Interpolation, ●: 

R-D method). Each value is in Table 4.3. 

△n 
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of interpolation should 10.3 times/year.  Therefore, sampling frequency difference (Δn) 

of flow between two methods equal to 10.2 - 8 =2.2 time/year for 61,000 MG sum of 

residuals.  Less sampling reduces the cost of sampling and measurement or analysis 

(Figure 4.14). 

 

pnCB                                                      (4.7) 

where B is benefit as cost reduction ($), C is cost per sample or measurement  ($/sample 

or measurement), Δn is the sampling frequency difference (time/year) and p is period 

(year).  

 It is an interesting issue to determine the frequency of water quality sampling.  

Mesner et al. (2007) measured turbidity at every 30 minutes at the Little Bear River near 

Paradise, UT in 2006.  The turbidity observations were converted to Total Suspended 

Solid (TSS) through regression between turbidity and TSS.  TSS values were subsampled 

twice a day, daily, weekly and monthly from TSS estimations at a 30 miniute interval 

(continuous TSS).  Because of the many combinations of data collection for each 

sampling interval, multiple data sets were collected for each case.  TSS yearly load from 

all 30 minute values was 8.9 x 10
7
 kg/yr and that from daily values was from 1.1 to 0.6 x 

10
7
 kg/yr (Figure 4.15).   This means that the error (difference of yearly TSS load 

between using continuous values and daily values) was approximately ± 28 % of TSS 

yearly load from continuous values.  This means if the yearly TSS estimated from the 

model is very close to the yearly TSS from daily observation, the estimated year TSS 
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may be acceptable.  The total flow from R-D method was very close to the total flow 

from daily mean flow observations during 10 years using monthly observations (data set  

 

FIGURE 4.15.  Total Suspended Solid Load Estimate for Each Sampling Interval 

(Mesner et al. 2007). 

 

2 in Table 4.3).  If the characteristics of yearly total flow are similar to those of yearly 

load of nutrient or particles, the yearly load from the R-D method may be close to the 

yearly load from daily observations and this estimated year load may be acceptable. 

  

SUMMARY AND CONCLUSIONS 

 

 The R-D method consists of three steps: 1) creation of estimated distribution 

based on the distribution of observations, 2) estimation of time series ranking of 

predictions ,and 3) assignment of predictions to each date.  

Maximum 

Minimum 

75th percentile 

25th percentile 

Median 

Continuous 
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The first step creates CF plot from observations.  A large number of predictions 

may be reconstructed based on this CF plot.  The second step calculates the CFP time 

series of predictions based on the observed CFP time series by interpolation.  The CFP 

time series may be improved by adding estimated annual peak CFPs before interpolation.  

The annual peak CFP is determined by optimizing the extended CFP slopes.  The third 

step assigns predictions to simulation dates by matching the rank of prediction within an 

estimated distribution to the rank of optimized CFP time series. 

The estimated distribution from CF plot of observations was similar to the 

distribution of original data.  Optimizing the CFP time series by calibrating extended CFP 

slopes enhanced the agreement of time series of predictions with time series of original 

data. 

 The estimated time series by the R-D method were closer to the original time 

series than those estimated by simple interpolation, and the R-D method was more 

powerful for the data set collected with a longer sampling block. 

 The R-D method may be used to reduce the sampling frequency keeping the same 

error and reducing the measurement cost. 
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CHAPTER 5 

BAYESIAN NETWORK TO EVALUATE EFFECTS OF THE LITTLE BEAR RIVER 

WATER QUALITY CONSERVATION PROJECT 

 

ABSTRACT 

 

 The Little Bear River watershed, Northern Utah is on a high-priority list of 

watersheds that are being adversely affected by nonpoint source pollution.  Two Bayesian 

Networks, BN 1 (Bayesian Network above Hyrum Reservoir) and BN 2 (Bayesian 

Network below Hyrum Reservoir) were built to simulate the effect of the Little Bear 

River Conservation Project (LBRCP) and exogenous variables (point sources, 

agricultural land use and annual precipitation) on water quality to explore the causes of 

an observed reduction of Total Phosphorus (TP) concentration since 1990 at the mouth of 

the Little Bear River.  Although BN1 and BN2 provided evidence that Little Bear River 

Conservation Practice (LBRCP) reduced the TP load in the river, this reduction explains 

only small decreases of the TP load and TP concentration.  BN1 and BN2 showed 

evidence that agricultural land use, point sources and annual precipitation variables 

significantly increase TP load from the subwatershed to the stream.  They also provided 

evidence that the point source variable and annual precipitation variable increased TP 

loads including both upstream load and subwatershed load into the Hyrum and Cutler 

Reservoir.  The effect of the LBRCP appeared to be larger for wet precipitation 

conditions than for dry precipitation conditions. 
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INTRODUCTION 
 

 The Little Bear River in Cache County, Northern Utah flows from southeast to 

northwest, bounded by mountains, and drains to Cutler Reservoir, west of Logan, UT 

(Figure 5.1).  This watershed has two major headwaters, the East Fork and the South Fork.  

The Little Bear Watershed has a drainage area of approximately 195,096 acres of which 

approximately 72 % is range or forest, 23 % is cropland or pasture, 2% is urban area, and 

remainder is water body and riparian (Utah DNR, 2004).  The Little Bear River 

watershed is on a high-priority list of watersheds that are being adversely affected by 

nonpoint source pollution (Chess, 2000).  The Little Bear River Steering Committee 

found cropland and pastures were significant sources of nutrients (Chess, 2000).  In many 

fresh waters, an increase of phosphorus may cause algal blooms because phosphorus is 

often limiting (Mason, 2002).  A Total Maximum Daily Load (TMDL) for the Little Bear 

River targets reduction of phosphorus (Utah DEQ, 2000). 

 Since the USDA started the Little Bear River Conservation Project (LBRCP) in 

1990 (USEPA, 2006), phosphorus concentrations have reduced gradually at the river 

outlet.  Our goal is to explore what caused the nutrient concentration reduction because 

exogenous forces (e.g. land use changes and climate changes) and on farm nutrient 

management can affect the water quality at management sites. 

 Bayesian Networks (BNs) were designed to accept and process inputs from varied 

sources: observations, model results, expert judgment, scenario types and a variety of 

other non-numerical inputs (Marcot et al., 2001; Varis and Jussila, 2002; Borsuk et al., 

2003).  BNs are designed to evaluate the effects of two or more variable combinations  
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Figure 5.1 | Little Bear River Watershed located in Northern Utah (EMRG, 2004; USGS, 

2004; USEPA, 2004). 

 

(scenarios) on other variables (Marcot et al., 2001; Ames, 2002).  In this chapter, the 

effects of the combination of annual precipitation and conservation practices on the TP 

load and TP concentration in the stream were evaluated.  BNs have been used to estimate 

the effect of future nutrient management activities using existing data (Marcot et al., 

2001; Borsuk et al., 2003; Ames, 2005).  In this chapter, BNs are discussed for evaluation 

of the effect of conservation practices and exogenous factors (precipitation, agricultural 
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landuse area and point source loads) on phosphorus loads and concentrations into Hyrum 

and Cutler Reservoirs.   

 

METHODS 

 

Bayesian Network  

 

 A Bayesian Network (BN) is a probabilistic network model based on graphical 

relationships among variables (Castillo et al., 1997).  In a BN, the relationships between 

parent variables and child variables are logically expressed in a link and node structure 

where the state of the parent node predicts the state of the child node (Jensen, 1996).  

Conditional Probability Tables (CPTs) show the probability of each discrete state, given 

the states of any parent nodes (Marcot et al., 2001).  The marginal probabilities are 

calculated using CPTs. 

 BN have been used historically in water quality assessment.  For example, 

Reckhow (1999) constructed a BN model for anoxia probability.  In Reckhow‟s BN, 

arrows connected variables specifying the conditional dependences (Figure 5.2).  For 

example, the percentage of nitrogen loading reduction depends on the percentage of 

forest buffer.  Reckhow evaluated the effect of forest buffer on anoxia probability in the 

BN.  

 Conditional probabilities of child variables (x) given parent variables (y) are 

estimated by statistical model results based on observations and scientific judgment in 

Reckhow‟s BN.  Marginal probabilities of child variables are obtained using joint 

probabilities of parent variables and conditional probability of the child variable given the 

parent variable (Equation 5.1b). 
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Figure 5.2 | Schematic of an anoxia model. 

 

 

p(yi)  = 
nii xxxxx ...,....., 1121

p(yi,x1,……..,xn)                                               (5.1a) 

          = 
nii xxxxx ...,....., 1121

p(yi |x1…, xn)p(x1,……, xn)                                            (5.1b) 

 where p(x1,…..,xn) is  the joint probability (if number of parent variables >= 2) or 

marginal probability (if number of parent variable=1) of parent variables, x1,…..,xn  , and 

p(yi |x1…,xn) is the conditional probabilities of child variables (yi) given parent variables 

(Castillio et al., 1997).  For example, marginal probability of <5% nitrogen reduction is 

   

 P(<5%)= p(<5%| 70-80% forested buffer) × p(70-80% forested buffer)  

             + p(<5%| 80-95% forested buffer) ×  p(80-95% forested buffer)  

             + p(<5%| 95-100 % forested buffer) × p(95-100 % forested buffer).  

 

 

 Reckhow calculated the anoxia probability for 95-100 % forest buffer of the entire 

stream (p(95-100% forested buffer)=1) as 0.27, while the simple marginal probability at 

Percentage forest buffer 

Algal bloom Summer stream flow 

Percent nitrogen loading 

Reduction 

Nitrogen Concentration 

Spring precipitation 

Summer precipitation Anoxia 
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the proposed percentage of forest buffer was 0.3.  In BN software, conditional 

probabilities are organized in CPTs specifying the relation between parent and child 

variables (Norsys Software Corp., 1997).   

 

Water-related data 

 

 The databases were constructed to support BNs by calculating the CPTs.  The 

existing and calculated inputs were TP concentration, flow, precipitation, agricultural 

land use area, and water quality conservation project.  Because the water quality 

characteristics above and below a reservoir may significantly differ from each other, two 

separate networks were constructed: above Hyrum Reservoir (BN1) and below Hyrum 

Reservoir (BN2) (Figure 5.3).  Each network was connected to separate data bases.  In 

the data base for BN1, the sampling locations included East Fork (4905750), South Fork 

(4905740), confluence between East Fork and South Fork (4905700) and inlet into 

Hyrum Reservoir (4905670) and a point source from a fish farm.  One permitted TP point 

source (one of two discharges from a fish farm) is ignored.  There is no flow or TP 

concentration data for the point source before March 1991 in EPA STORET (USEPA, 

2005).  If that point source TP load is a parent variable of a child variable, it is difficult to 

calculate the reliable values of conditional probability of the child variable given the 

point source TP load and other parent variables before 1991 because of the lack of point 

source TP load data.  The TP point load (median = 0.744 lb/d) was much smaller than 

main TP point load (median = 5.464 lb/d) so ignoring this point source TP load may not 

affect child variable significantly.   
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In the data base for BN2, the sampling locations included the outlet from Hyrum 

Reservoir (4905650), the inlet to Cutler Reservoir (4905000) and the discharge from the 

Wellsville Lagoons (Figure 5.3).  In calculation of CPTs, all data sets which have data of 

child variables but not data of parent variables are ignored.  Two permitted discharges‟ 

loads were removed from parent variables to avoid ignoring all data sets which have data 

of child variables but not data for these discharges.  Many portions of Northern Utah 

Manufacturing discharges was near 0 (84 percentile = 0) with no TP concentration data at 

those measurement dates.  The TP load of the other discharge from Northern Utah 

Manufacturing was small (median TP load= 0.72 lb/d).  Therefore, removing these two 

discharges may be acceptable. 

 The TP loads were calculated by multiplying the flow by the TP concentrations 

and converting the units to lb/day.  Stream flows of sampling location 4905670 (Above 

Hyrum) came from USGS flow data base for USGS gage 10105900 and 10106000 

(USGS, 2006).  Other flows and TP concentrations at the stream sampling locations and 

the point source outlets came from the EPA STORET data base (USEPA, 2005). 

 For some data, there was a mismatch in sampling or measurement time.  If the 

time difference between observations was equal to or smaller than 1 day, they were used 

as if they were from the same date.  For example, flow and TP data available on March 

23, 1993 at Cutler, but flow and TP data for Hyrum release were available on March 22, 

1993.   Because time difference is ≤ 1 day, those data were used as if they came from the 

same day.  Because flash flooding is rare in the Little Bear River Watershed, the flow and  
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Figure 5.3 | Sampling locations of Little Bear River watershed. (EMRG, 2004; USGS, 

2004; USEPA, 2004). (● : point source outlet  sampling location, ■ :stream sampling 

location), * : 490 was removed from variable names for clarity.  where Flow_xx =  flow 

(cfs), TP_xx = TP concentration (mg/L), SC_xx =  Specific Conductance (umho/cm), xx 

is last four digits of station ID. 
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water quality changes gradually.  Therefore, merging data from date ≤ 1 day apart is 

acceptable. 

 It is possible to calculate the TP load when there are both flow and TP 

concentrations.  Linear regression between upstream values and downstream values can 

be used to fill in the missing flows or TP concentrations (Table 5.1).  The censoring level 

(below quantitation limit) of TP is 0.02 mg/L in EPA STORET (USEPA, 2005).  Because 

both TP_HW and TP_SF values were below 0.02 mg/L on some sampling dates, the 

standard regression method (Pearson‟s) was not applicable to estimate slopes and  

 

Table 5.1 | Regressions between variables of missing values (response variables) and 

predicted variables (Variables are defined on Figure 5.2)  

 

 Response 

variable 

(Y)  

Predicted 

Variable (X) 

Number of 

Pairs 

(censored/ 

total) 

Regre-

ssion 

Method 

Slope Inter-

cept 

Correlation 

Value,  

( ): p-value 

TP_SF 

(4905740) 

TP_HW 

(4905700) 

30/65 Theil-

Sen  

0.682 0.007 τb =0.569 

(<0.001) 

TP_EF 

(4905750) 

TP_ HW 

(4905700) 

48/71 Theil-

Sen 

0.382 0.001 τb = 0.481 

(<0.001) 

Flow_ IN1 

(4905670) 

Flow_HW 

(4905700) 

0/155 Pearson *0.996 *0.905 r
2
= 0.998 

(<0.001) 

TP_ IN1 

(4905670) 

TP_ HW 

(4905700) 

29/75 Theil-

Sen 

0.951 0.0196 τb = 0.371 

(<0.001) 

ln(TP_5650) 

(4905650) 

TP_5000 

(4905000) 

4/84 MLE-

lognorm

al 

2.912 -3.231  r
2
=0.166 

(<0.001) 

Flow_5650 

(4905650) 

Flow_5000 

(4905000) 

0/39 Pearson *0.723 *-15.5 r
2
=0.889 

(<0.001) 

Flow_5650 

(4905650) 

SC_ 5650 

(4905650) 

0/52 Pearson *-0.203 *125 r
2
=0.642 

(<0.001) 

Flow_ 5000 

(4905000) 

SC_ 5000 

(4905000) 

0/144 Pearson *-0.317 *249 r
2
=0.401 

(<0.001) 

*Regression equation after removing outlier with over 2.0 studentized residual twice. 

r: Correlation coefficient , τb : Kendall tau-b correlation coefficient (Kendall, 1970) 
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intercepts using these doubly censored pairs.  In these cases, the Theil-Sen regression 

(Theil, 1950) was used to handle the censored pairs in estimation of slopes and intercept 

between TP_HW and TP_SF. 

On four sampling dates, TP_5650 values were below 0.02 mg/L and TP_5000 

values were uncensored.  Maximum Likelihood Estimation (Slyman et al., 1994) was 

used to estimate slope and intercept between the predicted variable (TP_5000) and the 

response variable (TP_5650) instead of Pearson‟s regression (Table 5.1; Figure 5.3). 

 The annual precipitation data (PRECIP) were obtained from the Western Regional 

Climate Center data base (WRCC, 2006).  The precipitation measurement location was 

Logan Radio KVNU (Station No. 425182).  Utah DNR (Utah Department of Natural 

Resources) provided water-related Landuse data files for 1986, 1996 and 2003 in GIS and 

tabular form for Landuse in the Little Bear River watershed (Utah DNR, 2004).  Because 

the Little Bear River technical advisory committee consisting of local, state and federal 

resources agencies and representations from Utah State University defined cropland and 

pastures as significant sources of nutrients in the Little Bear River watershed (Chess, 

2000), the agricultural land use area was emphasized.  The agricultural area in the Above 

Hyrum subwatershed and Below Hyrum subwatershed were estimated for the year 

between 1986, 1996 and 2003 by interpolating agricultural area in 1986, 1996, 2003.  The 

agricultural landuse areas before 1986 or after 2003 were estimated by extrapolating 

agricultural areas in 1986 or 2003 (Figure 5.4).  
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Figure 5.4 | Agricultural land use area in Little Bear River Watershed (● : Above 

Hyrum Reservoir, ■ :Below Hyrum Reservoir). 

 

 

Bayesian Network (BN) construction  

 

 Netica version 3.17 (Norsys Software Corp., 1997) was used to build the two BNs.  

Contingency tables were automatically produced by Netica from each database.  The first 

BN (BN1) estimated the effects of LBRCP and exogenous variables, agricultural landuse, 

annual precipitation and point source TP load on the TP load and TP concentrations at the 

inlet to Hyrum Reservoir (Figure 5.5, Table 5.2).  The second BN (BN2) estimated the 

effects of LBRCP and the same exogenous variables on the TP load and TP 

concentrations at the inlet to the Cutler Reservoir (Figure 5.6, Table 5.3).   

 TP concentration, sum of dissolved organic phosphorus, particulate phosphorus 

and phosphate concentrations have been used as a water quality criterion even though 

only soluble reactive phosphorus (soluble inorganic phosphorus) is readily available to 

plants in aquatic ecosystems.  Phosphate (PO4
3-

) is a dominant form of soluble reactive 

phosphorus but it is often difficult to determine the concentration of phosphate because 
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the standard analysis method detects a variable group of phosphorus compounds as well 

as phosphate (Chapra, 1997; Dodds, 2002).   Baker et al. (2008) suggested 0.04 mg/L as 

allowable TP concentration based on research about phosphorus uptake in East Canyon 

Creek.  According to state water quality criterion of Utah (Utah DAR, 2000), the target 

TP concentration is 0.05 mg/L in the Little Bear River.   This concentration is not far 

from Baker‟s suggestion.  Because this TP concentration was also the target of the Little 

Bear River TMDL (Utah DEQ, 2000), the hypothesis variable of BN 1 is the TP  

 

Figure 5.5 | Little Bear River BN 1 (above Hyrum Reservoir) for LBRCP and 

exogenous variable effect evaluation 
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Table 5.2 | Critical variables for evaluation of conservation project in the Little Bear 

River Watershed above Hyrum Reservoir 

 

Variable Name Description Type Sources 

OP_CON  Conservation Project Option, Pre: 

Before starting the Project (1974-1989), 

Post: After starting the Project (1990-

2004) 

Decision  

LAND_AG1 Area of Agricultural Land Use Exogenous Utah DNR  

PRECIP Annual Precipitation for each water 

year 

Exogenous Western 

Region 

Climate 

center 

LOAD_P1 TP load (lb/day) from point source Exogenous EPA 

STORET 

LOAD_SF TP load (lb/day) from the South Fork 

(Location 4905740) 

State EPA 

STORET 

LOAD_EF TP load (lb/day) from the East Fork 

(Location 4905750) 

State EPA 

STORET 

LOAD_HW TP load (lb/day) at the confluece of the 

South and East Fork (Location 

4905700) 

State EPA 

STORET 

LOAD_IN TP load (lb/day) into the Hyrum 

Reservoir (Location 4905670) 

State EPA 

STORET 

LOAD_SW1 TP point and nonpoint load from 

subwatershed above the stream reaches 

between location 4905700 (confluence 

of the South Fork and East Fork) and 

location 4905670 (inlet to the Hyrum 

Reservoir)  

State Estimated 

FLOW_SF Flow (cfs) from the South Fork 

(Location 4905740) 

State EPA 

STORET 

FLOW_EF TP load (lb/day) from the East Fork 

(Location 4905750) 

State EPA 

STORET 

FLOW_HW Flow (cfs) at the confluent of the South 

and East Fork (Location 4905700) 

State EPA 

STORET 

FLOW_IN Flow (cfs) into Hyrum Reservoir 

(Location 4905670) 

State USGS  

Flow data 

FLOW_SW1 Flow from subwatershed above the 

stream reaches between location 

4905700 (confluent of the South Fork 

and East Fork) and location 4905670 

(inlet to Hyrum Reservoir)  

State Estimated 

TP_IN TP concentration (mg/L) into Hyrum 

Reservoir (Location 4905670) 

State EPA 

STORET 



 126 

 

Figure 5.6 | Little Bear River BN 2 (below Hyrum Reservoir) for the LBRCP and 

exogenous variable effect evaluation. 

 

 

concentration at the inlet to Hyrum Reservoir (TP_IN), and the hypothesis variable of 

BN2 is the TP concentration at the inlet to Cutler Reservoir (TP_5000). 

There are two variable groups, the TP load group and the flow group in BN1 and 

BN2.  Referring to Figure 5.3, the TP load group includes East Fork outlet load 

(LOAD_EF), South Fork outlet load (LOAD_SF), load at confluence between the East  

Fork and South Fork (LOAD_HW), and the inlet load to Hyrum Reservoir (LOAD_IN) 

in BN1.  Upstream TP load variables were linked to down stream TP load variables.  For 

example, LOAD_EF and LOAD_SF were linked to LOAD_HW (Figure 5.5).  In the 

same way, the flow group included flows of all sampling locations in East Fork, South 

Fork and main stream Little Bear River, and upstream flow variables were linked to those 

downstream (Figure 5.5). 

 In BN1, the LBRCP option and exogenous variables were linked to subwatershed 

load (LOAD_SW1), the TP load from point sources and non point sources to the stream  
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Table 5.3 | Critical variables for evaluation of conservation project in the Little Bear 

River Watershed below Hyrum Reservoir 

 

Variable Name Description Type References 

OP_CON  Conservation Project Option, Pre: 

Before starting the Project (1974-

1989), Post: After starting the 

Project(1990-2004)  

Decision  

LAND_AG2 Area of Agricultural Land Use Exogenous Utah DNR 

(2004) 

PRECIP Annual Precipitation for each water 

year 

Exogenous Western 

Region 

Climate 

Center 

(2006) 

LOAD_P2 TP load (lb/day) from point source Exogenous EPA 

STORET 

(2005) 

LOAD_5650 TP load (lb/day) at the effluent from 

Hyrum Reservoir (Location 4905650) 

State EPA 

STORET 

LOAD_5000 TP load (lb/day) into Cutler Reservoir 

(Location 4905000) 

State EPA 

STORET 

LOAD_SW2 TP point and nonpoint load from 

subwatershed above the stream 

reaches between location 4905650 and 

location 4905000 (inlet to Hyrum 

Reservoir)  

State Estimated 

FLOW_5650 Flow (cfs) at the effluent from the 

Hyrum Reservoir (Location 4905650) 

State EPA 

STORET 

FLOW_5000 Flow (cfs) into Cutler Reservoir 

(Location 4905000) 

State EPA 

STORET 

FLOW_SW2 Flow from subwatershed above the 

stream reaches between location 

4905650 and location 4905000  

State Estimated 

TP_5000 TP concentration (mg/L) into Cutler 

Reservoir (Location 4905000) 

State EPA 

STORET 

 

between location 4905700 and 4905670.  LOAD_SW1 is calculated by subtracting the 

TP load at location 4905700 from TP load at location 4905670.  LOAD_SW1 is a parent 

variable of LOAD_IN.  In BN1, the annual precipitation (PRECIP) is linked to 

subwatershed flow (FLOW_SW1), which is the flow from the watershed to the stream 
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between location 4905700 and 4905670 and is calculated by subtracting flow at location 

4905670 by flow at location 4905700.  Similarly, FLOW_SW1 is a parent variable of 

FLOW_IN.  Finally, the TP loads (LOAD_IN) and flows (FLOW_IN) into Hyrum 

Reservoir were connected to TP concentration (TP_IN) into the reservoir (Figure 5.5).  In 

BN2, variable are connected in the same way as BN1. Upstream TP load variables were 

linked to down stream TP load variables, and upstream flow variables were linked to 

those downstream (Figure 5.6).  The upstream water in BN2 is the outlet from Hyrum 

Reservoir.  

 

Categorizing variable state for BN 1 

 

 The conservation project option factor (OP_CON) is a decision variable. Pre 

conservation is defined as before starting the conservation practices and Post 

conservation is defined as after starting the conservation practices.  

There are three exogenous variables, agricultural land use area (LAND_AG1), 

point source TP load (LOAD_P1) and precipitation (PRECIP).  LAND_AG1 and 

LOAD_P1 were categorized as H (High) or L (Low).  PRECIP was categorized as D (Dry) 

and W (Wet) (Table 5.4)  

The variables of TP load and flow groups have three categories, L (Low :smaller  

 

 

Table 5.4 | The categories of exogenous variables in the Little Bear River Wastershed 

above Hyrum 

 

Variable Category 

L,D (<50 percentile)  H,W(>=50percentile) 

Unit 

LAND_AG1 <12268 >=12268 Acres 

LOAD_P1 <5.46 >=5.46 lb/day 

PRECIP <15.4 >=15.4 In 
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than 33 percentile value), M (Medium :from 33 percentile value to smaller than 67  

percentile value) and H (High: equal to or larger than 67 percentile value).  Conditional 

probabilities of L, M and H category of LOAD_SW1 were calculated for each category 

combination of OP_CON, LAND_AG1, LOAD_P1 and PRECIP in Netica (Appendix F 

(a)).  In the same manner, conditional probabilities, p(LOAD_EF|PRECIP), 

p(LOAD_SF|PRECIP), p(LOAD_HW|LOAD_SF, LOAD_EF), p(LOAD_IN|LOAD_SW1, 

LOAD_HW) were calculated in Netica (Appendix F (a)-(e)) .  

The conditional probability of flow variables, p(FLOW_SW1|PRECIP), 

p(FLOW_EF|PRECIP), p(FLOW_HW|FLOW_EF,FLOW_SF),  

p(FLOW_IN|FLOW_SW1,FLOW_HW) are calculated in the same manner of TP load 

variables (Apendix F (f)-(j)).  The TP concentration at the inlet to the Hyrum Reservoir 

(TP_IN) was categorized as H,M and L using quantitation limit (0.02 mg/L) and target 

concentration (0.05 mg/L). (Appendix F (k)). 

 

Categorizing variables of BN 2 
 

 The option of conservation project (OP_CON) is the only decision variable 

(Figure 5.6).  Pre is before starting the conservation practices and Post is after starting the 

conservation practices.  There are three exogenous variables, agricultural land use area 

(LAND_AG2), point source TP load (LOAD_P2), and annual precipitation (PRECIP).  

OP_CON and exogenous variables have no parent node (Figure 5.6). 

 Database of BN2 has no point source TP load data before 1990 (before starting 

LBRCP).  Netica cannot calculate conditional probabilities of p(LOAD_SW2|OP_CON, 

LAND_AG2, LOAD_P2, PRECIP) for the case of OP_CON= Pre because all of 
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LOAD_P2 was empty in data combination of four variables, OP_CON, LAND_AG2, 

LOAD_P2, PRECIP when OP_CON is Pre.  A challenge of BN2 is using LOAD_SW1 

(Subwatershed TP load) contingency table of BN1 for conditional probability 

p(LOAD_SW2|OP_CON, LAND_AG2, LOAD_P2, PRECIP) of BN2.   

 BN1 has one point source, one major stream into the subwatershed below the 

confluence of the East and South Fork, and one stream into a reservoir.  BN2 has one 

point source, one major stream into a subwatershed and one stream into a reservoir.  In 

BN1, the major TP load sources within the subwatershed boundary are the point source 

(Fish Farm) and agricultural nonpoint source.  In BN2, the major TP load sources within 

the subwatershed boundary are one point source (Discharge of Wellsville Lagoon) and 

agricultural nonpoint source.  Because the pattern of flows and TP loads of BN2 is 

similar to those of BN1, it may be acceptable using CPT of p(LOAD_SW1|OP_CON, 

LAND_AG1, LOAD_P1, PRECIP) of BN1 for CPT of  

 p(LOAD_SW2|OP_CON,LAND_AG2,LOAD_P2,PRECIP) of BN2. 

 The agricultural area below Hyrum (LAND_AG2) increased and decreased in the 

range of 23827 to 24803 acres from 1976 to 2004 acres while the agricultural area above 

Hyrum (LAND_AG1) decreased and increased in the range of 11686 to 14588 acres.  

Because all values of LAND_AG2 were out of range of any category of LAND_AG1, the 

category boundaries of LAND_AG1 needed to be adjusted before being used as category 

boundaries of LAND_AG2.  The median of the agricultural area was 12,268 acres in 

BN1 and the median area was 24,370 acres in BN2.  The ratio, 24,370/12,268 acres, is 

1.99.  The BN1 category boundaries of LAND_AG1, LOAD_P1 and LOAD_SW1 were 

multiplied by 1.99 and these scale up category boundaries was used in CPT for 
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p(LOAD_SW2|OP_CON, LAND_AG2, LOAD_P2, PRECIP) of BN2 (Table 5.5).  The 

conditional probabilities for each categorical combination, p(LOAD_SW1|OP_CON, 

LAND_AG1, LOAD_P1, PRECIP) of BN1, were used for the conditional probability for 

the same categorical combination, p(LOAD_SW2|OP_CON, LAND_AG2, LOAD_P2, 

PRECIP) of BN2 (Appendix F (a), G (a) ).  PRECIP was categorized as D and W using a 

median value (15.4 inch). 

 Each TP load or flow variable has three categories, L (Low: smaller than 33 

percentile value), M (M: from 33 percentile value to smaller than 67 percentile value) and 

H (High: equal to or larger than 67 percentile value) (Appendix G).  The TP 

concentration at the inlet to the Cutler Reservoir (TP_5000) was categorized as H(high), 

M(medium) and L(low) using target concentration (0.05 mg/L) and 75
th

 percentile 

                                        

Table 5.5 | Adjustment of category boundaries of variables for BN2 from those for BN1 

 

 

 

 

Variables 

 

 

 

Category 

 

 

Above Hyrum 

(BN1) 

Below Hyrum 

(BN2) 

after Scale 

adjustment 

Below Hyrum 

(BN2) 

before Scale 

adjustment 

Agricultural 

Land 

Use(LAND_AG) 

as Acres 

 

L <12268 <24370 <24370 

H >=12268 >=24370 >=24370 

Point Source 

TP load 

(Load_P) as 

lb/day 

 

L <5.46 <10.86 <1.681 

H >=5.46 >=10.86 >=1.681 

Total 

subwatershed TP 

load 

(LOAD_SW) as 

lb/day 

L < 3.53 <7.02 < 18.42 

M 3.53-9.51 7.02-18.92 18.42-35.97 

H >=9.51 >=18.92 >=35.97 
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concentration (0.15 mg/L) (Appendix G (g)). 

 

 

Bayesian Network simulation 

 The purpose of the Little Bear River BN is to evaluate the effects of the 

conservation practices and exogenous variables on the TP load and TP concentration into 

Hyrum and Cutler Reservoirs.  LOAD_SW1 (the marginal probability distributions of 

categories of subwatershed TP load), LOAD_IN (the marginal probability of category of 

TP load into Hyrum Reservoir) and TP_IN (the marginal probability of category of TP 

concentration into Hyrum Reservoir) for Pre condition of OP_CON (conservation 

practice option) were compared to the marginal probability distribution of categories of 

LOAD_SW1, LOAD_IN and TP_IN (compared variables) for Post condition of 

OP_CON (evaluated variable) in BN1.  When OP_CON was selected as Pre or Post in 

the conservation practice‟s effect tests in BN1, the probabilities of all variables directly 

linked (LOAD_SW1) and indirectly linked (LOAD_IN and TP_IN) to OP_CON in the 

network were calculated under the assumption of no conservation practice for Pre 

OP_CON or some conservation practice for Post OP_CON (Figure 5.7).  The probability 

of each category for agricultural land area (LAND_AG1), Point TP load (LOAD_P1) and 

annual precipitation (PRECIP) came from all values of BN1 databases.  

 In the same manner, the effects of conservation practices on TP loads and 

concentrations were evaluated in BN2 (Figure 5.8).  The effects of exogenous variables 

on TP load and concentrations were evaluated in BN1 and BN2 (Table 5.6).  For example, 

in BN2, when annual precipitation conditions were selected as D (dry) or W (wet), the 

probabilities of all variables directly linked (LOAD_SW2, LOAD_5650, FLOW_SW2, 

FLOW_5650) and indirectly linked (LOAD_5000, FLOW_5000 and TP_5000) to 
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Figure 5.7 | The outputs from the Little Bear River BN above the Hyrum Reservoir 

(BN1) for pre conservation practices condition (OP_CON=Pre).  A blue box is decision 

variable. Yellow boxes are exogenous and state variables.  Each bar and number by each 

categories of each variable present the probability of that category. 

 

 

PRECIP in the network were calculated under the assumption of all dry year (p(D)=1.0) 

for D PRECIP or all wet year (p(W)=1.0) for W PRECIP (Figure 5.8). 

One interesting issue is under which annual precipitation condition (PRECIP) the 

conservation practices (OP_CON) had a larger effect on TP load and TP concentration.  

This is done by comparing how much the probability distribution of LOAD_SW1, 

LOAD_IN and TP_IN changed when selected OP_CON category was changed from Pre 

to Post under D and W condition of PRECIP in BN1 (Figure 5.9).  For this task, 

OP_CON was selected as Pre or Post under D and W precipitation condition in BN1 or 

BN2.  The probability of each category for agricultural land area (LAND_AG1 or  

 



 134 

 

Figure 5.8 | The outputs from the Little Bear River BN below the Hyrum Reservoir 

(BN2) for pre conservation practices condition (OP_CON=Pre).  A blue box is a decision 

variable. Yellow boxes are exogenous and state variables. Each bar and number by each 

categories of each variable present the probability of that category. 

 

LAND_AG2) and Point TP load (LOAD_P1 or LOAD_P2) came from all values of BN1 

or BN2 database because any category of these variables was not selected (Figure 5.9).   

 

RESULTS 

 

 

Effects of Conservation Project and           

exogenous factors on TP load and                          

TP concentration on the stream                                

above Hyrum Reservoir 

 

 The results of changing the BN1 variable for conservation practice (OP_CON) 

from Pre to Post are shown in Figure 5.10.  Small differences are seen between the 
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Table 5.6 | The scenarios of variables for each simulation 

 

 Evaluated 

Variable 

Selected Category of variables 

 

Compared 

variable 

OP_CON LAND_AG1/ 

LAND_AG2 

LOAD_P1/ 

LOAD_P2 

PRECIP 

BN1 OP_CON Pre/Post None  None None LOAD_SW1, 

LOAD_IN, 

TP_IN 

LAND_AG1 None  L or H None None LOAD_SW1, 

LOAD_IN, 

TP_IN 

LOAD_P1 None  None L or H None LOAD_SW1, 

LOAD_IN, 

TP_IN 

PRECIP None  None None L or H LOAD_SW1, 

LOAD_IN, 

TP_IN, 

FLOW_SW1, 

FLOW_HW, 

FLOW_IN 

 

BN2 OP_CON Pre/Post None  None None LOAD_SW2, 

LOAD_5000, 

TP_5000 

LAND_AG2 None  L or H None None LOAD_SW2, 

LOAD_5000, 

TP_5000 

LOAD_P2 None  None L or H None LOAD_SW2, 

LOAD_5000, 

TP_5000 

PRECIP None  None None L or H LOAD_SW2, 

LOAD_5000, 

TP_5000, 

FLOW_SW, 

FLOW_5650, 

FLOW_IN 
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Figure 5.9 | The outputs from the Little Bear River BN above Hyrum Reservoir (BN1) 

for D annual precipitation and Pre LBRCP condition. A blue box is a decision variable. 

Yellow boxes are exogenous and state variables. Gray box means a specific category is 

selected. Each bar and number by each categories of each variable present the probability 

of that category. 

 

 

predicted probabilities for each category of TP load (LOAD_IN) and TP concentration 

(TP_IN) into the Hyrum Reservoir even though the probability of the subwatershed TP 

load (LOAD_SW1) in low (L) category increased and the probability of medium (M) and 

high (H) for LOAD_SW1 decreased noticeably. 

Figures 5.11, 5.12 and 5.13 show the effect of agricultural land area 

(LAND_AG1), point source load (LOAD_P1) and Precipitation (PRECIP) on the 

subwatershed load (LOAD_SW1), TP load (LOAD_IN) and TP concentration (TP_IN) at 

the reservoir‟s inlet.  The agricultural land factor did not have a significant effect on 
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LOAD_IN or TP_IN, however, the p(H) for LOAD_SW1 increased and p(M) decreased, 

when the selection of category of LAND_AG1 was changed from Low (L) to High (H).  

The LOAD_P1 had larger effect on LOAD_SW1, LOAD_IN and TP_IN than OP_CON 

or LAND_AG1, where p(H) for TP_IN (the probability of water quality criteria violation,  

TP_IN > 0.05 mg/L as TP) increased from 55.4% to 61.6% when LOAD_P1 was 

changed from L to H (Figure 5.12).  More annual precipitation increased LOAD_SW1 

and LOAD_IN because p(H) for LOAD_SW1 and LOAD_IN were higher and p(L) of 

those variables were lower for wet year than the dry year condition (Figure 5.13). 
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Figure 5.10 | The probabilities of TP load and TP concentration variables under selected 

conservation project options (OP_CON).  Refer to Table 5.2 for variable descriptions. 

(■:OP_CON= Pre ■: OP_CON= Post,  L,M, and H are categories for LOAD SW1, 

LOAD_IN and TP_IN). 
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Figure 5.11 | The probabilities of TP loads and TP concentration variable under selected 

agricultural landuse category (LAND_AG1), (■:LAND_AG1= Low ■: LAND_AG1= 

High,  L,M, and H are categories for LOAD SW1, LOAD_IN and TP_IN). 
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Figure 5.12 | The probabilities of TP loads and flow variable under selected point load 

category (LOAD_P1) (■:LOAD_P1= Low ■: LOAD_P1=High,  L,M, and H are 

categories for LOAD SW1, LOAD_IN and TP_IN). 
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Figure 5.13 | The probabilities of TP load, TP concentration and flow variables under 

selected annual precipitation category (PRECIP) (■:PRECIP=Dry,  ■: PRECIP=Wet,  

L,M, and H are categories for LOAD SW1, LOAD_IN, FLOW_SW1, FLOW_IN and 

TP_IN).  

 

 The probabilities p(L) and p(M) for subwatershed flow (FLOW_SW1) for dry 

years are noticeably lower than those for wet years (Figure 5.13).  This seems to be 

unacceptable results.  Because the 83.5 % of FLOW_SW1 values were between -1  and 1 

cfs in the BN1 database and the category boundaries were very narrow (0 and 0.43 cfs), 

the categorizing of FLOW_SW1 was not effective to evaluate the effect of annual 

precipitation on FLOW_SW1.  However, errors in FLOW_SW1 probability distribution 

may not cause significant error of the probabilities of the child variable, flow at the 

reservoir‟s inlet (FLOW_IN) categories.  FLOW_IN is mainly controlled by confluence 

flow of the South Fork and the East Fork (FLOW_HW) because the FLOW_HW values 

are much higher than FLOW_SW1 values (Appendix  F (f) and (i) ).  In a BN test, it is 

                                                 
 When the upstream flow is higher than the downstream flow, the value of FLOW_SW1 is negative 

(FLOW_SW1= FLOW_IN - FLOW_HW).  In this case, we cannot estimate the flow from subwatershed 

exactly. 
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concluded that FLOW_IN is very sensitive to FLOW_HW while FLOW_IN is not 

sensitive to FLOW_SW1.  For example, when L was selected as the category of all 

FLOW_HW values, the predicted probabilities of FLOW_IN were 99.2 %, 0.8 % and 

0 % for L, M, and H, respectively.  When M was selected as the category of all 

FLOW_HW values, the predicted probabilities of FLOW_IN were 5.3 %, 94.7 % and 

0 % for L, M and H respectively.  However, the change of predicted probability 

distribution of FLOW_IN was small, when changing selected category of FLOW_SW1 

(Appendix H).  

 There is no noticeable difference of probabilities distributions between TP_IN for 

dry years and TP_IN for wet years (Figure 5.13).  It may be concluded that the high 

annual precipitation cause more stream flow as well as more TP load and the annual 

precipitation does not noticeably affect the TP concentration in the stream. 

 When the selected OP_CON factor was changed from Pre to Post under wet 

conditions, the change of LOAD_SW1, LOAD_IN and TP_IN were larger than under dry 

conditions (Figure 5.14).  It may be concluded that conservation practice had larger 

effects on the values of LOAD_SW1, LOAD_IN and TP_IN under wet conditions than 

under dry conditions.  

 

Effects of Conservation Project and          

exogenous factors on TP load and                                         

TP concentration in the stream                              

below Hyrum Reservoir 

 

 A small difference between the probabilities of TP load (LOAD_5000) and TP 

concentration (TP_5000) at the river outlet for Pre OP_CON (before starting 

conservation practices) vs. Post OP_CON (after starting conservation practices) were 
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Figure 5.14 | The probabilities of subwatershed TP load (LOAD_SW1), TP load 

(LOAD_IN) and TP concentration (TP_IN) variables under selected annual precipitation 

category (PRECIP) and conservation project options (OP_CON). (■:OP_CON=Pre ■: 

OP_CON=Post, L,M, and H are categories for LOAD SW1 in a), LOAD_IN in b) and 

TP_IN in c) ). 
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found while p(L) for subwatershed load (LOAD_SW2) increased dramatically and p(M) 

and p(H) for LOAD_SW2 decreased, changing OP_CON from Pre to Post (Figure 5.15).  

The probability of water quality criteria violation (p(M)+p(H), TP_5000 > 0.05 mg/L) 

decreased from 66.5% to 63.1%, when OP_CON was changed from Pre to Post (Figure 

5.15).  

Changing the selection of agricultural land area (LAND_AG2) category had a 

smaller effect on LOAD_SW2, LOAD_5000 and TP_5000 than conservation practices 

option (Figure 5.16).  For example, the probability of water quality criteria violation 

increased from 63.4% to 65.6%, when LAND_AG2 was changed from low to high 

(Figure 5.16). 

When the point load (LOAD_P2) category was changed from low to high, p(H) 

for LOAD_SW2 increased and p(L) and p(M) for LOAD_SW2 decreased dramatically, 

changing probability distributions of LOAD_5000 and TP_5000 (Figure 5.17).  The  
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Figure 5.15 | The probabilities of TP load and TP concentration variables under selected 

conservation project options (OP_CON) (■:OP_CON=Pre,  ■: OP_CON=Post,  L,M, and 

H are categories for LOAD SW2, LOAD_5000 and TP_5000). 
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Figure 5.16 | The probabilities of TP loads and flow variable under selected agricultural 

landuse category (LAND_AG2) (■:LAND_AG2 = Low ■: LAND_AG2=High, L,M, and 

H are categories for LOAD SW2, LOAD_5000 and TP_5000). 

 

probability of water quality criteria violation (p(TP_5000 > 0.05 mg/L as TP)) increased 

from 62.3% to 72.1% (Figure 5.17). 

When the precipitation was changed from dry to wet, p(L) for LOAD_SW2, 

LOAD_5000, FLOW_SW and FLOW_5000 decreased and p(M) and p(H) for those 

variables increased.  No significant change was observed in probability distributions for  

TP_5000 between dry and wet conditions (Figure 5.18).  Apparently, the high annual 

precipitation causes more stream flow as well as more TP load into Cutler Reservoir so, 

the annual precipitation does not have significant effect on TP concentration.  

 When the selected conservation practices option (OP_CON) were changed from 

Pre to Post under wet conditions, the change of LOAD_SW1, LOAD_IN and TP_IN 

were larger than under dry conditions (Figure 5.19).  It may be concluded that 

conservation practice has larger effects on the values of LOAD_SW2, LOAD_5000 and 

TP_5000 under wet conditions than under dry conditions.   
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Figure 5.17 | The probabilities of TP loads and flow variable under selected point load 

category (LOAD_P2) (■:LOAD_P2= Low ■: LOAD_P2=High,  L,M, and H are 

categories for LOAD SW2, LOAD_5000 and TP_5000). 
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Figure 5.18 | The probabilities of TP loads and flow variable under selected annual 

precipitation category (PRECIP) (■:PRECIP=Dry ■: PRECIP=Wet,  L,M, and H are 

categories for LOAD SW2, LOAD_5000,FLOW_SW2, FLOW_5000 and TP_5000) 
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Figure 5.19 | The probabilities of subwatershed TP load (LOAD_SW2), TP load 

(LOAD_5000) and TP concentration (TP_5000) variables at the mouth of the Little Bear 

River under selected annual precipitation category (PRECIP) and conservation project 

options (OP_CON). (■:OP_CON=Pre ■: OP_CON=Post, L,M, and H are categories for 

LOAD SW2 in a), LOAD_5000 in b) and TP_5000 in c) ). 
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DISCUSSION 

 

 Even though the subwatershed TP loads (LOAD_SW1,LOAD_SW2) were 

noticeably smaller under construction of conservation practices (OP_CON= Post) than 

before conservation practices were implemented, conservation practice options had only 

a small effect on TP load and TP concentration at the inlets of Hyrum and Cutler 

Reservoirs.  The upstream water from East Fork and South Fork goes to Hyrum 

Reservoir taking subwatershed flow and TP load.  The upstream water from the Hyrum 

Reservoir (effluent of the reservoir) goes to Cutler Reservoir taking subwatershed flow 

and TP load.  Conservation practices below the confluence of East and South Fork have 

no effect on the upstream TP load.  Conservation practices below Hyrum Reservoir have 

no effect on the release from Hyrum Reservoir.  Because the upstream waters are mixed 

with waters from subwatersheds, the effect of conservation practice on TP loads at a 

reservoir‟s inlet may be reduced. 

 In BN1 (above Hyrum Reservoir), the 33
rd

  and 67
th

 percentile values of TP load 

at confluence of the South and East Fork were 4.75 lb/d and 16.84 lb/d, and the 33
rd

  and 

67
th

 percentile values of subwatershed TP load were 3.53 lb/d and 9.51 lb/d.  In BN2 

(below Hyrum Reservoir), the 33
rd

  and 67
th

 percentile value of TP load at effluent of the 

Hyrum Reservoir were 2.96 lb/d and 12.9 lb/d, and the 33
rd

  and 67
th

 percentile value of 

subwatershed TP load were 7.02 lb/d and 18.82 lb/d.  The upstream water TP loads were 

large enough to reduce the effect of subwatershed TP load reduction on downstream total 

TP load. 

 The Little Bear River below Hyrum Reservoir is controlled more by subwatershed 

TP load while the river above Hyrum Reservoir is controlled more by upstream TP load.  
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More water quality conservation projects were implemented below Hyrum Reservoir than 

above because the agricultural acreage below Hyrum Reservoir is two times larger than 

that above.  The effect of conservation practices on the TP load and TP concentration into 

a receiving water was larger in BN2 than in BN1, comparing the probability distributions 

of categories for BN1 (Figure 5.10) to those for BN2 (Figure 5.15).  

 Comparing the probability distributions of subwatershed TP load for the low 

agricultural area condition to that for the high agricultural area condition showed that a 

larger amount of agricultural land caused more subwatershed TP load ,but agricultural 

area had no significant effect on TP load or TP concentration at the inlet of Hyrum or 

Cutler Reservoir.  While there was no significant change from agricultural land area in 

1986 to that in 1996 below the Hyrum Reservoir, the agricultural area above Hyrum 

Reservoir increased 22 % from 11,686 acres in 1996 to 14,225 acres in 2003 (Figure 5.4).  

This increase in agricultural land might be large enough to increase subwatershed TP 

load but this change did not increase significantly TP load and TP concentration into the 

reservoirs.  TP concentrations of upstream water were relatively low (67
th

 percentile=0.05 

mg/l), but the upstream water TP load was larger than subwatershed load because flows 

were relatively high (67
th

 percentile = 81 cfs).  The effect of increased subwatershed load 

by larger amount of agricultural land above Hyrum Reservoir on TP load at the 

reservoir‟s inlet may be reduced because the upstream load is mixed with subwatershed 

load.  

 Comparing the probability distribution of subwatershed TP load for wet annual 

precipitation to that for dry showed more annual precipitation caused more subwatershed 

TP load.  It may be because more annual precipitation caused larger non-point TP loads.  
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The increase of subwatershed TP load was large enough to increase the TP load 

significantly into both Hyrum Reservoir and Cutler Reservoir.   

 BNs suggested that the conservation practices had larger effect on subwatershed 

TP loads and TP loads and concentrations into receiving reservoirs under wet annual 

precipitation condition than under dry annual precipitation condition.  Water quality 

conservation practices were executed to reduce the non point TP load.  Non-point TP 

loads from subwatersheds to streams may be larger during wet years, and the 

conservation practices may reduce more TP loads from these non-point source loads. 

 The probability distribution of categories of TP load (LOAD_IN) and TP 

concentration (TP_IN) into Hyrum Reservoir showed a large change, changing the 

selected condition of subwatershed TP load (LOAD_SW1) as well as changing the 

selected condition of TP load at the confluence of the East Fork and South Fork 

(LOAD_HW) (Figure 5.20).  For example, when L (low) category of LOAD_SW1 was 

selected (the probability that LOAD_SW1 value is in L category = 1.0), the probability of 

L category of LOAD_IN was 54 % and, when H(high) category of LOAD_SW1 was 

selected (the probability that LOAD_SW1 value is in H category = 1.0), the probability 

of L category of LOAD_IN was 0 % (Figure 5.20).   

 The probability distribution of categories of TP load (LOAD_5000) and TP 

concentration (TP_5000) into Cutler Reservoir also showed a large change, changing the  

selected condition of subwatershed TP load (LOAD_SW2) as well as changing the 

selected condition of TP load at the effluence of the Hyrum Reservoir (LOAD_5650) 

(Figure 5.21).  TP loads into Hyrum (LOAD_IN) and Cutler (LOAD_5000) reservoirs are  
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Figure 5.20 | The probabilities of TP load (LOAD_IN) and TP concentration (TP_IN) 

into the Hyrum Reservoir under selected subwatershed TP load (LOAD_SW1) and TP 

load at confluence of the East and South Fork (LOAD_HW) (■:probability of Low for 

LOAD_IN or TP_IN , ■: probability of Medium for LOAD_IN or TP_IN , □: probability 

of High for LOAD_IN or TP_IN). 
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Figure 5.21 | The probabilities of TP load (LOAD_5000) and TP concentration 

(TP_5000) into the Cutler Reservoir under selected subwatershed TP load (LOAD_SW2) 

and TP load at effluence of the Hyrum Reservoir (LOAD_5650) (■:probability of Low 

for LOAD_5000 or TP_5000 , ■: probability of Medium for LOAD_5000 or TP_5000 , 

□: probability of High for LOAD_5000 or TP_5000). 

 

LOAD_SW2= L         M         H            Unselected                 L         M         H             Unselected 

LOAD_5650=     Unselected               L         M         H                 Unknown              L         M         H 

            

LOAD_SW1=L        M         H            Unselected                  L        M          H          Unselected 

LOAD_HW =   Unselected              L          M          H             Unselected               L         M         H 
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sensitive to subwatershed TP load (LOAD_SW) as well as upstream TP loads 

(LOAD_HW, LOAD_5650).  TP concentration into Hyrum Reservoir (TP_IN) and  

Cutler Reservoir (TP_5000) is sensitive to subwatershed TP load (LOAD_SW1, 

LOAD_SW2) as well as upstream TP load (LOAD_HW, LOAD_5650) (Figures 5.20, 

5.21).  

 It may be concluded that if the TP load from subwatershed is reduced more than 

now, it is strongly possible to decrease TP load and TP concentration into Hyrum and 

Cutler Reservoirs.   For example, the probability of the L category of TP concentration 

(=< 0.05 mg/L) into Cutler Reservoir is 48.4 % for the L condition of subwatershed TP 

loads (LOAD_SW2). The probability of L category of TP concentration (=< 0.05 mg/L) 

into the Cutler Reservoir is 36.9 % for Post LBRCP option (OP_CON).  According to 

these results, it is concluded that if all subwatershed TP loads (LOAD_SW2) fall below 

the L category boundary (7.02 lb/d), the water quality standard violation frequency will 

be decreased from 63.1 % to 51.6 %.  This suggests that more conservation practices or 

more point source controls to reduce the TP load from subwatershed to the stream will be 

helpful to reduce the TP concentration violation rate at the inlet of Hyrum Reservoir or 

Cutler Reservoir. 

 A Bayesian Network is a probabilistic model, in which each variable has two or 

three categories (Varis, 1998; Marcot et al., 2001; Borsuk et al., 2003) and probability 

distributions among these categories show the effect of a specific variable on other 

variables.  Because of this characteristic, it is sometimes difficult to evaluate the effect of 

a specific variable on other variables. For example, in BN1, while the probability changes 

in the high (H) categories of LOAD_SW1, LOAD_IN and TP_IN were increases of 
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5.4 %, 0.9 % and 1.1 %, on changing OP_CON from Pre to Post under dry conditions, 

the same probability changes were decreases of 15.7 %, 2.5 % and 4.8 % under wet 

condition (Figure 5.14).  It may be concluded that LBRCP reduced the TP non point 

source load and the TP load and concentration into Hyrum Reservoir for wet annual 

precipitation.  However, implementing conservation practices (changing OP_CON from 

Pre to Post) under dry conditions increased p(H) for LOAD_SW1 by 5.4 % - it is unclear 

whether this increase is significant or ignorable.  There is no specific rule to reject the 

null hypothesis of the differences in BN.  It is one opinion that the 5.4 % probability 

increase of H category of LOAD_SW1 may be ignorable because this increase caused 

only a 0.9 % probability increase of H category of LOAD_IN, the child node (Figure 

5.14), so the impact of the subwatershed load is attenuated by other variables.  It may 

also be true that hidden factor may have caused the increase and are not included in the 

BN. 

 There has been no significant change of the agricultural area below Hyrum 

Reservoir since 1976 (Figure 5.4).  BN2 showed that more annual precipitation might 

increase the TP load into the Cutler reservoir but not the TP concentration.  We were not 

able to compare the TP point source loads before and after 1990 in the BN2 database 

because there were no TP point source load data prior to 1990.  However, it is concluded 

that the TP concentration decrease since 1990 may have been caused by LBRCP because 

the LBRCP had significant effects on TP concentration into Cutler reservoir under wet 

annual precipitation conditions (Figure 5.19). 
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SUMMARY AND CONCLUSION 

 

 In order to evaluate the effect of conservation practices and exogenous variables 

on the TP load and TP concentration, BN1 (Above Hyrum) and BN2 (Below Hyrum) 

were constructed. Each BN used a different database.  Some missing value of TP 

concentration and flow were filled with values estimated by regression between upstream 

and down stream data or by regression between two different variables. 

 BN simulations showed that conservation practices in the Little Bear River 

reduced subwatershed TP load above and below Hyrum Reservoir noticeably but the 

reductions were not large enough to reduce TP concentration into the receiving reservoirs 

noticeably, due to dilution of the effect by other factors.  BNs suggested that the 

conservation practice have been working to reduce TP loads but more implementations of 

conservation practices are required. 

 There were three exogenous variables: agricultural landuse area, point source load 

and annual precipitation.  Increased agricultural land area caused noticeably higher 

subwatershed TP load above and below Hyrum Reservoir significantly but not higher TP 

load and concentration into the receiving reservoirs, due to dilution of the effect by other 

factors.  However, increased point source load caused significantly higher TP loads and 

concentrations into the Hyrum and Cutler reservoirs. 

 Increased annual precipitation caused a noticeably higher subwatershed TP load 

above and below Hyrum Reservoirs.  These load increases were large enough to 

significantly increase TP loads into the Hyrum and Cutler reservoirs, but not TP 
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concentration because more annual precipitation caused more flow and more TP load 

simultaneously. 

 The effects of conservation practices in the Little Bear River on the subwatershed 

TP load, TP load into Hyrum and Cutler Reservoirs and TP concentration into Hyrum 

and Cutler Reservoirs were larger for wet annual precipitation conditions than those for 

dry annual precipitation conditions. 

 It may be concluded that the TP concentration decreases since 1990 have been 

influenced by LBRCP (Little Bear River Conservation Project) only under wet annual 

precipitation conditions. 
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CHAPTER 6 

TOTAL MAXIMUM DAILY LOAD (TMDL) FOR TOTAL PHOSPHORUS AT THE 

MOUTH OF THE LITTLE BEAR RIVER 

 

ABSTRACT 

  

The Little Bear River watershed in Cache County, Northern Utah is on a high-

priority list of watersheds affected by nonpoint source pollution.  A Total Maximum 

Daily Load (TMDL) at the mouth of Little Bear River targeted reduction of phosphorus.  

In order to obtain daily frequency flows and TP loads from low frequency observations, a 

Rank-Data distribution connecting approach (R-D method) are used.  Load duration 

curve are constructed based on daily flows and TP loads from the R-D method, and 

showed changes in TP loads associated with change of flow duration interval %, and the 

frequency of water quality standard violations.  The TMDLs and historical TP loads were 

calculated from daily frequency flows and TP loads for low flow season (July to 

February) and high flow season (March to June) in wet year (97-98 water year) and dry 

year (02-03 water year).  The allocations from a frequency targeted approach, in which 

the margin of safety (MOS) was adjusted for 10 % frequency exceeding water quality 

criterion (0.05 mg/L as TP), was higher than the allocation using total targeted mass, in 

which 0.2σ (0.2 times standard deviation of TP loads) was set as the MOS.  The 

reduction percentage in a wet year was higher than that in a dry year.  Appropriate 

reduced TP concentrations (0.044-0.047mg/L; TP concentration calculated based on 
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annual TP load allocation and flow) from total mass targeted approach may be an 

evidence to prove this more practical method. 

Introduction 

 

  The Total Maximum Daily Load (TMDL) is a historical and watershed-based 

program to restore the surface water quality to a level that meets water quality standard 

(Younos, 2005).  Section 303 (d) of Clean Water Act (CWA) requires States and 

Territories and authorized Tribes to identify and establish a priority ranking for water 

bodies for which technology-based effluent limitation required by Section 301 of the 

CWA are not stringent enough to achieve the water quality standard and establish 

TMDLs for the pollutant causing impairment in those water bodies.  States and 

Territories and authorized Tribes must establish TMDL at the levels necessary to 

implement applicable water quality standards with seasonal variations and a margin of 

safety.  The margin of safety aims to take into account any lack of knowledge concerning 

the relationship between effluent limitations and water quality (NARA, 2000).   

 Many traditional TMDL approaches have focused on targeting a single value 

depending on a water quality criterion and a design flow.  This single number approach 

does not work well for impaired water caused by non-point source (NPS) pollutants 

(Stiles, 2001).  Because stream flows cause different loading mechanisms to dominate 

under different flow regimes, variability in stream flows is an important concern 

regarding nonpoint sources (Cleland, 2002).  The duration curve is a TMDL approach for 

characterizing water quality data under different flow regimes.  The duration curve 

framework allows for easily presenting frequency and magnitude of water quality 

standard violations, allowable loadings, and size of load reductions (USEPA, 2007). 
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 The duration curve is a monitoring based TMDL approach using observations. 

Research using duration curves has emphasized magnitude and frequency of water 

quality standard violations. A lack of observations may increase uncertainty in 

monitoring approaches.  In order to calculate more reliable allocations or load reductions, 

daily load observations or predictions for all different simulation days are required, but 

daily water quality or flow values may have gaps of measurement dates (data gaps).  The 

Rank-Data distribution method (R-D method, Chapter 4) is a statistical approach to fill in 

the data gaps of a variable during a simulation period. 

 The Little Bear River in Cache County, Northern Utah flows from southeast to 

northwest, bounded by mountains, and drains to Cutler Reservoir, west of Logan, UT 

(Figure 6.1).  The Little Bear River watershed is on a high-priority list of watersheds that  
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Figure 6.1▬ Little Bear River Watershed located in Northern Utah (EMRG, 
2004; USGS, 2004; USEPA, 2004). 
 

are being adversely affected by nonpoint source pollution (Chess, 2000).  The Little Bear 

River Steering Committee found cropland and pastures may be significant sources of 

nutrients in the Little Bear River watershed (Chess, 2000).  In many fresh waters, an 

increase of phosphorus may cause algal blooms because phosphorus is normally limited 

(Mason, 2002).  A Total Maximum Daily Load (TMDL) for the Little Bear River targets 

reduction of phosphorus (Utah DEQ, 2000).  In this chapter, the predictions from the R-D 

method were used to estimate the duration curve for Total Phosphorus (TP) TMDL at the 

mouth of the Little Bear River. 

 Using the load duration curve, we analyze what type of source (point or nonpoint 

source) may mainly contribute to exceedance of the water quality standard, and estimate 

TMDL, Margin of Safety (MOS), allocation, and load reduction percentage in this 

chapter. 

 

Methods 

 

Data collection.      The TP loads were calculated by multiplying the flow by the 

TP concentrations and converting the units to lb/day.  The data collection period was 

from 1978 to 2004.  Flows (164 observations) and TP concentrations (234 observations) 

at the mouth of the Little Bear River came from the EPA STORET data base (USEPA, 

2005).  Linear regression between flows and specific conductance and liner regression 

between the flows and upstream flows filled in the 85 flows (calculated values) at the 

mouth of the Little Bear River (Chapter 5, Table 5.1).  Other flows and TP concentrations 
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(missing values) on the non measuring dates were predicted by R-D method based on 

extended observations (observations plus calculated values).  After filling in missing 

flows and TP concentrations, 9652 flows, 9652 TP loads and 9652 concentrations are 

obtained from 1978 to 2004. 

Rank-Data distribution method (R-D method).  The R-D method is an 

approach to fill in data gaps of a variable by linking the data distribution (cumulative 

probability plot) to the rank time series of the variable (Chapter 4).  For example, if the 

Cumulative Failure Probability (CFP) (Kaplan and Meier, 1958) on July 2nd, 1995 is 

0.98 on the time series of the rank and the flow for the CFP of 0.98 is 1370 cfs, the flow 

on July 2nd ,1995 is estimated to be 1370 cfs.  The process is shown in Figure 6.2.  

 Two assumptions are used to estimate the values for dates on which data are not 

available.  The first assumption is that the distribution of all values including both 

observations and missing values is identical to the distribution of the observations alone.  

Under this assumption, we can generate an unlimited number of values using the 

cumulative failure (CF) plot of observations.  The second assumption is that the 

interpolation or extrapolation between the CFPs of two observations on the CFP time 

series is identical to the true CFP for the prediction date. If cumulative probability plot 

from observations and rank (cumulative probability) time series of all dates from 

interpolation of observation CFP time series are obtained, daily time series of values for 

the variable may be estimated under these two assumptions. 

In this chapter, we tried to estimate daily time series of 9652 flows and 9652 TP 

load from January 5, 1978 to June 8, 2004 using extended observations.  The Kaplan-

Meier method (K-M method) was used to obtain the CF plot (Kaplan and Meier, 1958).  
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The K-M method was designed for right censored (Above Detection Limit) data and 

detected data only, rather than the usual left censored data (Below Detection Limit). 
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Figure 6.2▬The idea to make time series combining data distribution with 
CFP time series (USGS gage 10128500, Weber River near Oakley, UT). 

 

Because 9,428 missing TP load and 9,405 missing flows were set as left censored values 

(Below maximum of observations), all of flows and loads were flipped to make a CF plot 

by the K-M method (Helsel, 2005).  Minitab statistical software (Minitab, 2006) was used 

to calculate the survival probability (= 1- CFP) of the flipped values using the K-M 

method.  After the flipped values were returned to the unflipped scale, the CFPs were 

estimated.  Flows and TP loads for 9652 simulation days were estimated based on this 

cumulative failure plot.  For example, if the simulation period is 9652 days and we 

estimate daily TP load for each day, the failure probability of the smallest TP load equals 

1-(9651/9652)= 0.000104.  The CFP of 2
nd

 smallest TP load equals 1-(9650/9651)*(1-

0.000104)= 1-(9650/9652)= 0.000207, and so on.  The TP load with CFP 0.000104 on 

the cumulative failure plot is assigned to the smallest TP load and the TP load with CFP 

0.000207 is assigned to the 2
nd

 smallest TP load.  The 9652 CFPs and TP load (estimated 

distribution) may be estimated from the smallest TP load to largest TP load in the same 

manner. 

 The CFP for each value was calculated within the extended observations 

(observations and calculated values) using Equation 6.1. 

N

r 1
1                                                                                                (6.1) 

where r is rank and N is total number of extended observations values. 

The interpolating CFPs of the extended observations (observed CFPs) estimates the CFPs 

of the missing values (interpolated CFPs) between two measurement dates (Figure 6.3).  
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All of the CFPs including observed CFPs and interpolated CFPs for different dates 

(estimated CFP time series) were converted to a single set of estimated ranks.  After  
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Figure 6.3▬The CFP time series of observations (x) and unmeasured 
values (Line) (USGS gage 10128500, Weber River near Oakley, UT). 
 

finding the value with a rank within the estimated distribution, the value (prediction) was 

assigned to the date with the same rank within the estimated CFP time series.  For 

example, if the interpolated CFP for the mean daily flow on January 24, 1978 was 0.3165  

corresponding to rank 6580 within the 9652 estimated CFP time series,  the 6580th TP 

load (6580th prediction) within the estimated distribution, 24.94 lb/day is then assigned 

to the TP load on January, 1978.  The procedure is carried out for all data to produce a 

daily time series of mean flows and TP loads. 

 It is recognized that a data set with extended observations of flows or TP loads 

per year may not include the peak flow or TP load during spring runoff for that year.  

Some approximate Peak CFPs of flows or TP loads are added between observed CFP 

time series before interpolating CFPs in order to get more accurate interpolated CFP.  
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The flow peak CFPs may be estimated under the assumption that dates of peak CFP of 

each cycle are known (Chapter 4).  The daily mean flows during simulation period were 

not accessible in STORET.   All of the peak flow dates at the TMDL point are the same 

or close to those at a USGS gage above Hyrum Reservoir (10106000) from 1942 to 1974.  

Because the flows at USGS gage 10106000 are accessible only until 1987, it was 

assumed that the flow peak dates at USGS gage 10105900 which is another USGS gage 

above Hyrum Reservoir close to gage 10106000 are the same as those at the TMDL point 

for 1978-2004 (Figure 6.1).  In the same manner, the TP load peak CFPs may be 

estimated.  It is assumed that dates of TP load CFP peak are identical to dates of known 

flow peak CFP of each cycle to estimate TP load peak CFP.   

 All predicted flows or TP loads were verified by comparing to extended 

observation flows or TP loads on the graph with predictions (X-axis) and extended 

observations (Y- axis) (Figure 6.4).  The predictions were then calibrated by regression 

between extended observations and predictions (Table 6.1).  For example, the predicted 

value, 370.2 lb/d for May 23, 1995 is far from the extended observation for same date, 

247.89 lb/d.  The regression curve is constructed using the predictions and extended 

observations and, the predicted value, 370.2 lb/d is inserted in the regression equation 

( dlb /19.2842.370000036.02.37002838.02.370582.77.459
32 ).  The 

predicted value, 370.2 lb/d was calibrated as 284.19 lb/d by the regression.  Because this 

calibrated value, 284.19 lb/d is closer to the extended observation, 247.89 lb/d, the 

predicted value, 370.2 lb/d was replaced by calibrated value, 284.19 lb/d.  Other 

predicted values were calibrated by the same manner (Figure 6.5). 
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Figure 6.4▬Symmetry graph between prediction and extended 
observations of TP load at the Little Bear River TMDL point. 
 
Table 6.1▬ Regressions between extended observations and predictions. 
 

Variable 

(Response 

variable) 

Range of 

predictions 

before 

calibration 

Number 

of Pairs  

Equations (F: predictions) Correlation 

Value,  

( ): p-value 

Flow  -5.45 cfs 11 2
768.1315.947.14 FF  r

2
=0.939 

(<0.001) 

Flow 8.4- 218.2 cfs 220 14.9 + 0.77F r
2
=0.991 

(<0.001) 

Flow 222.22-  14 503.1-3.299F + 0.008768F
2
 r

2
=0.946 

(<0.001) 

TP load 1.3-24.21 lb/d 76 0.3759 + 1.854F-0.03479F
2
 r

2
=0.980 

(<0.001) 

TP load 24.79-218.51 133 8.1 + 0.7897F  r
2
=0.993 

(<0.001) 

TP load 221.68-457.78 7 -459.7 + 7.582F-

0.02838F
2
+0.000036F

3
 

r
2
=0.985 

(<0.001) 

TP load 474-702.45 5 2209-10.03F+0.0137F
2
 r

2
=0.997 

(0.001) 

TP load 702.45- 2 1923 + 9.15F (Extrapolation)*  

*Simple extrapolating two largest points is applied to avoid too large load. 
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Figure 6.5▬Regression between prediction and extended observations of 
TP load at the Little Bear River TMDL point. 
 

 

TMDL using load duration curve and total sum of daily loads and flows. 

 

A load duration method is a data-driven approach using long-term stream flow gauge 

station data (Neilson et al., 2005).  Flow duration curves relate flow values (y- axis) to 

the percent of time (x-axis) that flow values are met or exceeded (Figure 6.6).  The x-axis 

represents the percent of time or duration, as in a cumulative frequency distribution and 

the y-axis represents the flow value (typically daily average discharge rate) associated 

with that percent of time or duration (USEPA, 2007).  Flow duration intervals are 

expressed as a percentage, with 0 corresponding to the highest flow value in the record, 

and 100 to the lowest.  In Figure 6.6, a flow duration interval of 60 % associated with a 

flow value of 8.5 cubic feet per second (cfs) implies that 60% of all observed daily 

average stream discharge values equal or exceed 8.5 cfs (Neilson et al., 2005).   

Water quality targets of TP concentration are translated into TMDLs through the  

y = -459.7 + 7.582x - 0.02838x
2
 + 0.000036x

3 

                            R
2
=0.9912 
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Figure 6.6▬Flow duration curve at East Fork of Sevier River, UT, USGS 
10183900 (Neilson et al., 2005). 
 

loading capacity.  USEPA (USEPA, 2007) currently defines loading capacity as “the 

greatest amount of loading that a water can receive without violating water quality 

standards.”  Therefore, a loading capacity duration curve (TMDL curve) is developed by 

multiplying flow duration curve with the numeric water quality target and a conversion 

factor for the target pollutant.  For example, the TMDL corresponding to a flow duration 

interval of 60 % is calculated by 8.5 (cfs) ⅹ 0.05 (mg/L) ⅹ 5.389 (conversion factor for 

load in lb/day). 

Each actual pollutant load is calculated by multiplying an average daily flow by 

the pollutant concentration on that day.  These historical loads are also plotted on the 

graph similar to Figure 6.7 for every different flow duration interval.  If the historical 
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load falls on or below the TMDL curve, this means compliance with water quality criteria 

(Neilson et al., 2005).   

The load reduction is determined based on allowable percentage of loads above 

TMDL curve and the margin of safety.  USEPA classified the margin of safety (MOS) as 

two types, „Explicit‟ and „Implicit‟ (USEPA, 2007).  In the explicit type, the safety 

factors are used.  For example, the MOS was 10% of the criteria (200 cols/100ml) for 

fecal coliform in TMDL for the Upper Brindley Creek (Alabama DEM, 2005).  In the 

implicit type, conservative assumptions are used.  The 7 day consecutive low flow  
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Figure 6.7▬Typical loading capacity duration curve at East Fork Sevier 
River, USGS gage 10183900. ▬ : TMDL,  ■  Historical loads (Observations) 
(Neilson et al., 2005). 
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occurring in a 10 year period (7Q10) was used as a critical flow condition in the TMDL 

for the South Platte River, Colorado to result in the lowest dilution of pollutants (USEPA, 

1993).  In this chapter, two explicit types of MOS are used based on TP load distribution 

including 0.2S (0.2 times of standard deviation of the predicted loads), and flexible MOS 

corresponding to water quality criterion violation of 10 % of all frequency (Smith et al., 

2001) to avoid excessive MOS and achieve flexibility.  An allocation including both 

point and non point loads are calculated by Equation 6.2 

 

 ∑ LA + ∑WLA = TMDL – MOS        (6.2) 

 

in which TMDL= Allowable total maximum daily load found using the Assimilative 

capacity for a particular water body and contaminant, LA = pollutant load allocation for 

non-point sources, WLA= pollutant load allocation for point sources discharges, and 

MOS= Margin of safety. 

For this TMDL, the 1997-1998 water year (October, 1997 to September, 1998) 

was used as the simulation period for a wet year, and the 2002-2003 water year (October, 

2002 to September, 2003) was used as the simulation period for a dry year.  The 

hydrologic characteristics of the spring run off season are different from the low flow 

season.  In the wet or dry year, the TMDL, MOS, allocation and load reduction were 

calculated for low flow (July to February) and high flow seasons (March to June) 

separately.   The TMDLs were determined for four categories: 1) low flow (July to 

February, 243 days); 2) high flow season (March to June, 122 days) in a wet year; 3) low 

flow and 4) high flow season in dry year.  Finally, annual historical TP loads, TMDLs 

and allocations were calculated by the weighted average for low flow and high flow 
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seasons because the period of low flow season (243 days) differed from that of high flow 

(122 days).      

 Because it is difficult to access high frequency load data in the TMDL process, 

the historical loads are commonly expressed by statistical representative values such as 

median, geometric mean or highest value (Alabama DEM, 2005; USEPA, 2007; Utah 

DEQ, 2000).  In this chapter, an estimated historical TP load (lb/day) during the 

simulation period was calculated using daily TP loads from the R-D method instead of 

using statistical representatives.  In the same manner, the allocation was calculated using 

daily flows from the R-D method (Equation 6.3). 

 

 La = ∑ LA + ∑WLA = TMDL – MOS  

                         xfLmgQ
d

/05.0
1

     (6.3) 

in which La = load allocation, TMDL= Allowable total maximum daily load found using 

the assimilative capacity for a particular water body and contaminant 

( fLmgQ
d

/05.0
1

 for TP), LA = pollutant load allocation for non-point sources, 

WLA= pollutant load allocation for point sources discharges, and MOS= Margin of 

safety, ∑Q = sum of daily flows during simulation period, d = number of simulation days, 

f = conversion factor between concentration (mg/L), flow (cfs) and daily load (lb/day). σ 

= standard deviation of daily TP loads during the simulation period, and x= number of 
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times for σ.  Reduction percentage was calculated based on total amount of estimated 

historical TP loads and flows (Equation 6.4). 

 100(%)
L

LL
h

ahR        (6.4) 

in which R=load reduction percentage, Lh =  average of historical TP daily loads (lb/d) 

and La=allocation (lb/d).   If it is assumed that the daily mean flows are the same after 

load reduction, the concentration reduction is the same as the load reduction.  The 

historical concentration and reduced concentration were calculated based on the total 

amount of TP loads and flows during the simulation period but not on statistics (average 

or mean of observations) in this chapter. (Equation  6.5).   

f
Q

L
C            (6.5) 

in which ∑L= sum of daily TP loads (L=Lh for historical concentration and L=La for 

reduced concentration), ∑Q= sum of daily flows and f = conversion factor. 

 Two TP load reduction strategies are tested in this chapter.  One is to reduce the 

TP load to allow 10 % of the predicted TP concentrations to violate the water quality 

criterion.  The other is to reduce the estimated historical TP load to the allocation (TMDL 

- xσ) during a simulation period.  The first (Frequency targeted approach) is based on 

statistics.  MOS and the reduction percentage are determined by the only TP load 

corresponding to the 90
th

 percentile of TP concentrations.  Because the target is that the 

90th percentile of TP concentration meets 0.05 mg/L, MOS are adjusted to satisfy this 

condition.  The second approach (total mass targeted approach) is based on only 
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allocation during simulation period.  The MOS was 0.2 σ (standard deviation of loads for 

each season) and the total mass target (allocation) was TMDL – 0.2 σ. 

 

Results 

 

 Most calibrated daily flows and daily TP loads from the R-D method and 

calibration are close to observed flows and TP loads from 1978 to 2004 (Figures 6.8, 6.9).  

It was not possible to verify all of the peak predicted loads and flows because the peaks 

of observations are not accessible in the EPA STORET or USGS data bases.   According 

to these results, there were four peak loads from October, 1998 to September, 2000 

(Figure 6.9).  While the first and third peak represented annual peak loads during spring 

runoff, the second and forth peak loads were caused by unusually high TP concentrations.  

TP concentration observations at January 1, 2000 and August 10, 2000 were 0.79 mg/l 

and 1.88 mg/l (Figure 6.11).  These estimated values, which were estimated by R-D 

method and calibration, are used for the TMDL as estimated historical values. 
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Figure 6.8▬The flow time series at the TMDL location (▬ : estimated flows 
using R-D method,  ▲ :observations).  
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Figure 6.9▬The TP load time series at the TMDL location (▬ : estimated 
loads using R-D method,  ▲ :observations, A : 5/24/1999, B: 1/4/2000, C: 
4/29/2000, D: 8/10/2000). 
 

 The TP load duration curves showed the trend of both flow and load change 

simultaneously along with the frequency of water quality standard violation.  For 

example, the flow and TP load increased from March 1 to May 11, and then decreased 

from May 12 to June 30 simultaneously in 1998 (Figure 6.10 (b)).  The load duration 

curve for March 1 to June 30 in 2003 showed same pattern of flows and TP load trend 

within high flow season as in 1998 (Figure 6.10 (d)).  All plots showed the same direction, 

which means that the TP load and flow increased or decreased together, on the duration 

curve for high flow seasons.   The plots on low flow season were irregular in 97-98 and 

02-03 water years (Figures 6.10 (a) and 6.10 (c)).  For example, the TP load decreased 

while flow increased from August 19 to September 30, 1998.  Because the TMDL 

focuses on the violation frequency of water quality criterion (= 0.05 mg/L as TP), or 

allocation within a season using the sum of daily loads and flows in equation 6.5, these 

irregular trends of flow and TP load on low flow season may not significantly affect the 

A 
B 

C 

D 
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TMDL task.  The vertical estimated load plots in the load duration curve means that the 

TP load increased without any change of flow (Figure 6.10 (a)).  This unpractical 

prediction was caused by two observation points on July 15 and August 18, 1998.   The 

flows are the same at two sampling dates while the TP load on August 18 (58.2 lb/d) is 

higher than July 15 (32.6 lb/d).  In this case, the same rank is assigned to all dates 

between two dates for flows resulting in the same flow between two dates. Some 

possibilities for the irregular trend of flow and TP load will be discussed later.          

There is no difference between the TMDL and the estimated historical load using 

the frequency targeted and total mass targeted approaches, but the different approaches 

provided the different MOS, allocation, and reduction percentages (Tables 6.2, 6.3).  By 

the frequency targeted approach, the reduction percentage for low flow season was larger 

than high flow season in the 97-98 and 02-03 water years.  The higher load reduction 

percentage was required to decrease the load by the TMDL in lower flow than the higher 

flow corresponding to the same difference between the historical load and TMDL in the 

frequency targeted approach (Figure 6.10 (a) and Figure 6.10 (c)).  So, the high loads 

corresponding to the low flow duration interval caused high load reduction percentage in 

low flow seasons of the 97-98 and 02-03 water years when frequency targeted approach 

was used.  According to the total mass targeted approach, the load reduction percentage 

for low flow season was smaller than for high flow season in the 97-98 water year (Table 

6.3).  Both approaches showed a significant difference between the load reduction 

percentages in wet and dry years.   
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Figure 6.10▬The TP load duration curve for TP: a) during low flow season 

in 1997-1998 water year (◆: TMDL, and ■▲ⅹⅹ◆ : calibrated TP loads for 10/1-

10/21, 10/22-1/27,1/28-2/28. 7/1-8/19 and 8/20-9/30) , b) during high flow 

season in 1997-1998 water year (◆: TMDL, and ■ⅹ: calibrated TP loads for 

3/1-5/11, 5/12-6/30), c) during low flow season in 2002-2003 water year (◆: 

TMDL, and ■,▲,ⅹ,ⅹ: calibrated TP loads for 10/1-10/30, 10/31-12/13, 12/14-

2/28 and 7/1-9/30), d) during high flow season in 2002-2003 water year (◆: 
TMDL, and ■,▲: calibrated TP loads for 3/1-5/17, 5/18-6/30). 
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Table 6.2▬TMDL, allocation, MOS and reduction percentage to meet the 
10% frequency violation against numerical criterion (= 0.05 mg/L as P); 
Frequency Targeted mothod. 

 97-98 water year 02-03 water year 

 Low flow 

season 

High flow 

season 

Total 

(Annual) 

Low flow 

season 

High flow 

season 

Total 

(Annual) 

Estimated 

historical TP 

load (lb/d) 

39.16 76.61 51.67 10.51 19.19 13.41 

TMDL (lb/d)  27.78 50.82 35.48 9.95 22.04 13.99 

MOS (lb/d) 11.8 

(=1.24 σ) 

10.16 

(=0.32 σ) 

11.31 6.39 

(=1.25 σ) 

6.11 

(=1.45 σ) 

6.29 

Allocation 

(lb/d) 

15.98 40.66 24.17 3.56 15.93 7.70 

Reduction 

percentage 

(%) 

59.2 46.9 53.2 66.1 17.0 42.6 

Historical  

TP Conc. 

(mg/L) 

0.0705 0.0754 0.0728 

 

0.0528 0.0435 0.0479 

Reduced TP 

Conc.  (mg/L)  

0.0288 0.0400 0.0341 0.0179 0.0361 0.0275 

* σ = standard deviation of TP loads.  

Reduced TP concentration= (1-Reduction percentage) ⅹ Historical TP concentration 

 

The historical TP concentration during a wet year is much higher than during a 

dry year.  This means that the water was impaired in a wet year more than a dry year, and 

higher reduction percentage is required for wet years.   The allocation (21.20 lb/day) is 

smaller than the estimated historical load (19.19 lb/day) for high flow season in the 02-03 

water year using the total mass approach.  This means that the stream has capacity to take 

a larger TP load of 2.01 lb/day and no TP load reduction was required.  Most estimated 

TP concentrations were low in this season (Figure 6.11).  The large reduction percentages 

were obtained in the frequency approach, and the reduction percentages seem to not be 

practical while the reduction percentages from the total mass targeted approach seem  
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Table 6.3▬TMDL, allocation, MOS and reduction percentage using  0.2σ as 
MOS; total mass targeted method. 

 97-98 water year 02-03 water year 

 Low flow 

season 

High flow 

season 

Total Low flow 

season 

High flow 

season 

Total 

Estimated 

historical TP 

load (lb/d) 

39.16 76.61 51.67 10.51 19.19 13.41 

TMDL (lb/d)  27.78 50.82 35.48 9.95 22.04 13.99 

MOS (lb/d) 1.9 

    (=0.2σ) 

6.35 

(=0.2σ) 

3.39 1.02 

    (=0.2σ) 

 0.84 

(=0.2σ) 

0.96 

Allocation 

(lb/d) 

25.9 44.47 32.09 8.93 21.20 12.36 

Reduction 

percentage 

(%) 

33.9 42.0 37.9 15.0 0 7.8 

Reduced TP 

Conc.  (mg/L)  

0.0466 0.0438 0.0452 0.0449 0.0435 0.0442 

* σ = standard deviation of TP loads.  

Reduced TP concentration= (1-Reduction percentage) ⅹ Historical TP concentration. 

 

practical.  The reduced concentrations from the frequency targeted approach were very 

small (Table 6.2).  This issue discussed below. 

 

Discussion 

 

 Some estimated TP concentrations from the R-D method differed from 

observations (Figure 6.11).  There were observed TP concentrations but not observed  

flows at April 11, 2000 (A in Figure 6.11) and March 12, 2001 (B in Figure 6.11) so that 

no observed TP load at those dates were involved in estimating loads by the R-D method.  

This caused overestimation of TP concentrations through overestimation of TP loads at 

those dates.  This issue is recommended for future study. 

 The irregular trend of historical load duration plots may be caused by a point 

source load.  A point source load affects the water quality significantly during the low  
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Figure 6.11▬Total phosphorus concentration time series at TMDL point.  
▬ : estimated TP concentrations, ▲: observations. 
 

flow season (Cleland, 2002).  If a major point load, say the discharge from the Wellsville 

Lagoon decreased, and clean effluent from the Hyrum dam increased, the TP load may 

decrease without a decrease of flow.  

 The MOS is a critical issue of water quality management.  If the MOS is too large, 

the allocation become too small and too much money must be paid to meet target load 

reductions.  If the MOS is too small, allocation will be large and money will be saved, but 

the water will not have the appropriate quality.  The frequency targeted TMDL approach 

depends on only one observation of all water resources data, the observation 

corresponding to the 90
th

 percentile TP concentration for a “10% violation allowed 

strategy” or the observation corresponding to maximum TP concentration for a “no 

violation allowable strategy”.  For example, if the 90 percentile of all TP concentrations 

is 0.1 mg/L, the load reduction percentage should be 50% to meet the water quality 

criterion, 0.05 mg/L for 10% violation allowed strategy.  Even though both the 90
th

 

A 

B 
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percentile and maximum concentration come from concentration data, the value may not 

be representative for some cases.  Because the maximum or 90
th

 percentile of TP 

concentration is a simple order statistic, the concentration distribution under or over the 

90
th

 percentile, the 90
th

 percentile may be ignored.  These characteristics of the frequency 

targeted TMDL approach may provide too large or too small MOS.  In this study, the 

MOS seem to be too large in the frequency targeted approach because the reduced 

concentrations are very low (Table 6.2) and even the predicted load after reduction above 

TMDL curve are very close to TMDL curve (Figures 6.12, 6.13) 

 The total mass targeted TMDL approach may be more practical in the area with 

large variance of load or concentration.  The purpose of this approach is to reduce the 

historical TP load (Total mass of TP) to the total allocation during the simulation period.  

In this approach, because the sum of loads on all dates during the simulation period is 

compared to the sum of allocations, the reduction percentage depends on all TP loads.  In 

this approach, when the loads are more widely distributed with high σ, the possibility of a 

water quality standard violation is high under same historical load and TMDL.  The 

larger MOS (larger 0.2σ) for more widely distributed load may produce the appropriate 

allocation with flexibility.   

  When xσ is used as a MOS, the range of x may be another issue but 0.2 may be 

enough at the mouth of the Little Bear River based on two observations.  The first is that 

the reduced TP concentrations seem to be small enough.  The range of MOS was 6.8 to 

12.5 % of TMDL, and the range of reduced concentration was 0.0438 to 0.0466 except 
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during high flow season in the 2002-2003 water year.  The MOS of the high flow season 

in the 2002-2003 water year is small but the load reduction is not required for this case.   
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Figure 6.12▬The TP load duration curve for TP during high flow season in 

97-98 water year (◆: TMDL, and ■ ◇: calibrated TP loads for 3/1-5/11, 5/12-

6/30 after reduction to meet 10% frequency violation against 0.05 mg/L). 
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Figure 6.13▬The TP load duration curve for TP during high flow season in 

2002-2003 water year (◆: TMDL, and ■ ◇: calibrated TP loads for 3/1-5/17, 

5/18-6/30 after reduction to meet 10% frequency violation against 0.05 
mg/L). 
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The second is that the load reduction percentages were estimated separately for dry and 

wet years.  If the reduction percentage for the wet year total is selected as a target, this 

may be a safe value.   

The total mass targeted TMDL required daily mean flows and daily 

concentrations to estimate daily loads.  Using low frequency data may cause 

inappropriate historical load, TMDL, or MOS.  Even though many commercial 

hydrological and water quality models are available to predict daily frequency flow and 

TP concentration, data of some variables associated with prediction of flows or TP 

concentrations may not sometimes be accessible.  In this case, the R-D method (Chapter 

4) is an alternative because this method requires only low frequency flows, TP loads, and 

the times of peak flow and TP load to predict daily flows and loads.  

  

Summary and Conclusions  

 

 The R-D method was used to fill in data gaps of flows and TP loads.  The time 

series of cumulative failure probabilities (Rank time series) and cumulative failure plot 

(data distribution) of extended observations are required for this method.  The estimation 

of flows and TP load was enhanced by the regression between extended observations and 

predictions from the R-D method.   

Daily TP loads and daily mean flows from the R-D method were used for TMDL 

calculation at the mouth of the Little Bear River.  The TMDLs and historical TP loads are 

calculated by these daily flows and TP loads, instead of the mean or median from low 

frequency data. 



 182 

 The reduction percentages were calculated for four different categories, low flow 

(July to February) and high flow (March to June) for a wet year (97-98 water year) and 

those for a dry year (02-03 water year) by two different approaches, the frequency 

targeted approach and the total mass targeted approach. 

 Higher reduction percentages are required for wet year than that for a dry year 

according to both approaches.  The reduction percentage from the frequency targeted 

approach is higher than that from the total mass targeted approach because the large MOS 

was applied to reduce the frequency of water quality violation to 10 %. 

 When the 0.2σ of TP load are used as MOS, more practical reduction percentages 

and reduced concentration were obtained using the total mass targeted approach. 

  

References 

 

Alabama DEM (Alabama Department of Environmental Management) (2005) Total 

Maximum daily Load for Upper Brindley Creek. AL/03160109-030_01, Alabama 

Department of Environmental Management, Water Division, Montgomery, Alabama. 

 

Chess, D. (2000) Utah Watershed Review Vol 8, Utah Division of Water Quality. 

 

Cleland, B.R. (2002) TMDL development from the “bottom up” – Part II: Using Duration 

Curves to Connect the Pieces. Proc. of the National TMDL Science and Policy 2002 

Specialty Conf., November 2002. 

 

EMRG (Environmental Management Research Group at Utah Water Research 

Laboratory) (2004) Little Bear River Watershed boundary shapefile. 

 

Helsel, D.R. (2005) Nondetects and Data Analysis. John Wiley & Sons, Inc.: Hoboken, 

New Jersey.  

 

Kaplan, E.L.; Meier, P. (1958) Nonparametric Estimation from Incomplete Observation, 

J. American Statistical Assoc. 53 (238), 457-481. 

 

Mason C. (2002) Biology of Freshwater Pollutant, 4
th

 ed; Pearson Education Limited: 

Essex, England. 



 183 

 

Minitab Inc. (2006) Minitab® 14  

 http://www.minitab.com/support/macros/default.aspx?action=display&cat=non 

accessed July.2006. 

 

Neilson, T. B.; Stevens, D. K; Horsburge, J. S. (2005) TMDL Development Approach, in 

Total Maximum Daily Load: Approaches & Challenges, Younos, T. (Ed.), pp 47-78. 

PennWell Corporation: Tulsa, Oklahoma. 

  

NARA (National Archives and Records Administration) (2000) Federal Register Vol 65. 

No. 135. Part 6 Environmental Protection Agency. 

 

Smith, E.P.; Ye, K.; Hughes, C.; Shabman, L. (2001) Statistical Assessment of Violations 

of Water Quality Standards under Section 303(d) of the Clean Water Act, 

Environmental Science and Technology 35 (3), 606-612. 

 

Stiles, T.C. (2001) A Simple Method to Define Bacteria TMDLs in Kansas. National 

TMDL Science Issues Conference, March 3-6, St. Louis, Missouri.  pp.375-378. 

 

Utah DEQ (Utah Department of Environmental Quality) (2000) Little Bear River 

Watershed TMDL. Salt Lake City, Utah. 

 

USEPA (2004) Better Assessment Science Integrating Point and Non Point Sources 

(BASINS). http://www.epa.gov/waterscience/BASINS/ accessed November, 2004. 

 

USEPA (2005) STORET (Storage and Retrieval),  

 http;//www.epa.gov/stormoda/DW_stationcriteria. accessed January, 2005 

 

USEPA (1993) TMDL case study: Denver Metro The South Platte River Segment, 

EPA841-F-93-001. http://www.epa.gov/owow/tmdl/cs1/cs1.htm. 

 

USEPA (2007) An Approach for Using Load Duration Curves in the Development of 

TMDLs. EPA 841-B-07-006. 

 

USGS (2004) National Hydrograph Dataset. http//nhd.usgs.gov/data.html. accessed 

November, 2004. 

 

Utah DEQ (Utah Department of Environmental Quality) (2000) Little Bear River 

Watershed TMDL: Salt Lake City, Utah. 

 

Younos, T. (2005) Preface, in Total Maximum Daily Load: Approaches and Challenges, 

PennWell Corporation: Tulsa, Oklahoma. 

 

 

 

http://www.minitab.com/support/macros/default.aspx?action=display&cat=non
http://www.epa.gov/waterscience/BASINS/
http://www.epa.gov/owow/tmdl/cs1/cs1.htm


 184 

 

CHAPTER 7 

HIGH RESOLUTION BAYESIAN NETWORK TO EVALUATE EFFECTS OF 

WATER QUALITY CONSERVATION PRACTICES 

 

ABSTRACT 

 

The Little Bear River watershed, Northern Utah is on a high-priority list of 

watersheds that are being adversely affected by nonpoint source pollution.  Reduction of 

Total phosphorus (TP) concentration has been observed since 1990 at the mouth of the 

Little Bear River.  A Bayesian Network was used to simulate the effect of the Little Bear 

River Conservation Project (LBRCP) and exogenous variables including point source 

load, agricultural landuse and annual precipitation on the reduction of TP concentration.  

In this chapter, the estimated 9652 flows, TP loads and concentrations from Rank-Data 

distribution method (R-D method) were used to support 21 categories of those variables 

in the Bayesian Network.   The cumulative failure plots (distribution of predicted values) 

of TP concentration were obtained using the Bayesian Network under different scenarios.  

The LBRCP decreased the TP concentration significantly only in wet years.  Increased 

agricultural land area and point source load caused higher TP concentration but the 

annual precipitation increases caused only small increases of TP concentration because 

TP load and flow increased simultaneously.  The concentration‟s probabilities from the 

BN were linked to rank time series of TP concentration by the R-D method to obtain time 

series of TP concentration under a simulation scenario.  According to this time series, the 

LBRCP caused a longer duration and earlier starting time of TP concentration equal to or 

below 0.05 mg/L under wet annual precipitation condition. 
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INTRODUCTION 

 

 The Little Bear River in Cache County, Northern Utah flows from southeast to 

northwest, bounded by mountains, and drains to Cutler Reservoir, west of Logan, UT 

(Figure 7.1).  The Little Bear River watershed is on a high-priority list of watersheds that 

are being adversely affected by nonpoint source pollution (Chess, 2000).  In the 

watershed below Hyrum Reservoir, approximately 50.4% is cropland and pasture, 43.8% 

is range, forest, water body and riparian, and 5.8% is urban area (Utah DNR, 2004).   

 Since the USDA started the Little Bear River Conservation Project (LBRCP) for 

best management practices (e.g., fencing, vegetation buffer and bank restoration) in 1990 

(USEPA, 2006; EMRG, 2007), Total Phosphorus (TP) concentrations have decreased 

gradually at the mouth of Little Bear River.  The water below Hyrum Reservoir is 

impaired more than that above Hyrum Reservoir (Utah DEQ, 2000).  Our goal is to 

explore the causes of the nutrient concentration reduction at the mouth of the Little Bear 

River because exogenous forces including land use changes and climate changes as well 

as nutrient management (LBRCP) can affect the water quality at management sites. 

 Bayesian Networks (BNs) were designed to accept and process inputs of varied 

types of information: observations, model results, expert judgment, scenario types and a 

variety of other non-numerical inputs (Marcot et al., 2001; Varis and Jussila, 2002; 

Borsuk et al., 2003).  BNs are designed to evaluate the effects of two or more variable 

combinations (scenarios) on other variables (Marcot et al., 2001).  However, most 

previous BNs provide the probabilities of a few categories for pollutant concentrations 

(Marcot et al., 2001; Varis, 1998; Borsuk et al., 2003).  This characteristic has caused the 

difficulty in interpretation of probabilistic outputs. 
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Figure 7.1 | Little Bear River Watershed located in Northern Utah (EMRG, 2004; USGS, 

2004; USEPA, 2004).  Flow_ xx = Flow (cfs), TP_xx = TP concentration (mg/l) and 

SC_xx = Specific conductance (umho/cm). xx is last four digits of station ID. 

 

In this chapter, predicted flows, TP loads and concentrations from Rank- Data 

distribution method (R-D method) (Chapter 4) were collected and added to the BN 

database for the subwatershed below Hyrum Reservoir.  Because the number of flows, 

TP loads and concentrations at the mouth of the Little Bear River in BN database was 

large, a large number of levels could be used for those variables (Appendix J).  The 

probabilities from those categories may be converted to a cumulative failure plot for 

every different TP concentration and load. 
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The hypothesis variable was the TP concentration at the mouth of the Little Bear 

River.  The effect of conservation practices on phosphorus concentrations at the mouth of 

the Little Bear River (at location 4905000 in Figure 7.1) were evaluated by comparing 

the cumulative failure plot of the TP concentrations during the conservation practice 

period to those before the conservation practices were implemented.  The exogenous 

variables were annual precipitation, agricultural landuse area and point source loads.  The 

effect of each exogenous variable on phosphorus concentrations was evaluated by 

comparing the cumulative failure plot of the TP concentrations for the one selected 

category of the exogenous variable to those for another selected category.  The effects of 

the combination of annual precipitation category and conservation practices option on the 

TP concentration in the stream were evaluated in the same manner.  The probabilistic 

outputs from the BN were connected with the rank time series from daily TP 

concentrations to obtain the concentration‟s time series during a simulation period by the 

R-D method.  This time series supported evaluation of the duration and timing for the 

violation of water quality standards under each simulation scenario of conservation 

practice and exogenous variables. 

        

METHODS 
 

Bayesian Network 

 

 A Bayesian Network (BN) is a probabilistic network model based on graphical 

relationships among variables (Castillo et al., 1997).  In a BN, the relationships between 

parent variables and child variables are logically expressed in a link and node structure 

where the state of the parent node predicts the state of the child node (Jensen, 1996).  
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Conditional Probability Tables (CPTs) show the probability of each discrete state, given 

the states of any parent nodes (Marcot et al., 2001).  The marginal probabilities are 

calculated using CPTs. 

 BN have been used previously in water quality assessment.  For example, 

Reckhow (1999) constructed a BN model for evaluating the effect of forest buffer on 

anoxia probability in the Neuse River estuary, North Carolina (Figure 7.2).  

The anoxia probabilities were calculated using conditional probabilities of 

combinations among percent forest buffer, nitrogen load reduction, precipitation 

conditions, flow and algal bloom variables (Figure 7.2).  The probabilities of percent 

forested buffer translate to the fraction of the river reach that has a proposed percentage 

with a forest buffer.  For example, if it is proposed that 20 % of a river reach has 70-80% 

of its length with a forested buffer, then p(70-80 % forested buffer) = 0.2 based on the  

 

 

Figure 7.2 | Schematic of an anoxia model (Reckhow, 1999). 
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proposal of North Carolina Environmental Management Commission (NCDENR, 2008). 

So, in Reckhow (1999), two cases were examined.  In the first case, the entire 

river reach was predicted to be 95-100% buffered (p(95–100% forested buffer)=1).   

Under this percentage of forested buffer, p(anoxia) was 0.27.  The second case was p(70-

80 % forested buffer)=0.2,  p(80-95 % forested buffer)=0.6 and  p(95-100 % forested 

buffer)=0.2 (proposed forest buffer percentage).  Under this proposed case, p(anoxia) was 

0.3.  Because the increase percentage of probability of anoxia was only 10% (from 0.27 

to 0.3), changing the scenario of probabilities for percent forested buffer, proposed 

percent forested buffer might be more efficient. 

 

Water-related data 

 

 A database was constructed to calculate CPTs supporting a BN.  All existing and 

predicted inputs: TP concentrations, flows, precipitation, agricultural landuse area and 

water quality conservation option were organized by variable (Table 7.1), and the BN 

was connected to this data base.  The sampling locations included the outlet from Hyrum 

Reservoir (4905650), inlet to Cutler Reservoir (4905000) and a discharge of Wellsville 

Lagoon (Figure 7.1).  The numbers of flow and TP concentration data of two permitted 

discharges (discharges of Northern Utah Manufacturing) were small, but all of the TP 

loads from these point sources were small compared to the TP load from Wellsville 

Lagoon (Chapter 5).  So, ignoring these point sources may be acceptable. 

The TP loads were calculated by multiplying the flow by the TP concentrations 

and converting the units to lb/day at these two sampling locations.  It is possible to 

calculate the TP load when there are both flow and TP concentrations.  Linear regression  
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Table 7.1 | Critical variables for evaluation of conservation project in the Little Bear 

River Watershed below Hyrum Reservoir 

 

Variables  Description Type References 

OP_CON  Conservation Project Option, Pre: 

Before starting the Project (1974-1989), 

Post: After starting the Project(1990-

2004)  

 

Decision  

LAND_AG2 Area of Agricultural Land Use. 

Interpolating or extrapolating 

Agricultural land use area among 1986, 

1996 and 2003. 

 

Exogenous Utah DNR 

(2004) 

PRECIP Annual Precipitation for each water year 

at Logan Radio KVNU (Station No. 

425182). 

 

Exogenous Western Region 

Climate Center 

(2006)  

LOAD_P2 TP load (lb/day) from point source 

(Wellsville Lagoon) 

 

Exogenous EPA 

STORET 

(2005) 

LOAD_5650 TP load (lb/day) at the effluent from 

Hyrum Reservoir (Location 4905650) 

 

State EPA 

STORET 

LOAD_5000 TP load (lb/day) into Cutler Reservoir 

(Location 4905000) 

State Prediction 

From R-D 

method 

LOAD_SW2 TP point and nonpoint load from 

subwatershed above the stream reaches 

between location 4905650 and location 

4905000 (inlet to Hyrum Reservoir)  

 

State Estimated from 

Flow and TP 

concentration in 

EPA STORET 

FLOW_5650 Flow (cfs) at the effluent from the 

Hyrum Reservoir (Location 4905650) 

 

State EPA 

STORET 

FLOW_5000 Flow (cfs) into Cutler Reservoir 

(Location 4905000) 

State Prediction 

From R-D 

method 

FLOW_SW2 Flow from subwatershed above the 

stream reaches between location 

4905650 and location 4905000  

 

State Estimated from 

flow in EPA 

STORET 

TP_5000 TP concentration (mg/L) into Cutler 

Reservoir (Location 4905000) 

State Prediction 

From R-D 

method 
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between upstream and downstream values was use to fill in the missing flows or TP 

concentrations at locations 4905650 and 4905000 (Chapter 5).  In order to support the 21  

categories of probabilistic outputs at location 4905000, the low frequency observations or 

predictions of flow, TP load and concentrations (FLOW_5000, LOAD_5000 and 

TP_5000) were replaced by the 9652 predicted flows, TP loads and concentrations (high 

frequency database) from the R-D method for the period from 1978 to 2004 (Chapter 6). 

 

Bayesian Network (BN) construction 

 

 Netica version 3.17 (Norsys Software Corp., 1997) was used to build the BN.  

Contingency tables are calculated by Netica in the BN based on the data in the high 

frequency database.  The BN estimated the effects of conservation practice (LBRCP) and 

exogenous variables on the TP load and TP concentrations at the mouth of the Little Bear 

River.   There are two variable groups, the TP load group and the flow group in the BN 

(Table 7.1).  The TP load group includes effluent TP load from the Hyrum Reservoir 

(LOAD_5650), TP load at the mouth of the Little Bear River (LOAD_5000) and a point 

TP load from Wellsville Lagoon (LOAD_P2).  Upstream TP load variables were linked 

to their downstream counterparts.  In the same way, the flow group included flows of all 

sampling locations, and upstream flow variables were linked to those downstream (Figure 

7.3). 

 The conservation practice option and exogenous variables were linked to 

subwatershed load (LOAD_SW2), the TP load from point sources and non point sources 

to the stream between location 4905650 and 4905000.  LOAD_SW2 was calculated by 

subtracting TP load at location 4905650 (LOAD_5650) from TP load at location 4905000 
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(LOAD_5000).  The annual precipitation (PRECIP) was linked to subwatershed flow 

(FLOW_SW), which is the flow from the watershed to the stream between locations 

4905650 and 4905000 and was calculated by subtracting flow at location 4905650 from 

flow at location 4905000.  Similarly, FLOW_SW is a parent variable of FLOW_5000.  

Finally, the TP loads (LOAD_5000) and flows (FLOW_5000) into Cutler Reservoir were 

connected to TP concentration (TP_5000) into the reservoir (Figure 7.3).  

 

Categorizing variables of high resolution BN 

 

 The conservation project option (OP_CON) is the only decision variable (Figure 

7.3).  The level Pre is before starting conservation practices and Post is after starting 

conservation practices.  There are three exogenous variables, agricultural land use area  

 

  

Figure 7.3 | Little Bear River BN for the LBRCP and exogenous variable effect 

evaluation (Definitions of variables are in Table 7.1). 
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(LAND_AG), point source TP load (LOAD_P), and annual precipitation (PRECIP).  

OP_CON and exogenous variables have no parent nodes (Figure 7.3).  LAND_AG, 

LOAD_P and PRECIP have two categories each (Table 7.2). 

The database for this BN has no point source TP load data before 1990 (before 

starting conservation practices).  Netica cannot calculate reliable conditional probabilities, 

p(LOAD_SW2|OP_CON, LAND_AG2, LOAD_P2, PRECIP) for the case of OP_CON=  

Pre in this situation because all of LOAD_P2 was empty for data combinations of the 

four variables, OP_CON, LAND_AG2, LOAD_P2, PRECIP when OP_CON is Pre.  A 

challenge of the BN is using the contingency table of subwatershed TP load in the 

upstream BN (BN for above Hyrum Reservoir) for conditional probability 

p(LOAD_SW2|OP_CON, LAND_AG2, LOAD_P2, PRECIP).  Because the pattern of 

flows and TP loads of two upstream and down stream BNs are similar each other 

(Chapter 5), it may be acceptable using the CPT of the upstream subwatershed load,  

 

Table 7.2 | Category boundary of variables for the BN 

 

Variables Category Range 

Agricultural 

Land Use(LAND_AG) 

as Acres 

 

L <24370  

H >=24370  

Point Source 

TP load 

(Load_P) as lb/day 

 

L <10.86  

H >=10.86 

Annual Precipitation as inches D <15.4 

W >=15.4 
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p(LOAD_SW1|OP_CON, LAND_AG1, LOAD_P1, PRECIP) for CPT of 

p(LOAD_SW2|OP_CON, LAND_AG2, LOAD_P2, PRECIP) of the down stream BN 

(Appendix I). 

 Each TP load or flow variable from the subwatershed and at location 4905650 has 

three categories, L (Low: smaller than 33 percentile value), M (M: from 33 percentile 

value to smaller than 67 percentile value) and H (High: equal to or larger than 67 

percentile value) (Appendix I).  The TP concentration, load and flow at the inlet to the 

Cutler Reservoir (TP_5000, LOAD_5000 and Flow_5000) were categorized as A to S (19 

levels) using every 5
th

 percentile values from the 5
th

 percentile to the 95
th

 percentile from 

the BN database.  The category boundary between T and U level was the 99.5 percentile 

(Appendix J).  Finally, this BN estimated high resolution probabilities of TP_5000, 

LOAD_5000 and Flow_5000 with 21 categories for each variable (Figure 7.4). 

 

Bayesian Network simulation 

 

 The purpose of the Little Bear River BN is to evaluate the effects of the 

conservation practices (LBRCP) and exogenous variables on the TP load and TP 

concentration into Cutler Reservoir.  In order to evaluate the effect of conservation 

practices, the conservation practice option (OP_CON, Evaluated variable) was selected as 

Pre or Post, and the probabilities of TP load and concentration variables (Compared 

variables) were calculated for these selections.  The probability of each category for 

agricultural land area (LAND_AG2), Point TP load (LOAD_P2) and annual precipitation 

(PRECIP) came from the BN database because the categories of these variables were set 

at their marginal probabilities (Figure 7.4, Table 7.3).  The probability of a category of an  
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.Table 7.3 | The scenarios of variables for each simulation 

 

Scena

-rio 

No. 

Evaluated 

Variable 

Selected Category of variables Compared 

variable OP_CON LAND_AG LOAD_P PRECIP 

1 OP_CON Pre or Post 

 

None  None None  TP_5000 

2 LAND_AG2 None  

 

L or H None None  TP_5000 

3 LAOD_P2 None  

 

None L or H None  TP_5000 

4 PRECIP None  None None D or W LOAD_5000  

FLOW_5000 

TP_5000 

5 OP_CON 

Under Dry 

Precipitation 

Year 

 

Pre or Post None None W TP_5000 

6 OP_CON 

Under Wet 

Precipitation 

Year 

Pre or Post None None D TP_5000 

 

exogenous variable was set as 1.0 to evaluate the effect of that variable.  For example, the 

probability of High (H) or Low (L) category of annual precipitation (PRECIP) was set as 

1.0 to evaluate the effect of PRECIP (Scenario No. 4 in Table 7.3).    

One interesting issue is under which annual precipitation condition the LBRCP 

had a larger effect on TP concentration.  This is done by comparing how much the 

probability distribution of TP_5000 changed when the OP_CON category was changed 

from Pre to Post under dry (D) or wet (W) conditions of annual precipitation (PRECIP) 

(Table 7.3). 
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Figure 7.4 | The outputs of the high resolution Bayesian Network below Hyrum 

Reservoir for pre LBRCP condition (OP_CON=Pre).  The blue box is the decision 

variable. Yellow boxes are exogenous and state variables. 

 

The probabilities for every different categories of TP_5000 from BN simulations 

were converted to Cumulative Failure Probabilities (CFP)
2
 (Kaplan & Meier, 1958) for 

the category boundaries by summing the probabilities.  For example, the probability for 

                                                 
2
 Cumulative Failure Probability (CFP) is identical to cumulative probability (Sheskin, 2004) in this chapter, 

but CFP was used instead of cumulative probability for consistency among Chapters 4, 6 and 7. 
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first category of TP _5000 from 0 to 0.0429 mg/L as TP was 18.1% and the probability 

for the second category from 0.0429 to 0.0527 mg/L was 6.08% in BN output under Pre 

OP_CON conditions, so the CFP for 0.0527 mg/L, the boundary of second category was 

24.18 % (=18.1% + 6.08%).  The plots of CFPs vs. the categorical boundary of TP 

concentration were constructed from these CFPs for each category boundary and then the 

71 TP concentrations for every different percentile from the 25 percentile to the 90 

percentile were found from the cumulative failure plots.   

 The Q-Q plots (quantile-quantile plots) between these pairs of 71 TP 

concentrations from the two different scenarios were used to evaluate the effect of 

conservation practice or each exogenous variable.   A Q-Q plot is a statistical tool that 

plots the quantile of one data set against the same quantile of the other data set 

corresponding to the same cumulative probability (Gilchrist, 2000).  For example, if the 

quantile of data set 1 at the cumulative probability of 50% is 0.05 mg/L and the same 

quantile of data set 2 is 0.045, a point is plotted at (0.05, 0.045).  This type of plot is used 

to compare two distributions (Gilchrist, 2000).  If a plot is on the line of perfect 

agreement, a TP concentration under a scenario is the same as the TP concentration under 

the other scenario corresponding to the same percentile.  A plot far from the agreement 

line means that there is a big difference between the two TP concentrations 

corresponding to the same quantile.   

 

Rank-Data distribution method (R-D method) 

 

 The R-D method is an approach to fill in data gaps of values of a variable by 

linking a data distribution (cumulative failure plot) to the rank time series of that variable 
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(Chapter 4).  For example, if the Cumulative Failure Probability (Kaplan & Meier, 1958) 

on July 2
nd

, 1995 is 0.98 on the time series of the rank and the flow for CFP = 0.98 is 

1370 cfs on the cumulative failure plot, the flow on July 2
nd

 ,1995 is estimated to be 1370 

cfs.   
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Figure 7.5 | The process of estimating time series by the R-D method combining data 

distribution with CFP time series.   (USGS gage 10128500, Weber River near Oakley, 

UT). 
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The process is shown in Figure 7.5.  In this chapter, the R-D method was used to estimate 

time series of TP concentration under scenarios of conservation practices. 

It is difficult to evaluate the effect of LBRCP on the timing or duration of the 

water quality standard violation by comparing the TP concentration time series in any 

year before starting LBRCP to those in any year after starting LBRCP.  The exogenous 

variables may affect the TP concentration and the hydrological characteristics including 

timing and duration of high flow season (Spring runoff) in any year differs from other 

years. If it may be assumed that the rank time series of TP concentration depends on only 

hydrological characteristics, it may be acceptable as an evaluation method for timing or 

duration comparing one year TP concentration time series from the R-D method under 

one scenario to that under the other scenario.  The cumulative failure plot for the 

probabilistic BN outputs of TP _5000 under Pre OP_CON (Scenario 1) or Post OP_CON 

condition (Scenario 2) was linked to rank time series of the TP concentration in the 97-98 

water year to obtain 1 year time series of TP concentration under scenario 1 or scenario 2.  

The rank time series of TP_5000 came from the daily TP concentration from the BN 

database. 

 

RESULTS 

 

Effects of conservation practice (LBRCP)           
and exogenous variables 
 

According to the Q-Q plot (Figure 7.6 a), the difference between TP concentration 

of TP _5000 under Post OP_CON (After starting conservation practices, scenario 1) and 

that under Pre OP_CON (Before starting conservation practices, scenario 1) 

corresponding to same CFP was small.  The effect of PRECIP (Annual precipitation)  
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      a)              b) 

  

      c)                                                                       d) 

 

 

 

 

Figure 7.6 | Q-Q plot for Scenarios: a) Scanario1, comparing the same percentile‟s TP 

concentrations for Pre OP_CON and Post OP_CON, b) Scenario 2, comparing the same 

percentile‟s TP concentrations for L (low) LAND_AG and H (High) LAND_AG, c) 

Scenario 3, comparing the same percentile‟s TP concentrations for L (low) LOAD_P and 

H (High) LOAD_P. d) Scenario 4, comparing the same percentile‟s TP concentrations for 

D (Dry) PRECIP and W (Wet) PRECIP. (▬ : line of perfect agreement). 
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on the TP concentration was smaller than the effect of LAND_AG (Agricultural landuse 

area) or LOAD_P (point source load) when Q-Q plots among scenario 2, 3, and 4 were 

compared (Figure 7.6 b, 7.3.1 c, and 7.3.1 d).  The PRECIP has two child variables, 

FLOW_SW2 and LOAD_SW2 while OP_CON and other exogenous variables have only 

child variable, LOAD_SW2.  When the selected category of PRECIP was changed from 

D (Dry) to W (Wet) in scenario 4, each flow and TP load corresponding to the same CFP  

increased simultaneously (Figure 7.7 a and 7.7 b), and annual precipitation might not 

affect TP concentration. 

When the selected category of OP_CON was changed from Pre to Post under wet 

annual precipitation conditions (scenario 5), each TP concentration corresponding to the 

same CFP decreased significantly (Figure 7.8 a).  In the simulation of scenario 6, 

changing OP_CON from Pre to Post cause small decreases of TP concentration in the low 

percentiles and small increase of TP concentration in the high percentile (Figure 7.8 b).  

It may be concluded that LBRCP affected TP concentration on the stream during the wet 

year. 

 

TP concentration time series by R-D method 

 

 Because the TP concentration violated the water quality criterion (0.05 mg/L) on 

many days, the timing and duration of TP concentrations equal to or below water quality 

criterion are evaluated.  When the TP concentration from the BN outputs under Scenario 

1 was connected with the rank time series of TP concentrations of the BN database in 97-

98 water year, the magnitude of TP concentration for Post OP_CON was not similar to 

those for Pre OP_CON in the low concentration range, but the timing and duration below  
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Figure 7.7 | Cumulative failure plots for Scenario 4 under D (Dry) PRECIP and W                  

(Wet) PRECIP: a) Flow cumulative failure plot b) TP load cumulative failure                  

plot ( -- : W PRECIP, --:D PRECIP). 

 

 

 

 

  

 

Figure 7.8 | Q-Q plot for Scenarios 5 and 6 comparing the same percentile‟s TP      

concentrations for Pre and Post OP_CON under a) W (Wet) PRECIP b) under D               

(Dry) PRECIP. 
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or equal to 0.05 mg/L for Post OP_CON was very similar to those for Pre OP_CON 

(Figure 7.9).  The timing and duration for Post OP_CON differed from those for Pre 

OP_CON as did the magnitude when the TP concentrations from BN outputs under 

Scenario 5 (under wet annual precipitation condition) were connected with rank time 

series (Figure 7.10).  For example, the TP concentrations were equal to or below 0.05  
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Figure 7.9 | TP concentration Time series from R-D method for scenario 1 ( -- : Post 

OP_CON, --:Pre OP_CON)  
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Figure 7.10 | TP concentration Time series from R-D method for scenario 5 ( -- : Post 

OP_CON, -- : Pre OP_CON under wet annual precipitation) 
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mg/L for 16 days for Post OP_CON but for 9 days for Pre OP_CON from December, 

1997 to January, 1998 (Figure 7.10).  

 The TP concentrations were equal to or below 0.05 mg/L for 12 days for Post 

OP_CON but for 3 days for Pre OP_CON from February, 1998 to March, 1998 (Figure 

7.10).  The date starting equal to or below 0.05 mg/L for Post OP_CON is 4 day earlier 

than the date for Pre OP_CON under wet precipitation condition.  The time series of TP 

concentration for Post OP_CON were very similar to those for Pre OP_CON in all TP 

concentration range under the dry annual precipitation condition (Figure 7.11).  This 

issue discussed below.  It may be concluded that the conservation practice affected the 

timing and duration for the violation of the water quality standard under the wet year. 

 

DISCUSSION 

 

In the simulation of Scenario 6, changing OP_CON from Pre to Post caused small 

decreases of TP concentration in the low percentiles and small increases of TP  
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Figure 7.11 | TP concentration Time series from R-D method for scenario 6 ( -- : Post 

OP_CON, -- : Pre OP_CON under dry annual precipitation). 
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concentration in the high percentile.  It is difficult to interpret this result because two 

opposite direction of TP concentration change simultaneously occurred, but the gap 

between Q-Q plots and the line for dry annual precipitation condition in Figure 7.8 b 

seems ignorable comparing to Figure 7.8 a for wet annual precipitation condition.  

According to the estimated TP concentration time series for the dry year (Figure 7.11), 

the time series for Post OP_CON were very similar to those for Pre OP_CON.  This may 

be evidence that the effect of conservation practices on TP concentrations was ignorable 

for the dry year.  Because the time series came from same data distributions as those in 

Figure 7.8 b), it may be concluded that the gaps between Q-Q plots and the line for dry 

annual precipitation condition in Figure 7.8 b were ignorable. 

The hypothesis test such as paired sample t-test (parametric) or Wilcoxon paired 

sample test (non-parametric) is more powerful than a graphical method such as Q-Q plot 

or cumulative failure plot to evaluate the effect of conservation practice on water quality.  

For example, in paired sample t-test between TP concentration for Pre OP_CON and for 

Post OP_CON corresponding to same percentile, we can say that the null hypothesis, 

„mean of the differences between TP concentrations corresponding to same percentile 

under two different scenarios is 0‟ is rejected or not rejected at a given confidence level.  

There are some restrictions in this hypothesis test.  For a paired sample t-test, the normal 

distribution assumption is used for the population of differences.   For the Wilcoxon 

paired sample test, the distribution of differences must be symmetrical about the median 

(Zar, 1999).  Because the distribution of the differences of TP concentrations from BN 

did not satisfy any distributional assumption, graphical methods were used.  However, 

the high resolution BN output was more powerful than the conventional BN output 
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because this allowed the evaluation of the conservation practices or exogenous variables 

using TP concentrations corresponding to the entire percentile range.  In a conventional 

BN, we may say only that the probability of a category of a variable increased or 

decreased when changing the scenario.  For example, we may say that the probability of 

water quality criterion violation (> 0.05 mg/L) decreased from 66.5% to 63.1%, changing 

OP_CON from Pre to Post in conventional Little Bear River BN (Chapter 5), but we may 

say all differences between TP concentrations for Pre and Post corresponding to the same 

percentile was very small from the BN using high frequency data (high resolution 

Bayesian Network).  The high resolution BN may also support the R-D method to 

construct TP time series output. 

 

SUMMARY AND CONCLUSIONS 

 

 The high resolution BN simulated the effects of the LBRCP and exogenous 

variables on the TP concentration at the mouth of the Little Bear River.  High resolution 

BN provided 21 output categories for each of TP concentration, flow and TP load.  This 

type of result was clearer than the result from conventional BN to evaluate the effect of 

the conservation practices or exogenous variables.  

According to the Q-Q plot, the conservation practices (LBRCP) had only a small 

effect on the TP concentration when the all data in data base for both dry and wet years 

were used.  However, the LBRCP decreased the TP concentration significantly in a wet 

year.  

  There were three exogenous variables, agricultural landuse areas, point source 

loads and annual precipitation.  Increased agricultural land areas and point source loads 



 207 

caused higher TP concentrations but the annual precipitation increases caused only small 

increases of TP concentrations because TP loads and flows increased simultaneously.  

 The concentration‟s probabilities from high resolution BN were linked to rank 

time series of TP concentration by the R-D method.  The LBRCP allowed longer duration 

and earlier starting of TP concentration below 0.05 mg/L under wet annual precipitation 

conditions while any noticeable effect of the LBRCP on TP concentration was not 

observed in time series for a dry year. 
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CHAPTER 8   

 

SUMMARY AND CONCLUSIONS 

 

 Alternative statistical methods for censored data are used to evaluate the water 

quality at the Little Bear River.  The Rank-Data distribution method was developed to fill 

the data gaps and supported the Bayesian Networks and Total Maximum Daily Load 

(TMDL) processes. 

 

Characteristics of             

Little Bear River Watershed 

 

The two head waters, East Fork and South Fork of the Little Bear River, have 

good water quality according to summary statistics while the Little Bear River below the 

confluence of these waters was impaired with TP.  

Location 4905000 (Above Cutler Reservoir) had significant seasonality in all 

parameters. Other locations did not show a significant seasonality in TP or pH while 

there was significant seasonality in other parameters. 

TP concentration had strong linear correlation to turbidity at each location.  This 

correlation shows that turbidity may be an indicator of TP concentration in the Little Bear 

River watershed.  There were significant correlations between water quality of upstream 

and down but the turbidity did not have any significant correlation between above and 

below Hyrum Reservoir. 

Trend analysis showed a significant downward trend of TP and DP concentration 

after starting LBRCP, but did not show any trends of TP concentration before LBRCP.  

DP reduction was faster than PP reduction at location 4905000 (Above Cutler Reservoir). 
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Filling data gaps by a Rank-Data                                           

distribution method (R-D METHOD) 

 

The R-D method consists of three steps: 1) creation of estimated distribution based 

on the distribution of observations, 2) estimation of time series ranking of predictions and 

3) assignment of predictions to each date.  

The first step creates CF plot from observations.  A large number of predictions 

may be reconstructed based on this CF plot.  The second step calculates the CFP time 

series of predictions based on the observed CFP time series by interpolation.  The CFP 

time series may be improved by adding estimated annual peak CFPs before interpolation.  

The annual peak CFP is determined by optimizing the extended CFP slopes.  The third 

step assigns predictions to simulation dates by matching the rank of prediction within an 

estimated distribution to the rank of optimized CFP time series. 

The estimated distribution from CF plot of observations was similar to the 

distribution of original data.  Optimizing the CFP time series by calibrating extended CFP 

slopes enhanced the agreement of time series of predictions with time series of original 

data. 

 The estimated time series by the R-D method were closer to the original time 

series than those estimated by simple interpolation, and the R-D method was more 

powerful for the data set collected with a longer sampling block. 

 The R-D method may be used to reduce the sampling frequency keeping the same 

error and reducing the measurement cost. 
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Bayesian network to evaluate effects                

of the Little Bear River water quality                    

conservation project 

 

In order to evaluate the effect of conservation practices and exogenous variables 

on the TP load and TP concentration, BN1 (Above Hyrum) and BN2 (Below Hyrum) 

were constructed. Each BN used a different database.  Some missing value of TP 

concentration and flow were filled with values estimated by regression between upstream 

and down stream data or by regression between two different variables. 

 BN simulations showed that conservation practices in the Little Bear River 

reduced subwatershed TP load above and below Hyrum Reservoir noticeably but the 

reductions were not large enough to reduce TP concentration into the receiving reservoirs 

noticeably, due to dilution of the effect by other factors.  BNs suggested that the 

conservation practice have been working to reduce TP loads but more implementations of 

conservation practices are required. 

 There were three exogenous variables: agricultural landuse area, point source load 

and annual precipitation.  Increased agricultural land area caused noticeably higher 

subwatershed TP load above and below Hyrum Reservoir significantly but not higher TP 

load and concentration into the receiving reservoirs, due to dilution of the effect by other 

factors.  However, increased point source load caused significantly higher TP loads and 

concentrations into the Hyrum and Cutler reservoirs. 

 Increased annual precipitation caused a noticeably higher subwatershed TP load 

above and below Hyrum Reservoirs.  These load increases were large enough to 

significantly increase TP loads into the Hyrum and Cutler reservoirs, but not TP 
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concentration because more annual precipitation caused more flow and more TP load 

simultaneously. 

 The effects of conservation practices in the Little Bear River on the subwatershed 

TP load, TP load into Hyrum and Cutler Reservoirs and TP concentration into Hyrum 

and Cutler Reservoirs were larger for wet annual precipitation conditions than those for 

dry annual precipitation conditions. 

 It may be concluded that the TP concentration decreases since 1990 have been 

influenced by LBRCP (Little Bear River Conservation Project) only under wet annual 

precipitation conditions. 

 

Total Maximum Daily Load (TMDL)                        

for Total Phosphorus                  

at the Mouth of the Little Bear River 

 

The R-D method was used to fill in data gaps of flows and TP loads.  The time 

series of cumulative failure probabilities (Rank time series) and cumulative failure plot 

(data distribution) of extended observations are required for this method.  The estimation 

of flows and TP load was enhanced by the regression between extended observations and 

predictions from the R-D method.   

 Daily TP loads and daily mean flows from the R-D method were used for TMDL 

calculation at the mouth of the Little Bear River.  The TMDLs and historical TP loads are 

calculated by these daily flows and TP loads, instead of the mean or median from low 

frequency data. 

 The reduction percentages were calculated for four different categories, low flow 

(July to February) and high flow (March to June) for a wet year (97-98 water year) and 
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those for a dry year (02-03 water year) by two different approaches, the frequency 

targeted approach and the total mass targeted approach. 

 Higher reduction percentages are required for wet year than that for a dry year 

according to both approaches.  The reduction percentage from the frequency targeted 

approach is higher than that from the total mass targeted approach because the large MOS 

was applied to reduce the frequency of water quality violation to 10 %. 

 When the 0.2σ of TP load are used as MOS, more practical reduction percentages 

and reduced concentration were obtained using the total mass targeted approach. 

 

High Resolution Bayesian Network                

to evaluate effects of water quality                                          

conservation practices 

 

The high resolution BN simulated the effects of the LBRCP and exogenous 

variables on the TP concentration at the mouth of the Little Bear River.  High resolution 

BN provided 21 output categories for each of TP concentration, flow and TP load.  This 

type of result was clearer than the result from conventional BN to evaluate the effect of 

the conservation practices or exogenous variables.  

According to the Q-Q plot, the conservation practices (LBRCP) had only a small 

effect on the TP concentration when the all data in data base for both dry and wet years 

were used.  However, the LBRCP decreased the TP concentration significantly in a wet 

year.  

  There were three exogenous variables, agricultural landuse areas, point source 

loads and annual precipitation.  Increased agricultural land areas and point source loads 
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caused higher TP concentrations but the annual precipitation increases caused only small 

increases of TP concentrations because TP loads and flows increased simultaneously.  

 The concentration‟s probabilities from high resolution BN were linked to rank 

time series of TP concentration by the R-D method.  The LBRCP allowed longer duration 

and earlier starting of TP concentration below 0.05 mg/L under wet annual precipitation 

conditions while any noticeable effect of the LBRCP on TP concentration was not 

observed in time series for a dry year. 
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CHAPTER 9 

 

ENGINEERING SIGNIFICANCE 

    

 

In this research, methods to handle censored data are introduced.  It is common to 

find left censored data (below detection limit) in the field of Environmental Engineering.  

Half of detection limit method has been used to substitute for censored values frequently.  

However, in this research, Maximum Likelihood Estimation (MLE), the Kalan-Meier 

Method, the Kruskal-Wallis method, Kendall‟s tau and modified seasonal Kendall trend 

were used as alternatives for censored data.  This is important for evaluating historical or 

current water quality in a river where the number of censored data is not ignorable. 

This research represents advances in the field of Environmental Engineering by 

providing unique approach to better estimating missing data in water quality monitoring 

with a limited data collection budget.  The Rank-Data distribution method (R-D method) 

developed here estimates the daily frequency flow, TP load and concentration values in a 

river using low frequency observations and predictions of flow, TP load and 

concentration respectively at the same location.  Because predictions from the R-D 

method are closer to the true values than the predictions by simple interpolation between 

observations, the R-D method may support a reduced sampling frequency and lower cost 

while keeping the same degree of uncertainty.  The R-D method also provides support for 

Bayesian Network modeling efforts where high frequency probabilistic output with many 

categories is required, and Total Maximum Daily Load (TMDL) from daily predicted 

loads instead of annual statistical representatives. 
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It was demonstrated in this research that water quality conservation practices 

affect water quality.  The construction of Bayesian Network represents an advance in the 

field of Environmental Engineering by providing a way to produce probabilistic results of 

water quality under different scenarios of pollutant management at a high resolution.  In 

Bayesian Networks, a non-numeric variable (conservation practice option) is connected 

with numerical variables (flows, nutrient loads and concentrations).   In this research, the 

predictions from the R-D method were added to the data base to obtain high frequency 

output with many categories.  The data distribution from this high frequency output is an 

advance for interpreting the probabilistic result of water quality and to provide time series 

of water quality for evaluating the effects of conservation practices on the frequency, 

duration and timing of water quality standard violation. 

An additional advance in Environmental Engineering resulting from the R-D 

method is TMDL process based on high frequency load predictions.  This TMDL process 

provides more scientific margin of safety (MOS), allocation and reduction based on the 

high frequency predictions.  This is important for planning pollutant load reduction to 

avoid wasting money. 

 

 

 

 

 

 

 



 217 

CHAPTER 10 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

Future research efforts should: 

1.  Evaluate the effects of conservation practices on the water quality (Total Phosphorus 

concentration) inside of Hyrum Reservoir using the daily time series predictions of 

Total phosphorus (TP) concentration and flow from high frequency Bayesian 

Network at the reservoir‟s inlet.      

 Because number of TP concentration observations is small for inside of Hyrum 

Reservoir, it is not easy to evaluate any enhancement of water quality inside the 

reservoir after starting conservation practices.  The daily frequency TP load and 

concentration outputs from the R-D method may be helpful to simulate the water 

quality using a reservoir model. 

2.  Develop a computer module to simulate the water quality connecting estimation of 

missing values, Bayesian Network simulation and producing time series of TP 

concentration at the reservoir‟s inlet and in the reservoir.   

 In this dissertation, developing the new approach to find missing values (R-D 

method) and applying the R-D method to BN and TMDL were the focus.  Developing 

user friendly computer software to connect database, R-D method, a BN and a TMDL 

process is recommended. 

3.  Find or develop a paired sample hypothesis test releasing the assumption of a 

symmetric distribution or normal distribution. 
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   In this dissertation, the graphical method was used to evaluate the TP 

concentration data distribution change from changing the TP load management 

scenario but a hypothesis test was not used because of the violation of data 

distribution assumption.  

4. Enhance the accuracy of R-D method to reduce the error from true values.  

 In this dissertation, predictions from regression between upstream and down 

stream values or between two different variables were added to the database (Chapter 

5).  Homogeneity, which means one slope is applied for all groups, was assumed for 

those regressions.  If the homogeneity assumption is rejected, it is recommended to 

use different slopes for different groups for better regression (Sheskin, 2004).  The 

pairs of two variables may be grouped by the trend pattern of those variables such as 

upward trend of both variables, upward trend of one variable with downward trend of 

the other variable and downward trend of both variables.   

 In this dissertation, peak Cumulative Failure Probabilities (CFPs) were added to CFPs 

of observation to improve rank time series (CFP time series).  The flows and TP loads 

estimated by R-D method were calibrated using regression between observations and 

predictions.  If the methods for better estimation of peak CFP or better calibration of 

the values from the R-D method are developed, the better predictions may be 

expected.  

5.   Study how to handle unrealistically high predicted TP concentration. 

       The high frequency TP loads are estimated from low frequency observations or 

predictions using the R-D method.  When there are some unrealistically high TP 

concentrations in low frequency database, it is possible to obtain unrealistically high 
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predictions of TP concentrations from R-D method.   The load from maximum TP 

concentration observation (6 mg/L) and the estimated flow (119 cfs) on the same date 

was 3849 lb/day at the mouth of the Little Bear River.  Because the upper 95 % 

confidence interval of TP load for 119 cfs was 100 lb/day on the regression line (flow 

vs. TP load), and the largest observed load was 817 lb/day corresponding to the flow 

202 cfs, the load was obvious outlier.  It is failed to correct this by replacing the 

unrealistic maximum TP concentration (6 mg/L) with half of that value (3 mg/L) for 

realistic prediction of maximum TP concentration from R-D method failed.  After we 

obtained high frequency TP loads and flows by the R-D method from database using 

3mg/L as maximum TP concentration and those flow and TP concentration 

predictions from the R-D method were calibrated (Chapter 5), unrealistic maximum 

TP concentration (6.05 mg/L) was still produced by the R-D method.  When the 

cumulative failure plot (TP concentration distribution) was constructed from BN 

simulation outputs of TP _5000 to obtain 365 TP concentrations, the same procedure 

was needed, where 6.05 mg/L as TP was replaced by 3.0 mg/L as maximum TP 

concentration.  These unrealistic values do not have a significant negative effect in 

the Bayesian Network or TMDL because of their short duration and small frequency, 

however, this issue merits further study. 

6. Use more detail categories of hydrologic conditions 

 In this dissertation, four hydrologic categories (high flow season and low flow 

season in dry years and those in wet years) were used.  Because various trends of 

temperature and precipitation such as early or late snow melting and small or large 

amount of spring precipitation may cause variable hydrologic conditions (Neitsch et al., 
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2003), it is recommended to use additional categories associated with hydrologic 

conditions. 
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Appendix A. The table of summary statistics for water quality  

1) Dissolved Oxygen (mg/L) 

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

Geometric 

Mean 

Min. Max. 

4905740 

 

68 0 1990- 

2004 

9.882 10.15 1.412 9.778 6.4 13.45 

4905750 84 0 1990- 

2004 

10.13 9.96 1.262 10.05 7.2 14.19 

4905670 79 0 1990- 

2004 

10.01 9.9 1.577 9.9 7.5 16.58 

4905000 154 0 1990- 

2004 

8.97 9 1.838 8.767 3.8 13.65 

 

2) Flow (cfs)     

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

Geometric 

Mean 

Min. Max. 

4905740 66 1 1990- 

2004 

52.36 28.2 63.3 22.72 LD 304 

4905750 86 3 1990- 

2004 

41.61 11.1 81.66 12.2 LD 371 

4905670 53 0 1990- 

2003 

88.49 30 145 43.08 6 657 

4905000 112 0 1990- 

2004 

80.02 60 76.44 53.1 2 500 

 

3) pH, field  

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

Geometric 

Mean 

Min. Max. 

4905740 69 0 1990- 

2004 

8.149 8.3 0.4398 8.137 6.9 9 

4905750 85 0 1990- 

2004 

8.19 8.3 0.4415 8.177 7 9.54 

4905670 80 0 1990- 

2004 

8.062 8.15 0.3747 8.053 6.7 8.51 

4905000 156 0 1990- 

2004 

8.158 8.17 0.3056 8.153 7.4 10.5 
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5) Specific conductance (umho/cm)  

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

Geometric 

Mean 

Min. Max. 

4905740 68 0 1990- 

2004 

339.2 350.5 109.3 321.5 80 652 

4905750 83 0 1990- 

2004 

394.3 396 63.77 388.7 163 619 

4905670 80 0 1990- 

2004 

417.6 431.4 93.32 406.4 203 590 

4905000 155 0 1990- 

2004 

550 564 127.8 537.1 336 1454 

 

 6) Temperature (deg C)  

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

Geometric 

Mean 

Min. Max. 

4905740 69 0 1990- 

2004 

9.436 8.8 5.855 7.569 0.9 26 

4905750 85 0 1990- 

2004 

9.18 9.74 4.986 7.127 0.18 23.3 

4905670 80 0 1990- 

2004 

10.51 11.17 5.288 8.193 0.01 20.6 

4905000 156 0 1990- 

2004 

11.15 10.67 6.423 8.405 0.1 25.45 

 

7) Turbidity, laboratory (NTU)  

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

Geometric 

Mean 

Min. Max. 

4905740 28 0 1993- 

2004 

 

10.67 3.645 19.12 4.035 0.107 95.4 

4905750 26 0 1998- 

2004 

21.8 1.85 63.96 2.985 0.233 325 

4905670 29 0 1992- 

2004 

15.04 4.5 

 

31.29 4.9 0.641 125 

4905000 132 0 1990- 

2004 

13.4 11.85 9.23 10.5 1.9 47.5 
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8) TP Concentration 

4905000 

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

 

90 

percentile 

Min. Max. 

Ignoring 

DL 

 

142 0 1990 

- 2004 

0.121

5 

0.1 0.1686 0.176 0.02 1.88 

Half of DL 145 3 1990 

- 2004 

0.119

2 

0.1 0.1676 0.176 0.01 1.88 

*MLE- 

Lognormal 

145 3 1990 

- 2004 

0.113

5 

0.0898 0.0878 0.216 BDL 1.88 

KM 145 3 1990 

- 2004 

0.119

4 

0.1 0.1673 

(0.0139) 

0.182 BDL 1.88 

* Distribution assumption violation.  ( ) is standard error of mean 

 

4905670 

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

90 

Percentile 

Min. Max. 

Ignoring 

DL 

 

70 0 1990 

-2004 

0.064

43 

0.0495 0.04704 0.1096 0.02 0.273 

Half of DL 79 9 1990 

-2004 

0.058

23 

0.0450 0.04754 0.1066 0.01 0.273 

MLE- 

Lognormal 

79 9 1990 

-2004 

0.058

7 

0.04573 0.04717 0.113 BDL 0.273 

KM 79 9 1990 

-2004 

0.059

4 

0.0450 0.0465 

(0.00523) 

0.109 BDL 0.273 

 

4905740 

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

90 

Percentile 

Min. Max. 

Ignoring 

DL 

 

42 0 1990 

-2004 

0.047

71 

0.0335 0.03447 0.088 0.02 0.16 

Half of DL 68 26 1990 

-2004 

0.033

29 

0.0250 0.03268 0.068 0.01 0.16 

MLE- 

Lognormal 

68 26 1990 

-2004 

0.033

98 

0.02474 0.03197 0.069 BDL 0.16 

KM 68 26 1990 

-2004 

0.037

11 

0.0250 0.03028 0.069 BDL 0.16 
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4905750 

 # of 

Obser

vation 

 

 

# of 

censo

red  

Data 

Range 

of Dates 

Mean Median Standard 

Deviation 

90 

Percentile 

Min. Max. 

Ignoring 

DL 

 

22 0 1990 

-2004 

0.050

3 

0.0320 0.0767 0.052 0.021 0.39 

Half of DL 75 53 1990 

-2004 

0.021

82 

0.0100 0.04485 0.037 0.01 0.39 

MLE- 

Lognormal 

75 53 1990-

2004 
0.018

98 

0.01112 0.02622 0.042 BDL 0.39 

KM 75 53 1990 

-2004 

0.029

6 

BDL 0.04374 0.041 BDL 0.39 

 

 

Appendix B.  

Correlation 

Location Method TP DP Flow Turbidity 

4905740  

 vs 4905670 

Pearson‟s r <0.001 0.084 <0.001 <0.001 

Nonparametric <0.001 0.022 <0.001 <0.001 

4905750 

 vs 4905670 

Pearson‟s r 0.657/ 

<0.001 

0.001 <0.001 0.668/ 

<0.001 

Nonparametric 0.007 *0.006 <0.001 0.002 

4905670 

 vs 4905000 

Pearson‟s r 0.001 0.001 0.002 0.666 

Nonparametric 0.002 <0.001 <0.001 0.392 

Outlinear :TP 0.39 mg/l, Turb 325 mg/l * Spearman‟s rho is used because of run time 

error for Kendall‟s tau-b test. 

Location Method DO pH Temperature 

4905740  

 vs 

4905670 

Pearson‟s r 0.705(<0.001) 0.711(<0.001) 0.925(<0.001) 

Nonparametric    

4905750 

 vs 

4905670 

Pearson‟s r 0.722(<0.001) 0.788(<0.001) 0.898(<0.001) 

Nonparametric    

4905670 

 vs 

4905000 

Pearson‟s r 0.590(0.001) 0.531(0.002) 0.918(<0.001) 

Nonparametric    
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Appendix C. K-M estimation of flow distribution 
 
a) Data set 1 (2 month sampling block) 
 
 
Results for: VAL.MTW 
  

Distribution Analysis: Flipped_Flow  
 
Variable: Flipped_Flow 

 

Censoring Information  Count 

Uncensored value          60 

Right censored value    3494 

 

Censoring value: Flow_I = 0 

 

 

Nonparametric Estimates 

 

 

Characteristics of Variable 

 

            Standard   95.0% Normal CI 

Mean(MTTF)     Error    Lower    Upper 

   415.122   12.8630  389.910  440.333 

 

Median = 450 

IQR = 69  Q1 = 405  Q3 = 474 

 

 

Kaplan-Meier Estimates 

 

      Number 

          at  Number     Survival   Standard   95.0% Normal CI 

Time    Risk  Failed  Probability      Error     Lower    Upper 

  64    3554       1     0.999719  0.0002813  0.999167  1.00000 

  68      59       1     0.982774  0.0168024  0.949842  1.00000 

  89      58       1     0.965830  0.0235549  0.919663  1.00000 

 130      57       1     0.948885  0.0285939  0.892842  1.00000 

 133      56       1     0.931941  0.0327209  0.867809  0.99607 

 252      55       1     0.914997  0.0362487  0.843951  0.98604 

 284      54       1     0.898052  0.0393389  0.820949  0.97516 

 298      53       1     0.881108  0.0420880  0.798617  0.96360 

 321      52       1     0.864164  0.0445591  0.776829  0.95150 

 368      51       2     0.830275  0.0488318  0.734566  0.92598 

 385      49       1     0.813330  0.0506899  0.713980  0.91268 

 389      48       1     0.796386  0.0523894  0.693705  0.89907 

 397      47       1     0.779442  0.0539453  0.673711  0.88517 

 398      46       1     0.762497  0.0553698  0.653974  0.87102 

 405      45       1     0.745553  0.0566728  0.634476  0.85663 

 409      44       1     0.728608  0.0578624  0.615200  0.84202 

 425      43       1     0.711664  0.0589456  0.596133  0.82720 

 429      42       2     0.677775  0.0608147  0.558581  0.79697 

 430      40       1     0.660831  0.0616097  0.540078  0.78158 

 431      39       1     0.643887  0.0623165  0.521748  0.76602 

 433      38       1     0.626942  0.0629381  0.503586  0.75030 

 434      37       1     0.609998  0.0634770  0.485585  0.73441 

 435      36       2     0.576109  0.0643148  0.450054  0.70216 

 440      34       1     0.559165  0.0646167  0.432518  0.68581 
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 441      33       1     0.542220  0.0648422  0.415132  0.66931 

 442      32       1     0.525276  0.0649921  0.397894  0.65266 

 445      31       1     0.508332  0.0650669  0.380803  0.63586 

 450      30       1     0.491387  0.0650669  0.363858  0.61892 

 451      29       2     0.457498  0.0648422  0.330410  0.58459 

 455      27       1     0.440554  0.0646166  0.313908  0.56720 

 456      26       1     0.423610  0.0643147  0.297555  0.54966 

 458      25       1     0.406665  0.0639352  0.281354  0.53198 

 461      24       1     0.389721  0.0634769  0.265308  0.51413 

 465      23       1     0.372776  0.0629379  0.249420  0.49613 

 467      22       1     0.355832  0.0623163  0.233694  0.47797 

 469      21       2     0.321943  0.0608145  0.202749  0.44114 

 470      19       1     0.304999  0.0599278  0.187543  0.42246 

 471      18       1     0.288055  0.0589453  0.172524  0.40359 

 472      17       1     0.271110  0.0578621  0.157702  0.38452 

 474      16       2     0.237221  0.0553695  0.128699  0.34574 

 476      14       3     0.186388  0.0506894  0.087039  0.28574 

 477      11       2     0.152499  0.0467957  0.060782  0.24422 

 478       9       1     0.135555  0.0445584  0.048222  0.22289 

 481       8       1     0.118611  0.0420873  0.036121  0.20110 

 483       7       1     0.101666  0.0393381  0.024565  0.17877 

 484       6       1     0.084722  0.0362478  0.013678  0.15577 

 485       5       2     0.050833  0.0285927  0.000000  0.10687 

 486       3       1     0.033889  0.0235533  0.000000  0.08005 

 488       2       1     0.016944  0.0168002  0.000000  0.04987 

 490       1       1     0.000000  0.0000000  0.000000  0.00000 

 

 

b) Data set 2 (1month sampling block) 
Results for: VAL_MONTH.MTW 
  

Distribution Analysis: Flipped_Flow  
 
Variable: Flipped_Flow 

 

Censoring Information  Count 

Uncensored value         118 

Right censored value    3436 

 

Censoring value: Flow_I = 0 

 

 

Nonparametric Estimates 

 

 

Characteristics of Variable 

 

            Standard   95.0% Normal CI 

Mean(MTTF)     Error    Lower    Upper 

   606.258   10.6370  585.410  627.107 

 

Median = 650 

IQR = 77  Q1 = 597  Q3 = 674 

 

 

Kaplan-Meier Estimates 

 

       Number 

           at  Number     Survival   Standard   95.0% Normal CI 

 Time    Risk  Failed  Probability      Error     Lower    Upper 
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 15.0    3554       1     0.999719  0.0002813  0.999167  1.00000 

202.0     117       1     0.991174  0.0085126  0.974490  1.00000 

210.0     116       1     0.982629  0.0119834  0.959142  1.00000 

264.0     115       1     0.974085  0.0146113  0.945447  1.00000 

268.0     114       1     0.965540  0.0167967  0.932619  0.99846 

275.0     113       1     0.956996  0.0186955  0.920353  0.99364 

289.0     112       1     0.948451  0.0203879  0.908491  0.98841 

311.0     111       1     0.939906  0.0219218  0.896940  0.98287 

330.0     110       1     0.931362  0.0233284  0.885639  0.97708 

333.0     109       1     0.922817  0.0246295  0.874544  0.97109 

338.0     108       1     0.914273  0.0258412  0.863625  0.96492 

354.0     107       1     0.905728  0.0269754  0.852857  0.95860 

413.0     106       1     0.897183  0.0280415  0.842223  0.95214 

452.0     105       1     0.888639  0.0290471  0.831707  0.94557 

484.0     104       1     0.880094  0.0299983  0.821299  0.93889 

498.0     103       1     0.871550  0.0309000  0.810987  0.93211 

521.0     102       1     0.863005  0.0317565  0.800763  0.92525 

523.0     101       1     0.854460  0.0325713  0.790622  0.91830 

556.0     100       1     0.845916  0.0333475  0.780556  0.91128 

564.0      99       1     0.837371  0.0340878  0.770560  0.90418 

568.0      98       2     0.820282  0.0354694  0.750763  0.88980 

576.0      96       1     0.811737  0.0361144  0.740954  0.88252 

585.0      95       3     0.786104  0.0378853  0.711850  0.86036 

587.0      92       1     0.777559  0.0384250  0.702247  0.85287 

589.0      91       1     0.769014  0.0389412  0.692691  0.84534 

592.0      90       1     0.760470  0.0394348  0.683179  0.83776 

594.0      89       1     0.751925  0.0399067  0.673709  0.83014 

597.0      88       1     0.743381  0.0403576  0.664281  0.82248 

598.0      87       1     0.734836  0.0407882  0.654892  0.81478 

605.0      86       2     0.717747  0.0415911  0.636230  0.79926 

609.0      84       1     0.709202  0.0419645  0.626953  0.79145 

618.0      83       1     0.700657  0.0423199  0.617712  0.78360 

623.0      82       1     0.692113  0.0426577  0.608505  0.77572 

625.0      81       1     0.683568  0.0429783  0.599332  0.76780 

628.0      80       1     0.675024  0.0432821  0.590192  0.75986 

629.0      79       2     0.657934  0.0438408  0.572008  0.74386 

630.0      77       2     0.640845  0.0443361  0.553948  0.72774 

631.0      75       1     0.632301  0.0445608  0.544963  0.71964 

633.0      74       1     0.623756  0.0447703  0.536008  0.71150 

634.0      73       1     0.615211  0.0449650  0.527082  0.70334 

635.0      72       2     0.598122  0.0453106  0.509315  0.68693 

640.0      70       3     0.572488  0.0457219  0.482875  0.66210 

641.0      67       1     0.563944  0.0458309  0.474117  0.65377 

642.0      66       1     0.555399  0.0459261  0.465386  0.64541 

644.0      65       1     0.546855  0.0460076  0.456681  0.63703 

645.0      64       2     0.529765  0.0461295  0.439353  0.62018 

646.0      62       1     0.521221  0.0461700  0.430729  0.61171 

648.0      61       1     0.512676  0.0461970  0.422132  0.60322 

650.0      60       2     0.495587  0.0462105  0.405016  0.58616 

651.0      58       2     0.478498  0.0461700  0.388006  0.56899 

652.0      56       1     0.469953  0.0461294  0.379541  0.56037 

655.0      55       1     0.461409  0.0460753  0.371103  0.55171 

656.0      54       2     0.444319  0.0459260  0.354306  0.53433 

657.0      52       1     0.435775  0.0458308  0.345948  0.52560 

658.0      51       1     0.427230  0.0457218  0.337617  0.51684 

659.0      50       3     0.401596  0.0453104  0.312790  0.49040 

660.0      47       1     0.393052  0.0451449  0.304569  0.48153 

661.0      46       1     0.384507  0.0449648  0.296378  0.47264 

664.0      45       3     0.358873  0.0443359  0.271977  0.44577 

665.0      42       2     0.341784  0.0438405  0.255858  0.42771 

666.0      40       1     0.333240  0.0435692  0.247845  0.41863 

667.0      39       1     0.324695  0.0432818  0.239864  0.40953 
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669.0      38       2     0.307606  0.0426573  0.223999  0.39121 

670.0      36       1     0.299061  0.0423195  0.216116  0.38201 

671.0      35       1     0.290517  0.0419641  0.208268  0.37276 

672.0      34       2     0.273427  0.0411988  0.192679  0.35418 

674.0      32       3     0.247794  0.0399062  0.169579  0.32601 

676.0      29       3     0.222160  0.0384244  0.146849  0.29747 

677.0      26       2     0.205070  0.0373204  0.131924  0.27822 

678.0      24       4     0.170892  0.0347937  0.102698  0.23909 

679.0      20       3     0.145258  0.0325705  0.081421  0.20910 

680.0      17       1     0.136714  0.0317556  0.074474  0.19895 

681.0      16       2     0.119624  0.0299973  0.060831  0.17842 

682.0      14       1     0.111080  0.0290461  0.054151  0.16801 

683.0      13       3     0.085446  0.0258399  0.034801  0.13609 

684.0      10       1     0.076901  0.0246282  0.028631  0.12517 

685.0       9       2     0.059812  0.0219202  0.016849  0.10278 

686.0       7       3     0.034178  0.0167945  0.001262  0.06710 

688.0       4       1     0.025634  0.0146087  0.000000  0.05427 

690.0       3       2     0.008545  0.0085080  0.000000  0.02522 

694.7       1       1     0.000000  0.0000000  0.000000  0.00000 

 

 

 

Appendix D. MS Excel Macro to estimate flows from CFP curve 

 

a) Work sheet 

 

 

 
 

b) Visual Basic Program (Ittalic letters are explanations) 
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Private Sub CommandButton2_Click() 

 

n = Range("k" + CStr(1)) ‘number of predictions 

r = 2 

For f = 1 To n ‘repeating for next routine 3554 times  

x = Range("g" + CStr(f + 1)) 

If x > Range("p" + CStr(r)) Then ‘ comparing g to p. For example 

r = r + 1  ‘g(2)>p(2). So r=2+1=3 

End If 

Range("h" + CStr(f + 1)) = (Range("o" + CStr(r)) - Range("o" + CStr(r - 1))) / 

(Range("p" + CStr(r)) - Range("p" + CStr(r - 1))) * (x - Range("p" + CStr(r - 1))) + 

Range("o" + CStr(r - 1)) ‘ estimating h(2), flow by interpolating (o(2),p(2)) and 

(o(3),p(3)). Always, g(f+1) are between p(r-1) and p(r). 

Range("i" + CStr(f + 1)) = r „this means h(f+1) is estimated by interpolating (o(r), p(r)) 

and (o(r-1),p(r-1)) 

Next f 

 

End Sub 

 

Appendix E. MS Macro to estimate CFP time series and assign the estimated values 

 

a) Work sheet 
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b) Visual Basic Program (Ittalic letters are explanations) 

 

Private Sub CommandButton5_Click() 

 

a = 0 

Dim d As Integer 

 

For k = 0.003 To 0.025 Step 0.002 ‘range of the extended slops 

a = a + 1 

Range("BG16") = k ‘setting the extended slope. After setting the slope, excel calculates 

the peak CFP using this extended slop  

 

n = Range("t" + CStr(1)) ‘last data ID number 

r = 3 

For f = 61 To n ‘ repeating this routine from 61 ID number (November 30,1992) to 3614 

ID number (August 23, 2002) 

x = Range("o" + CStr(f + 1)) 

If x > Range("h" + CStr(r)) Then 

r = r + 1 

End If 
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Range("p" + CStr(f + 1)) = (Range("n" + CStr(r)) - Range("n" + CStr(r - 1))) / 

(Range("h" + CStr(r)) - Range("h" + CStr(r - 1))) * (x - Range("h" + CStr(r - 1))) + 

Range("n" + CStr(r - 1)) 

Range("aa" + CStr(f + 1)) = 0 

Next f ‘This routine is estimating CFPs by interpolating CFPs of observations and 

extended peaks 

 

Stop 

 

For i = 61 To n  ‘ This routine is finding flow in w matching r value (rank of CFPs in 

CFP time series. That flow then come to q for the rank 

  For j = 1 To 3554 

If Range("r" + CStr(i + 1)) = Range("x" + CStr(j + 1)) Then 

   Range("q" + CStr(i + 1)) = Range("w" + CStr(j + 1)) 

   GoTo 10 

End If 

 

 

   Next j 

10 Next i 

 

Stop 

 

For x = 1 To 73 „this routine is calculating largest observation residuals 

 

  d = Range("g" + CStr(x + 1)) 

  

 Range("AA" + CStr(d + 1)) = Abs(Range("e" + CStr(d + 1)) - Range("Q" + CStr(d + 1))) 

Next x 

 

 

 Range("BJ" + CStr(a + 17)) = k ‘ k is the extended slope 

 Range("BK" + CStr(a + 17)) = Range("AA7294") ‘AA7294 is largest observation 

residuals sum 

 Range("BL" + CStr(a + 17)) = Range("AG7294") ‘AG7294 is residual sum  

 

Stop 

Next k 

 

 

 

End Sub 
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Appendix. F.  CPTs for BN1. 

 

(a) CPT relating Conservation Program option (OP_CON), agricultural landuse area 

(LAND_AG1), point TP load (LOAD_P1) and annual precipitation (PRECIP) to 

subwatershed TP load (LOAD_SW1) above Hyrum. 

OP_CON LAND_AG1 LOAD_P1 PRECIP              LOAD_SW1 (lb/d) 

       L               M              H 

<3.53         3.53 – 9.51      >= 9.51 

Pre L L D 57.1% 14.3 % 28.6 % 

Pre L L W 33.3% 33.3 % 33.3 % 

Pre L H D 41.7 % 58.3 % <0.1 % 

Pre L H W <0.1 % 21.4 % 78.6 % 

Pre H L D 33.3 % 33.3 % 33.3 % 

Pre H L W` 33.3 % 33.3 % 33.3 % 

Pre H H D 33.3 % 33.3 % 33.3 % 

Pre H H W <0.1 % 33.3 % 66.7 % 

Post L L D 55.6 % 33.3 % 11.1 % 

Post L L W 35.0 % 40.0 % 25.0 % 

Post L H D 25.0 % 62.5 % 12.5 % 

Post L H W 25.0 % 25.0 % 50.0 % 

Post H L D 55.6 % 11.1 % 33.3 % 

Post H L W 60.0 % 30.0 % 10.0 % 

Post H H D 33.3 % 0.01 % 66.7 % 

Post H H W 33.3 % 0.01 % 66.7 % 

 

(b). CPT relating annual precipitation (PRECIP) to TP load from East Fork (LOAD_EF) . 

PRECIP                                  LOAD_EF(lb/d) 

            L                                 M                               H 

       < 0.32                         0.32-0.99                      >=0.99 

D 20.0 % 40.0 % 40.0 % 

W 37.5 % 31.3 % 31.3 % 

 

 

(c). CPT relating annual precipitation (PRECIP) to TP load from the South Fork 

(LOAD_SF) . 

PRECIP                                         LOAD_SF (lb/d) 

                L                                 M                               H 

            < 2.13                      2.13 – 7.84                 >= 7.84 

D 41.4 % 34.5% 24.1 % 

W 25.7 % 31.5 % 42.9 % 
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(d). CPT relating TP loads from the South Fork (LOAD_SF) and East Fork  

      (LOAD_EF) to TP load at the confluence of the South and East Fork (LOAD_HW). 

LOAD_SF LOAD_EF                            LOAD_HW (lb/d) 

            L                         M                        H 

        <4.75               4.75 – 16.84        >= 16.84 

L L >99.9 % <0.1 % <0.1 % 

L M 75.0 % 25.0 % <0.1 % 

L H < 0.1 % > 99.9 % <0.1 % 

M L 42.8 % 42.9 % 14.3 % 

M M 20.0 % 80.0 % <0.1 % 

M H <0.1 % 60.0 % 40.0 % 

H L <0.1 % > 99.9 % <0.1 % 

H M 20.0 % 80.0 % <0.1 % 

H H 7.7 % 7.7 % 87.6 % 

 

(e). CPT relating TP load from subwatershed (LOAD_SW) and TP loads at the 

confluence of the South Fork and East Fork (LOAD_HW) to TP load at the inlet to the 

Hyrum Reservoir (LOAD_IN).  

LOAD_SW1 LOAD_HW                            LOAD_IN(lb/d) 

            L                         M                        H 

        <9.80               9.8 – 30.1         >= 30.1 

L L >99.9 % < 0.1 % < 0.1 % 

L M 46.7 % 53.3 % < 0.1 % 

L H < 0.1 % 50.0 % 50.0 % 

M L 66.7 % 33.3 % < 0.1 % 

M M 6.06 % 94.0 % < 0.1 % 

M H < 0.1 % 20.0 % 80.0 % 

H L < 0.1 % >99.9 % < 0.1 % 

H M < 0.1 % 77.3 % 22.7 % 

H H <0.1 % 6.0 % 94.0 % 

 

(f). CPT relating annual precipitation (PRECIP) to subwatershed flow (FLOW_SW) 

above Hyrum. 

PRECIP                                         FLOW_SW1 (cfs) 

                L                                 M                               H 

            < 0                              0 - 0.43                      >=0.43 

D 2.7 % 51.4 % 46.0 % 

W 12.9 % 70.5 % 16.7 % 
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(g). CPT relating annual precipitation (PRECIP) to flow from the East Fork (FLOW_EF). 

PRECIP                                         FLOW_EF (cfs) 

                L                                 M                               H 

            < 3.3                          3.3 – 14.0                    >=14 

D 42.1 % 34.2 % 23.7 % 

W 27.7 % 32.3 % 40.0 % 

 

(h). CPT relating annual precipitation (PRECIP) to flow from the South Fork 

(FLOW_EF). 

PRECIP                                         FLOW_SF (cfs) 

                L                                 M                               H 

            < 19.2                     19.2 – 49.8                    >= 49.8 

D 43.3 % 40.0 % 16.7 % 

W 25.7 % 25.7 % 48.6 % 

 

(i). CPT relating flows from the East Fork (FLOW_EF) and South Fork (FLOW_EF) to 

flow at the confluence of the East Fork and South Fork. 

FLOW_EF FLOW_SF                            FLOW_HW (cfs) 

            L                         M                        H 

        <37                     37 – 81.3            >= 81.3 

L L 87.5 % 12.5 % < 0.1 % 

L M 75.0 % 25.0 % <0.1 % 

L H 50.0 % 50.0 % <0.1 % 

M L 81.8 % 18.2 % <0.1 % 

M M 54.5 % 36.4 % 9.1 % 

M H <0.1 % 50.0 % 50.0 % 

H L >99.9 % <0.1 % <0.1 % 

H M <0.01 % <0.1 % 99.9 % 

H H 7.1 % 7.1 % 85.7 % 
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(j). CPT relating flow from subwatershed (FLOW_SW1) and flow at the confluence of 

the South Fork and East Fork (FLOW_HW) to flow at the inlet to the Hyrum Reservoir 

(FLOW_IN). 

FLOW_SW1 FLOW_HW                            FLOW_IN (cfs) 

            L                         M                        H 

      < 36.8                   36.8 – 88               >= 88 

L L > 99.9 % < 0.1 % < 0.1 % 

L M 62.5 % 37.5 % < 0.1 % 

L H < 0.1 % < 0.1 % > 99.9 % 

M L > 99.9 % < 0.1 % < 0.1 % 

M M < 0.1 % > 99.9 % < 0.1 % 

M H < 0.1 % 10.8 % 89.2 % 

H L 97.7 % 2.3 % < 0.1 % 

H M < 0.1 % > 99.9 % < 0.1 % 

H H < 0.1 % 25.0 % 75.0 % 

 

(k). CPT relating TP load (LOAD_IN) and flow (FLOW_IN) to TP concentration (TP_IN) 

at the inlet of Hyrum Reservoir (Location 49805670). 

LOAD_IN FLOW_IN                            TP_IN (mg/L) 

            L                         M                        H 

       < 0.02                0.02 – 0.05            > 0.05 

L L 11.1 % 65.3 % 23.6 % 

L M 6.7% 93.3% <0.1% 

L H 33.3 % 33.3 % 33.3 % 

M L <0.1 % <0.1% > 99.9% 

M M <0.1 % 50.9% 49.1 % 

M H <0.1 % 94.1 % 5.9 % 

H L <0.1 % <0.1 % >99.9 % 

H M <0.1 % <0.1 % >99.9 % 

H H <0.1 % 22.9 % 77.1 % 
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Appendix G. CPTs for BN2. 

 

(a). CPT relating Conservation Program option (OP_CON), agricultural landuse area 

(LAND_AG), point TP load (LOAD_P) and annual precipitation (PRECIP) to 

subwatershed TP load (LOAD_SW) below Hyrum. 

OP_CON LAND_AG2 LOAD_P2 PRECIP              LOAD_SW2 (lb/d) 

       L               M              H 

<7.02        7.02 –18.82  >=18.92 

Pre L L D 57.1% 14.3 % 28.6 % 

Pre L L W 33.3% 33.3 % 33.3 % 

Pre L H D 41.7 % 58.3 % <0.1 % 

Pre L H W <0.1 % 21.4 % 78.6 % 

Pre H L D 33.3 % 33.3 % 33.3 % 

Pre H L W` 33.3 % 33.3 % 33.3 % 

Pre H H D 33.3 % 33.3 % 33.3 % 

Pre H H W <0.1 % 33.3 % 66.7 % 

Pre L L D 55.6 % 33.3 % 11.1 % 

Pre L L W 35.0 % 40.0 % 25.0 % 

Pre L H D 25.0 % 62.5 % 12.5 % 

Pre L H W 25.0 % 25.0 % 50.0 % 

Pre H L D 55.6 % 11.1 % 33.3 % 

Pre H L W 60.0 % 30.0 % 10.0 % 

Pre H H D 33.3 % 0.01 % 66.7 % 

Pre H H W 33.3 % 0.01 % 66.7 % 

 

(b). CPT relating annual precipitation (PRECIP) to TP load from the Hyrum Reservoir 

(LOAD_5650). 

PRECIP                                         LOAD_5650 (lb/d) 

                L                                 M                               H 

            < 2.96                      2.96 – 12.9                 >= 12.9 

D 42.5 % 27.6 % 29.9 % 

W 24.1 % 39.1 % 36.8 % 
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(c). CPT relating TP loads at the effluence of the Hyrum Reservoir (LOAD_5650) and 

TP load from subwatershed (LOAD_SW2) to TP load at the inlet to the Cutler reservoir 

(LOAD_5000).  

LOAD_5650 LOAD_SW2                            LOAD_5000 (lb/d) 

            L                         M                        H 

       <25.3               25.3 – 52.6         >= 52.6 

L L > 99.9 % < 0.1 % < 0.1 % 

L M > 99.9 % < 0.1 % < 0.1 % 

L H 28.0 % 56.0 % 16.0 % 

M L > 99.9 % < 0.1 % < 0.1 % 

M M 77.8 % 22.2 % < 0.1 % 

M H 2.7 % 70.3 % 27.0 % 

H L 20.0 % 20.0 % 60.0 % 

H M 20.0 % 80.0 % < 0.1 % 

H H < 0.1 % 14.6 % 85.4 % 

 

(d). CPT relating annual precipitation (PRECIP) to subwatershed flow (FLOW_SW) 

below Hyrum. 

PRECIP                                         FLOW_SW2 (cfs) 

                L                                 M                               H 

            < 28                              28 – 42.6                      >=42.6 

D 41.9 % 25.8 % 32.3 % 

W 26.5 % 38.8 % 34.7 % 

 

(e). CPT relating annual precipitation (PRECIP) to flow at the effluence from Hyrum 

Reservoir (FLOW_5650). 

PRECIP                                         FLOW_5650 (cfs) 

                L                                 M                               H 

            < 12                          12 – 48.41                    >=48.41 

D 44.0 % 28.0 % 28.0 % 

W 23.2 % 38.4 % 38.4 % 
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(f). CPT relating flow at the effluence of the Hyrum Reservoir (FLOW_5650) and flow 

from subwatershed (FLOW_SW) below Hyrum to flow at the inlet to the Cutler 

Reservoir (FLOW_5000). 

FLOW_5650 FLOW_SW2                            FLOW_5000 (cfs) 

            L                         M                        H 

      < 51.8                 51.8 – 97.2             >= 97.2 

L L >99.9 % <0.1% <0.1 % 

L M >99.9% <0.1% <0.1 % 

L H 11.1 % 88.9 % <0.1 % 

M L 92.9 % 7.1 % <0.1 % 

M M 14.3 % 85.7 % <0.1 % 

M H <0.1 % 57.1 % 42.9 % 

H L 16.7 % 50.0 % 33.3 % 

H M < 0.1 % 60.0 % 40.0 % 

H H < 0.1 % < 0.1 % >99.9 % 

 

(g). CPT relating TP load (LOAD_5000) and flow (FLOW_5000) to TP concentration 

(TP_5000) at the inlet of Hyrum Reservoir (Location 4905000). 

LOAD_5000 FLOW_5000                            TP_5000 (mg/L) 

            L                         M                        H 

       =< 0.05               0.05 – 0.15            >= 0.15 

L L 26.1 % 60.9 % 13.0 % 

L M 81.8 % 18.2 % < 0.1 % 

L H > 99.9 % < 0.1 % < 0.1 % 

M L < 0.1 % 36.4 % 63.6 % 

M M 3.0 % 90.9 % 6.1 % 

M H 25.0 % 75.0 % < 0.1 % 

H L < 0.1 % < 0.1 % > 99.9 % 

H M < 0.1 % 21.1 % 78.9 % 

H H 4.0 % 58.0 % 38.0 % 

 

Appendix H.  Comparing the effect of selected FLOW_SW category change to the effect 

of selected FLOW_HW category change 

 

(a). Marginal probabilities of categories of FLOW_IN for selected category of 

FLOW_SW.  

  Selected FLOW_SW Category 

        L                        M                           H 

FLOW_IN L 58.6 % 49.2 % 54.5 % 

M 8.56 % 25.4 % 28.5 % 

H 32.8 % 25.5 % 17.0 % 
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(b). Marginal probabilities of categories of FLOW_IN for selected category of 

FLOW_HW.  

  Selected FLOW_HW Category 

        L                       M                        H  

FLOW_IN L 99.2 % 5.3 %  0 % 

M 0.8 % 94.7 % 13.3 % 

H 0 % 0 % 86.7 % 
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Appendix I.  CPTs for BN. 

 

(a). CPT relating Conservation Program option (OP_CON), agricultural landuse area 

(LAND_AG), point TP load (LOAD_P) and annual precipitation (PRECIP) to 

subwatershed TP load (LOAD_SW) below Hyrum. 

OP_CON LAND_AG LOAD_P PRECIP              LOAD_SW (lb/d) 

       L               M              H 

<7.02        7.02 –18.82  >=18.92 

Pre L L D 57.1% 14.3 % 28.6 % 

Pre L L W 33.3% 33.3 % 33.3 % 

Pre L H D 41.7 % 58.3 % <0.1 % 

Pre L H W <0.1 % 21.4 % 78.6 % 

Pre H L D 33.3 % 33.3 % 33.3 % 

Pre H L W` 33.3 % 33.3 % 33.3 % 

Pre H H D 33.3 % 33.3 % 33.3 % 

Pre H H W <0.1 % 33.3 % 66.7 % 

Pre L L D 55.6 % 33.3 % 11.1 % 

Pre L L W 35.0 % 40.0 % 25.0 % 

Pre L H D 25.0 % 62.5 % 12.5 % 

Pre L H W 25.0 % 25.0 % 50.0 % 

Pre H L D 55.6 % 11.1 % 33.3 % 

Pre H L W 60.0 % 30.0 % 10.0 % 

Pre H H D 33.3 % 0.01 % 66.7 % 

Pre H H W 33.3 % 0.01 % 66.7 % 

 

(b). CPT relating annual precipitation (PRECIP) to TP load from the Hyrum Reservoir 

(LOAD_5650). 

PRECIP                                         LOAD_5650 (lb/d) 

                L                                 M                               H 

            < 2.96                      2.96 – 12.9                 >= 12.9 

D 44.1 % 27.9 % 27.9 % 

W 22.5 % 38.8 % 38.8 % 

 

 

(d). CPT relating annual precipitation (PRECIP) to subwatershed flow (FLOW_SW) 

below Hyrum. 

PRECIP                                         FLOW_SW (cfs) 

                L                                 M                               H 

            < 28                             28 – 42.6                      >=42.6 

D 41.9 % 25.8 % 32.3 % 

W 25.8 % 39.2 % 35.0 % 
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(e). CPT relating annual precipitation (PRECIP) to flow at the effluence from Hyrum 

Reservoir (FLOW_5650). 

PRECIP                                         FLOW_5650 (cfs) 

                L                                 M                               H 

            < 12                          12 – 48.41                    >=48.41 

D 44.0 % 28.0 % 28.0 % 

W 22.4 % 38.8 % 38.8 % 

 

Appendix J.  Category range of LOAD_5000, FLOW_5000 and TP_5000. 

 

Category 

(percentile) 

Range 

LOAD_5000 

(lb/day) 

FLOW_5000 

(cfs) 

TP_5000 

(mg/L) 

A(0-5) 0 - 8.9 0 - 27.64 0 - 0.0429 

B(5-10) 8.9 -16.3 27.64 - 34.44 0.0429-0.0527 

C(10-15) 16.3 -19.7 34.44 - 39.75 0.0527-0.0596 

D(15-20) 19.7 - 22.9 39.75 - 44.24 0.0596-0.0646 

E(20-25) 22.9 - 24.1 44.24 - 49.09 0.0646-0.0707 

F(25-30) 24.1 - 24.9 49.09 - 52.18 0.0707-0.0767 

G(30-35) 24.9 - 28.4 52.19 - 56.15 0.0767-0.0835 

H(35-40) 28.4 - 29.9 56.15 - 61.51 0.0835-0.0891 

I (40-45) 29.9 - 31.2 61.51 - 63.07 0.0891-0.0947 

J (45-50) 31.2 - 33.4 63.07 - 70.85 0.0947-0.1019 

K(50-55) 33.4 - 37.4 70.85 - 75.43 0.1019-0.1083 

L(55-60) 37.4 - 43.5 75.43 - 80.82 0.1083-0.1147 

M(60-65) 43.5 - 48.8 80.82 - 88.68 0.1147-0.1222 

N(65-70) 48.8 - 50.9 88.68 - 93.27 0.1222-0.1302 

O(70-75) 50.9 - 57.2 93.27 - 102.54 0.1302-0.1401 

P(75-80) 57.2 - 64.4 102.54-110.38 0.1401-0.1515 

Q(80-85) 64.4 - 81.3 110.38-119.10 0.1515-0.1694 

R (85-90) 81.3 - 110.3 119.10-131.38 0.1694-0.2098 

S (90-95) 110.3 - 175.8 131.38-170.98 0.2098-0.3554 

T (95-99.5) 175.8 - 5,055 170.98-934.96 0.3554-1.9411 

U (99.5-) 5,055 -13,286 934.96-3,668 1.9411- 6.05 

(3.0) 
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