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ABSTRACT 

 
 

HISTORIC CHANNEL CHANGE AND A POST-PROJECT ANALYSIS OF A 
HABITAT RESTORATION PROJECT ON THE UPPER STRAWBERRY 

RIVER, UTAH 
 

by 
 

Marshall B. Baillie 

Utah State University, 2011 

Major Professor: Dr. John C. Schmidt 
Department of Watershed Sciences 
 
 
 Restoration of the upper Strawberry River included bank stabilization 

techniques because it was assumed that excessive bank erosion was degrading 

spawning habitat for Bonneville cutthroat trout (Oncorhynchus clarki Utah)(BCT). 

Using a long-term aerial photograph record, we determined the historic range of 

variability in bank erosion rates and channel geometry, and used this information to 

assess present-day conditions and the rationale for restoration. Relative to historic 

variability, bank erosion rates were low and channel morphology was stable in the 

decade prior to restoration. Although a historic loss of riparian vegetation coincided 

with a shift to a wider and more sinuous channel, lateral migration rates declined to 

lowest levels in the period-of-record and the channel narrowed as riparian cover 

increased in the decades prior to restoration. Additionally, the percentage of fine 
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sediment in the streambed prior to restoration was insufficient to impact BCT 

spawning success.  Furthermore, using a 1-D hydraulic model we examined pre- and 

post-restoration channel morphology and hydraulic variables related to habitat 

conditions for BCT.  The results of the historical analysis suggest that bank erosion 

and fine sediment did not affect the quality of spawning habitat or the abundance of 

BCT on the upper Strawberry River. Furthermore, the 1-D hydraulic model shows 

that the physical in-channel manipulations made little improvements in achieving 

marketed changes in habitat and as such may have little effect on BCT spawning and 

resident population success. Our results highlight how a historic analysis can be 

used to identify the sources of habitat degradation and inform the selection of 

restoration goals and strategies as well as how surveyed cross-sections coupled 

with a 1-D hydraulic model can examine initial success of in-stream manipulation 

for habitat enrichment of a restoration project. 
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Chapter 1-Introduction 

1.1 Introduction 

 Many rivers and streams which were able to follow untamed courses now 

have altered physical and biological trajectories as a direct result of human 

influences.  The Environmental Protection Agency states in a report in 2000 that > 

33% of rivers were listed as impaired or polluted (USEPA, 2000).  Consequently, the 

number of restoration projects over the past two decades has increased 

exponentially resulting in nearly $1 billion per year being utilized to mitigate and 

re-direct altered rivers (Bernhardt et al., 2005).  The greatest concentrations of 

these projects are located in the Pacific Northwest, Chesapeake Bay watershed, and 

in California.  The most common goals of restoration projects are to; enhance water 

quality, manage riparian zones, improve in-stream habitat, provide fish passage, 

stabilize eroding banks, with a median cost of ~ $45,000 dollars per project 

(Bernhardt et al., 2005). 

 River restoration practice, in many instances seeks to reintroduce conditions 

prior to human influence.  To accomplish these objectives there are many of 

differing techniques that attempt to accomplish restoration goals over a short time 

span.  As a result many of these techniques have good intent but lack adequate 

development and design resulting in potentially higher rates of failure (Frissell and 

Nawa, 1992; Williams, 1997; Kondolf, 2001).   Sources of failure stem from the lack 

of; understanding physical/biological history of the system, examining proper scale, 

treating correct sources of degradation, integrating ecological principles, developing  
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proper goals, pre- and post-project monitoring for adaptive management, and 

focusing on a particular physical state rather than underlying processes 

(Angermeier, 1997;Williams, 1997; Wohl et al., 2005).  

 Many contemporary river restoration projects are often based on trial and 

error methodologies with little understanding of historical context. A well-

established planning process facilitates the creation of clearly defined goals that 

produce more effective use of resources as well as increase the probability of 

project success.  Projects such as these are rare in modern river restoration practice 

(Woolsey, 2007).   Consequently, developing a perspective of the past through a 

historical analysis of a degraded river system can be useful in evaluating restoration 

and management alternatives in river systems.  A historical analysis has many 

benefits in the planning process which include; an understanding of the underlying 

problem, development of realistic objectives and in-turn allow for the selection of 

appropriate strategies and techniques, as well as a better understanding of the 

natural hydrogeomorphic variability of the system (Kondolf, 1995; Schmidt et al., 

1998; Downs and Kondolf, 2002; Wohl, 2005; Woolsey, 2007).  While a historic 

analysis elucidates the past and assists in the creation of a more robust restoration 

design, a post-project analysis or PPA can aid by informing future river restoration 

projects through learning from past projects success and failures.  Utilizing the data 

and knowledge from these successes and failure iteratively aids in the advancement 

of future river restoration design practice.  While both of these components are not 
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a “smoking gun” they increase redundancy while decreasing uncertainty and 

therefore should be employed more often as part of restoration practice. 

 The purpose of this thesis is to present a historic analysis and a post-project 

assessment of a habitat restoration project on the upper Strawberry River, Utah.  

First, we investigate perceived sources of degradation in the system (i.e., excessive 

bank erosion) using a historic analysis, thereby providing a context for assessing the 

underlying reasons for restoration.  Our assessment is based on several sources of 

historic information as well as the construction of a geographic information system 

(GIS) dataset using a suite of aerial photographs from 1938 to 2009.  We calculate 

historic channel widths, sinuosity, amount of riparian vegetation and lateral channel 

migration rates.  Along with this GIS dataset we construct a synthetic hydrograph 

for the region based on inflows to the Strawberry Reservoir below the reach to 

delineate historically wetter and drier periods in the flow record and thus 

mechanisms for channel change for the period-of-record. The historical analysis is 

an attempt to characterize the recent past of the upper Strawberry River and 

explore historical geomorphic context and variability in the system. 

 Secondly, we investigated the percentage of fine material in the riffle zones 

in-order to assess the gravels viability for spawning of Bonneville cutthroat trout.  If 

there is excessive bank erosion in the system then it would be reflected in bed 

sediment composition with high contents of fine sediments.  Moreover, high fine 

sediment content in spawning gravels would limit BCT fry emergence and would 

therefore limit BCT population viability and sustainability on the upper Strawberry 
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River. Together, the GIS and riffle grain size distribution investigations examine 

whether the perceived sources of degradation are in-fact the limiting factors for a 

sustainable fishery for the target species. 

 Thirdly, we attempt to characterize the how restoration has changed channel 

morphology and salmonid habitat using a 1-D hydraulic model. The model attempts 

to scrutinize changes in channel form as a result of physical in-stream modification 

techniques. Moreover, using current flow data and surveyed water surface 

elevations we attempt to characterize changes in hydraulic flow variables to 

describe channel change as an outcome of the restoration.  Of the four study reaches 

in the investigation one has pre- and post-project data at twenty-six surveyed 

channel cross-sections along with water surface elevations for two separate 

discharges. Using the results of the hydraulic model we then examine how the initial 

physical in-stream modifications are successful or not at achieving the project goals.  

 Together, the historical analysis of lateral channel migration along with 

present-day channel surveys and spawning gravel grain size distributions illustrate 

how a targeted analysis of sources of degradation prior to restoration could prevent 

unnecessary and ill-conceived restoration projects.  Furthermore, a post-project 

analysis can provide information whether the as-built restoration structures are 

performing as anticipated and are benefiting a positive or negative system-wide 

response. 

 Lastly, the Appendix of this Thesis contains a published article outlining the 

importance of a historical analysis with regards to habitat restoration for adfluvial 
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salmonids.  The article has been published in a British geomorphology journal Earth 

Surface Processes and Landforms.  The article stresses the need for understanding 

geomorphic processes prior to restoration and how a post-project analysis enables 

iterative and adaptive advancement of restorative techniques for river ecological 

form and function. 
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Chapter 2-Background 

 

2.1 Historical analysis 

A historical analysis is the basis for understanding key system processes and 

can therefore aid planning and design for restoration projects.  The analysis can 

establish an understanding of the underlying problem, help create realistic 

restoration objectives and formulate appropriate strategies to achieve those 

objectives (Kondolf, 1995a).  Historical perspectives can also help increase our 

understanding of the dynamic nature of landscapes and provide a reference for 

assessing modern patterns and processes (Wissmar, 1997; Swetnamet al., 1999; 

Marcucci, 2000).   Many argue that reference conditions for a system may not be 

attainable and the futility of attempting to re-establish pre-disturbance conditions 

may be unattainable (Kondolf, 1995a; Ward et al., 2001; Jacquette et al., 2005; Wohl, 

2005; Florsheim et al., 2006; Stein et al., 2010).  Although many obstacles may 

hinder a perfect picture of past history it is difficult to understand stream condition 

and design effective restoration measures without understanding their temporal 

and spatial contexts, the nature of habitat-forming processes, and a disturbance 

history (Montgomery and Bolton, 2003).   While many researchers have emphasized 

the potential role of historic geomorphic and ecological data in the selection of 

restoration goals (Sear et al., 1994; Kondolf and Larson, 1995; Wissmar, 1997;  

Schmidt et al., 1998; Kowalski and Wilcox, 1999; Swetnam et al., 1999; Ward et al., 

2001; Downs and Kondolf, 2002; Bohn and Kershner, 2002; Montgomery and 
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Bolton, 2003; Collins et al., 2003; Pess et al., 2003; Florsheim and Mount, 2003; 

Brown and Pasternack, 2005;  Wohl, 2005; Woolsey et al., 2007; Surian et al., 2009; 

Stein et al., 2010) the application of such data to restoration project planning has 

not been widely adopted.  

 In order to understand the past geomorphic and ecological history of a 

system there are several resources of information with which to draw from.  

Kondolf and Larson (1995) pursue several sources of data in order to merge 

information needed to generate a historic analysis.  The initial step attempts to 

understand the position of the channel in the watershed and what may be sources of 

influence on flow and sediment.  Additionally, examination of the hydrology via 

gages or adjacent basin gages may provide context within which to interpret 

channel changes on aerial images or from field evidence.  Understanding hydrology 

can also have implications concerning riparian and biological resources.  

Additionally, historical maps and aerial photographs can provide important 

information regarding channel morphology and can also be correlated with 

hydrologic records to examine temporal channel change.  Moreover, aerial 

photographs and historical maps can provide information on riparian and ecological 

processes.  Additionally, oblique photos can be used to document historical channel 

and riparian change by re-photographing the original site from known points-of-

reference.  Additional prospects for historical information are surveyed channel 

cross-sections or any information concerning channel planform of a site.  Therefore, 

the main focus of a historical analysis is to combine and link many different sources 
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of disparate data into a picture that is clear enough for substitutive conclusions of 

past history in order to provide insight into present as well as potential future 

trajectories. 

There are several, but not many, examples where a historical analysis was 

utilized in restoration planning, design, and post-project analysis.  Kondolf and 

Larson (1995) examined previous floodplain uses and channel conditions in two 

reaches of the San Luis Rey River to document riparian resource loss, to assess the 

degree of historical dynamic change, and to establish the potential for riparian 

restoration. Kowalski and Wilcox (1999) used historical and geospatial data to 

identify the relationships between water levels, wetland vegetation, littoral drift of 

sediments, and the condition of a protective barrier beach on a coastal wetland in 

western Lake Erie, to guide a joint federal and state wetland restoration project. 

Warne et al. (2000) used a historic geomorphic analysis to determine reference 

conditions for ecological restoration along the Kissimmee River, Florida.  Ward et al. 

(2001) demonstrated how the use of a historical analysis in several degraded 

European river systems provided landscape-level indicators for assessing the status 

of the river corridors, as well as serving as reference conditions for restoration 

goals.  Bohn and Kershner (2002) used a historical watershed analysis of Grave 

Creek, Montana to guide restoration planning for determining the status of habitat 

conditions for bull trout and westslope cutthroat as well as identify and prioritize 

restoration objectives. Brown and Pasternack (2005) used paleo-environmental 

reconstruction to augment historical perspectives along the Sacramento and San 
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Joaquin river deltas with the aim of improving adaptive management and 

restoration procedures. Sear et al. (2006) utilized historical and documentary 

evidence coupled with field surveys and sediment modeling to provide a 

comprehensive picture of fluvial processes on a river in the United Kingdom.  A 

simple sediment budget was calculated and the results were used to develop 

practical restorative options that address sources of the instability. Stein et al. 

(2010) utilized a historical analysis of the San Gabriel River watershed in California 

to describe historical wetland extent and distribution and compare historic 

wetlands to contemporary conditions to calculate wetland losses and reveal areas 

conducive to future wetland re-establishment and restoration. 

 River restoration has many possible objectives and goals, ranging from 

habitat improvement to flood control and water quality enhancement. These 

objectives need to be clear and as such are critical for success of a project.    Clearly 

stated goals, that are consistent with geomorphological and ecological processes; 

aid designers in choosing, identifying, and prioritizing the restoration endeavor 

while also providing improved planning and design (Angermier, 1997; Kondolf, 

1998; Bohn and Kershner, 2002).   

 An important component of a historical analysis and pre-project planning 

analyzes watershed versus local scale drivers of stream condition.  Frissell et al. 

(1986) describes a nested hierarchical model of physical organization where geo-

ecological associations are nested.  Features that vary over small spatial and 

temporal scales (e.g., microhabitats, hydraulic units) are nested within boundaries 
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established by features that vary over large scales (e.g., vegetation, geology).  Not 

taking into account larger scale drivers of stream condition may potentially lead to 

design failure. Much of river restoration focuses on small spatial and temporal 

scales (e.g., reach) and therefore does not provide a clear view of larger scale 

governing physical and biotic interactions.  Consequently, restoration which is 

focused on an individual spatial and/or temporal scale may fail to notice the 

accurate source(s) of degradation in a system which may have originated from a 

larger scale influence.  For example, watershed scale vegetation has indirect 

influences on stream flow and sediment transport, whereas; reach scale vegetation 

directly influences channel morphology, floodplain and hillslope connectivity as well 

as hydraulic resistance. 

2.2 Post-project analysis 

While a historic analysis provides a glimpse of the past physical and 

biological characteristics of a system a post-project analysis (PPA) examines 

restoration design and implementation, evaluates the degree of attaining 

restoration objectives/goals, examines unanticipated effects of restoration, and 

contributes to improved designs in the future.  Despite many arguments to increase 

post-project monitoring and performance evaluations (Kondolf and Micheli, 1995; 

Bernhardt et al., 2005; Palmer and Allan, 2006) and ideas for standardizing 

assessments (Downs and Kondolf, 2002; Montgomery and MacDonald, 2002; Palmer 

et al., 2005), widespread post-project monitoring and evaluation in river restoration 
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is the exception and not the rule (Smith and Prestagaard, 2005; Tompkins and 

Kondolf, 2007).   Consequently, many river restoration projects success or failure 

remains subjective and therefore provides little guidance for future projects.    

 There is a small community of researchers who have conducted a post-

project performance analysis and performance evaluation of river restoration 

projects.  These examples mostly examine channel and floodplain geomorphology 

which constitute the framework within which aquatic habitat and riparian 

conditions exist, therefore an understanding of geomorphological processes and 

conditions is the prerequisite to successful restoration design (Kondolf, 1995a). 

 Frissell and Nawa (1992) evaluated rates and causes of physical impairment 

or failure for 161 fish habitat structures in 15 streams in southwest Oregon and 

southwest Washington and found that 60% were somewhat impaired following a 

Q2-10 return interval floods.  They also found that commonly prescribed structural 

modifications were inappropriate and counterproductive in streams with high or 

elevated sediment loads, high peak flows, or highly erodible bank materials. Overall, 

processes of failure and impairment were dominated by changes in channel 

morphology that, apparently, had not been anticipated by project designers. These 

changes often were related to dynamic conditions at a watershed-scale and not 

reach-scale. 

 Kondolf (1998) used a PPA to evaluate a restoration project on Rush Creek in 

the eastern Sierra Nevada, California. The project examined riparian revegetation, 

bank erosion mitigation techniques and, aquatic enhancement efforts including 
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flushing flow releases.  They found that bank mitigation and protection reflected a 

choice of objectives inconsistent with geomorphological and ecological processes, 

and that the project attempted to control channel form rather than permit channel 

processes to create and maintain habitat.   

 Kondolf and Smeltzer (2001) investigated a restoration project on a reach of 

Uvas Creek, California, that was washed out just one year post construction.  The 

project was designed using a popular stream classification system, based on which 

the designers assumed that a “C4” channel (e.g., meandering gravel-bed channel) 

would be stable at the site.  Their study cast doubt on several assumptions common 

in many stream restoration projects: that channel stability is always an appropriate 

goal; that channel forms are determined by flows with return periods of about 1.5 

years; that a channel classification system is an easy, appropriate basis for channel 

design; and that a new channel form can be imposed without addressing the 

processes that determine channel form.   

 Smith and Prestegaard (2005), like Kondolf and Smeltzer (2001), examined a 

rehabilitation project conducted in a reach of Deep Run, Maryland.   There, they 

monitored commonly used approaches to channel design that rely on classification 

systems to describe channel form, empirical relations to predict channel 

dimensions, and a single design discharge to evaluate the hydraulic conditions.  The 

Deep Run rehabilitation project was intended to reduce the sediment supplied to 

downstream areas by stabilizing the active channel.  The monitoring and 

subsequent PPA of the Deep Run project documented that the constructed channel 
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reach was morphologically and hydraulically different from the original channel and 

other previously documented Piedmont streams and therefore the constructed form 

was unsustainable resulting in failure.  Furthermore, the observations in Deep Run 

illustrate how processes operating at four spatial scales (i.e., physiographic region, 

watershed, project reach, and channel feature) influence the stability of a channel 

reach. While channel rehabilitation designs typically focus on the average conditions 

of the project reach, the problems experienced with the Deep Run project were 

attributed to processes operating at the other three larger scales.   

 Goetz (2008) utilized a PPA to examine a physical assessment of the Provo 

River Restoration Project (PRRP), Utah in order to investigate the design and 

construction of a large-scale stream restoration project.  Goetz provided a context 

for assessing project performance in terms of reestablishing geomorphic processes 

that connect the channel and floodplain.  Goetz found that the PPA demonstrated 

that many assumptions were made along the route from the perception of a 

problem, to the eventual construction of the PRRP. Furthermore, these assumptions 

were made based on a scientific understanding of naturally functioning river 

systems although no data was collected to quantify the nature of physical 

impairment.  The PPAs measurements suggest that what was constructed was often 

very different from the design, and that the functional response of the river to its 

channel and floodplain re-alignment was therefore not predictable.   

 Miller and Kochel (2009) examined 26 stream restoration projects in North 

Carolina utilizing site assessment and post-project monitoring data of channel 
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reconfiguration projects.  An analysis of site and basin geomorphology revealed that 

large post-construction adjustments were associated with highly dynamic stream 

channels characterized by a combination of high sediment transport capacity, large 

sediment supply, and/or easily erodible bank materials.  In-stream structures along 

reconfigured channels exhibited high incidences of damage. Their analysis 

suggested that attempts at channel reconfiguration may be extremely difficult along 

dynamic rivers which are often targeted for restoration.  Furthermore, they suggest 

that allowing the channel to self-adjust (e.g., enhanced natural recovery) can be 

combined with other less aggressive methods to improve the rivers overall 

condition.   

 Lastly, Buchanan et al. (2010) evaluated a stream restoration project 

completed in the fall of 2005 on Six Mile Creek, New York. Using a variety of 

evaluation approaches, they documented both successes (e.g., enhanced in-stream 

habitat) and failures (e.g., channel avulsions) of in-stream physical channel 

manipulation. Overall, they concluded that the project was marginally successful in 

achieving its stated goals and that future prospects remain uncertain based on the 

current trajectory.  

 Together these examples provide evidence for effective practice in pre- and 

post-project restoration procedure.  Effective pre-project monitoring and 

subsequent post-project analysis/evaluation practice are as follows: 1) generate a 

defined list of stakeholders, 2) establish a list of clear goals and objectives, 3) 

establish and initiate a pre-project monitoring program which assembles a present 
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geomorphic and ecological baseline context, 4) establish and initiate a historical 

analysis which assembles a past geomorphic and ecological context .  These four 

basic steps can provide ample information for effective pre-project planning and 

design.  In addition, after project completion, a post-project monitoring and 

evaluation program can provide future adaptive management possibilities and 

subsequent strategies for restoration success.  
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Chapter 3-Strawberry River historical and post-project analysis 

 

3.1 Watershed characteristics and reach boundary conditions 

 The study area is located on a reach of the Strawberry River upstream from 

Strawberry Reservoir near Heber City, Utah (Figure 1).  The topography of the 

watershed varies from steep mountain ridges to foothills and wide valleys.  

Elevations in the watershed range from 2320 m at the reservoir to 3200 m on the 

headwater ridges. The upper Strawberry River valley is approximately 0.67 km 

wide and is surrounded on either side by mountainous terrain ranging from 100 m 

to several hundred meters in height. The watershed is located on the southwest 

edge of the Uinta Mountains and flows from its headwaters in the north southward 

into Strawberry Reservoir. 

 The study reach is located in a transitional zone between the partially 

confined mid-catchment zone and the unconfined alluvial valley of the watershed. 

Much of the active channel in the study reach is unregulated with little hillslope-

channel connectivity and is laterally unconfined.  The valley floor shows evidence of 

single-thread, meandering paleochannels and the existing channel is meandering. 

Channel type follows a combination of asymmetrical and compound shapes which 

are associated with lateral migration and large flow variation respectively.  The 

asymmetrical channels are found in the more sinuous reaches, and are 

characterized by meanderbends, while the compound channels are can be found in 

straighter reaches and are characterized by a smaller inset channel within a larger 
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macro-channel. In asymmetrical channels, secondary flow circulations promote 

deposition of associated point bars on the convex bank.  This type of channel 

behavior lends to an assemblage of point and lateral bars, pools, as well as riffles 

with alternating deep pool and shallow riffle sections. The alternating riffle-pool 

sequences are characteristic of bedload or mixed-load transport regimes (Brierley 

and Fryirs, 2005).  In normal flow stage the secondary flow circulation, deposits 

sediments at the toe of the point bar.  However, as the flow increases, sediment 

deposition occurs around the bend and on top of the bar surface.  This situation, 

depending on the flow angle, can stimulate avulsive channel behavior in 

meanderbends that are late in their development through extension and translation.   

Additionally, chute cutoffs are formed during high flows circumventing 

meanderbends, and initiating new channels that are straighter and have greater 

slopes, thus larger erosive power. There are numerous instances of avulsive channel 

behavior along the reach.  Both conditions have the potential to reintroduce large 

amounts of sediments into the existing channel.  

3.2 Climate 

 The mean annual precipitation for the watershed is approximately 68.5 cm 

per year.  From 1931 to 1960, 72% (50.5 cm) of annual precipitation fell as snow 

between October and April and the remaining 28% (19.8 cm) occurred between 

May and September, falling primarily as rain (USFS, 2004).  From 1931 to 1960, 

daytime temperatures in the valley are generally below freezing from the end of 
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November through the end of March and there are commonly periods when 

temperatures fall below -17 C. Average maximum and minimum July temperatures 

are about 27°C and 8°C, respectively.  Most of the valley is covered by 0.6-1.2 m of 

snow from November through March and snow depths at higher elevations may 

exceed 2.1-2.4 m in some years (Jeppson et al., 1968). 

3.3 Geology 

 The dominant geologic formations are the Duchesne, Uinta, and Green River 

formations each of which consists of continental sedimentary rocks deposited 

during the Oligocene to Paleocene approximately 66 to 24 million years ago.  

Cretaceous and older formations (e.g., more than 66 million years old) occur in the 

north end of the upper Strawberry River valley. Structurally, these rocks are more 

folded and faulted than rocks of the younger Duchesne River, Uinta, and Green River 

formations.  Within this zone of older rocks, the two formations of most interest are 

the Permian Kirkman limestone and the Pennsylvanian-Permian Park City 

formation. Both formations locally have beds high in phosphorus and appear to be 

sources of phosphate to the upper Strawberry River and Reservoir and therefore 

are of interest to water quality and fisheries managers (USFS, 2004, UDWQ, 2007).    

Excess phosphate in the system is believed to be a potential source of water quality 

problems in the river as well as the reservoir. 
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3.4 Land use history of the upper Strawberry River 

 Much of the upper Strawberry River watershed has been used for livestock 

grazing by Heber Valley settlers since the early 1860’s. In 1864, the area was under 

the jurisdiction of the Uinta Tribal Reservation which was located in Fort Duchesne, 

nearly 80 km to the southeast and consequently hindered effective management of 

grazing on the lands.  With the need for water to be delivered to the growing Utah 

and Salt Lake counties to the west, the federal government began the creation of a 

water delivery and storage system known as the Strawberry Valley Project. The 

lands immediately surrounding the future reservoir were put under the jurisdiction 

of the Bureau of Reclamation and the upland areas were put under the jurisdiction 

of the Uinta Forest Reserve later to become the Uinta National Forest.  

In his diaries, Albert Potter then the associate Chief of the Forest Service 

examined the land that would eventually become the Uinta National Forest and 

made these observations (Potter, 1902): 

August 7, 1902: Left Heber for a trip south to Strawberry and 
Hobble Creek– took road leading up Daniels Canyon. The farming 
lands extend along the creek for about 2 miles and then beyond 
there are grazing lands on the ridges for about 2 miles farther until 
the line of the proposed reserved lands have been bought from the 
State by the stockmen. As soon as the unsurveyed lands are 
entered, a difference can be noticed in the feed and the farther up 
the canyon you go the more heavily grazed the country is, the head 
of the canyon being just about tramped out (i.e., Daniels Summit-
the edge of the upper Strawberry River watershed). As soon as the 
line of the Uintah Indian Reservation is crossed (i.e., 
approximately US Route 40 bridge at the Strawberry River) a 
marked change is again noticed. There is good grass and plenty of 
woods and browse. The country shows the difference restriction 
of grazing makes in range condition. 
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Potter’s observations demonstrate that prior to land reallocation in the Strawberry 

Valley, from the Uintah Valley Reservation to what is today the Uinta National 

Forest, much of the land was relatively undisturbed.   

Heber Valley ranchers who had previously leased grazing from the Uintah 

Indian Office in Fort Duchesne now petitioned the Bureau of Reclamation to 

continue grazing on the reallocated lands. Consequently, on March 10, 1906, the 

Secretary of the Interior leased the withdrawn lands to several Heber Valley 

ranchers for grazing purposes.  It wasn’t until the 1970s that grazing pressures were 

reduced by 20% through implementation of rotational grazing management and 

segregated (e.g., sheep and cattle) stocking.  Grazing on the mainstem of the upper 

Strawberry River was completely removed in 1990, however grazing in the upper 

headwater reaches continues to the present.  Historically, much of the watershed 

has scars from human influence in the region over the past 200+ years (Table 1).  In 

the past these influences stemmed from grazing, flow diversions, and logging.  In 

modern times, while grazing still occurs in the upper headwater areas, the largest 

influence would be recreationists, on the system of dirt roads using off-road 

vehicles.  These forms of recreation were noted in the USFS (2004) report as large 

sources of degradation to the local stream system.   

3.5 Hydrology and the history of water use in the upper Strawberry River 
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The upper Strawberry River watershed is characterized by a snowmelt-

driven flow regime.  The higher elevations of the upper Strawberry River are > 3000 

m and are snow-covered throughout the winter, resulting in flows that typically 

peak between mid-May and early June as temperatures warm and recede to base 

flow levels by mid- to late July.  Summer precipitation is characterized by convective 

thunderstorms from July through September, resulting in locally heavy precipitation 

for short durations. Historic stream-flow records for the upper Strawberry River are 

limited. The only local gage records are for Hobble Creek at Daniel’s Summit Ditch 

from 1963 to 1984 (USGS gage #09280400) and the Strawberry River and Willow 

Creek Ditches from 1949 to 1960 (USGS gage #09280000).  Both of these gages 

measured flow diversions from the upper Strawberry River into Daniels Creek and 

then onto the Provo River for use on the Wasatch Front.  For this study, a pressure 

transducer was installed in August 2008 on the upper Strawberry River at the U.S. 

Route 40 crossing to measure discharge and temperature for use in this study and 

future monitoring efforts. 

 The upper Strawberry River is part of the greater Strawberry Reservoir 

watershed which contains several diversions. These diversions were part of 

Reclamation's Upper Colorado Region Central Utah Project (CUP), which was 

created to develop water for irrigation, municipal use, and power generation.   

Consequently, the Strawberry Reservoir was created after several years of 

feasibility studies as part of the Strawberry Valley Project.  Begun in 1906 and 

completed in 1915, the project stored and then distributed water to both valleys via 
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a series of tunnels and canals for agricultural and municipal uses.   The main trans-

basin diversions affecting the upper Strawberry River were built in 1872; two 

canals, Hobble Creek Ditch and the Willow Creek Ditch, diverted water from the 

tributaries of the upper Strawberry River to Daniels Canyon in Wasatch County. 

Water quantities were insufficient for this diversion to be driven by gravity flow, so 

a 330-m tunnel was excavated through the mountain which allowed additional 

water to be diverted from the upper Strawberry River drainage to Daniels Canyon 

(UDWQ, 2007; Figure 2).   Approximately 70% of the diverted water was from the 

upper Strawberry River and the remainder from smaller tributaries resulting in the 

dewatering of ~26 km on the upper Strawberry River (USFS, 2004).  The natural 

system hydrology was restored when the diversions were decommissioned in 2001.  

3.6 Riparian vegetation 

 The dominant vegetation type of the floodplain is characterized by sagebrush 

and grassland with willows interspersed along the riparian corridor.  There are 

several wet meadow areas along the river corridor which have sedges, grasses, and 

forbs resulting from emergent ground-water springs from associated side canyons.  

Much of the willows along the upper Strawberry River were extirpated due to over-

grazing (1861 to 1989), herbicide treatments (1965 to 1973), and reduced flows as 

a result of the Daniels and Hobble Creek diversions (1872 to 2001 and 1890-1955 

respectively).  A series of oblique photographs compare historic and current 
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riparian corridors along the upper Strawberry River and illustrate the reduction in 

riparian cover since the late 1800s (Figures 3, 4 a & b, 5 a & b).  

3.7 Beaver 

 The American beaver (Castor canadensis) historically had a strong presence 

along the upper Strawberry river corridor.  There is evidence of buried dams, 

lodges, and debris in many of the bare banks along this corridor overlain with a 

meter or more of floodplain deposits.  Examining the woody outcrops provides 

evidence of beaver mastication on the individual pieces of debris as part of their 

dam and lodge building activities.  The beaver uses the surrounding vegetation to 

create dams, raise the associated water-table, and provide refugia from predators 

while providing forage for food.  By raising the surrounding water-table they 

provide a suitable environment for recruitment of riparian vegetation (Pollock et al. 

2007, McKinstry MC., 2001). 

A major aspect of managing at larger spatial scales is recognizing that many 

stream fishes require access to a variety of habitat conditions to fulfill their life 

history requirements, a phenomenon known as habitat complementation.  

Management efforts will need to consider providing the full range of habitats 

needed by all life history stages if populations are to thrive (White and Rahel, 2008). 

The populations of beaver along the upper Strawberry River have fluctuated from 

1938 to the present.  From 1938 to the mid 1960’s there were a total of 13 colonies 

and 24 dam structures evident in aerial photographs.  The number of colonies and 
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dams then plummeted to 5 colonies and 6 dams respectively, from 1965 to 

2001(USFS, 2004).  It would appear the loss of riparian habitat through extirpation 

of the willows from 1965 to 1971, led to loss of beaver habitat, resulting in a decline 

of beaver populations in the past several decades.  

3.8 Upper Strawberry River restoration 

 
 In the decades since its construction, the Strawberry Reservoir has grown 

into the most popular recreational fishery in Utah and today receives over 2 million 

visitors per year (USFS, 2004; UDWR, 2007). In the early 1980s, the Bureau of 

Reclamation brought together stakeholders to examine resource concerns in the 

Strawberry Valley.  These meetings illustrated the need for better management and 

restoration of many of the inflows to the Strawberry Reservoir.  The concerns of the 

stakeholders focused on the desire for a sustainable and thriving sport fishery of 

adfluvial salmonids (i.e., Bonneville cutthroat trout and Kokanee salmon).  

Throughout its range, the Bonneville cutthroat trout (Oncorhynchus clarki utah ) 

(BCT) has been the focus of restoration activities aimed at improving habitat for the 

various life stages of these species. However, BCT are not native to the upper 

Strawberry River. The Strawberry River is a headwater tributary of the Green River 

and ultimately flows to the Colorado River; thus, it was never connected to 

Pleistocene Lake Bonneville. Nevertheless, because of its value as a sport fish, BCT 

was introduced by the Utah Division of Wildlife Resources (UDWR) to Strawberry 

Reservoir in the early 1990s following the rotenone eradication of the reservoir’s 
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existing fish populations. Today, Strawberry Reservoir is managed as a premier 

trout fishery.  

Low BCT populations in the upper Strawberry River have been attributed to 

several causes, including high bank erosion rates, large fine sediment loads, high 

width-to-depth ratios, limited vegetative cover, and high summer daytime 

temperatures (UDWR, 2007). As a result, many of the restoration efforts in the 

Strawberry Valley have focused at remediating these perceived sources of habitat 

degradation.  

 The upper Strawberry River is the largest inflow to the Strawberry Reservoir 

and thus offers the greatest potential for increasing the quantity of spawning and 

rearing habitat.  Restoration of the upper Strawberry River has included several 

projects that have targeted the alleged problem of excessive bank erosion.  In the 

early 1990s, juniper revetments and willow plantings were placed along the outside 

of meander bends to stabilize the banks.  This large-scale effort encompassed 32 km 

of the upper Strawberry River channel and some tributaries, using roughly 50,000 

willow cuttings (USFS, 2004).  The success of this earlier effort at reducing bank 

erosion rates and increasing the riparian corridor biomass has not been adequately 

assessed; no comprehensive pre- and post-project monitoring data are available to 

assess restoration effectiveness.  Furthermore, these activities appear to have had 

little effect on the BCT recruitment and reproductive success, which remains the 

primary goal of the stakeholders.  As a result, in 2008, the Utah Division of Wildlife 

Resources (UDWR), in conjunction with the Uinta-Wasatch-Cache National Forest, 
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began an in-stream habitat restoration project along the upper segments of the 

upper Strawberry River to address these concerns.  This restoration project focuses 

on a 7 km section of the river from Bull Springs upstream to US Route 40 (Figure 6).   

According to the project proposal (UDWR, 2007), the stated objectives of the project 

are to: 

 Restore and maintain the natural dimension, pattern, and profile of the upper 

Strawberry River 

 Improve upstream fish migration from Strawberry Reservoir 

 Stabilize eroding banks 

 Reestablish a more natural riparian plant community 

 Reduce stream temperatures 

 Reconnect the river to its historic flood plain 

 Improve and increase complexity of aquatic habitat 

 Reduce fine sediment and improve spawning habitat   

 

The methods used by the restoration designers to achieve desired results were as 

follows: the proper alignment and placement of rock and log vanes, root wads, and 

other structures which attempt to stabilize the channel. In addition, only structures 

suitable for this stream type based on the Natural Channel design developed by 

Rosgen (1994) were employed. A single thread channel with meanders and proper 

channel sinuosity was maintained. Rock and log vanes were placed at critical 

locations to protect stream banks and allow riparian vegetation to reestablish. 

Vertical banks were sloped to allow vegetative cover to establish. Willow clumps 

were transplanted from other Strawberry Valley locations to positions along the 
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newly sloped stream banks. Root wads and logs were also be used to protect stream 

banks and provide cover for trout. Coconut fiber was be used on outside bends of 

meanders to provide additional bank protection until vegetation becomes 

established. Sloped banks and other disturbed areas were reseeded with species 

currently found in the area that are appropriate for the site including water 

requirements. Channel realignment was necessary where excessive degradation had 

occurred, in order to reconnect the stream with the floodplain. When channel 

realignment was necessary, the old channel was converted into oxbow ponds 

whenever possible, thereby increasing habitat heterogeneity (UDWR, 2007, Figures 

7 a & b). 

  Other than a two-page proposal describing in broad terms the goals and 

techniques of the project, no material plans, pre-project monitoring data or 

historical analysis was developed to guide project design and implementation 

(Justin Robinson, UDWR, personal communication, July 2010).  Restoration planning 

(e.g., structure placement and riparian planting locations) was based entirely on 

qualitative field observations of flow angle of attack and perceived “eroding banks” 

during peak annual discharges.  Consequently, this study seeks to inform the 

historical context and evaluate in-stream restoration techniques and their effect on 

the project goals.   
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Chapter 4-Methods 

 The main goals of this thesis were to use historical, hydrological, along with 

contemporary survey data to examine the perceived sources of degradation as well 

as the performance of a restoration project on the upper Strawberry River, Utah.  

The historical database examines historical changes of the perceived source of 

degradation-bank erosion and whether the perceived problem is factual or an 

expected component in this system. The hydrological analysis attempts to 

characterize the upper Strawberry Rivers mean daily flow durations and annual 

flood frequencies.    Furthermore, the 1-D hydraulic models can evaluate channel 

performance by comparing pre- and post-restoration change channel morphology 

and hydraulics.  In order to accomplish these goals, the study obtained and analyzed 

historic aerial photographs, hydrological data, and present-day channel surveys to 

understand the system’s historic variability and sources of degradation.   

 To address these goals, this study specifically uses four types of analyses to 

investigate changes in channel form prior to and following restoration: 1) 

measurement of changes in planform channel geometry and riparian cover from a 

decades-long record of historical aerial photography in a Geographic Information 

System (GIS) and 2) hydraulic modeling using surveyed cross-sections, analysis of 

longitudinal channel surveys as well as streambed sampling of spawning gravels, 3) 

site measurements of discharge and water temperature, and 4) a regional analysis 

of hydrology and hydraulics. 
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4.1 Aerial photograph analysis and interpretation 

 For the first analysis, completed GIS coverage’s were developed from aerial 

photographs taken in 1938, 1946, 1956, 1963, 1978, 1987, 1993, 1997, 2006 and 

2009 (Table 2). This GIS database was used to quantify changes in planform 

geometry, lateral migration rates, and the distribution of riparian vegetation over 

time. 

 Imagine and ArcInfo were used to georeference aerial photographs and 

create a GIS for analysis of the study area.  The aerial photographs came from 

several sources including the U.S. Department of Agriculture Aerial Photography 

Field Office, the U. S. Geological Survey Earth Resources and Science Center, and the 

Utah State Geographic Information Database.   In this study, co-registration was 

achieved using a 2006 digitally ortho-rectified quarter quadrangle (DOQQ) as a base 

layer.  Of the six photographs that needed rectifying, only two (e.g., 1978 and 1987) 

had associated calibration reports.  In each case, the calibration report was missing 

focal length, principal point, and at least one of the fiducial coordinates.  As a result, 

these images were rectified using the same protocols as the images without 

calibration reports. The aerial photographs from 1993, 1997, 2006, and 2009 were 

all previously registered DOQQs.   A second-order polynomial georectification model 

was used as the mode for rectifying the 1938 through 1987 historical image 

collection.    
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4.1.1 Aerial photographic rectification 

The 2006 DOQQ was used to georeference the unregistered aerial images in 

Imagine.  There are three main steps to do this: (i) matching of ground-control 

points (GCPs) on the scanned photo image and base layer (ii) transformation of the 

GCP coordinates on the scanned image from a generic raster set to a geographical 

projection and coordinate system and (iii) pixel resampling (Leys and Werrity, 

1999, Hughes et al., 2006).  Identification of adequate GCPs to increase positional 

accuracy was difficult in the study area because there were few anthropogenic 

features and the natural features change position over time.  These GCPs were 

located using a Real-Time Kinematic (RTK) survey-grade GPS.   These GCPs included 

road intersections, rock outcrops, and bridges and were not on the river corridor.  

GCPs that were part of the river corridor were unidentifiable in many of the early 

photographs.   In combination with the surveyed GCPs, GCPs were located on the 

photographs for use in the rectification process.  Many of the GCPs located on the 

images were immobile objects such as rock outcrops whereas others were old ranch 

and Forest Service Ranger cabins. Each co-registration was exhaustively combed for 

matching GCPs.  Better accuracy and therefore lower error can be established by 

concentrating the GCPs in the target area (e.g., the river channel), but, in this study, 

objects were not readily available near the river channel.  An alternative technique 

is to spread the GCPs over the entire image in the shape “X” which more evenly 

distributes the skew in the transformation and thus tends to reduce the amount of 

error in the resampled image (Hughes, 2006).  In this study, a combination of an “X” 
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and an “O” pattern most efficiently minimized the overall error.  In all, each image 

utilized approximately 30 GCPs for rectification purposes.   

 Once the GCPs were entered for both the base layer (i.e., the 2006 DOQQ) and 

the unregistered raster image, a polynomial transformation was applied to resample 

the image.  There are two basic types of polynomial transformations that can be 

used for rectification.  The first is linear and consists of a polynomial function with a 

numerical value of the highest exponent in the expression.  As a result, 1st order, 2nd 

order, and 3rd order transformations are linear.  In this study, 2nd order 

transformations were used because they tend not to excessively warp digital images 

and thus make the photograph unusable for data topographic extrapolation (Leica 

Geosystems, 2006).   During a polynomial transformation, a least-squares function is 

fit between GCP coordinates on the unregistered image and base layer. This function 

is then used to assign coordinates to the entire photograph. After transformation, 

GCPs on the photo and base layer have slightly different coordinates, depending on 

the degree to which the overall transformation affects the positional area of each 

GCP. The difference in location between the GCPs on the transformed layer and base 

layer is represented by the total root-mean square error (RMSE), a metric based in 

the Pythagorean Theorem and calculated for a coordinate pair by the equation: 

   

                                           (1) 
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where xs and ys are geospatial coordinates of the point on the source image; and xr 

and yr are coordinates of the same point on the transformed aerial photograph. The 

RMSE for the whole image is the sum of the RMSE for each coordinate divided by the 

square root of the number of coordinate pairs (Hughes 2006).  In this study, the 

RMSE was relatively low for most of the images rectified with an average of 2.51m 

for all the images.  Each time period (e.g., 1938 to 1946) had a calculated RMSE 

based on GCPs used for the transformation.  The resulting RSME was then calculated 

per year for the time period.  The largest RMSE was 0.58 m/y for the 1946 to 1953 

period and the lowest was 0.16 m/y for the1963 to 1978 period (Table 3). 

 Once the image was georeferenced, a resampling step was utilized to 

normalize the pixel size throughout the image (Hughes et al. 2006).  In many cases, 

the transformed image had pixels that differed in size depending upon the order of 

the transformation.  To rectify this problem, there are three main techniques used to 

resample an image; nearest neighbor, bilinear interpolation, and cubic convolution.  

Cubic convolution smoothes the surfaces, whereas nearest neighbor tended to 

coarsen the images and bilinear interpolation is a combination of the two.  Through 

successive iterations, it was determined that bilinear interpolation would be the 

best resampling method resulting in pixel sizes of 1m x 1m and of the best clarity of 

the three techniques. 

4.1.2 Image interpretation 

 Rectified aerial images were overlain and then used to compute rates of 

lateral channel migration (LCM), as a proxy for bank erosion rates, as well as 
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average channel width, channel sinuosity, and the percent of riparian cover at 

different time steps in the record.  Rates of LCM were computed using the following 

steps. First, the left and right active channel boundaries were digitized.  In many of 

the earlier images, these boundaries were not evident due to upstream water 

diversions that left a dewatered channel.  In these cases, the edge of the vegetation 

on the bed was used as a surrogate for the active channel boundary. Secondly, using 

the newly created active channel boundaries and the midpoint tool in the GIS 

software, a centerline was created for the channel.  The midpoint tool generated a 

line that paralleled both left and right channel boundaries for the entire reach.  In 

meander bends, the number of centerline points generated was increased to provide 

for a more accurate representation of channel curvature. Thirdly, channel 

centerlines for each time step were superimposed to define polygons that 

represented the area of floodplain that was eroded in each time period.  Following 

the method of Micheli and Kirchner (2002), the average migration rate (m/y) for 

each eroded-area polygon was computed by dividing the polygon area by one-half 

its perimeter and then by the number of years elapsed between time steps. Mean 

annual LCM rate for the entire reach in each time period was taken as the average 

migration rate of all polygons in that time period; the number of polygons used in 

computing this average ranged from 46 (1953 to 1963) to 230 (2006 to 2009).  

Summing the error from the digitization and image rectification produced a total 

error of 22.6 m for a polygon formed from two centerlines. When divided by the 

time interval of 71 years, the result is an error of ±0.16 m/y for the average period 
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migration rate calculated for a polygon (Micheli and Kirchner, 2002).  Polygons with 

annual migration rates smaller than this error were thus considered undetectable 

within the range of expected error and were excluded from the calculation of 

average LCM for a given time period (Constantine et al., 2009). In this way, 

georectification error was incorporated into the estimates of LCM rates. 

 While analyzing the images, it became evident that some of the polygons 

were the result of a meander neck or chute cutoffs.  In some instances, it was also 

obvious that these cutoffs were the result of beaver activity. Beaver dams create low 

velocity zones around the beaver lodge that provide protection against predators 

and a winter feeding ground.  Sediment deposition and accumulation in these low 

velocity zones cause channel aggradation, which eventually induces a change in 

river course that could be construed as channel migration.  All polygons that were 

created as a result of a meander cutoff were therefore also excluded from the LCM 

calculation. 

  In addition to LCM, several other metrics of historical channel 

planform geometry were calculated for each period, including active channel width 

(b), sinuosity (p), and radius of curvature (Rc).  Active channel width (b) was 

calculated along the entire study reach at each time step by dividing the area of a 

polygon between left and right channel banks by one-half the perimeter of the 

polygon. Computed widths for each polygon were then averaged to determine the 

mean channel width for the study reach at a given time step.  Sinuosity (p) (the ratio 

of channel length to valley length) was determined from the digitized channel 
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centerline and the distance between reach endpoints.   Radius of curvature (Rc) was 

measured in each image to examine the relationship of bend geometry and channel 

curvature (Rc/width) to channel width and to lateral migration rates.  Prior to the 

extirpation of willows in the 1960s, many of the cutoffs appear to be as a result of 

beaver activity. However, in the photographs with little riparian vegetation, the 

mechanism for cutoffs is different. By examining the ratio of radius of curvature and 

channel width, Hicken and Nanson (1975, 1984) demonstrated that the rate of 

lateral migration reaches a maximum when 2 < Rc/width < 3, with a decrease below 

2 and above 3. Hooke (1975) also found that uniform down-valley migration, 

resulting in stable planform geometry, required a ratio in the range of 2 to 3.  The 

ratio of radius of curvature and channel width can be used to evaluate channel 

stability and the tendency for meander-cutoffs. To measure radius of curvature (Rc), 

a circle was drawn on each meander bend that best fit the shape of the bend defined 

by the channel centerline. The radius of each circle was then calculated and taken to 

represent the radius of curvature for each bend (Nicoll et al., 2010). 

4.2 Channel Reach Surveys and HEC-RAS 

4.2.1 Reach and site surveys 

 Channel surveys were conducted to examine channel cross-sectional and 

longitudinal channel morphology.  The ground-based surveys used a Real Time 

Kinematic Global Positioning System to measure the bed and water surface 

longitudinal profiles and channel cross-sections. The longitudinal water surface 
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profiles were surveyed at left-edge-of-water locations, whereas bed surface 

elevations were surveyed at the channel centerline.  The main 7-km reach had four 

distinct restored and unrestored reaches for cross-section surveys at two different 

discharges, following the procedure of Harrelson et al. (1994).  These surveys were 

then used in a 1-D hydraulic model to compare reach channel morphological and 

hydraulic characteristics among pre- and post-restoration reaches. 

 In September 2008, a channel survey was conducted following restoration of 

a 198-m long reach, hereafter known as the “Restored 2008” reach (Figure 8).  

Thirty-five channel cross-sections were surveyed on this reach in 2008, and again in 

2009 and 2010.  In 2009, 26 cross-sections were established on a 178 m-long reach 

upstream of “Restored 2008”, hereafter known as “Restored 2009”(Figure 9). Cross-

sections were surveyed on this reach prior to restoration in July 2009, following 

restoration in September 2009, and again in June 2010.  Surveys were also 

conducted in 2009 and 2010 on two upstream unrestored reaches. Ten cross-

sections were surveyed on the 105 m-long “Control 1” (Figure 10), immediately 

upstream of “Restored 2009) and slated for restoration in July 2010. Twenty cross-

sections were surveyed on the 205-m long “Control 2” (Figure 11), the farthest 

upstream reach that will not be restored. Cross-sections were spaced at 

approximately 10m intervals or two bankfull widths.   

 A longitudinal survey of the active channel bed centerline and water-surface 

elevations was surveyed for the main 7 km reach.  The survey was then plotted and 

examined longitudinally for areas of instability which may better explain excessive 
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channel widths, lateral channel migration, and sinuosity as calculated using a GIS as 

well as providing a general slope of the reach which was then used in the HEC-RAS 

model. 

4.2.2 Bed material composition 

 Pebble counts (Wolman, 1954) were conducted as part of a habitat study 

(Nira Salant, personal communication) to examine the suitability of substrate for 

spawning salmonids and other aquatic organisms.  Collection consisted of two 

evenly spaced samples from three riffles along each reach; the two samples per riffle 

were combined in order to amass a large enough sample to meet the criteria of 

Church et al. (1987). A MacNeil sampler because it allowed for retainment of the 

very fine sediment suspended during collection (MacNeil and Ahnell, 1984); the 

base of the sampler was capped to hold water and suspended material, which was 

then filtered through a < 4 μm mesh. All particles > 8 mm were sieved into standard 

size classes and wet-weighed in the field; all sediment < 8 mm, including the filtered 

suspended material, was bagged and returned to the lab for particle size analysis. 

The percentage of fine particles < 1 and 10 mm was then calculated for each riffle 

and computed the mean (±SE) fine sediment content for each reach. Due to 

longitudinal connectivity among reaches, substrate conditions on different reaches 

cannot be considered independent, violating a necessary assumption of an analysis 

of variance. Therefore, a test for significant differences in fine sediment content (< 1 

and < 10 mm) was used among reaches or between sampling dates using a repeated 

measures model (Maindonald and Braun, 2003), treating reach or sampling date as 
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a fixed factor (“treatment”) and riffle (sample location within reach) as a random 

factor. A repeated measures model was used because samples were taken 

(“repeated”) at different streambed locations (riffles). Comparisons were made 

among reaches on a single sample date and between sample dates on each reach. 

We considered a p-value < 0.01 to be significant (Salant 2010-unpublished data). 

4.3 HEC-RAS 1-D hydraulic modeling 

 The one-dimensional hydraulic model HEC-RAS was created in order to 

estimate water-surface elevations, flow depths, channel geometries, and hydraulic 

conditions for observed baseflow and bankfull as well as modeled BCT spawning 

discharges.  After calibration, the models were then used to evaluate the effects of 

in-stream channel habitat restoration on morphology and hydraulics at three 

different discharges. Such information is valuable to initial success of the restoration 

project. 

 Hydraulic models of each study reach were calibrated by varying the 

Manning’s n roughness coefficient until the computed water-surface elevations 

matched the surveyed water-surface elevations.  Water-surface elevations were 

surveyed at baseflow 0.4 m3/s (Qb) and bankfull of 4.1 m3/s (Qbf).  A third modeled 

discharge or BCT spawning flow of 1.93 m3/s (Qspawn) was also analyzed to examine 

habitat change amongst pre- and post-restoration channel alterations. 

 The focus of the modeling analysis was on the ‘Restored 2009’ reach which 

was the only surveyed reach with pre- and post-restoration survey data.  Hydraulic 

outputs for the three modeled discharges were analyzed and included; cross-
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sectional channel-average boundary shear stress, cross-sectional flow area, cross-

sectional hydraulic depth, cross-sectional mean velocity, and water-surface active 

channel width for cross-sectional and longitudinal channel morphology 

adjustments.  Restored 2008, Control 1, and Control 2 reaches have data which will 

be used for future monitoring of the project.   

4.4 Site measurements of discharge and temperature 

 A pressure transducer along with discharge measurements was used in 

conjunction to establish a rating relation for the gage at the bridge on US Route 40.  

The rating relation and measured water surface elevations from the pressure 

transducer were used to compute associated discharge values.  The pressure 

transducer collected data every 15 minutes.  For the period-of-record the mean 

daily discharge was then calculated.   The mean daily values were used to create a 

time series of discharge flows for 2009 and 2010 and were analyzed for information 

on; mean annual stream flow, expected timing, magnitude and frequency of annual 

peak flows, and flow variability.  The pressure transducer also measured water 

temperature and was used to analyze maximum summer water temperatures. 
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4.5 Regional analysis of hydrology 

4.5.1 Developing a time series of hydrology from Strawberry Reservoir inflows  

 The upper Strawberry River has no flow data other than 2009 and 2010.  

Stream flow records are scarce for Strawberry Valley streams. The U.S. Geological 

Survey operated a stream gage on Indian Creek between 1909 and 1911 and only 

partial records are available from this period. The only local gage records are for 

Hobble Creek at Daniel’s Summit Ditch, Utah from 1963 to 1984 (USGS gage 

#09280400) and the Strawberry River and Willow Creek Ditches, Utah from 1949 to 

1960 (USGS gage #09280000).  Both of these gages measured flow diversions from 

the upper Strawberry River into Daniels Creek and then onto the Provo River. 
 Total stream flows from Strawberry Valley can therefore be interpreted from 

records of the Strawberry Reservoir storage for 1949-2001, created by the U.S. 

Bureau of Reclamation and kept by the Strawberry Valley Water Users Association.  

This information is then used to describe why rates of lateral channel migration, 

channel width, sinuosity along with changes in riparian cover affect the system as a 

result of hydrologic variation.  Reservoir records include monthly and annual 

reservoir water surface elevation, water storage, measured outflow to the 

Strawberry River downstream from Soldier Creek Dam and through the Strawberry 

Tunnel and (since 1990) inflows from the Strawberry Aqueduct and Collection 

System (SACS). The resulting record can be used to calculate total stream inflow 

from the equation: 
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                              ΔS = flow (in) – flow (out)                                                (2) 

 

where ΔS is the change in water storage in the reservoir and flow(in) is inflow to the 

reservoir and flow(out) is flow out or water losses from the reservoir. Excluding 

stream flow, all of the main inflows and outflows from the reservoir are measured 

and includes: releases to the Strawberry and Syar tunnels, releases to Soldier Creek, 

and SACS inflows. Two important components are not measured - evaporation and 

seepage losses - but these are accounted for by the change in reservoir water 

surface elevation (USFS, 2004, Bob Gecy,USFS Hydrologist, personal 

communications). 

 The reconstructed inflow records to the Strawberry Reservoir were from 

1949 to 2001 and consequently did not cover the first and last periods of the aerial 

photographic analysis. Consequently, another regional basin with longer temporal 

resolution was analyzed and plotted along with the inflow data to corroborate high 

flow events. The Weber at Oakley, Utah (USGS gage # 10128500) was analyzed 

using mean daily discharge data from 1938 to 2009.   The Weber River watershed is 

roughly 40 kilometers north of the upper Strawberry River watershed and is located 

on the western edge of the Uinta Mountains.   High years for recorded inflows to the 

reservoir were 1952, 1983 to 1986, 1995, and 1997 to 1998.  Whereas, the Weber 

River gage reflected high flow years as; 1952, 1965, 1975, 1983 to 1986, 1995, 1997 

to 1998, 2005 and 2009.   These large flow years reflect a larger snowpack which 
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potentially reflect higher hydraulic and scour forces resulting in potentially greater 

changes in channel morphology.  

4.5.2 Flow-Duration analysis 

 A flow duration curve (FDC) was created to show the percentage of time that 

flow in a particular stream is likely to equal or exceed a specified value of interest.  

To do this, data was again used from the White River below Tabbyune Creek near 

Soldier Summit, Utah (USGS gage # 09312600, 1968 to present or 43 years).  The 

mean daily discharge of the upper Strawberry River at US Route 40 was plotted 

versus the White River below Tabbyune Creek mean daily for the same time period 

to quantify correlation (i.e., October 1st, 2008 to September 31st, 2010).  The 

discharge data was plotted and a least squares linear regression trendline was 

computed from the data which provided an r2 = 0.83 and an equation where y = 

0.301(x)0.666.  Imputing the discharge data (i.e., ‘x’) into the regression equation 

resulted in a discharge value (i.e., ‘y’).   The calculated discharge values were then 

normalized based on the ratio of the drainage area for the upper Strawberry River 

at US Route 40 (i.e., 73.8 km2) and the White River below Tabbyune Creek gage (i.e., 

184.1 km2).  The calculated discharge value and the associated exceedence 

probability were used to create a synthetic FDC for the upper Strawberry River.  

This curve was then used to describe the percent of time the surveyed and modeled 

flows for the upper Strawberry River were equaled or exceeded. 
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4.5.3 Flood Frequency analysis 

 A flood frequency analysis was created using flow data from an adjacent 

watershed to understand the relationship between flood magnitude and its 

recurrence interval on the upper Strawberry River of surveyed and modeled flows. 

The analysis utilized gaging records (i.e., 1968 to 2011 or 43 years) from the White 

River below Tabbyune Creek near Soldier Summit, Utah (USGS gage # 09312600) 

which has basin attributes which are similar to that of the upper Strawberry River.  

To do this a Log-Pearson Type III distribution was used to fit the annual maximum 

of the mean daily discharge data for Q2-100 floods.  This data was then normalized 

using the ratio of basin area for the two watersheds. 
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Chapter 5-Results, Discussion and Conclusions  
 

5.1 Aerial Photograph analysis and interpretation of historical geomorphic 
planform change 

-Lateral channel migration 

 Lateral channel migration (LCM) is a natural process where-by the outside of 

a meanderbend represents erosional surfaces while the inside of the meanderbend 

represents an area of deposition.  Restoration on the upper Strawberry River relied 

on the perceived belief that excessive bank erosion was expediting disproportionate 

amounts of fine sediments to the channel.  These fine sediments were then being 

deposited in BCT spawning gravels contributing to low recruitment and 

unsustainable resident populations of BCT.  The study examined LCM rates for the 

entire 7km reach for the period-of-record in two ways. First, the calculated rate per 

longitudinal distance downstream for each time period was lumped together then 

plotted upstream to downstream to examine lateral instabilities longitudinally 

without regard to time.  Secondly, LCM rates were calculated for each period in the 

record to examine where present rates compare to historical rates.  

 Lateral channel migration rates are distinctly different among three sections 

of the 7 km reach, corresponding to distinct differences in channel slope (Figure 12). 

From the upstream-most river-station (RS) 0 to RS 3217, the slope is 0.005, from RS 

3217 to RS 3769 the slope is 0.002, and from RS 3769 to the bottom of the reach at 

RS 6970 the slope is 0.0035.  These three different regions of slope correspond to 

LCM rates of 0.56 m/yr, 0.42 m/yr, and 0.49 m/yr, respectively.  As seen in Figure 
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12, the lateral migration rate varies along the channel profile, showing regions of 

higher lateral instability.   

   The study sought to examine if modern LCM rates were excessive as 

compared to historical rates. LCM rates from 1938 to 2009 were on average 0.54 

m/yr (Figure 13a).  The period of the greatest lateral channel migration was from 

1946 to 1953 (0.77 m/yr) and the two lowest rates occurred in the two most recent 

periods, 1997 to 2006 and 2006 to 2009 , 0.32 m/yr and 0.36 m/yr, respectively.   

-Sinuosity, active channel width, and the ratio of radius of curvature to channel 

width 

 

 Mean sinuosity of all images in the record was 1.91 (Figure 13b). From 1938 

to 1978, the mean sinuosity was 1.87 ± 0.03.  From 1953 to1987, mean sinuosity 

increased by 7% from 1.83 to 1.96.  From 1987 to 2009, mean sinuosity was 1.93 ± 

0.003. 

 Active channel width increased from 1938 to 1987 by ~39%, followed by a 

23% decrease from 1987 to 2009 (Figure 13c).  Mean channel width from 1938 to 

1987 was 4.71 ± 0.93 m.  From 1987 to 2009, mean width was 6.25 ± 0.2 m.   

 In general, the ratio of radius of curvature and channel width (Rc/b) – which 

represents meander bend tightness – ranges from 2 to 3.   Because the shape of the 

meander bend affects bank erosion rates (Knighton, 1998), Rc/b draw a parallel 

with lateral channel migration rates.  On the upper Strawberry River from 1938 to 

1978, the number of cutoff channels and the ratio of Rc/b increased from 4 to 14 and 



55 

 

 

 

from 2.67 to 3.07, respectively.  After 1987, the number of cutoff chutes and Rc/b 

decreased.  

-Riparian vegetation 

 The loss of a riparian area may increase bank erosion and lateral channel 

migration which were perceived sources of degradation in the system prior to 

restoration activities.  For this study a 75-m buffer was created in the GIS which 

encircled the channel centerline.  The buffer attempts to encompass and take 

account of the riparian area prior to its extirpation starting in the 1940’s as a result 

of ranchers needs to the late 1960’s with the USFS chemically treating the system 

which fully eradicated most riparian vegetation.  The amount of riparian vegetation 

decreased from 62% in 1938 to 27% in 1963 (Figure 13d).  Detailed examination of 

the aerial photographs from 1978 to 1997 revealed no discernible riparian 

vegetation along the river corridor.  Recolonization of riparian vegetation began in 

the early 2000s as the amount of riparian vegetation was 4 and 5.5% in 2006 and 

2009, respectively.   

5.2 Channel reach surveys and HEC-RAS 

 

-Streambed samples and composition 

 The percentages of fine sediment < 1 and 10 mm did not differ significantly 

among reaches for either sampling date (Oct09, 1 mm: p = 0.96; Oct09, 10 mm: p = 

0,21; Jun10, 1 mm: p = 0.39; Jun10, 10 mm: p = 0.46) (Table 4). Furthermore, the 
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percentage of particles < 1 mm was not significantly different between sampling 

dates for any reach (R08: p = 0.06; R09: p = 0.75; Unrest: p = 0.17). However, the 

percentage of particles < 10 mm was significantly greater in June 2010 than in 

October 2009 on all reaches (p < 0.01). On average, the percentage of particles < 1 

mm was 8.8 (±0.15) % in October 2009 and 12.6 (±0.44) % in June 2010; the 

percentage of particles < 10 mm was 10.7 (±0.07) % in October 2009 and 40.4 

(±0.7) % in June 2010(Nira Salent, personal communication).   

-Comparison of pre- and post-restoration channel planform and hydraulics using 
HEC-RAS 

  

Because the main goal of the hydraulic modeling analysis was to evaluate the 

effects of habitat restoration on channel morphology and hydraulics, only the 

Restored 2009 reach was focused on in the analysis, since this reach was surveyed 

several weeks before and after restoration.   The restoration along the upper 

Strawberry sought to provide suitable habitat for BCT as well as other sport fish.  In-

stream modifications associated with habitat enhancement may be a source of 

positive as well as negative change.  For example, a reduction in width: depth ratios 

(i.e., deeper and narrower channel) would also reduce potentially lethal 

summertime water temperatures for resident BCT, whereas making a meanderbend 

laterally static (i.e., coconut matting to prevent bank erosion) may reduce 

recruitment of riparian vegetation (Noble, 1979).  In this study several hydraulic 

variables are analyzed via a 1-D hydraulic model to examine how in-stream 

modifications assist or hamper habitat metrics for success. 
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 Channel shape and planform and geometry were relatively unchanged by 

restoration, given that the channel was not reconfigured.  The main difference 

between the pre- and post-restoration channel was the construction of greater pool 

depths and drop log bank flow deflectors anchored by large boulders or concrete 

blocks.  Along the banks, which were deemed excessively eroding coconut matting 

was installed and willow cuttings were introduced to help with recruitment.   

 The Restored 2009 pre-and post-restoration reach-averaged channel 

dimensions are presented in Table 5.  At the  bankfull discharge (Qbf), the mean 

cross-section velocity decreased by 12% from 0.65 m/s to 0.58 m/s after 

restoration, likely due to the increased depth along the reach as a result of 

restoration activity. Most of the decrease in channel velocity occurred from XS 1 to 

10, corresponding to a decrease in the water-surface elevation by nearly 16.2 cm 

(Figure 14). The reach-averaged hydraulic depth increased after restoration for all 

of the modeled discharges, with the greatest increase occurring for the Qbf discharge, 

13 % from 0.73 m to 0.84 m, corresponding to a decrease of the water-surface 

elevation by 9.2 cm.  Hydraulic depth increased the most from XS 7 to 10 for the 

baseflow discharge (Qb) (30 %) and from XS 17 to 20 for the spawning discharge 

(Qspawn) (16 %) (Figures 15 a-c).  Flow area decreased after restoration for the Qb 

discharge by 6% and by 8.7% for the Q4.1 discharge, but increased by nearly 7% for 

the Qspawn discharge.  The flow area for the three modeled discharges changed 

relatively little, with the Qspawn discharge having the greatest increase from XS 18 to 

XS 26 (20% or 0.84 m2) (Figure 16) For the Qbf discharge, the calculated shear stress 
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for the entire reach decreased by 57 % (21.4 to 8.4 N/m2) with most of the 

reduction occurring between XS 1 and 10.  After restoration, width to depth ratios 

decreased on average 5.1% (2.6 m) from a mean of 16.1 to 15.3 for the three 

modeled discharges (Figure 17).   

5.3 Site measurements  

-Site measurements of Q and T, frequencies and duration of observed flows 

 Based on continuous discharge measurements at the installed pressure 

transducer, in the 2009 water year, the mean annual flow was 0.71 m3/s with a 

maximum recorded instantaneous peak discharge of 5.64 m3/s on May 24, 2009 

which based on the flood frequency analysis is a Q2.5 recurrence-interval (RI) flow 

and is equaled or exceeded 0.38% of the year or 1.4 flow days per year.  For the 

2010 water year the mean annual flow was 0.47 m3/s with a maximum recorded 

instantaneous peak discharge of 3.68 m3/s on June 6, 2010, which based on the 

flood frequency analysis, is a Q1.7 RI flow and is equaled or exceeded  1.8 % of the 

year or 6.5 flow days per year.  The bankfull flow (Qbf) was surveyed on May 18, 

2009, at 4.1 m3/s and was a Q1.9 RI flow and is equaled or exceeded 1.3% of the year 

or 4.7 flow days per year (Figures 18, 19 and 20).   

 Recorded temperatures at the US Route 40 bridge gage site never increased 

to thresholds (e.g., = or >25o C) which may have led to fatality amongst BCT 

populations (Figure 21). However, from June 31st to July 5th, 2010 were above 18oC, 
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which is a level that researchers describe as “stressful” for BCT populations 

(Johnstone and Rahel, 2003). 

  

5.4 Regional analysis of high flow years and LCM rates 

Comparing records of the yearly total streamflow record (1949 to 2001) with 

LCM rates, channel widths and riparian vegetation over the period of record reveals 

clear relationships between hydrology and channel conditions (Figure 22).  

Furthermore, another regional basin with a longer temporal resolution was 

analyzed and plotted along with the inflow data to corroborate high flow events. The 

Weber at Oakley, Utah (USGS gage # 10128500) was analyzed using mean daily 

discharge data from 1938 to 2009.   The Weber River watershed is roughly 40 

kilometers north of the upper Strawberry River watershed and is located on the 

western edge of the Uinta Mountains.   High years for recorded inflows to the 

reservoir were 1952, 1983 to 1986, 1995, and 1997 to 1998.  Whereas, the Weber 

River gage reflected high flow years as; 1952, 1965, 1975, 1983 to 1986, 1995, 1997 

to 1998, 2005 and 2009.   These large flow years reflect a larger snowpack which 

potentially reflect higher hydraulic and scour forces resulting in potentially greater 

changes in channel morphology. 
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Chapter 6 Discussion and Conclusions 

 

6.1 Discussion 

The foundation for restoration on the upper Strawberry River rested on 

qualitative observation that bare banks meant the system had high erosion rates 

resulting in degraded habitat conditions for Bonneville cutthroat trout (BCT).  

However, observations of bare banks do not indicate information about lateral 

channel migration, channel stability or biologically relevant geomorphic conditions.  

A historical analysis provides information about temporal variations in channel 

conditions and processes, which can be used to evaluate whether current conditions 

warrant concern or are within range of historic natural variability (Kondolf et al., 

2006, Wohl, 2005).   The assumption, that on the upper Strawberry River excessive 

bank erosion was degrading BCT habitat had no historical context. Furthermore, 

there was no established link which illustrated that fine sediments were degrading 

BCT spawning gravels.   On this assumption restoration designers moved forward to 

manipulate channel flow dynamics through drop log structures, root wads, pool 

depths to stem sources of degradation.  However, the study illustrates that bank 

erosion rates in the last decade are at their lowest level in 71 years and that fine 

sediment was not inhibiting egg growth and subsequent fry emergence in spawning 

gravels.  

 In the absence of bank stabilizing vegetation, the series of high flows in the 

early to mid-1980s likely triggered channel widening and increased sinuosity 
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(Thorne, 1990; Simon and Darby, 1999). Although vegetation loss and bank 

destabilization may have temporarily increased bend growth and curvature, it was 

possibly the lack of vegetation that caused sinuosity to subsequently decline in the 

late 1980s and early 1990s, due to either installation of juniper revetments and/or 

the formation of chutes and cutoffs (Murray and Paola, 2003; USFS, 2004; Tal and 

Paola, 2007, 2010). Thus, the loss of riparian vegetation and high flow years did 

cause a short-term increase in bank erosion rates, by which the channel adjusted its 

width and sinuosity. However, the constant channel width and sinuosity of the past 

two decades suggests that the channel has achieved a new quasi-steady state. 

Lateral migration rates were the lowest in the 71 year period of record prior to 

restoration, despite only modest increases in riparian cover and the return of 

natural flows to the river in 2001.   

 The percentage of fine sediment in spawning areas was insufficient to have 

the potential for a significant biological impact on BCT spawning success. Historical 

bank erosion and channel widening does not appear to have affected present-day 

habitat conditions. Furthermore, the amount of streambed fine sediment was 

similar among restored and unrestored reaches, indicating that bank erosion was 

not contributing to local or reach-scale differences in bed composition. Relative 

channel stability, low migration rates, and small quantities of streambed fine 

sediment indicate that bank erosion was not causing habitat degradation in this 

system, a finding that runs counter to the assumptions of project designers. 



62 

 

 

 

 Temperatures recorded on the upper Strawberry River had roughly 5 days 

with high mean daily temperatures above 18o C which is considered a lower 

threshold value for stress of Bonneville cutthroat trout (BCT).  Although the system 

would benefit from an increase in riparian biomass, which would help maintain 

lower daily maximum temperatures, the temperatures recorded are not a major 

limiting factor for BCT recruitment or sustainability along the upper Strawberry 

River. 

 1-D hydraulic modeling of the Restored 2009 reach found modest declines in 

velocity, shear stress, and width:depth ratios with an increase in hydraulic depth 

following restoration activities. While most of these variables (i.e., water surface 

slope, top channel width and width:depth ratios) demonstrated a shift towards 

project objectives, they constituted <10% change in channel morphology.  The 

greatest change for the three modeled discharges was reduction in cross-section 

shear stress ranging from 9% to 57% respectively.  It should be noted that 1-D 

models, such as HEC-RAS, are insufficient to capture the full hydraulic effect of in-

stream structures (Minor, 2007; Shen and Diplas, 2007).  Hence, the 1-D hydraulic 

models indicate small initial success of the objectives; however project success at 

this point in time is difficult to measure.  The need for future monitoring will 

provide better insight into success or failure of the in-stream restoration techniques 

used on the upper Strawberry River. 

 The restoration designers utilized a restoration techniques based on the 

popular Rosgen (1994) classification system.  This classification system attempts to 
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predict a rivers behavior from its appearance and thereby recommends techniques 

which will provide a stable channel form among other results.  The upper 

Strawberry River is not laterally confined and as such should be allowed to follow a 

natural course.  Additionally, the analysis suggests that the system has already 

reached a more stable setting.  Utilizing the results of a historical analysis would 

have provided a substantive link to solutions which could have provided project 

designers with viable alternatives to restoration for BCT. 

6.2 Conclusions 

Taking into account the results of the historical analysis, sediment sampling 

and 1-D hydraulic modeling which found; present lateral channel migration rates 

were at a historical low, stable channel width and sinuosity, a riparian corridor that 

is recovering, and a lack of fine sediments in BCT spawning gravels, and little change 

in channel morphology as a result of physical manipulation measures, many of the 

restorative techniques on the upper Strawberry River may have been unnecessary 

and/or inadequate. 

 The bank stabilization techniques may be detrimental to system stability in 

the future as was the juniper revetments installation in the late 1980s and early 

1990s (USFS 2004).  Furthermore, bank stabilization may have potentially 

detrimental effects on the function and structure of the riverine environment in the 

future.  The placement of boulders and drop log structures in the stream banks was 

intended to constrain lateral migration and maintain a static channel condition. 

Lateral channel migration, however, has important effects on in-stream and 
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floodplain habitat for fish and other aquatic organisms. In a meandering river, cut 

bank erosion leads to the deposition of point bars, which provides sediment suitable 

for the establishment of pioneer plant species such as willow and cottonwood 

(Read, 1958; Everitt, 1968; Wilson, 1970; Johnson et al., 1976; Noble, 1979).  

Consequently, revegetation efforts on the upper Strawberry River may therefore be 

limited in the future if there is insufficient bank erosion and sediment deposition for 

willow recruitment and establishment. Although lateral channel migration rates 

were relatively high in the 1940s and 1950s, vegetation cover declined during this 

period because of intense grazing pressure and chemical/mechanical willow 

removal (USFS 2004). Some vegetation growth has been possible in recent years 

with the removal of livestock grazing in 1989, but may be constrained in the future 

without natural bank erosion and sediment deposition.  

 Channel migration enhances the physical complexity of in-stream and 

floodplain habitats. Meander migration and chute cutoffs create valuable off-channel 

spawning and winter rearing habitat for salmonids, including overflow channels, 

sloughs, and wetlands (Beechie et al., 1994). Erosion of vegetated banks can also 

supply woody debris to the stream, which enhances habitat complexity by creating 

pools, trapping sediment, and redirecting flow (Montgomery et al., 2003).  Although 

accelerated bank erosion and channel widening can degrade in-stream habitat, cut 

bank erosion and lateral migration are essential components of a meandering river 

ecosystem.  A historical comparison can help assess whether contemporary erosion 

rates are accelerated relative to past conditions; the period-of-record low migration 
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rates and stable channel form of the upper Strawberry River in recent decades 

indicate that bank erosion is an unlikely cause of habitat degradation in this system. 

Furthermore, it is important to consider that BCT are not native to the upper 

Strawberry River and did not live in the river until the 1990s. As such, historical 

river characteristics (e.g., geography, habitat, and hydrology) may never have been 

suitable for a resident population of BCT.  Additionally, utilizing present-day surveys 

of channel morphology can provide a baseline dataset with which to model and 

adaptively manage the objectives of the restoration in the future.   

 Reestablishing historical physical conditions appears impractical and 

returning the system to its pre-disturbance condition would require reversing a 

century of human alterations, including the Strawberry Reservoir and associated 

diversions.  Nevertheless, despite being altered from its pre-disturbance condition, 

the present-day channel is stable and bank erosion is not degrading spawning 

habitat. As such, the maintenance of suitable spawning habitat for BCT does appear 

to be a feasible management strategy. The study would recommend refocusing 

restoration efforts on other potential sources of degradation (e.g., riparian cover).  

Furthermore, concentrating on a healthy riparian corridor may assist in expansion 

of beaver habitat which may have positive and lasting effects for BCT habitat.  

Beaver allow for the development of pools and woody vegetation that provide cover 

for older trout as well as maintain hydrologic refugia for episodic low flow years 

(White and Rahel, 2008).  Consequently, beaver habitat compliments riparian 
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growth and assists the sustainability of resident populations of fish and other 

aquatic organisms.  

 The study illustrates how restoration efforts on the upper Strawberry River 

not only inaccurately targeted bank erosion as a source of degradation, but may also 

inhibit riparian recovery and habitat improvement in the future by limiting natural 

channel migration. Additionally, using surveyed data of channel morphology 

coupled with a hydraulic model can provide an enhanced understanding of in-

stream restoration techniques and their success or failure at creating habitat for 

target species.  These results illustrate how a historical analysis and current channel 

surveys can be used to identify sources of degradation and assist the development 

and management of a more effective restoration design plans in the future. 
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Tables- 
 

Table 1: The upper Strawberry River record of post-colonial human influences 1776 
to 2009 

 
 

 

 

Key moments in the upper Strawberry River history 

1776 Dominguez and Escalante-Dominican Friars/explorers search for a new 
route to California, move through the upper Strawberry Valley. 

1820 to 1840 European fur trappers enter region on permits from Spanish 
government to trap.  One of the main targets for these traders was 
beaver that by many accounts was scarce by the late 1820s  

1844 John C. Fremont-explorer and surveyor of region 

1859 Settlement of Heber Valley 

1861 President Lincoln authorizes establishment of Ute Indian Reservation 
in Uinta Basin 

1874 to 1889 1st Water diversions from upper Strawberry River to Heber Valley 
leading to skirmishes with Ute tribe over water rights with Heber 
Valley pioneers.  U.S. government sends troops in 1888 to occupy the 
upper Strawberry River region and quell conflicts 

1902 Reclamation Act establishes U.S. Reclamation Bureau (later became the 
Bureau of Reclamation) and funds Federal water projects in 12 western 
states 

1905 Strawberry Valley Project approved pending negotiation of water 
rights 

1905(December) Congress approves water rights, withdraws “project” lands from 
Reservation 

1912 Strawberry Dam, Reservoir, and tunnel completed 

1925 USBR  leases grazing rights to Strawberry Water User’s Association (SWUA) 

1934 Currant Creek feeder canal delivers water from Currant Creek to Co-op 
Creek 

1973 Soldier Creek Dam completed; reservoir expanded from 8,800 surfaces 
acres to 17,160 surface acres via the Central Utah Project 

1989 to 1990 Juniper revetment placed along 20 km of Strawberry River to mitigate 
perceived excessive bank erosion 

2001 Diversions along the headwaters of the Strawberry River 
decommissioned allowing natural flows. 

2007 to 2009 In-stream active restoration along the Strawberry River to stem 
excessive bank erosion and provide suitable habitat for BCT 
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Table 2: Aerial photograph attribute table:  B/W – black and white, CI – Color Infrared, 
and C - Color 

 

 
 

Table 3: Aerial photograph period and associated root mean square error (RMSE) 
per year and per period. 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

Acquisition 
date Agency Office Scale(m) Attributes 

9/2/1938 USBR U.S. Bureau of Reclamation Salt Lake Aqueduct Project. 1:11600  B/W 

8/4/1946 USGS EROS Data Center 1:11000  B/W 

8/6/1953 USGS EROS Data Center 1:19500  B/W 

9/5/1963 USGS EROS Data Center 1:11600  B/W 
10/6/1978 USDA Aerial Photography Field Office 1:19500  B/W 
9/17/1987 USDA Aerial Photography Field Office 1:7500 CI 

8/24/1993 USGS EROS Data Center 1:8500  B/W 

9/30/1997 USGS EROS Data Center 1:8501  B/W 

6/1/2006 USDA Utah Automated Geographic Reference Center 1:7500 C 

8/13/2009 USDA Utah Automated Geographic Reference Center 1:7500 C 

Period RMSE per year (m) RMSE per period(m) 

1938-1946 0.30 2.38 

1946-1953 0.58 4.06 

1953-1963 0.44 4.38 

1963-1978 0.16 2.34 

1978-1987 0.30 2.68 

1987-1993 0.35 2.12 

1993-1997 0.39 1.96 

1997-2006 0.22 1.95 

2006-2009 0.25 0.76 

MEAN 0.33 2.51 
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Table 4: Percentages of fine sediment <1 and <10 mm from riffle locations on three 
reaches of the Strawberry River, Utah, in October 2009 and June 2010. Values 
are the mean (SE) of three riffles. 

 

 
 
 

 

 

 

 

 

 

Table 5: Results of the HEC-RAS analysis for three discharges of 26 surveyed cross-
sections pre- and post-restoration of variables left to right; 1) mean water surface 
slope, 2) mean velocity, 3) mean flow area per modeled discharge, 4) mean cross-
sectional shear stress, 5) mean cross-sectional depth, 6) water surface width 
across channel and, 7) width to depth ratio. The percent change reflects the 
differences for the “Restored 2009” reach pre- and post-restoration. 
 

Reach October 2009 June 2010 

 < 1mm < 10 mm < 1mm < 10 mm 
Restored in 2008 8.93(1.4) 10.9(0.29) 9.92(2.6) 36.7(4.7) 

Restored in 2009 8.46(1.5) 10.2(0.43) 14.6(1.8) 41.0(2.3) 

Unrestored 9.00(1.9) 10.5(0.44) 13.2(2.5) 43.5(3.7) 

Mean 8.79(0.17) 10.5(0.25) 12.6(1.4) 40.4(2.0) 

Discharge reach 

water 
surface 
slope U 

flow 
area shear 

hydraulic 
depth 

top  
width 

channel 
b:h 

ratio 

( m3/s)   (m/s) (m2) (N/m2) (m) (m)  

0.4 

Control 1 0.07 0.38 1.29 6.81 0.23 5.94 25.8 
Restored 2008 0.02 0.26 1.94 6.79 0.3 6.38 21.3 
Restored 2009-Pre 0.02 0.27 1.77 5.44 0.3 5.87 19.6 
Restored 2009-Post 0.02 0.27 1.67 4.98 0.3 5.57 18.6 

 pre-/post change -9% 0% -6% -9% 0% -5% -5% 

1.93 

Control 1 0.06 0.7 2.92 18.06 0.37 8.01 21.6 
Restored 2008 0.02 0.49 4.27 14.59 0.5 8.02 16.0 
Restored 2009-Pre 0.02 0.51 4.1 12.63 0.53 7.68 14.5 
Restored 2009-Post 0.01 0.46 4.4 9.29 0.55 7.63 13.9 

 pre-/post change -17% -11% 7% -36% 4% -1% -4% 

 
4.1 

Control 1 0.05 0.95 4.85 23.22 0.48 11.07 23.1 
Restored 2008 0.02 0.64 6.7 18.86 0.7 11.17 16.0 
Restored 2009-Pre 0.01 0.65 7.87 16.31 0.73 10.54 14.4 
Restored 2009-Post 0.01 0.58 7.24 10.38 0.84 11.41 13.6 

 Pre-/Post change 5% -12% -9% -57% 13% 8% -6% 
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Figure 1: a) Location of study site in Utah, b) Study reach on the upper Strawberry 
River and, c) Three degrees of restoration to consider when selecting a 
restoration strategy. 

 
 
 
 

 

c) 



75 

 

 

 

 
 

Figure 2: Upper Strawberry River watershed and trans-basin water diversions 
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Figure 3: Photograph of U.S. Army barracks on the upper Strawberry River valley 
in 1888. The Strawberry River flows along the far section of the valley 
right to left (USFS 2004). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1888 
Upper Strawberry River 
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Figure 4 a & b: Photographs comparing riparian vegetation(circle) of the 
Strawberry River in 1908 (top image) and 2002 (bottom 
image). Both pictures are pointed northward up the valley 
near Telephone Hollow. Pictured are Strawberry District 
Ranger George Fisher (top) and Heber District Ranger Julie 
King (bottom) (from USFS 2004).  

 

Bald Knoll Peak 

Bald Knoll Peak 



78 

 

 

 

 
 

Figure 5 a & b: Photographs showing reduction in willows (circle) from 
1888 (top image) to 2002 (bottom image). Both 
photographs look down-valley (southwest) towards U.S. 
Highway 40. The upper Strawberry River runs along the 
butte on the far side of the floodplain (from USFS 2004). 

US Route 40 

US Route 40 
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Figure 6: Study site showing Restored 2008 & 2009 reaches as well as the 
unrestored reach. The forth reach, Control 2 (above) was not overly 
effective for this study.  Much of the reach was inundated with 
backwater from beaver dams built towards the end of the reach. 

Control 2 

Control 1 
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Figure 7 a& b: a) Restoration techniques on the Restored 2009 reach: log vanes 
to deflect bankfull flows towards the center of the channel, coconut 
matting to reduce bank erosion and create a better environment for 
willow establishment, and pools deepened to create refugia for 
resident fish; b) flow patterns around log vanes (flow direction 
indicated by arrows).   

a) 

b) 

coconut matting 

 log vein structures 

willow plantings 
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Figure 8: Cross-sections on Restored 2008 reach 
 

 
 

Figure 9: Cross-sections on Restored 2009 reach 
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Figure 10: Cross-sections on Control 1 reach 
 

 
 

Figure 11: Cross sections on Control 2 reach 
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Figure 12: The top line is a longitudinal profile of the water surface elevation 
at baseflow or 0.41 m3/s.  Shown longitudinally are the US Route 40 
Bridge, Hobble Creek inflow, Unrestored reach, spring inflow, 
restored reach 2009 and restored reach 2008.  The lower scatter plot 
is all of the calculated lateral channel migration rates for the entire 
period of record.  The trendline is a simple moving average with a 
period of 10, which approximately represents mean every 100 
meters longitudinal distance of the previous 10 LCM calculations. 
Areas of lateral instability are readily observable longitudinally along 
the 7 km reach. 
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Figure 13 a-d: A) Lateral channel migration, B) sinuosity, C) mean channel width, 
and D) riparian vegetation cover of the Strawberry River, Utah, from 
1938-2009. Box plots show the distribution of values for the full 
record (1938-2009) and periods of time within the record 
(demarcated by dashed vertical lines). Vertical arrows in (D) indicate 
high flow years. Photographs in (D) are from USFS (2004), showing 
the change in vegetation cover between 1908 (top image) and 2002 
(bottom image), looking up-valley towards Bald Knoll Peak. 
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Figure 14: Pre- and post-restoration mean cross-sectional velocity (m3/s) at a 
surveyed bankfull discharge of 4.1 m3/s.  Each point represents cross-
sections 1 through 26, upstream to downstream. 
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Figure 15 a-c: a, b and c: Pre- and post-restoration mean cross-sectional depths in 
meters at a discharge of 0.4 m3/s, 1.93 m3/s, and 4.1 m3/s.  Each point 
represents cross-sections 1 through 26, upstream to downstream. 
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Figure 16: Pre- and post-restoration mean cross-sectional flow area in square meters 
at a discharge of 4.1 m3/s.  Each point represents cross-sections 1 through 
26, upstream to downstream. 
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Figure 17: Percent changes in channel morphology metrics for the Restored 2009 reach 
pre- and post- restoration, for three discharges modeled in HEC-RAS. 
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Figure 18: Mean daily discharges for the Upper Strawberry River at U.S. Route 40 
Bridge for water year 2009 and 2010. 
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Figure 19: Flow Duration Curve created using 43 years of flow data from USGS gage 

# 09312600, White River below Tabbyune Creek, Utah in conjunction with 2 

years of flow data from the upper Strawberry River at US Route 40.  Shown 

are the percent exceedence values for three flows of interest; Qmax-2009, Qmax-

2010 and Qbankfull. 
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Figure 20: Flood frequency curve created with flow data from USGS gage # 09312600, 

White River below Tabbyune Creek. Shown are the flood recurrence intervals 

for three flows of interest; Qmax-2009, Qmax-2010 and Qbankfull. 
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Figure 21: Temperature in Celsius recorded at U.S. Route 40 Bridge for 

2009 and 2010 water years.  The dashed line represents a zone 
of temperature where Bonneville cutthroat trout begin to show 
signs of stress and higher mortality rates (e.g., 18oC to 25oC) as 
a result of high summertime temperatures (Johnstone and 
Rahel, 2003).  
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Figure 22: Total annual streamflow record of the Strawberry River from 1949-
2001, reconstructed from records of Strawberry Reservoir water 
storage, inflows, and outflows, compared with the lateral channel 
migration rate for time periods from 1938-2009 and a long-term 
discharge record from USGS gaging station #10128500 on the Weber 
River at Oakley, Utah. High flow years (greater than one standard 
deviation above the mean) are labeled. Vertical dashed lines separate 
the periods for which lateral channel migration rate was calculated. 
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Baillie, M.B., Salant, N.L., and Schmidt, J.C., 2011. Using a historical aerial photograph 

analysis to inform trout habitat restoration efforts. Earth Surface Processes and 

Landforms, DOI: 10.1002/esp.2196. 
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