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ABSTRACT 

 
 

Simulated Browsing Impacts on Aspen Suckers’ Density,  

Growth, and Nutritional Responses 

 
by 
 
 

Koketso Tshireletso, Doctor of Philosophy 

 

Utah State University, 2008 
 
 

Major Professor: Dr. John C. Malechek 
Department:  Wildland Resources 
 
 

Heavy and repeated ungulate browsing on reproductive suckers has limited 

trembling aspen (Populus tremuloides Michx.) regeneration on many Western 

landscapes.  However, little is known about the specific effects of season and intensity of 

browsing.  My objectives were to determine the effects of season and intensity of 

clipping (simulated browsing) on suckers’ (1) density and growth characteristics, and (2) 

nutritional quality and quantity.   

Three randomly selected stands were clear-felled in mid-July, 2005, and fenced.  

Simulated browsing treatments of 0%, 20%, 40%, and 60% removal of current year’s 

growth were randomly applied in early, mid-, and late summers of 2006 and 2007.  

Sucker density, height, leader length, twig numbers, bud numbers, basal area, and 

biomass harvested were monitored in each quadrat.  Harvested material was analyzed for 

crude protein and in vitro true dry matter digestibility. 
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Early summer clipped suckers suffered no winter mortality compared to 

mortalities of 41% and 42% for mid- and late summer clipped suckers, respectively.  

However, even at the highest mortality, there were still ample numbers of suckers for 

stand regeneration.  Sucker height was restricted by all early summer treatments.  

Clipping at 20% and 40% in mid- and late summer, respectively, did not reduce sucker 

height, but suckers clipped 60% were ≤ 40 cm shorter than controls.  Twig and bud 

density both declined with increasing intensity of clipping.  By the study’s end, basal area 

of early summer clipped suckers was higher than for those clipped in late summer.   

Crude protein of clipped biomass decreased with season’s advance and clipping 

intensity.  Levels ranged from 12.8% to 22.9% and 10.6% to 16.5% in 2006 and 2007, 

respectively.  Digestibility ranged from 80.1% to 93.4% and 75.2% to 90.7% in 2006 and 

2007, respectively.  Biomass (260 vs. 181 kg/ha) and total digestible dry matter (197 vs. 

142 kg/ha) harvested were higher in mid-summer clipped plots in 2007 than in 2006, 

respectively.  Apart from early summer, total nitrogen harvested was not affected 

differently by season of clipping.   

Clear-felling programs that allow browsing of ≤ 40% in mid- and late summer 

would ensure sustained aspen stand density and growth.  

        (184 pages) 
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CHAPTER 1 
 

INTRODUCTION  
 
 
 Trembling aspen (Populus tremuloides Michx.) is the most geographically 

widespread tree in North America (Barnes 1966; Jelinski and Cheliak 1992; Mitton and 

Grant 1996; Bartos and Campbell 1998b; Stevens et al. 1999).  It is considered a 

keystone species in the West and one of the best integrators of overall ecosystem health 

(Bartos and Campbell 1998b).  Western forests dominated by trembling aspen are highly 

regarded by most resource managers for their ability to provide a variety of benefits.  

They are noted to be beneficial for production of wildlife habitat, scenic beauty, livestock 

forage, sustaining biodiversity, and they are a potentially valuable source of wood 

products.  For example, aspen stands have been found to contain the highest species 

abundance and diversity in the West, aside from riparian areas (Bartos and Campbell 

1998b).  Aspen systems protect the watersheds in which they grow by controlling soil 

erosion and retaining groundwater that is subsequently made available for stream flow 

and plant growth (Gifford et al. 1984; Bartos and Campbell 1998b).  The loss of aspen 

from Western landscapes results in an undesirable modification of the regional water 

budget (Bartos and Campbell 1998b), a resource critically important to the Great Basin 

region.   

 Recognition of aspen’s decline on Western landscapes has been widely 

documented (e.g., Smith et al. 1972; Bartos and Campbell 1998a; Campbell and Bartos 

2001; Hessl 2002; Hessl and Graumlich 2002).  Though the factors contributing to this 

decline are varied and difficult to separate (Kay and Bartos 2000), it has been partly 

attributed to excessive browsing by ungulates (Sampson 1919; Smith et al. 1972; Collins 
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and Urness 1983; Kay 1997; Bartos and Campbell 1998a; Kilpatrick and Abendroth 

2001; Shepperd et al. 2001).  For example, studies on long-term grazing exclosures have 

revealed that browsing by native and domestic ungulates hindered aspen regeneration 

throughout south-central Utah (Kay and Bartos 2000).  However, though ungulate 

browsing is an established cause of poor success in aspen regeneration, beyond that fact, 

very little is known about the particulars of the response, especially how it is affected by 

intensity and season of browsing.     

 In general, the literature is lacking with regard to the role of intensity and season 

of herbivory impacts on aspen growth and survival.  I know in general that herbivory on 

most plant species can be most detrimental at the early and late season depending on the 

amount of plant tissue removed (Garrison 1963; Cook 1971; Bergström and Danell 

1987).  During the early stages of growth, plants invest much of their root stores of 

energy resources to carry out physiological processes required by the recently-dormant 

plant.  At this stage the plant cannot satisfy all its metabolic demands through current 

photosynthesis.  Though root carbohydrate reserves do not influence aspen sucker 

initiation, they are important to sucker growth early in development when the 

photosystem is not fully functional (Frey et al. 2003).  Therefore, herbivory during this 

early part of the season constraints the plant.  During the late growing season, the plant 

requires adequate energy before entering dormancy (Cook and Stoddart 1960; Cook 

1971; Willard and McKell 1978).  This energy is used for over-winter bud maintenance 

and to resume growth when conditions are sufficient in the following spring.  Essentially, 

for the plants to tolerate herbivory, they have to withstand the challenge of annually 
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losing and replenishing these resources.  Thus, appropriate timing and level of browsing 

are critical for the health of plants to ensure growth, development, and survival.   

 Research has long documented that aspen can tolerate some level of browsing 

(Julander 1937; Campa et al. 1992).  For example, Julander (1937) carried out a clipping 

study over a 4-year period on the Kaibab National Forest in Arizona and found out that 

aspen reproduction will deteriorate if 75 percent or more of the current year’s sucker 

growth material is removed.  He observed that clipping aspen at 65 to 70 percent removal 

levels would permit fair growth, but greater growth would occur under lighter clipping 

levels.  Aspen was found to be a key forage species for deer on summer ranges on the 

Kaibab National Forest.  Though this study gave some perspective on aspen response to 

browsing, it did not compare the effects at different seasons.  On another note, Bailey et 

al. (1990) stated that defoliating aspen in early fall apparently (a) stimulated shoot 

primordial to grow too late in the season to permit development of winter hardiness, and 

(b) prevented shoots which had emerged earlier in the growing season from going into 

dormancy, leaving them susceptible to winter kill.  Dockrill et al. (2004) researching the 

effects of summer cattle grazing on aspen stem injury, mortality, and growth in Alberta, 

Canada, observed that continuous June-July browsing was the most detrimental time for 

herbivory to occur in impeding aspen regeneration.  This is the time when nutrient 

resources are at their maximum in the foliage and at their lowest in the perennial tissues 

(Alban 1985).    

As noted earlier, very little is known about the particulars of response of aspen to 

different levels of herbage removal.  I know from browsing studies of various other shrub 

species that herbivory tends to favor increased production of plant biomass because of 
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broken apical dominance, leading to opening up of more buds.  I also know that heavy 

browsing tends to favor a shrubby growth form and reduced plant height.  However, I do 

not know at what levels and season herbivory favors these growth mechanisms in aspen, 

or if they come at a cost that might be manifested as reduced survival of individual 

suckers.  Though these particulars of response of aspen to different levels and season of 

herbage removal have not been established, Smith et al. (1972) noted that those aspen 

suckers that escaped terminal leader browsing could establish themselves as adult stems 

if they attained at least 1.5 m in height.  Thus, in light of the available knowledge on 

aspen and other woody plants’ tolerance mechanisms to herbivory, for purposes of the 

study, I hypothesized that herbivory reduces plant fitness (defined as the ability to attain 

or surpass the height of at least 1.5 m), and fitness decreases with increasing browsing 

intensity. 

From a browse management standpoint, aspen is considered a major food item for 

ungulates (especially native ones) in North America.  While this may sound contradictory 

to the overall objective of aspen restoration, the reality of the matter is that substantial use 

is made of aspen suckers by deer, elk and livestock across the West.  This has been 

specifically documented by several researchers (e.g., Lucas 1969; Bailey and Whitham 

2002; Kaye et al. 2005; Davis 2007).  However, I know very little about the nutritional 

value of aspen browse to ungulates.  But I know that crude protein and digestibility of 

plant material usually decrease as the growing season progresses (Kubota et al. 1970; 

Palo et al. 1985) and as the intensity of clipping increases (Cook and Harris 1968).  

Studies have demonstrated that early summer browsing decreased nitrogen concentration 

in leaves of browsed trees in the following summer, while late summer browsing had the 
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opposite effect, and the effect lasted for at least one year (reviewed by Danell et al. 

1994).  From the standpoint of the herbivore, these changes have important nutritional 

implications.  For aspen systems where multiple resource use is of interest, it would be 

appropriate for resource managers to be able to relate the effects of herbivory in terms of 

energy gain to herbivores and what the plant might tolerate.  Therefore, changes in plant 

traits, for example, crude protein, digestibility, or plant biomass, have direct 

consequences for the browsing herbivores.  Literature is lacking with regard to the 

relationship of total digestible dry matter removed through herbivory and subsequent 

biomass production and plant survival.  But, I know that biomass removed constitutes a 

loss of essential nutrients necessary for subsequent plant growth and development.  

Removing these essential assimilates can obviously not be tolerated indefinitely as 

represented by an increasing intensity of clipping.  

The research questions asked were: (1)  Does intensity and season of simulated 

browsing influence the response (mortality, growth) of aspen suckers?  (2)  What is the 

effect of that simulated browsing event (season and intensity) on the quality (crude 

protein, in vitro true digestibility) of browse material available to herbivores?  (3)  What 

is the effect of that simulated browsing event (season and intensity) on the amount of 

biomass, total digestible dry matter, and total nitrogen that herbivores will be able to 

harvest in kg/ha?  To address the research questions, a controlled simulated summer 

browsing study was conducted on aspen suckers. Therefore, the objectives and the 

accompanying hypotheses of the study were: 
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1.  To determine the effects of simulated browsing at four intensities and three seasons 

on aspen sucker density changes. 

 Hypothesis 1 (a).  I hypothesized that clipping in late summer exposed suckers to 

winter kill the most, as compared to early- and mid-summer clipping. 

 Hypothesis 1 (b).  I also hypothesized that increased intensity of clipping would 

be most detrimental to sucker survival over the winter.  

 Hypothesis 1 (c).  Clipping is more detrimental to sucker survival when done in 

the first growing season compared to the second growing season. 

 

2.  To determine the effects of simulated browsing at four intensities and three seasons on 

aspen growth responses.   

 Hypothesis 2 (a).  Early summer clipping limits plant growth responses the most, 

compared to mid- and late-summer clipping during the first growing season. 

 Hypothesis 2 (b).  Clipping limits sucker growth responses more as the intensity 

of clipping increases. 

 Hypothesis 2 (c).  Clipping limits sucker growth the most when done in the first 

growing season compared to the second growing season.       

 

3.  To determine the effects of intensity and season of clipping aspen suckers on the 

potential nutritional benefit to browsing herbivores. 

 Hypothesis 3 (a).  Crude protein content decreases as the season progresses and as 

the intensity of clipping increases.        
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 Hypothesis 3 (b).  In vitro true digestibility decreases as the season progresses 

and as intensity of clipping increases. 

 

4.  To determine the extent of total digestible dry matter removed that can be sustained by 

aspen suckers in the next growing season. 

 Prediction.  I predicted that there is a level of biomass removed that can be 

sustained while still permitting subsequent biomass production. 
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CHAPTER 2 

LITERATURE REVIEW 

 
Herbivory Tolerance Mechanisms  
of Plants in General 
 
 Woody plants often have characteristics that allow them to tolerate some level of 

browsing and yet also have varying degrees of defense against browsing animals 

(Bilbrough and Richards 1993).  The debate that herbivory benefits plants has been 

ongoing for decades (reviewed by Belsky 1986).  A number of research studies have been 

published, and are still being published on this theory, with varying conclusions on the 

role of herbivory effects on plants.  Some studies have demonstrated that removal of 

herbivores led to disappearance of certain plant species from the landscape (McNaughton 

1986), a phenomenon leading some to believe that herbivory benefits plants.  Others have 

attributed this phenomenon to competition for resources, especially for short stature 

species being out- competed by taller species (Belsky 1986).  Though well conducted 

competition field experiments are limited, herbivory may enhance competitive fitness of 

certain species, particularly graminoids, (Belsky 1986; McNaughton 1986), by opening 

gaps and promoting co-existence of many plant life-forms.   

 Woody plants’ growth is mediated and controlled by hormonal mechanisms that 

tend to suppress other growing points while maintaining apical dominance (Haukioja and 

Koricheva 2000).  When apical dominance is broken due to herbivore browsing or other 

external factors, more buds are likely to open up and initiate growth.  These mechanisms 

that regulate plant re-growth are basically the same as those of normal growth (Haukioja 

and Koricheva 2000).  Woody plants’ canopies expand through regulated growth of 
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individual shoot modules, with those plant parts getting the best access to the resource 

being favored (Haukioja and Koricheva 2000).  These growth mechanisms have been 

studied and demonstrated in a variety of woody species.   

  Some researchers have noted that a plant may respond to herbivore attack via 

escape (Boege and Marquis 2005), avoidance (Milchunas and Noy-Meir 2002), tolerance, 

induced defense (Gadd et al. 2001; Boege and Marquis 2005), and/or compensation 

(Gadd et al. 2001).  Tolerance has been defined as the ability of a plant to withstand and 

survive damage (Haukioja and Koricheva 2000; Gadd et al. 2001; Boege and Marquis 

2005).  Plant escape, defense, and tolerance are likely to vary with plant ontogeny, given 

the differences in physiological constraints and the selective pressure of herbivores 

during plant development (Boege and Marquis 2005).   

 Some studies have documented woody plants producing increased biomass after 

experiencing grazing (Dangerfield and Modukanele 1996; Rooke 2003; Fang et al. 2006).    

For example, Belsky (1986) noted that some plants (graminoids) are believed to respond 

to herbivory by replacing lost somatic or reproductive tissue over-and-above what was 

lost to the herbivores.  These mechanisms, variously described as compensation 

(increased tissue growth after loss to herbivory), under- and over-compensation (Belsky 

1986; McNaughton 1986; Guillet and Bergström 2006), have been studied in woody 

plants in recent decades.  This conceptual framework has also been described as the 

herbivore optimization hypothesis.  The hypothesis asserts that at low or moderate 

grazing intensity or biomass removal, the plant may be stimulated to make up for, or 

produce well above the lost tissue amount.  However, after a certain level of tissue 

removal the plant can no longer compensate, leading to under-compensation.  Plant 
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developmental stage and timing when herbivory occurs greatly affects the plant’s 

response (Dyer 1975; McNaughton 1983), a response most likely explained by the mere 

size of the plant.  Bigger plants have a more developed photosynthetic machinery to 

better withstand some level of herbivory, compared to young, small plants.   

The mechanisms that lead to compensatory growth of plants following herbivore 

damage are complex and interrelated (Dyer 1975; McNaughton 1983).  These 

mechanisms involve changes in physiology and development, and/or modification of the 

environment (McNaughton 1983).  Partial defoliation can result in an increase in light- 

saturated photosynthesis in the remaining leaves (Dyer 1975; Detling et al. 1979; 

McNaughton 1986).  This increase in photosynthesis is associated with a rapid increase in 

carboxylating enzymes in both C3 and C4 plants (Hewett and Wareing 1973).  High 

cytokinin levels may cause this induction of photosynthetic machinery (Hewett and 

Wareing 1973; Dyer 1975), and since roots are an important site of cytokinin synthesis 

(Hewett and Wareing 1973), the movement of cytokinins from roots to residual tissue 

may be a major mechanism allowing plants to compensate for tissue removal 

(McNaughton 1983).  Other research findings suggest that older senescent leaves may be 

rejuvenated substantially following defoliation, the result of which appears to be reduced 

stomatal resistance of remaining leaves (Detling et al. 1979).   

Herbivory alters nutrient cycling in plants.  Reduced competition for substrates 

within the plant may stimulate growth of remaining tissues (Dyer 1975).  In some 

instances, increased retention of remaining fruits, greater seed set and larger seeds may 

follow herbivory on a plant and reduce potential deleterious effects of that tissue removal 

(McNaughton 1983).  On the other hand, shading of lower leaves as the canopy develops 
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results in gradual decline in their potential physiological activity that is finally 

accompanied by senescence (Dyer 1975; McNaughton 1983).  Prevention of shading can 

prolong the lifespan of leaves considerably (Belsky 1986; McNaughton et al. 1988).  

Therefore, defoliation may prolong the active lifetime of productive tissue on the 

herbivore-affected plant (McNaughton 1983).  Though these may be some explanatory 

mechanisms, responses to herbivory vary greatly among plant species (Bilbrough and 

Richards 1993).         

 Mixed findings have been reported as to the response of woody plants in terms of 

replacement of lost tissues to herbivory, or simulated browsing (Belsky 1986, 1987).  To 

that end, Belsky (1986) noted that the ambiguity of the term compensatory growth has 

been a major confounding factor in the debate about whether herbivory increases or 

decreases plant productivity and fitness.  As a result, the term has been mis-appropriately 

used to describe the responses of plants to herbivory.  Though, the mechanisms of woody 

plants response to herbivory have been studied extensively in recent decades, problems 

still exist as to what currency best describes the possible mechanisms of compensatory 

growth (Belsky 1986).  According to Belsky (1986) the term compensatory growth has 

also been used in the past to refer to aboveground biomass alone, or to number of shoots, 

leaves, inflorescences, or seeds.  Some studies have noted the lack of compensatory 

growth in woody plants (Belsky 1986), to some extent due to use of in-appropriate 

indicator.  For example, use of reproductive organs as an indicator to assess 

compensatory growth in woody plants could easily under-estimate compensation for lost 

tissue.  Woody plants have been observed to delay reproductive activity until they have 

acquired adequate biomass to sustain reproduction.  Belsky (1986) argues that plant 
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biomass is the best indicator to assess compensatory growth.  Plant biomass is 

cumulative and can be followed from one season to the next unlike other plant traits that 

can change abruptly with prevailing conditions. 

 According to Haukioja and Koricheva (2000), woody plants, unlike herbaceous 

plants, have a long life span and, as such, may need several seasons before compensatory 

growth is realized.  To that end the authors assert that there is no reason to believe that 

woody plants are any different from herbaceous plants in their ability to compensate for 

lost tissues.  One characteristic feature of woody plants that has been shown to determine 

or influence compensation for lost tissue is their growth rate (Haukioja and Koricheva 

2000).  Fast growing woody plants can over-compensate for lost tissues within a short 

period of time (Guillet and Bergström 2006), compared to slow growing plants.         

   The mechanisms of plant response to herbivory are plastic, and varied under 

different environmental conditions (McNaughton 1986; Maschinski and Whitham 1989; 

Lindroth 2001), demonstrating a continuum of plant responses to herbivory.  According 

to Maschinski and Whitham (1989), herbivory can be detrimental, of no consequence, or 

even beneficial, depending on the conditions governing a plant’s ability to replace tissue 

consumed by herbivores.  The degree of compensatory growth is influenced by timing 

(Cook 1971; Gdara et al. 1991), and intensity of grazing (Cook 1971; Gdara et al. 1991), 

nutrient (Hemming and Lindroth 1999; Maschinski and Whitham 1989) and water 

availability (Maschinski and Whitham 1989), history of herbivory or defoliation (Gdara 

et al. 1991; Bowyer and Neville 2003; Thorne et al. 2005), and type (Thorne et al. 2005; 

Guillet and Bergström 2006) and age of tissue eaten (Guillet and Bergström 2006).  

Collectively, these factors influence a plant’s physiological state and its ability to 
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compensate for herbivory (Maschinski and Whitham 1989).  Plants in high resource 

environments are thus most likely to respond positively to lost tissues compared to the 

same species under poor environmental conditions (Belsky 1987; Bartolome 1993; Relva 

and Sancholuz 2000).  Plants growing in poor nutrient environments have been observed 

to invest more resources into defense rather than tolerance mechanisms when they are 

injured (McKey 1974; Sagers and Coley 1995), a move that appears logical to defend the 

remaining and developing young plant parts.   

 Even though plant tolerance to herbivory has been demonstrated in a wide range 

of woody species, very little is known about the mechanisms that defoliated aspen display 

under natural conditions.  I know that herbivory has been asserted as one of the factors 

that hinders aspen regeneration (Bartos and Campbell 1998a; Kay and Bartos 2000), but 

little is known about aspen’s tolerance to herbivore browsing, especially as affected by 

season, and intensity of defoliation.  Very few studies have attempted to study the effects 

of herbivory impacts on aspen, especially concerning timing (Carson et al. 2007), and 

intensity (Julander 1937; Campa et al. 1992; Osier and Lindroth 2004) of defoliation.  

Given the vast knowledge on other woody plants’ response to tissue removal, one would 

think that there are response mechanisms to herbivory that can be extended to the aspen 

issue.  However, given the clonal, and inter-connected nature of aspen, it remains to be 

seen how aspen responds to different seasons, and intensities of defoliation.  Tolerance is 

considered to be an especially viable form of defense in plants with high intrinsic growth 

rates, large storage capacity, and substantial physiological (e.g., photosynthetic) 

plasticity, all traits that are characteristic of aspen (Lindroth 2001).  However, it remains 

to be seen how these mechanisms play out in aspen suckers.  Therefore, this review on 
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plant tolerance mechanisms to herbivory formed the theoretical framework, for the 

current research. 

 
Herbivory Studies on Woody Plants 
 
 There are not many studies that have been done on simulated browsing on aspen.  

However, several clipping studies have been conducted on other woody species browsed 

by big game and range livestock.  Hence, there might be some general principles that can 

be inferred from similar studies done on other woody species.  The following is a review 

on response and tolerance mechanisms displayed by other woody plants due to tissue 

removal. 

Herbivory tolerance by plants is varied among woody plant species.  In a 4-year 

clipping study on the Kaibab National Forests, Julander (1937) observed that cliffrose 

(Cowania stasburiana) clipped so that more than 80% of its current year’s growth 

increment was removed, deteriorated, while removal of 70 to 75% was the maximum 

amount which permitted recuperation and perpetuation of cliffrose.  He also observed 

that removal up to 65% was beneficial in stimulating growth of cliffrose.        

 Cook and Stoddart (1960) conducted a 3-year study on desert sagebrush in central 

Utah to determine how sagebrush (Artemisia tridentata) responded to two different types 

of herbage removal.  One treatment involved removing one-half of the current growth of 

each twig over entire plant and the other was removing all of the current year’s growth 

from only one-half of the plant.  They observed that clipping all of the current year’s 

growth from one side of the plant during late winter or early spring caused death of that 

one-half of the plant after 3 years of treatment.  On clipping one-half of all current year’s 
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growth over the entire plant, vigor of the plant was reduced substantially, but only 

small isolated twigs or branches were killed.  They also concluded that there is little or no 

translocation of manufactured food from one side of the plant to the other.     

 Defoliation at certain time periods can be more or less detrimental to plant growth 

and development than at other times.  Early summer defoliation can be most detrimental 

to plants, because of limited carbohydrate reserves to support growth.  A 4-year study on 

the Fremont, Malheur, and Whitman National Forests in Oregon, and the Snoqualmie 

National Forest in Washington (Garrison 1963) investigated the effects of clipping 

current twig growth at 25% (lightly clipped), 50% (moderately clipped), 75% (heavily 

clipped) and 100% (completely clipped) on five range shrub species.  He recommended 

levels of use for sustained shrub production on winter ranges in Oregon and Washington: 

for antelope bitterbrush (Purshia tridentata) on best sites, 60 to 65%, and 50% on poorer 

bitterbrush sites; for snowbrush ceanothus (Ceanothus velutinus), 35 to 40%; for rubber 

rabbitbrush (Chrysothamnus nauseosus), 50%; for creambush rockspirea (Holodiscus 

discolor), 50 to 60%; and for curlleaf mountainmahogany (Cercocarpus ledifolius) plants 

completely within reach of grazing animals, 50 to 60%.  However, he cautioned that the 

information in this study should be applied only to fall and winter ranges, suggesting 

differential responses to season of use. 

 A 12-year clipping study was conducted in southwestern Colorado on long-term 

effects of yearly removal of specific amounts of current-annual-growth (CAG) stems and 

older material from five locally important browse species: antelope bitterbrush, big 

sagebrush, oakbrush (Quercus gambelli), mountain mahogany (Cercocarpus montanus) 

and serviceberry (Amelanchier alnifolia) (Shepherd 1971).  Treatments included annual 
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clippings of 20, 40, 60, and 80% of the CAG stems for 12 years and 100% for 10 

years.  Shepherd concluded that for serviceberry, annual use of up to 60% of the CAG 

stems, 1 centimeter or more in length, would be beneficial, but that sustained use of 80% 

or more would be harmful and eventually kill the plants.  For oakbrush, a 60% utilization 

of CAG on summer and fall ranges was found to be optimum use, while for mountain 

mahogany browsing intensity of approximately 70% proved optimum.  It was observed 

that summer and fall use of bitterbrush CAG stems in amounts of 20 to 40% promoted 

plant health and vigor.  He also noted that 50% use might be acceptable, but a sustained 

use of 80% or more would eventually damage or kill many plants.  Though the study 

demonstrated that big sagebrush maintained high browse production under clippings of 

20 to 80%, greater proportions of dead branches and plants were noted.  Therefore, it was 

concluded that summer and fall use in excess of 50% could not be tolerated for an 

indefinite period.       

 Willard and McKell (1978) conducted a 5-year study in the Wasatch Mountains 

of Utah within the Cache National Forest, a typical summer range for cattle, to 

investigate the effects of simulated browsing on little rabbitbrush (Chrysothamnus 

viscidiflorus) and snowberry (Symphoricarpus vaccinioides) shrubs at light (30%), 

moderate (60%) and heavy (90%) intensities of twig and leaf removal during early (1 

June), mid- (15 July), and late season (1 September).  They observed that 30% herbage 

removal produced an increase in herbage production while more intense defoliation 

usually caused a decrease in both species.  Twig length was reduced on little rabbitbrush 

shrubs but not on snowberry. 
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 A 2-year study was conducted southwest of Grand Rapids, Minnesota, to study 

the effects of overstory and understory competition and simulated white-tailed deer 

(Odocoileus virginianus Zimmermann) herbivory on growth and survival of white pine 

(Pinus strobus L.) seedlings (Saunders and Puettmann 1999).  Treatments involved three 

intensities of clipping (control, 0% previous year’s growth removed; lightly clipped, 

terminal and 50% previous year’s growth removed, and heavily clipped: 100% of 

previous year’s growth removed) and three frequencies (never clipped, clipped once, 

clipped 2 years in a row).  They observed that decreasing overstory canopy closure and 

brush competition generally increased growth of seedlings under all clipping regimes, 

with heavy clipped seedlings showing the least benefit of reduced competition.  On the 

other hand, they also observed that seedling mortality was higher without brush control 

and after clipping.  Since both competition levels and increased herbivory reduced 

seedling vigor, they concluded that understory brush control and deer protection go hand-

in-hand to regenerate white pine. 

 Puettmann and Saunders (2001) conducted a later 2-year study in the same area to 

study, patterns of compensatory growth of eastern white pine seedlings as influenced by 

simulated herbivory intensity and competitive environments.  Treatments included, an 

unclipped control or the removal of the terminal and approximately 25%, 50%, 75%, or 

100% of last year’s shoots.  Seedlings were grown with different understory competition 

levels (created through monthly weeding vs. no brush control) under a range of overstory 

canopy closures.  It was noted that after one growing season, seedlings did not fully 

compensate for lost biomass, regardless of competitive environments of the seedlings.  

They also observed that, though relative height growth was stimulated by light intensity 
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(20-40% of last-year shoots removed), relative diameter growth, total biomass, and 

biomass growth of seedlings declined sharply with increasing clipping intensity.  On the 

other hand, all growth parameters declined with increasing inter-specific competition.  It 

was observed that seedlings in highly competitive environments showed smaller growth 

loss due to clipping than those in competition-free environments.  They attributed this to 

the fact that, seedlings experiencing high inter-specific competition devoted more energy 

to maintaining apical dominance and a balanced shoot-root ratio.  They concluded that 

compensatory growth follows a complex pattern that will vary with the parameters 

measured, competitive conditions, and clipping intensities.  They also noted that 

overcompensation maybe an adaptation to competitive ability, rather than a response to 

herbivory itself. 

 In another study, Maschinski and Whitham (1989) examined the single and 

interactive effects of plant association, nutrient availability, and timing of herbivory by 

rock squirrels (Spermophilus variegatus gramurus) and mule deer (O. hemionus) on the 

relative fitness of an herbaceous biennial, Ipomopsis arizonica (Polemoniaceae) under 

natural conditions.  To determine plant association with herbivory, plants growing with 

proximity with other plants were selected.  To examine the interaction of water and 

nutrient levels with herbivory and/or plant association, plants were supplemented with 

water and fertilizer; treatment combinations were (1) water and fertilizer, (2) water, or (3) 

control (no water or fertilizer).  To determine how early- and late-season herbivory 

influenced fruit set and compensatory ability, between-year differences and within-year 

differences of clipped-plant response were used.  They observed that the probability of 

compensation for herbivory decreased as competition with other plants increased, as 
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nutrient levels decreased, and as the timing of herbivory came later in the growing 

season.  This study demonstrated the plastic (continuum) responses of plants under 

different environmental conditions.         

 In general, herbivory is assumed to cause a significant loss of plant growth, 

survival and fecundity (Tuomi et al. 1994).  Browsing by large mammals may strongly 

constrain the growth of woody plants (Herder et al. 2004), and the response may vary 

between different growth stages.  Herder et al. (2004) studied the effects of summer 

browsing (levels not specified) by reindeer on the growth of willow (Salix phylicifolia), 

by studying plants inside and outside exclosures over a period of 6 years.  They 

concluded that reindeer browsing in summer reduces height of willow, shoot length, 

biomass, and diminishes reproductive success, and accelerates dieback of shoots of 

browsed willow more than unbrowsed willow. 

 Ungulate browsing may cause a variety of morphological and physiological 

changes in plants, which depend on browsing intensity and frequency, the type of 

herbivory and time of the year when browsing occurs (Thorne et al. 2005; Guillet and 

Bergström 2006).  For example, late winter browsing by moose (Alces alces) resulted in 

an increase in diameter at the point of browsing on twigs that had been browsed 

previously over twigs re-growing from second-year growth that had not been browsed 

(Bowyer and Neville 2003).  Guillet and Bergström (2006) studied the effect of timing 

and intensity of simulated deer browsing on compensatory response by fast growing 

willow (Salix viminalis) grown for bioenergy in south Sweden.  Seasons of clipping were 

mid-June (early summer), mid-July (mid summer), mid-August (late summer), and 

January (winter).  Intensities were 25%, and 100% of all twigs clipped.  It was observed 
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that willows compensated for biomass losses after winter clipping, irrespective of 

clipping intensity, whereas total biomass production usually decreased after high 

intensity summer clipping.  The higher the proportion of twig biomass removed by 

summer clipping, the lower the compensatory growth by willow, demonstrating the 

differential response of plants to browsing.  In another study, Bergström and Danell 

(1987) studied the effects of 25%, 50%, 75%, and 100% clipping intensity on 

morphological and biomass response of two birch plants (Betula pendula and B. 

pubescens).  Increased clipping intensity resulted in decreased long-shoots numbers, the 

frequency of branched shoots increased, the basal diameter length and dry weight of 

individual shoots decreased, and the number of buds increased, but total number of buds 

on all current annual long-shoots decreased.  Height and main stem diameter decreased 

with clipping intensity.     

 Plants can respond differently to browsing depending on their browsing history 

(Bowyer and Neville 2003).  Thorne et al. (2005) studied the response of two groups of 

willow plants (Salix planifolia var. planifolia Prush) with different clipping histories.  

Clipping events comprised of all possible combinations of early, middle, and late season 

periods, with clipping frequencies 1, 2, and 3 times.  Willow production was influenced 

by the accumulation of specific combinations of seasonal clipping events and was 

dependent on clipping history of the plants.  Early season clipping, alone or in 

combination with other events, was more detrimental to willows with prior clipping 

histories than middle or late season clipping treatments.  The phenological stage of a 

plant is important in browsing management.  Browsing tends to reduce the photosynthetic 

surface area, thus constraining plant growth and development.  As noted earlier, 



 21
defoliating in early season can be most detrimental to the plant because the plant’s 

photosynthetic surface area is not fully developed to replace lost tissues to defoliation. 

 A major challenge in evolutionary ecology is to describe the evolutionary 

response of plants to damage by herbivores (Stowe et al. 2000; Stinchcombe 2002).  

These evolutionary responses to damage include resistance and tolerance traits.  Some 

plants have been observed to produce or invest more in defense mechanisms than growth 

when browsed (McKey 1974; Tuomi et al. 1994; Sagers and Coley 1995).  Veraart et al. 

(2006) studied the effects of pruning willow (Salix dasyclados Wimm.) on use by beaver 

(Castor fiber L.,) in and after the following growth season.  They observed that beavers 

browsed willows that were pruned earlier in the growing season compared to those that 

were pruned later in the growing season.  They concluded that their findings suggested 

that willows invest in compensatory growth rather than a defense response early in the re-

growing phase compared to late growing season.   

 
Aspen Responses to Herbivory     
  
 Quaking aspen is a long-lived clonal species in which many genetically identical 

stems (i.e. ramets) arise from a common root system (Day 1944; Barnes 1966; Schier 

1976; Bartos and Mueggler 1981, 1982; Bartos et al. 1991).  Romme et al. (2005) used 

manipulative experiments to investigate the patterns and mechanisms of new aspen genet 

establishment, growth, survival during their first decade of development in Yellowstone 

National Park.  Treatments included (1) clipping current year’s growth to simulate 

browsing, (2) removal of potential competitors and herbaceous plants, (3) clipping with 

competitor removal, and (4) control, i.e., no treatment except protection from browsing.  
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These authors reported reduced stem elongation from clipping current year’s growth, 

and removing potential competitors had no significant effect on height growth of aspen 

seedlings.  Even with protection from browsing, most aspen stems grew slowly (mean 

increment < 25 cm from 1996 to 2000), and many died from causes un-related to 

herbivory. 

Herbivory on aspen has been observed to hamper growth and regeneration 

(Kilpatrick and Abendroth 2001).  Impacts of wild and domestic herbivory on aspen 

suckers following fire treatments can be adverse and may quicken the demise of clones 

(Bartos and Mueggler 1981; Bartos et al. 1991; Amacher et al. 2001).  Bailey and 

Whitham (2002) reported a decrease in aspen regeneration on sites that had previously 

burned severely compared to sites that had intermediate burns.  Elk utilized the severely 

burned site because of differential high sucker densities compared to the intermediate 

burned site.  In the Central Rocky Mountains, Kaye et al. (2005) also reported a greater 

than 50% decline in mean sucker recruitment for stands highly browsed by elk.     

 Lucas (1969) studied the effects of cattle, sheep, and other factors on aspen 

reproduction after clear-cut logging in southern Utah.  He observed that sheep utilized 

more suckers than cattle, and survival of aspen suckers was 10% greater under protection 

from grazing than under livestock grazing.  He also observed that first year suckers were 

very susceptible to over-browsing because of their short height and high palatability.  The 

first year following cutting is critical to successful aspen regeneration, for that is the year 

when most of the suckers emerge (Smith et al. 1972).  However, increased height and 

woodiness of suckers during the second and third years made suckers more resistant to 

livestock damage (Lucas 1969).  Cattle utilize aspen suckers more readily late in the 
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season than early (Fitzgerald et al. 1986), because of the maturation and consequent 

coarsening of associated herbaceous plants with season advance. 

 In another study, Smith et al. (1972) evaluated the effects of deer and domestic 

livestock on aspen regeneration at several sites in Utah.  They observed that where 

livestock were present together with deer, utilization and terminal bud removal of aspen 

were substantially greater (ranging from 17-31%) than where domestic livestock were 

absent.  Excessive use of aspen suckers was not observed when sheep or cattle grazed for 

short periods even though stocking rates were heavy.  

 The effect of short duration, long term heavy grazing by cattle on associated 

herbaceous plants was evaluated after burning and seeding of an aspen grove at the 

University of Alberta, Canada (Bailey et al. 1990).  The objective of the grazing 

treatments was to remove all accessible edible material, and kill the aspen.  Early (June) 

or late (August) season grazing reduced the density of aspen, and reduced its height, 

preventing the development of a forest canopy.  According to Bailey et al. (1990), 

defoliation in early fall apparently (1) stimulated shoot primordia to grow too late in the 

season to permit winter hardiness, and (2) prevented shoots which had emerged earlier in 

the growing season from going into dormancy, leaving them susceptible to winter kill. 

 Kay and Bartos (2000) assessed long-term exclosures in late summer of 1995 and 

1996 to determine aspen stem dynamics in the Dixie and Fishlake National Forests in 

south-central Utah.  The exclosures consisted of a three-part design with a total-exclusion 

portion, a livestock-exclusion portion, and a combined-use portion which permitted the 

effects of deer and elk herbivory to be measured separately from those of livestock.  Stem 

densities were 1,012, 2,498, and 4,474 stems/ha for the combined wildlife-livestock-use 
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plots, livestock-exclusion-plots, and total-exclusion-plots, respectively.  This study 

gave some indication on the effects of herbivory on aspen sucker survival.    

 In another study, Bartos et al. (1994) reported aspen sucker densities 12 years post 

fire treatment ranging from 1,500 to 2,400 stems/ha, which was 29 to 38% less than pre-

burn densities.  The control also had a 39% decrease in number of suckers, which was 

attributed to elk use.  Kilpatrick and Abendroth (2001) also reported a significant 

difference (P < 0.05) in mean stem height of 1.4 m on northeast aspects compared to 0.80 

m on south-southwest aspects.  The authors attributed the difference in mean stem height 

between aspects to differential browsing by ungulates. 

 The effect of cattle on aspen regeneration was evaluated by determining the effect 

of no grazing, June-only grazing, July-only grazing, and continuous June-July grazing on 

aspen height and density (Dockrill et al. 2004).  Continuous June-July grazing impeded 

aspen regeneration relative to the control (no grazing).  This is the time when minimal 

nutrients are in the perennial tissues of aspen (Alban 1985).  A decrease in the number of 

suckers per hectare typically occurs as a consequence of natural thinning during the first 

five years after the adult trees have been harvested (Bartos and Mueggler 1981; Bartos et 

al. 1991).  Dockrill et al. (2004) observed that aspen stem mortality within June-July and 

June grazing plots were approximately 200% and 50% greater than that of the ungrazed 

plots, respectively.  Cumulative stem mortality in the ungrazed plots over the duration of 

the experiment was approximately 12%, which is presumed to reflect natural thinning 

rate (Dockrill et al. 2004).  Therefore, the authors attributed the reduction in aspen stem 

density for the grazing treatments to the effects of cattle.   
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 The effects of defoliation on plant growth can persist into several growing 

seasons following the defoliation event (Osier and Lindroth 2004; Stevens and Lindroth 

2005).  Measurement of plant characteristics allows for evaluation of long-term genetic 

variation in tolerance to defoliation (Lindroth 2001; Osier and Lindroth 2004).  Osier and 

Lindroth (2004) grew saplings of four aspen genotypes in a common garden under two 

conditions of nutrient availability, and subsequently subjected them to two levels (0% 

and 100% leaf area removed) of artificial defoliation.  Genetic and environmental factors 

and their interactions could play important roles in affecting plant’s response (Stevens 

and Lindroth 2005) to defoliation.  However, Osier and Lindroth (2004) observed that 

artificial defoliation suppressed plant growth, but saplings of the four genotypes did not 

show evidence of genetic variation in tolerance to defoliation.  Though these findings 

give some perspectives on herbivory tolerance of aspen, I do not know how the same set 

of saplings would perform under natural conditions. 

 
Regeneration Mechanisms of Aspen 

 
 Aspen is a clonal species that regenerates via suckering after disturbance removes 

or kills partially or all of the aboveground portions of the clone (Schier 1976; Jones et al. 

1985a; reviewed by Frey et al. 2003).  Abundant root suckering is thought to be 

important for ensuring the successful re-establishment of vigorous aspen stands after 

disturbance (reviewed by Frey et al. 2003; Fraser et al. 2004).  Aspen suckering has been 

thought to be controlled by hormones especially auxins which are produced in the crown 

of trees and transported to the roots and subsequently maintain apical dominance (Schier 

and Campbell 1978; Schier and Campbell 1980).  Though this has been (and still is) the 
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working theory, other researchers have noted that it is not the only mechanism that 

explains root suckering in aspen following disturbance (Schier 1976, 1982; reviewed by 

Frey et al. 2003).  Frey et al. (2003) in a synthesis paper have also questioned hormonal 

influences as the only mechanism regulating aspen regeneration.  Some studies have 

demonstrated that though hormones play a part in aspen regeneration and growth 

following disturbance, season of logging, genetic variation (Frey et al. 2003), and other 

environmental factors are also important (Schier 1976; Frey et al. 2003).  Warmer 

temperatures have been observed to promote aspen regeneration (Schier 1976, 1982).  

Auxins that are responsible for suppressing suckering are believed to be unstable and 

destroyed at high temperatures, resulting in the breaking of apical dominance (Schier 

1976).  In general, thousands of suckers are usually produced following a major 

disturbance like clear-fell-coppice (Bartos and Mueggler 1982), so long as live root 

system exists prior to the disturbance (Ohms 2003).    

 
Climatic Variability and  
Aspen Regeneration 
  

Aspen has the largest ecological amplitude of all tree species in North America 

(Barnes 1966; Jelinski and Cheliak 1992; Mitton and Grant 1996; Bartos and Campbell 

1998b; Stevens et al. 1999; Appendix A, Fig. A).  This wide geographic adaptability has 

allowed the species to persist across landscapes for generations (Barnes 1966).  

According to Campbell and Bartos (2001), aspens may have survived past climatic 

variations and persisted on these sites.  However, climatic fluctuation in recent decades 

has been implicated to the decline of aspen in the West (Frey et al. 2003).  It is hard 

though to single out climate change as a driving mechanism to the decline of aspen.  
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Though drought may cause aspen decline on some landscapes, other studies have 

documented no apparent relationship between climate variability and the decline of aspen 

(Romme et al. 1995, 2005; Kay and Bartos 2000).  Other studies have documented that 

aspen regeneration is limited to asexual reproduction in the Intermountain West (Baker 

1925; Day 1944; Barnes 1966; Bartos and Mueggler 1981, 1982; Bartos et al. 1991), 

suggesting minimal seedling recruitment in the region (but see Genetics section below).  

The explanation to this phenomenon has been that the region rarely experiences ideal 

conditions necessary for aspen seedling establishment.                

  
Disturbance, Stand Age, and  
Aspen Regeneration 
  

Research has documented that clearcutting and prescribed burning stimulates 

abundant root suckering (Bartos and Mueggler 1981, 1982).  Disturbances such as 

clearcuts modify factors such as light and temperature that may enhance sucker 

production (Lavertu et al. 1994).  Canopy opening permits light infiltration to the soil 

surface, thus increasing soil temperature and promoting sucker initiation (Schier 1976; 

Bartos and Mueggler 1981).  The amount of suckering often depends on the degree of 

disturbance, provided that the stand is not breaking up due to old age and decay 

(Mueggler 1989; Ohms 2003).   

Lavertu et al. (1994) studied the effects of stand age and litter removal on 

regeneration of aspen on six sites of different ages (46, 74, 120, 143, 167, and 230 years 

since last fire) at Lake Duparquet in NW Quebec, Canada.  They observed that the 

number of suckers produced did not differ along the successional sere for any of the three 

years studied.  It was also observed that mortality after three growing seasons was about 
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60% for all plots and was not affected by seral stage and treatment.  As a result of 

competition for space and nutrients, self thinning was high (Lavertu et al. 1994). Aspen 

sucker numbers follows a negative exponential decay curve, with mortality highest in the 

first five years following disturbance (Bartos et al. 1991).  Mueggler (1989) also reported 

that sucker numbers were unrelated to the amount of under-growth, stand basal area, or 

stand age in the Intermountain West.                  

 
Aspen Genetics, Regeneration  
and Herbivory 
  

Species with life history characteristics similar to aspen (an outcrossing breeding 

system, large geographic range, long-lived, high fecundity, and wind-dispersed pollen 

and seeds) often have high levels of genetic diversity (Jelinski and Cheliak 1992; Mitton 

and Grant 1996; Stevens et al. 1999; Madritch et al. 2006).  However, it is widely 

believed that sexual reproduction is rare in populations of aspen in the Intermountain 

West (Baker 1925; Moss 1938; Barnes 1966), due to limiting environmental conditions.  

Recent research findings have since modified this widely held hypothesis (Jelinski and 

Cheliak 1992; Stevens et al. 1999; Quinn and Wu 2001; Romme et al. 2005).  A variety 

of genetic and other evidence indicates that recruitment of new genets through sexual 

reproduction has occurred infrequently throughout the Holocene, during brief windows of 

opportunity when seed availability and suitable climatic and substrate conditions 

combined to provide the very exacting requirements for germination and survival of 

aspen seedlings (Jelinski and Cheliak 1992; Mitton and Grant 1996).  For example, 

Quinn and Wu (2001) recently reported aspen regeneration from seed after a stand 

replacing fire in the Chiricahua Mountains of southeastern Arizona.  In another study, 



 29
Shepperd et al. (2006) have also reported considerable genetic diversity within local 

populations, and even within stands in some places.  In Yellowstone National Park, 

Romme et al. (2005) reported seedling occuring but with little establishment after the 

historic 1988 wild fire.  Fire breaks down canopies and releases competition from other 

vegetation (Kay 1993; Hessl 2002), thus enabling an environment suitable for seedling 

establishment.        

 Genetic variation in aspen presents a potentially interesting interactive effect with 

herbivory.  Differential use by herbivores on neighboring aspen stands has been observed 

on landscapes in southern Utah (Winter 2008).  This then raises the question of whether 

genetic variation can explain differences in use by herbivores (Wooley et al. 2008).  On 

this note, one begins to wonder if the responses of aspen to different clipping intensities 

would differ among individual suckers of different genetic make-up.        

 
Carbohydrates, Nitrogen,  
and Plant Growth  
  

Carbohydrates and nitrogen are the major constituents for plant growth and 

development (Orodho and Trlica 1990; Forwood and Magai 1992; Lacey et al. 1994; 

Morvan-Bertrand et al. 1999).  These carbohydrates and nitrogen are important 

assimilates that the plant uses for metabolic processes needed for growth and 

development (Mandre et al. 1998).  Essentially, for the plants to tolerate herbivory, they 

have to withstand the challenge of losing and replenishing these resources.   

Research on herbaceous plants has long documented the importance of 

carbohydrate reserves for plant growth following defoliation (Krueger and Bedunah 

1988; Reece et al. 1988; Lacey et al. 1994; Donkor et al. 2003).  In a root sprouting study 



 30
on aspen, Tew (1970a) reported an increase in root carbohydrate reserves of more than 

5% from June to September in one growing season.  The increase was attributed to an 

increase in photosynthetic area as the growing season advanced.  Adequate carbohydrate 

reserves at the time of disturbance and rapid development of leaf area by extensive 

sprouting after disturbance seem critical for resilience of the clone.  These two factors 

facilitate retention of the clonal root system and a rapid rebuilding of carbohydrate 

reserves (Landhäusser and Lieffers 2002).  Landhäusser and Lieffers (2003) assessed the 

changes in seasonal carbohydrate status, including sugar and starch concentrations in 

roots, stem xylem and phloem, and branches of 10 different clones of trembling aspen in 

Alberta, Canada.  They observed that carbohydrates are stored as close as possible to the 

organs of annual growth (e.g., leaves and buds), suggesting significant stress to the plant 

with defoliation events because of removed energy.  Starch and sugar reserves in most 

tissues were very low in early summer (Landhäusser and Lieffers 2003), suggesting that 

defoliation at this time may hamper subsequent plant growth.  However, it has been 

pointed out that a decrease in the amount of non-structural carbohydrates did not 

necessarily imply causal role for these reserves in initiating and affecting re-growth 

(Morvan-Bertrand et al. 1999).  Though root carbohydrate reserves do not influence 

sucker initiation, they are important to sucker growth early in development when the 

photosystem is not fully functional (reviewed by Frey et al. 2003). 

   
Seasonal Variation in Nitrogen in Plants  

Trembling aspen is a major food item for many ungulates in North America 

(Ullrey et al. 1964; Kubota et al. 1970; Kufeld 1973; Schwartz et al. 1988), and its 
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nutritional composition warrants further assessment.  While this may sound 

contradictory to the overall objective of aspen restoration, the reality of the matter is, 

substantial use of aspen suckers by elk, and deer in Arizona (Bailey and Whitham 2002; 

Kaye et al. 2005), and sheep on Cedar Mountain (Lucas 1969; Davis 2007) has been 

reported.  Though the nutritional composition of aspen has been reported in several 

studies (e.g. Ullrey et al. 1964; Kubota et al. 1970; Tew 1970b; Kufeld 1973; Alban 

1985; Schwartz et al. 1988; Jelinski and Fisher 1991), very little research has been done 

linking such forage dry matter removed by herbivory (or simulated browsing) and 

subsequent biomass production.  Therefore, this section is a review of aspen from the 

standpoint of its nutritional value to herbivores, with special emphasis on nitrogen and 

dry matter digestibility, and their seasonal variation.                         

Wild ungulates populations, e.g., deer, can be limited by quality and less by 

quantity of forages available to them (Chen et al. 1998).  Dry matter digestibility and 

nitrogen are common measures of forage quality (Tew 1970b; Chen et al. 1998).  

Fulfillment of the energy requirements of ungulates is strongly influenced by the 

digestibility of the forages they consume, since apparent digestibility of dry matter and 

energy are strongly correlated (Chen et al. 1998).   

The factors influencing the nutritive value of range forages are many, and the 

degree to which they are interrelated may vary considerably from one area to another 

(Short et al. 1966).  However, the stage of growth (level of maturity) seems to be the 

most important factor affecting chemical composition and digestibility (Oelberg 1956).  

In general, all forages are highly succulent in early growth, and their high protein content 

in relation to a low fiber content at this stage makes them highly nutritious (Oelberg 
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1956).  Despite the over-riding influence of maturity, edaphic and climatic influences 

can also affect the nutritive value of forages (Oelberg 1956; Cook 1971).  Climatic 

factors affect respiration, assimilation, photosynthesis, and metabolism to the extent that 

the mineral and organic matter content of plants may be strongly modified by micro 

climatic differences even though growing on the same soil (Oelberg 1956).   

Important seasonal changes occur in the chemical composition of leaves as well 

as of twigs of woody plants and probably reflect the combined effects of advancing 

maturity and changing environmental conditions (McHargue and Roy 1932; Tew 1970b).  

Protein content of browse tends to decrease as the season advances (Palo et al. 1985).  As 

a rule, crude protein is low in winter twigs, it increases in spring, and then reaches a 

maximum in early summer (Palo et al. 1985).  During the growing season, nitrogen levels 

are high (> 1.5%) only during the short period when leaves of browse are available for 

browsers (Kubota et al. 1970).  During this period the percentage of crude protein ranges 

from about 10% to 20% before it becomes uniformly low (6 % to 8%) for the remainder 

of the year (Kubota et al. 1970).  Previous studies have documented that young leaves 

have more protein than old leaves (McHargue and Roy 1932; Tew 1970b; Chapin and 

Kodrowski 1983), a pattern that appears evident for the reviewed literature on aspen 

nutrition (Table 2.1).  Crude protein levels tend to be high for aspen earlier in the summer 

growing months, a period of active photosynthetic surface area of young and developing 

leaves. 

Research has documented that nutrients are re-translocated between senescing 

leaves and perennial tissues in deciduous trees (Chapin et al. 1975; Bartos and DeByle 

1981; Chapin and Kedrowski 1983; Alban 1985; Chapin and Moilanen 1991; Killingbeck  



Table 2.1.  Literature reports of seasonal mean crude protein (%) content for woody species, with special emphasis on 
trembling aspen (Populus tremuloides Michx.). 

Months of the year 
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Location  Citation 

                             -------------------------------------------------------------------------Crude protein (%)---------------------------------------------------------------- 
Species 
 
Salix planifolia      17 13 8.8 - - -  Colorado  Baker & Hobbs 1982 
Willow (Salix spp)  8.9 8.5 9.2 - - - - - - - - 8.4 Canada  Morgantini and  
                Hudson 1985 
Aspen (leaves) 3.39 - - 3.72 - - 3.14* - - 3.63 - - South Dakota Gastler et al. 1951 
Aspen (leaves) - - - - 9.4 16.3 13.1 - 6.3 - - - Alaska  Kubota et al. 1970 
Aspen (leaves) - - - - - 17.0 13.2 - 11.8 - - - Utah  Tew 1970b 
Large toothed  
aspen (sprouts) 5.0 - - - - - - - - - - - Michigan  Ullrey et al. 1964 
Aspen  
(leaves & twigs) - - - - - - - - - 13.6 - - Michigan  McCullough 1979 
Aspen 
(leaves & twigs) - - - - - 8.8 - - - - - - Washington Mould & Robbins  
                1981  
Aspen (leaves) - - - - 31.25 - - - 12.5 - - - Minnesota  Alban 1985 
Aspen (twigs) - 8.4 - - - - - - - - - - Michigan  Campa et al. 1992 
Large toothed 
aspen (twigs) - 8.5 - - - - - - - - - - Michigan  Campa et al. 1992 
__________________________________________________________________________________________________________________________________________________________________ 
Aspen (P. tremuloides Michx.); Large toothed aspen (P. grandidentata); * Aspen stems 



1996; Milla et al. 2004).  This re-translocation process may partly explain why 

seasonality of nutrients in certain plant parts is evident in some tree species.  Chapin and 

Kedrowski (1983) followed concentrations of nitrogen seasonally in leaves and young 

stems of four Alaskan tree species: larch (Larix laricina), black spruce (Picea mariana), 

birch (Betula papyrifera), and alder (Alnus crispa).  They reported high nitrogen levels in 

young leaves across species, followed by declines in concentration through the season.  

Seasonal nutrient concentration changes in the perennial tissues e.g., bark are often as 

large as for the foliage in aspen (Alban 1985), demonstrating the movement of these 

nutrients between senescing leaves and perennial tissues.  According to Alban (1985), 

these changes are largest in the spring and autumn, but substantial changes also occur in 

mid- summer.   

Due to diverse genetic variation of trembling aspen, one can only imagine that 

nutrient variations within and among clones are a possibility.  Clonal variation in 

chemical composition has potentially important implications for vertebrate herbivores 

because a single clone may be large and thereby, comprise a large part of available forage 

(Jelinski and Fisher 1991).  Jelinski and Fisher (1991) examined (1) the spatial variability 

in nutrient concentrations (2) and evaluated these differences with respect to elk and deer 

nutritional requirements, within and among 24 clones of trembling aspen, at Water Lake 

National Park, Alberta, Canada.  Between-clone concentrations of all chemicals were 

significantly different, with crude protein limiting in some clones for elk and deer protein 

requirements.  Mean crude protein concentration ranged from 4.56% to 7.44% and 

averaged 6.25%.  Most clones were observed to meet the protein requirements for 

wintering maintenance of elk (5 to 7%) (Ullrey et al. 1967; Mould and Robbins 1981).  
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Protein requirements for adult deer are believed to range from 6 to 9%, a range that is 

adequate for ruminal bacterial digestion (Van Soest 1982; Demment and Van Soest 

1985).  According to French et al. (1956), protein requirements for growth are 

considerably higher ranging from 12 to 16%.  Jelinski and Fisher (1991) reported that 

only one clone fell beneath the minimum protein requirements for elk, but eight clones 

fell below the minimum threshold for deer.  These clonal chemical composition 

differences may have implications for cervid nutrition.    

 
Seasonal Variation in Dry Matter  
Digestibility in Plants   
  

Low forage digestibility may seasonally limit vertebrate populations on some 

landscapes (Chen et al. 1998).  In vitro dry matter digestibility (IVDMD) differs greatly 

among forages (Robbins and Moen 1975; Robbins et al. 1975), and generally decreases 

as the growing season advances (Kubota et al. 1970; Palo et al. 1985).  It also decreases 

with increasing levels of utilization (Oelberg 1956), due to an increase in fiber content of 

the remaining forage material.   

Robbins and Moen (1975) reported an average IVDMD of 51.69% for 18 

deciduous browse plants, but levels ranged between 42.45% and 62.05% at Ithaca, New 

York.  IVDMD may vary greatly during the year (Table 2.2).  Chen et al. (1998) studied 

IVDMD of forages utilized by wapiti (Cervus elaphus) and roe deer (Capreolus 

caprolus) in northeastern India.  They reported that IVDMD decreased from 43.8 to 

64.3% in spring to 29.4 to 40.5% in winter for wapiti, and from 52.4 % to 77.4% in 

spring to 25.9 to 36.5% in winter for the roe deer.  It was also noted that roe deer had 

higher IVDMD (40% to 71.7%) in both leaves and twigs of browses than wapiti (35.9%  



Table 2.2.  Literature reports of seasonal in vitro dry matter digestibility (IVDMD, %) values for woody species, with special 
emphasis on trembling aspen (Populus tremuloides Michx.). 

Months of the year 
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Location  Citation 

                              -----------------------------------------------IVDMD (%)------------------------------------------------------------------------------------------- 
Species 
 
Aspen 
(terminal shoots) - - - - 40.9 - - - - - - - Alaska  Schwartz et al. 1988  
Willow (Salix spp) 50.0 54.2 51.3 - - - - - - - - 50.7 Canada  Morgantini and  
                Hudson 1985 
Large toothed  
aspen (sprouts) 30 - - - - - - - - - - - Michigan  Ullrey et al. 1964 
Aspen  
(leaves & twigs) - - - - - - - - - 18.3 - - Michigan  McCullough 1979 
Aspen (twigs) - 33.9 - - - - - - - - - - Michigan   Campa et al. 1992 
Large toothed 
aspen (twigs) - 37.3 - - - - - - - - - - Michigan  Campa et al. 1992 
__________________________________________________________________________________________________________________________________________________________________ 
Aspen (P. tremuloides Michx.) 
Large toothed aspen (P. grandidentata) 



to 58.7%) during snow-free seasons, but IVDMD of twigs was lower for roe deer (25.9% 

to 36.5%) than wapiti (29.4% to 38.4%) in winter. 
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CHAPTER 3 

MATERIALS AND METHODS 
 

Description of the Study Area 

 The study area was located on privately owned land on Cedar Mountain at an 

elevation of 2800 m.  The site was approximately 27 km southeast of Cedar City, Utah.       

 The vegetation consists of interspersed mountain grasslands and woodlands of 

quaking aspen, with patches of Gambel oak (Quercus gambelii Nutt.) (Ohms 2003).  

Some areas have well defined stands of the shrub, mountain snowberry (Symphoricarpos 

oreophilus Gray).  The dominant grasses are Letterman needlegrass (Stipa lettermani 

Vasey), Kentucky bluegrass (Poa pratensis L.), with lesser amounts of mountain brome 

(Bromus carinatus Hook & Arn), and slender wheatgrass (Elymus trachycaulus (Link) 

Gould ex Shinn.) (Bowns and Bagley 1986).  Forbs are noted to be inconspicuous and 

considerably less abundant than grasses.  Common forbs on the area include western 

yarrow (Achillea millefolium L. var. occidentalis DC.), thick-stem aster (Aster 

integrifolius Nutt.), lambstongue senecio (Senecio integerrimus Nutt.), dandelion 

(Taraxacum officinale Webber ex Wiggers), knotweed (Polygonum douglasii Greene), 

tarweed (Madia glomerata Hook.), and coneflower (Rudbeckia occidentalis Nutt).  The 

area has a long history of heavy continuous sheep grazing, and it is postulated that the 

relatively low abundance of forbs in relation to grasses is the result of this grazing history 

(Bowns and Bagley 1986).  Plant nomenclature follows Welsh et al. (1993).   
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Precipitation and Temperature  
Distribution 
  

Mean annual precipitation for Cedar Mountain from a rain gauge located 11.2 km 

from the study site was 711 mm from 1970 to 2007 (Fig. 3.1A).  Precipitation mainly 

comes as winter snow and as much as one-third from summer monsoons (Ohms 2003).  

Annual precipitation for the area was 1,323 mm, 640 mm, and 810 mm for 2005, 2006, 

and 2007, respectively.  Growing season precipitation (April to October) averaged 342 

mm from 1970 to 2007, whereas in 2005, 2006, and 2007, it averaged 768 mm, 340 mm, 

and 612 mm, respectively. 

 Long-term (1992-2007) average temperature ranged from -3.5 0C in January to a 

day-time maximum of 15.9 0C in July (Fig. 3.1B).  Temperature ranges for the years of 

study were within the limits of the long-term record.     

Site Selection  

 During late spring of 2005, three aspen stands were randomly selected on the 

Thorley’s ranch portion of the larger Cedar Mountain Initiative (Ohms 2003) research 

area (Fig. 3.2) located at lat 37029’652’’N and long 112056́’247’’W.  Stands at least 0.4 

ha were identified and numbered.  Then, stand numbers were written in pieces of paper, 

folded and put in a hat.  The first three numbers drawn comprised the stands used in this 

study.  The stands measured approximately 70 x 70 m in dimension, and were on a fairly 

straight line on a north to south axis.  However, Sites 2 and 3 were located on a gentle 

north-facing slope compared to Site 1 which was fairly flat.   
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Figure 3.1.  Mean (A) monthly precipitation (mm) and (B) monthly temperature 
(0C) for 2005, 2006, and 2007, with long term mean monthly precipitation (1970-
2007), and temperature (1992-2007) overlaid.  Precipitation data was from a rain 
gauge located at Southern Utah University College Farm, Cedar City, 
approximately 11.2 km from the study area (Courtesy of Dr. James E. Bowns, 
Professor, Southern Utah University).  Temperature data were an average from two 
weather stations located at Kolob and Webster Flat that are roughly equidistant 
from the study area.  Source: 
http://www.wcc.nrcs.usda.gov/snotel/snotel.pl?sitenum=561&state=ut 
http://www.wcc.nrcs.usda.gov/snotel/snotel.pl?sitenum=853&state=ut 
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Figure 3.2.  Location of research aspen stands on Thorley’s ranch with expanded 
view of Pasture 4 on Cedar Mountain, Utah.  The study area was located on a 
privately owed ranch about 27 km southeast of Cedar City, Utah.  
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Initial Stand Characteristics 

 Stem Density.  Before clear-felling, aspen stem density was estimated.  I 

achieved this by throwing a survey pin over my shoulder at three randomly selected 

locations within a stand.  The point where the survey pin landed formed the center of a 2- 

x 30-m belt transect.  All aspen stems within the belt transect were counted and expressed 

as stems/ha.  Stem density did not differ statistically (P > 0.05) between the three Sites, 

and averaged (mean ± SE) 1,500 ± 468, 1,833 ± 468, and 1,333 ± 468 stems/ha for Site 1, 

2, and 3, respectively.  Research has documented that an aspen clone will likely fail to 

regenerate successfully and sustain itself if stand density falls below 1,250 stems/ha 

(Bartos and Campbell 1998a).  The stand densities for the current study were well above 

this limit, indicating that there were, at least, not deteriorating.   

 Stand Age.  Before clear-felling, 10 trees were randomly selected from each site 

and cross sections were cut at breast height (1.37 m) for average stand age determination.  

This was achieved by throwing a survey pin over my shoulder into the stand.  A tree 

within two meters of the survey pin was identified and marked.  The procedure was 

repeated until 10 trees were identified and marked.  Diameter at breast height (DBH) 

averaged (mean ± SE, cm) 38 ± 3, 20 ± 3, and 14 ± 1 for Sites 1, 2 and 3, respectively.  

These samples were then labeled, taken to the laboratory and left at room temperature 

until they were dry.  Tree age was later determined following the procedures described by 

Asherin and Mata (2001).  Cross sections were sanded with sandpaper until annual rings 

became apparent.  Cooking oil was then rubbed on the finely sanded surface to make the 

annual rings visible for counting.  Each cross section was divided into 4 sections with line 

marks running through the centre.  A dissecting binocular was used to aid in counting the 
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annual rings.  The average of the number of rings counted in each of the 4 sections 

estimated the age of the cross section.  Because annual rings were not visible in the center 

of the cross section due to rotting, four years were added to the total number of annual 

rings for each tree (Campbell 1981).  Estimated average stand age was 104 ± 5, 65 ± 14, 

and 27 ± 3 for Sites 1, 2, and 3, respectively.  The oldest trees were 134, 112, and 54 

years old for the three respective sites.   

 
Site Preparation and Maintenance 

 Initially we planned to clear-fell trees as soon as the snow melted in 2005, in 

order to have a flush of aspen suckers for treatments that year.  However, because 2005 

was a wet year we could not get to the site until late June, and other logistics of planning, 

including stand selection, took some time.  The selected stands were clear-felled in mid- 

July of 2005, and logs were immediately hauled off site using a front-loader equipped 

farm tractor.  The operation resembled a commercial harvest (clear-fell coppice) where 

big logs were removed leaving behind the small branches.  Clear-fell coppice and soil 

disturbance by the tractor ensured sucker stimulation and emergence due to elimination 

of apical dominance (Schier 1976).     

 The cleared stands were immediately fenced with a 1.2-m high wire field fence.  

To that was attached a 3-m high game proof black plastic mesh (Figs. B.1-B.3) to protect 

suckers from ungulate browsing.  The game proof plastic mesh was taken down in late 

fall of 2005 just before the snow fell to prevent it from being crushed by the snow.  The 

plastic mesh was replaced in late spring of 2006 as soon as the area was accessible by 

vehicle.  I assumed that suckers would remain covered and protected by snow through the 
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winter, thus incurring minimal browsing during that period.  However, because the 

roads were muddy and impassible long into spring of 2006, substantial amounts of 

suckers were lost to early spring ungulate browsing.  For this reason, the fences were left 

standing at the end of the growing season in 2006 and over the winter period of 2006-

2007.  The fences held well over the winter, and minimal repair was required in spring of 

2007.      

 
Soil Texture 

 The soils are generally described as Argic Pachic Cryoborolls, with fine 

montmorillonitic faim clay loam, with slopes of 0-28% (Bowns and Bagley 1986).  

However, to determine the uniformity of the sites in terms of soil texture, I collected soil 

samples in June 2005.  Soil samples were collected by throwing a survey pin over my 

shoulder into the cleared stands.  Where the survey pin landed formed a sampling point.  

This procedure was repeated until four sampling locations were identified and soil 

samples collected.  Soil samples were collected within each site at 15 cm depth and put in 

soil collection cans.  The samples were then taken to the laboratory for soil particle 

analysis using the hydrometer method (Gee and Bauder 1979, 1986).  Site 1 had a sandy 

loam texture, Site 2 a loam, clay-loam texture, and Site 3 a loam, clay-loam texture 

(Table C.1).   

 
Soil Water Content (%) 

 Soil water content fluctuations on the study sites were monitored through the 

sampling periods in 2007.  In late spring of 2007, the study area was visited to check and 

repair the fences.  It was observed through visual assessment that Site 3 appeared to be 
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relatively drier compared to Sites 1, and 2.  I then decided to take soil samples to 

determine how soil water content changes through the sampling periods.  Soil samples 

were randomly collected at six locations within each site at depths of 15 and 30 cm and 

put in soil collection cans.  This was achieved by throwing a survey pin over my shoulder 

into the stand, and where it landed formed the sampling point.  The procedure was 

repeated until six samples were collected.  Soil water content (%) was determined by the 

gravimetric method (Gee and Bauder 1986), and the results are shown in Table C.2. 

 
Aspen Genetics1 

 To determine the genetic uniformity of the aspen stands, genetic studies were 

conducted.  Duplicate leaf samples were taken at five systematically identified locations 

on each site for a total of 10 samples per site from the suckers that emerged after the 

clear-fell coppice treatment.  These samples were collected at the end of July 2006.  Leaf 

samples were immediately put in silica gel for preservation.  These samples were later 

taken to the laboratory at Utah State University, Logan, Utah for DNA extraction.  

 Total genomic DNA was extracted using the Qiagen DNEasy-96 1Plant Kit. DNA 

was amplified across 5 highly polymorphic microsatellite loci: WPMS-14 and WPMS-15 

(van der Schoot et al. 2000; Smulders et al. 2001), GCPM-970-1, PMGC-576, and 

PMGC-2571 (http://www.ornl.gov/sci/ipgc/ssr_resource.htm). Each 10 μL amplification 

reaction contained: 0.2mM each dNTP, 1x reaction buffer, 1.8 mM MgCL2, and 0.25 μL 

each of fluorescently labeled FAM or HEX forward primer and unlabelled reverse 

primer. An initial denaturation for 2 minutes at 95 oC, was followed by 30 cycles of 94 oC 

for 30 s, 52-57 oC for 40 s, and 72 oC for 50 s, with a final extension for 10 min. at 72 oC. 
                                                 
1Genetics expertise of Dr. Karen Mock, USU Wildland Resources, is acknowledged.  



 46
Amplification reactions were visualized and analyzed using an ABI 3730 capillary 

system and GeneMapper v4.0 software (Applied Biosystems, Inc.).  

 From the analysis of the samples submitted, it was determined that Site 1 was 

genetically uniform and had identical alleles at all 5 loci (Table C.3).  Sites 2 and 3 had 

two different 5-loci genotypes observed each.  Although the study sites shared some 

genes, overall they were genetically different from each other.  Considering the fact that 

only a limited number of five (x 2 duplicate) leaf samples were collected for each site, 

more genes would probably have been revealed had the sample size been larger. 

        
Experimental Factors 

 To study the response of aspen suckers to browsing, a simulated browsing 

experiment was conducted.  Factors included season (3 periods), clipping intensity (4 

levels), sampling time (referred to as “Time” in statistical analysis and figures) (2 levels) 

and year (2006, 2007) and their interactions.  Sampling time referred to when 

measurements were made, i.e., at the beginning of a season before clipping, and at the 

end of the growing season.  Specifically, in this document times B06 and B07 refer to 

before clipping at each season in 2006 and 2007, respectively.  The A06 and A07 refer to 

the end of the growing season in 2006 and 2007, respectively.  Browsing was simulated 

by clipping at 0%, 20%, 40% and 60% removal of the current year’s growth.  Suckers 

were clipped in early season or early summer (ES; 15 June), mid-season or mid-summer 

(MS; 30 July) and late season or late summer (LS; 15 September) on the same plots 

(suckers) in 2006 and 2007.  For each season, all clipping was completed within a week 

to ensure that environmental variability was minimized.   
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Experimental Layout    

 In June 2006, each stand was divided into three roughly equal portions.  On each 

of these portions, four transects were established, running the entire length of the fenced 

stand.  These transects were placed such that each one had a buffer zone of at least 2 m 

from the nearest transect where possible.  Before treatments were assigned to these 

transects, the three portions of the stand were randomly assigned to the three seasons.  

This was achieved by writing stand portions in pieces of paper, folded and put in a hat.  

The pieces of paper were drawn one at time, and allocated to ES, MS or LS.  Within each 

of the stand portions, the browsing intensities were also randomly assigned to the line 

transects.  Again the randomization was done as above (in ascending order), with 

intensity 0% getting the first allocation.     

Along each transect, 15 1.0-m2 (square shape) permanent quadrats were 

established utilizing the nearest plant method (USDI 1996; USDA 2004) for monitoring 

aspen suckers.  For this procedure a general direction was chosen by identifying a distant 

landmark in front of the observer.  A transect was then started by taking 2 paces in the 

direction of the landmark.  The nearest sucker within 0.91 m using a 180-degree selection 

zone in front of the lead boot was identified, marked with a plastic tag and the aspen 

sucker marked the center of a permanent quadrat.  To permanently mark a quadrat, two 1-

m white fiberglass electric fence posts were pounded into the ground at opposite corners.  

These posts were then marked with a permanent marker indicating the clipping season, 

clipping intensity and quadrat identification.  The procedure was repeated until 15 

quadrat placements per intensity were located and marked.  Where it was not possible to 

fully utilize the nearest plant method, because of a heterogeneous distribution of aspen 



 48
suckers, adjustments were made to slightly deviate from the general transect direction, 

thus meaning going where suckers were.  This was particularly experienced at Site 3, 

which had un-uniform spread and fewer aspen suckers compared to Sites 1 and 2.   

 
Definition of Terms 

 In this document twig refers to current year’s shoot produced on a sucker (Fig. 

3.3). Terminal leader or leader refers to the longest twig that would most likely assume 

apical dominance.  Twig basal diameter and sucker basal diameter refers to the base 

diameter of a twig, and sucker, respectively.      

  
Measurements   

 At each quadrat, one sucker was selected and permanently marked for sucker 

height and terminal leader length measurement.  Because most suckers that existed in the 

summer of 2006 had emerged in the spring and summer of that year, leader length closely 

approximated sucker heights i.e., leader length was considered as the same as sucker 

height.  Total number of buds, number of current year’s twigs, basal diameter of each 

sucker, and number of suckers (density) were measured at each quadrat.  In 2006, the 

total number of buds was individually counted.  However, as the suckers expanded their 

canopies in 2007, it became very time-consuming to individually count the buds.  

Therefore, total number of buds was estimated by selecting two twigs and counting their 

buds.  This value was then divided by 2 to give average number of buds per twig.  This 

number was then multiplied by the total number of twigs to give total number of buds at 

each quadrat.  Basal diameter of all suckers was measured at ground level.  Height 

measurements were measured to the nearest 0.5 cm using a 1-m ruler, and basal sucker 
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and twig diameters were measured to the nearest 0.1 mm using dial calipers.  These 

variables were measured before each treatment session at each season, and again at the 

end of the growing seasons in October 2006 and 2007.   

 

 
 
Figure 3.3.  Diagram showing the components of an aspen sucker.  Terminal leader 
refers to the longest current year’s growth or twig that stands above all and would 
most likely assume apical dominance.  Leaves are only produced on current year’s 
growth i.e., they are only produced on current year’s twigs.    
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Before treatments were imposed, I practiced estimating, followed by clipping 

and weighing, variable percentage amounts of sucker foliage on off-site plants until a 

level of consistency was achieved between my estimates and weighed amounts.  This 

followed the ocular estimation method (Bonham 1989).  For example, I clipped, 20% of 

the current year’s foliage on a sucker and then weighed it.  After that the remaining 

portion of the sucker was clipped at ground level and also weighed.  The initially clipped 

material was then expressed as a percentage of the total plant weight to see how close it 

came to the 20% removal intended.  Then, at each treatment quadrat, a specified clipping 

intensity was imposed on the current year’s growth of every branch of each sucker, based 

on my ocular estimates.  To minimize the chance occurrence of spreading pathogens 

between suckers, the hand clippers were dipped into 70% alcohol before a new sucker 

was clipped.  Young aspen suckers are known to be very susceptible to pathogens, 

especially when they are injured (Harniss and Nelson 1984; Baker et al. 1993; Guyon 

2004).  However, in this study disease incidence were not observed.   

 
Biomass and Basal Area Estimation 

 Basal stem or twig diameter measurements were used to estimate current year 

biomass of suckers (Brown 1976) for each quadrat.  The procedure assumes that basal 

diameter of suckers or twigs are circular in shape, and are predictably related to their 

biomass.  At each season, 50 current year’s suckers or current year’s twigs outside the 

experimental area were clipped at the base using a hand clipper, and basal sucker or twig 

diameters measured.  The harvested samples were then taken to the laboratory and oven 

dried at 700 C for 72 hours and weighed.  Linear regression equations for basal sucker 
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diameter, or basal twig diameter (whichever was applicable) and biomass were then 

developed for each data set for each season, and at the end of the growing season.  The 

equations took the form of ln (biomass, g) = a + b ln(basal diameter, cm), where ln was 

the natural logarithm, a, was the y-intercept, and b was the slope of the line (Table C.4).   

Because most suckers that had sprouted in the summer of 2005 were lost to 

ungulate browsing in early spring of 2006, most suckers that existed in the summer of 

2006 had appeared that spring and summer.  Therefore, basal sucker diameters were 

utilized to estimate biomass of suckers prior to imposition of treatments.  However, at the 

end of the growing season in 2006, and again in the summer of 2007 basal diameter of 

current year’s twigs instead of whole plant basal sucker diameters were used to estimate 

current year’s biomass.  To estimate current year’s average twig diameter per quadrat, 

two randomly chosen twigs were measured at the base.  Their basal diameters were then 

averaged to get twig diameter, and this value was substituted in the appropriate formula 

to calculate biomass of the individual twig (Table C.4).  This value was then multiplied 

by the number of twigs to get total current year biomass for the quadrat (see Table C.5 for 

total biomass for different seasons and intensities).   

Basal sucker diameter measurements were also used to calculate basal area of the 

suckers at each season and end of the growing season.  The equation used to calculate 

basal area was пr2, where r- was the radius of the base of the sucker, in cm.  Basal area of 

individual suckers, were then summed to give total basal area at each quadrat (cm2/m2).    

At the end of growing season, all of the experimental units for all seasons were re-

visited and measurements taken for all the above variables.  In addition to the above 

measurements, the numbers of new suckers were also recorded.  The measurements and 
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treatments were repeated in the summer of 2007.  Measurements for all treatments 

were again taken at the end of the growing season of 2007.    

 
Sample Preparation and Grinding  

 All of the clipped sucker material was bagged in paper bags in the field.  At each 

sampling time, leaves were also collected from off-quadrat suckers within the exclosure 

for comparison of nutritional composition of harvested materials.  Leaves were collected 

from suckers without paying any particular attention to location on the sucker.  These 

samples were then taken to the laboratory and oven-dried at 700 C for 72 hours.  After 

drying, the samples were then weighed.   

When the clipped samples were very small, composite samples were created by 

combining the nearest experimental units for each treatment and within a season.  All 

samples were then ground through a Wiley mill (Thomas Scientific, Sweedesboro, NJ) 

equipped with a 1-mm screen.  Ground samples were then put in sealed containers until 

analyzed.   

 
Nutritional Analyses 

 Dry matter (DM) percentage (so-called “laboratory dry matter”) was determined 

for each of the intensities for the different seasons.  Ground samples (0.5 g) of each  

treatment (n = 5-8) were weighed into pre-weighed dry crucibles, and placed in an oven 

at 105 0C overnight (AOAC 1996).  Percent DM was calculated as weight of sample after 

drying divided by sample weight before drying, and then multiplied by 100. 
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 Samples for each treatment (n = 5-8) within a season were analyzed for 

nitrogen (N) by the combustion method (AOAC 1996) using a nitrogen analyzer (Leco, 

St. Joseph, MI).  Crude protein content (%) was calculated as N x 6.25.   

In vitro true digestibility (IVTD) for each treatment (n = 5-8) within a season was 

determined following the procedures of Tilley and Terry (1963), and Van Soest et al. 

(1966), utilizing the ANKOM modified procedure (ANKOM Technology Corporation, 

Fairport, NY).  This procedure involved placing 0.25 g of ground dry samples in F57 

filter bags.  The F57 filter bags were later heat sealed.  They were then batch digested in a 

mixture of a buffer solution (pH 6.8), and rumen liquor (400 ml) placed in a closed 

DaisyII Incubator for 48 hours, maintained at 39.5 0C.  Rumen liquor was obtained from 

two ruminally-fistulated Angus cows that were maintained on grass hay-alfalfa diet.  A 

standard grass-hay of known digestibility was included with every run.  After 48 hours in 

the DaisyII Incubator, the samples were removed and placed in 4-L beaker.  The samples 

were then rinsed thoroughly with cold tap water using minimal mechanical agitation until 

water ran clear.  After rinsing, the bags were placed in an ANKOM200/220 Fiber Analyzer 

(ANKOM Technology) and processed through the neutral detergent fiber (NDF) 

procedure.  Basically, this procedure substitutes alpha amylase for pepsin in the Tilley 

and Terry (1963), and Van Soest et al. (1966) procedures.  IVTD was then calculated as 

follows (ANKOM Technology): 

 
%IVTDDM = 100 – ((W3 – (W1 x C1)) x 100 / (W2 x DM))  

Where:  

W1 = Bag tare weight  

W2 = Sample weight  
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W3 = Final bag weight after In Vitro and sequential NDF determination.  

C1 = Blank bag correction (final oven-dried weight/original blank bag weight).  

DM = % dry matter (multiply by the decimal equivalent).   

 
Statistical Analyses2 
 

Plant Data Responses.  All data for sucker density and growth variables (sucker 

height, leader length, twig density, bud density, basal area) were analyzed as a 3-way 

factorial in a split-split plot design with whole plots in blocks with analysis of variance 

(ANOVA) using the MIXED procedure of SAS (SAS/STAT software, Version 9.1.3 of 

the SAS System for Windows 2002-2003. Copyright © SAS Institute Inc.; Appendix D 

for SAS code).  Whole plots were stand portions nested within sites (blocks), and the 

whole plot factor was season (with 3 levels: early, mid-, late summer).  Subplots were 

transects within stand portions, and subplot factor was intensity (4 levels: 0%, 20%, 40%, 

60%).  Repeated measures on the transects were the sub-subplots, and the sub-subplot 

factor was time (B06, B07, A06, A07) or year (2006, 2007).  Fixed effects included 

season, intensity, sampling time, or year and their interactions.  Sites were considered 

random effects.  For count variables, zero values were included in all analyses because 

they were legitimate data values.  However, for measurement data (basal area, sucker 

height, and leader length) zero values were treated as missing data in the analyses. 

Four analyses of different subsets of the data were performed on sucker density 

and sucker growth variables (Fig. 3.4).  All analyses used the ANOVA model identified 

above.  The first analysis, involved comparison of sucker responses before any treatments 

were applied in 2006 to 1-year-old suckers in 2007 (termed B06 vs. B07 in text).   
                                                 
2 The statistical consultation of Ms. Susan Durham, USU Ecology Center, is acknowledged. 
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Figure 3.4.  Diagrammatic representation showing the time or year comparisons 
made for the analysis of response variables in the analysis of variance (ANOVA).  
(1)  B06 and B07 compared the initial stand characteristics just before clipping 
(B06) in 2006 and effects of that initial clipping one year later, just before clipping 
(B07) in 2007. (2)  A06 and B07 time comparison was performed only for sucker 
density, and it estimated over-winter mortality of suckers.  (3)  A06 and A07 
compared the response of variables at the end of the growing season in 2006, and 
2007, respectively.  (4)  The fourth analysis involved creating a new variable known 
as change in response variables.  This variable was calculated by subtracting values 
of response variables at the beginning of seasons from values at the end of the 
growing season for each year.  Also, instead of time, year was the new fixed effect 
variable in the model for ANOVA, for the fourth analysis.      
 

Legend 

Absolute change (e.g., (A06-B06)) 
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The second analysis compared the sucker density responses at the end of the 

growing season in 2006 with those of before clipping in 2007 (termed A06 vs. B07 in 

text).  This analysis allowed assessment of over-winter effects (eg., winter mortality) on 

suckers.   

The third analysis compared the sucker responses at the end of the growing 

season in 2006 and 2007 (termed A06 vs. A07 in text).  This analysis allowed 

comparisons to be made for sucker responses after one clipping event and after two years 

of consecutive clippings. 

The fourth analysis, compared change in sucker responses in 2006 and 2007 

(2006 vs. 2007).  Change in sucker variables (sucker density, sucker height, leader length, 

basal area) within a year was calculated by subtracting the value of a variable before any 

clipping that year from the value at the end of the growing season ([A06-B06] and [A07-

B07], for 2006 and 2007, respectively).  Additionally, in calculating change for 

measurement data, there had to be a value before clipping and at the end of the growing 

season within a year.  If any value was zero (because of dead sucker, for example), it was 

treated as missing in the analysis.  Sampling time was replaced by year (2006 vs. 2007) 

as a fixed effect in the ANOVA model.  The analysis allowed comparisons of change for 

sucker responses after one clipping event and after two consecutive clipping events.   

Multiple comparisons of the least square means for the fixed effects were made 

using the Least Significance Difference (LSD) procedure (Dowdy and Wearden 1991).  

Differential tests were considered significant at P < 0.05.  Prior to analysis, all count data 

were square root transformed and measurement data were log transformed to better meet 
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the assumptions of homoscedasticity and normality for ANOVA.  All means reported 

herein are descriptive statistics computed using the un-transformed raw data. 

Nutritional Data Responses.  Crude protein and in vitro true digestibility data 

were analyzed using the same model described above, with season, intensity, year and 

their interactions as fixed effects.  Sites were again considered random effect in the 

model.   

 Biomass, total digestible dry matter and total nitrogen harvested were also 

analyzed using the same model described above.  Total digestible dry matter and total 

nitrogen harvested were calculated as follows: 

 

Total digestible dry matter harvested = IVTD (%) x biomass harvested  

   and  
 
Total nitrogen harvested = %nitrogen in harvested material x biomass, respectively. 
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CHAPTER 4 

RESULTS 

 
Effects of Intensity and Season of Clipping  
on First Year’s Sucker Responses  
  

Sucker Density.  The season when clipping occurred affected sucker density 

(Fig. 4.1).  Early summer clipping was least (P ≤ 0.014) detrimental to sucker survival, 

compared to clipping in late summer.  Approximately 45%, 54% and 43% fewer suckers 

were present in early, mid- and late summer clipped plots, respectively at time B07 than 

at time B06.  These results described a season and time interaction effect for sucker 

density (Table 4.1).  
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Figure 4.1.  Mean comparisons for sucker density before clipping in 2006 and 2007, 
for three seasons.  B06, B07 = before suckers were clipped at the beginning of 
seasons in 2006, and 2007, respectively.  Error bars indicate standard errors.  
Means with different letters are significantly different at P < 0.05.   
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Table 4.1.  ANOVA fixed effects of season, intensity, and time of clipping on 
sucker density, sucker height, leader length, current year twigs, bud density, and 
basal area growth for B06 (beginning of the growing seasons in 2006) and B07 
(beginning of the growing seasons in 2007) data.   
_____________________________________________________________________________________________ 
Source    Num DF  Den DF  F Value  1P- Value 

_____________________________________________________________________________________________ 
Suckers/ha 
Season    2    4   10.65  0.025 
Intensity    3  18     1.21  0.334 
Season x Intensity   6  18     0.65  0.691 
Time    1  24   88.79               <0.000 
Season x Time   2  24     2.33  0.119 
Intensity x Time   3  24     0.94  0.435 
Season x Intensity x Time  6  24     0.07  0.999 
Sucker height (cm) 
Season    2    4   20.21  0.008 
Intensity    3  18     7.23  0.002 
Season x Intensity   6  18     2.89  0.038 
Time    1  24   43.16               <0.000 
Season x Time   2  24     0.04  0.960 
Intensity x Time   3  24     9.26  0.000 
Season x Intensity x Time  6  24     3.61  0.011 
Leader length (cm) 
Season    2    3.86                101.40  0.001 
Intensity    3  17.7     8.66  0.001 
Season x Intensity   6  17.6     2.54  0.059 
Time    1  24.1                165.09               <0.000 
Season x Time   2  24.1     6.37  0.006 
Intensity x Time   3  24.1     4.41  0.013 
Season x Intensity x Time  6  24     3.72  0.009 
Current year twigs/ha 
Season    2    4   33.03  0.003 
Intensity    3  18     6.77  0.003 
Season x Intensity   6  18     1.57  0.213 
Time    1  24                166.89              < 0.000 
Season x Time   2  24   26.95               <0.000 
Intensity x Time   3  24     9.75  0.000 
Season x Intensity x Time  6  24     0.90  0.511 
Buds/ha 
Season    2    4   26.52  0.005 
Intensity    3  18     6.62  0.003 
Season x Intensity   6  18     1.62  0.198 
Time    1  24                234.41              < 0.000  
Season x Time   2  24   41.25               <0.000 
Intensity x Time   3  24   10.72  0.000 
Season x Intensity x Time  6  24     1.12  0.379 
Basal area (m2/ha) 

Season    2    4     2.73  0.179   
Intensity    3  18     1.83  0.177 
Season x Intensity   6  18     0.57  0.751 
Time    1  24                283.66               <0.000 
Season x Time   2  24   11.29  0.000 
Intensity x Time   3  24     2.61  0.075 
Season x Intensity x Time  6  24     0.72  0.641 
_____________________________________________________________________________________________ 
1P- value considered significant at P < 0.05; ANOVA = analysis of variance; Num DF, Den DF = numerator and 
denominator degrees of freedom, respectively.  
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Sucker Height.  One year after clipping, sucker height growth for early 

summer treated suckers appeared to be restricted at any clipping intensity relative to the 

control (Fig. 4.2B).  Early-clipped suckers were still similar to the heights of suckers at 

the beginning of early summer in 2006 before any clipping treatments had been applied 

(Figs. 4.2A-B).  For example, heights of suckers clipped at 20%, 40%, and 60% 

intensities were 78 cm, 57 cm, and 67 cm shorter than the control suckers at the 

beginning of early summer in 2007.  Clipping at 20% and 40% intensities in mid-

summer, did not affect sucker height relative to the control, but 60% clipping resulted in 

suckers that were 23 cm shorter than the controls (Fig. 4.2B).  Also, clipping in mid-

summer, at 20% intensity resulted in suckers that were taller than those clipped at 60% 

intensity.  Similarly, clipping at 20% and 40% intensity in late summer was not 

detrimental to sucker height compared to the control, but clipping at 60% intensity 

resulted in suckers that were 40 cm shorter than the control (Fig. 4.2B).  Also, 60% 

clipping in late summer, resulted in suckers that were shorter than those clipped at 20% 

and 40% intensities.  Apart from suckers that were intensely (60%) clipped in mid- and 

late summer, sucker height increased substantially between the two times (Figs. 4.2A-B).  

These differences were manifested as a significant season x intensity x time interaction in 

the ANOVA (Table 4.1).   

Leader Length.  Clipping treatments affected leader length differently for the 

different seasons (Fig. 4.3B).  One year after clipping, leader length for suckers that were 

clipped in early summer was not affected by clipping relative to the control.  However, 

the same could not be said for mid- and late summer clipping.  Clipping at these seasons 

resulted in suckers that had substantially more (P < 0.000) leader length than the control, 
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Figure 4.2.  Initial mean sucker heights for the treatments plots (A) before clipping 
in 2006, and (B) effect of season and intensity of clipping on mean sucker height, one 
year after clipping at the beginning of the growing seasons in 2007.  ES = early 
summer; MS = mid-summer; LS = late summer.  Bars indicate standard errors.  
Means with different letters are significantly different at P < 0.05.   
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Figure 4.3.  Initial mean leader length for the treatments plots (A) before clipping in 
2006, and (B) effect of season and intensity of clipping on mean leader length, one 
year after clipping at the beginning of the growing seasons in 2007.  Leader lengths 
at the beginning of seasons in 2006 closely approximated sucker heights because 
most suckers emerged during spring and summer that year.  ES = early summer; 
MS = mid-summer; LS = late summer.  Bars indicate standard errors.  Means with 
different letters are significantly different at P < 0.05. 
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one year after clipping (Fig. 4.3B).  However, there was no difference among 

intensities for any particular season of clipping.  Generally, leader length for mid- and 

late-summer plots was for the most part higher at the beginning of seasons in 2006, than 

at the same time in 2007 (Figs. 4.3A-B).  These results reported a significant season x 

intensity x time interaction (Table 4.1).    

 Twig Density.  Intensity and time interacted for twig density (Table 4.1).  

Overall, twig density increased from time B06 to B07 across all clipping intensities and 

the control (Fig. 4.4A; see also Fig. E.1A).  However, by time B07, all plots that were 

clipped had fewer (P ≤ 0.047) twigs/ha than the control.  In addition, plots clipped at 20% 

and 40% intensities had more (P ≤ 0.008) twigs/ha than those clipped at the 60% 

intensity (Fig. 4.4A).   

 Season and time interacted for twig density (Table 4.1), suggesting that twig 

production was not uniform across seasons (Figs. 4.4B and E.1B).  The season when 

clipping occurred affected twig density.  Generally, the number of twigs increased 

substantially from time B06 to B07 for all seasons, suggesting that the canopies of 

suckers were expanding.  However, clipping in mid- and late summer resulted in far 

fewer (P < 0.000) twigs/ha compared to clipping in early summer (Fig. 4.4B).   

 Bud Density.  Clipping affected bud density (Table 4.1), and indicated that 

increasing clipping intensity resulted in disproportionately fewer buds/ha compared to the 

control by time B07 (Fig. 4.5A; see also Fig. E.2A).  More (P ≤ 0.046) buds/ha were 

present in the control plots compared to the rest of the clipping intensities at time B07.  In 

addition, intense clipping (60%) reduced (P ≤ 0.007) bud density compared to clipping at 

20% and 40% intensities. 
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Figure 4.4.  Mean comparisons for twig density (A) before clipping in 2006 and 
2007, under the different intensities, (B) before clipping in 2006 and 2007, under the 
different seasons at Cedar Mountain, Utah.  B06, B07 = before suckers were clipped 
at the beginning of seasons in 2006, and 2007, respectively.  Bars indicate standard 
errors.  Means with different letters are significantly different at P < 0.05.   
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Figure 4.5.  Mean comparisons for bud density (A) before clipping in 2006 and 2007, 
under the different intensities, (B) before clipping in 2006 and 2007, under the 
different seasons at Cedar Mountain, Utah.  B06, B07 = before suckers were clipped 
at the beginning of seasons in 2006, and 2007, respectively.  Bars indicate standard 
errors.  Means with different letters are significantly different at P < 0.05.    
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 Season of clipping and time also interacted for bud density (Table 4.1).  The 

season when clipping occurred, affected bud production (Fig. 4.5B; see also Fig. E.2B).  

Clearly, bud density increased from time B06 to B07 across seasons.  Similar patterns 

observed for twig density were also evident for bud density.  Clipping in mid- and late 

summer reduced (P < 0.000) bud production compared to early summer clipping.     

 Basal Area.  Overall, basal area of suckers increased from time B06 to B07.  

Basal area growth of suckers was least (P ≤ 0.019) in early summer compared to mid- 

and late summer season at time B06 (Fig. 4.6), demonstrating that suckers were 

continuously growing.  Although basal area for early summer plots was less than for the 

other seasons at time B06, basal area for early summer plots were not statistically 

different from mid- and late summer plots by time B07.  These results showed a 

significant season and time interaction for basal area growth (Table 4.1).  Apparently, 

intensity of clipping did not significantly affect basal area of suckers. 
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Figure 4.6.  Mean comparisons of basal area before clipping in 2006 and 2007, for 
three seasons.  B06, B07 = before suckers were clipped at the beginning of seasons in 
2006, and 2007, respectively.  Bars indicate standard errors.  Means with different 
letters are significantly different at P < 0.05.   
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Effects of Intensity and Season of Clipping  
on Over-Winter Sucker Density Changes 

 The season when clipping was done certainly affected sucker mortality (Table 

4.2; Fig. 4.7).  Minimal or no reduction in sucker numbers occurred when clipped in early 

summer.  However, clipping in mid-summer resulted in a 41% death of suckers between 

time A06 and B07, while clipping in late summer caused a 42% death loss.  More suckers 

died when treatments were applied in mid- and late summer than in early summer.  

Meanwhile, intensity of clipping did not significantly affect the over-winter dynamics of 

suckers (Table 4.2). 

 
Effects of Repeated Clipping and Season  
of Clipping on Sucker Responses  
  
 Sucker Density.  Generally, sucker density decreased from time A06 to A07 for 

mid- and late seasons (Table 4.3; Fig. 4.8).  This change reflects sucker deaths over-

winter (A06 vs. B07) as well as summer mortality in 2007 (B07 to A07).  Clipping in  

 
Table 4.2.  ANOVA fixed effects of season, intensity, and time of clipping on sucker 
density for A06 and B07 comparisons.  A06, B07 = the end of the growing season in 
2006 and beginning of the growing seasons in 2007, respectively.   
________________________________________________________________________ 
Source    Num DF Den DF F Value 1P - value 

________________________________________________________________________ 
 
Season    2    4  3.10  0.154 
Intensity   3  18  1.65  0.212 
Season x Intensity  6  18  1.40  0.268 
Time    1  24           25.77          < 0.000 
Season x Time   2  24           12.12  0.000 
Intensity x Time  3  24  0.79  0.512 
Season x Intensity x Time 6  24  1.23  0.326 
________________________________________________________________________ 
1P -value considered significant at P < 0.05; ANOVA = analysis of variance; Num DF, 
Den DF = numerator and denominator degrees of freedom, respectively.  
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Figure 4.7.  Effect of season of clipping on mean sucker density at the end of the 
growing season in 2006 (A06) and before clipping in 2007 (B07).  Bars indicate 
standard errors.  Means with different letters are significantly different at P < 0.05.   
 
  
mid- and late summer caused a 48% and 46% reduction in sucker numbers, respectively, 

compared to 12% observed when they were clipped in early summer.  However, it is 

interesting to note that early summer clipped plots endured the same conditions as those 

for the other two seasons, but fewer suckers were lost in that treatment.  As noted above, 

intensity of clipping did not affect the dynamics of suckers differently between the two 

times (Table 4.3).  Meanwhile, a minimal and inconsequential number of new suckers 

that could influence the dynamics of sucker densities were noted in the summer of 2007 

(Fig. E.3).   

Sucker Height.  Generally, sucker height decreased as the intensity of clipping 

increased (Table 4.3; Fig. 4.9) as might be expected.  On average, clipping at 20%, 40%, 

and 60% intensities caused a 40, 48, and 65 cm reduction in height, respectively, 

compared to the control.   
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Table 4.3.  ANOVA fixed effects of season, intensity, and time of clipping on 
sucker density, sucker height, leader length, current year twigs, bud density, and 
basal area growth for A06 (the end of the growing season in 2006) and A07 (the end 
of the growing season in 2007) data. 
___________________________________________________________________________________________ 
Source    Num DF  Den DF  F- Value  1P- value 

___________________________________________________________________________________________ 
Suckers/ha 
Season    2    4  4.65  0.090 
Intensity    3  18  2.05  0.143 
Season x Intensity   6  18  1.86  0.143 
Time    1  24               37.07               <0.000 
Season x Time   2  24  5.99  0.008 
Intensity x Time   3  24  0.76  0.528 
Season x Intensity x Time  6  24  0.66  0.681 
Sucker height (cm) 
Season    2    3.92  0.10  0.907 
Intensity    3  17.1               57.84               <0.000 
Season x Intensity   6  16.9  2.15  0.101 
Time    1  20.7             137.04               <0.000 
Season x Time   2  20.5  1.07  0.362 
Intensity x Time   3  20.5  0.35  0.790 
Season x Intensity x Time  6  20.2  1.74  0.164 
Leader length (cm) 
Season    2    3.74  2.30  0.224 
Intensity    3  17               68.56               <0.000 
Season x Intensity   6  16.6  4.37  0.008 
Time    1  21               95.34               <0.000 
Season x Time   2  20.7  2.36  0.119 
Intensity x Time   3  20.7               44.09               <0.000 
Season x Intensity x Time  6  20.4  1.23  0.334 
Current year twigs/ha 
Season    2    4  4.85  0.085 
Intensity    3  18  7.24  0.002 
Season x Intensity   6  18  0.41  0.865 
Time    1  24             284.10               <0.000 
Season x Time   2  24               10.51  0.001 
Intensity x Time   3  24               12.29               <0.000 
Season x Intensity x Time  6  24  0.13  0.992 
Buds/ha 
Season    2    4  3.61  0.127 
Intensity    3  18               18.50               <0.000 
Season x Intensity   6  18  0.53  0.780 
Time    1  24             196.57              < 0.000  
Season x Time   2  24               13.54  0.000 
Intensity x Time   3  24  3.84  0.022 
Season x Intensity x Time  6  24  0.22  0.966 
Basal area (m2/ha) 

Season    2    4  1.50  0.326   
Intensity    3  18  1.86  0.172 
Season x Intensity   6  18  1.37  0.279 
Time    1  24               55.43               <0.000 
Season x Time   2  24  6.15  0.007 
Intensity x Time   3  24  0.71  0.557 
Season x Intensity x Time  6  24  0.87  0.529 
___________________________________________________________________________________________ 
1P -value considered significant at P < 0.05; ANOVA = analysis of variance; Num DF, Den DF = numerator and 
denominator degrees of freedom, respectively.  
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Figure 4.8.  Effect of season of clipping on mean sucker density at the end of the 
growing season in 2006 (A06) and 2007 (A07), respectively.  Bars indicate standard 
errors.  Means with different letters are significantly different at P < 0.05.   
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 Leader Length.  Intensity of clipping and time interacted for leader length 

(Table 4.3).  Generally, leader length was reduced by clipping at time A06, but not at 

time A07, compared to the control (Fig. 4.10; see also Fig. E.4).  With the exception of 

suckers clipped at 20% intensity, leader length was not different for plots clipped at 40% 

and 60% intensities between the two times (Fig. 4.10).  Interestingly, except for intense 

(60%) clipping, leader length of clipped suckers was not affected by clipping compared 

to the control by time A07. 

Twig Density.  Intensity and time interacted for twig density (Table 4.3).  

Overall, the effects of clipping on twig numbers were more pronounced at time A07, than 

at A06 (Fig. 4.11A; see also Fig. E.5).  By time A07, twig densities were reduced (P ≤ 

0.013) by 32%, 54%, and 70% by clipping at 20%, 40%, and 60% intensities, 

respectively, compared to the control (Fig. 4.11A).   
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Figure 4.10.  Effect of clipping intensity on mean leader length.  A06, A07 = the end 
of the growing season in 2006, and 2007, respectively.  Bars indicate standard 
errors.  Means with different letters are significantly different at P < 0.05. 
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Figure 4.11.  Effect of clipping intensity (A) and season of clipping (B) on mean twig 
density at the end of the growing season in 2006 (A06) and 2007(A07), respectively.  
Bars indicate standard errors.  Means with different letters are significantly 
different at P < 0.05.  
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 By A07, advancing season of clipping clearly reduced twig density (Fig. 

4.11B).  Mid- and late summer clipping were more detrimental to twig production than 

early summer clipping.  By time A07, about 55% and 59% fewer twigs were present in 

plots clipped in mid- and late summer, respectively, compared to early summer.  The 

results represented a significant season and time interaction in the ANOVA (Table 4.3). 

 Bud Density.  Intensity and time interacted for bud density (Table 4.3).  This 

suggested that increasing clipping intensity led to a proportionately larger reduction in 

buds/ha compared to the control (Fig. 4.12A; see also Fig. E.6).  Fewer (P ≤ 0.009) 

buds/ha were present in plots clipped at 40% and 60% intensity than in control plots, at 

time A06 (Fig. 4.12A).  By time A07, the effects of clipping, were magnified, compared 

to the control plots, with about 32%, 56%, and 70% fewer buds being present on the 

20%, 40%, and 60% clipped plots, respectively (Fig. 4.12A).   

 Bud production was also affected by season of clipping (Table 4.3; Fig. 4.12B).  

Clipping in early summer was least (P ≤ 0.009) detrimental to bud production compared 

to clipping in mid- and late summer by time A07 (Fig. 4.12B).  Overall, bud density 

increased substantially between A06 and A07 for all seasons of clipping (593%, 243%, 

and 314% for early, mid-, and late summer treatments, respectively). 

 Basal Area.  Basal area of suckers was not affected by season of clipping at time 

A06, but season of clipping affected basal area at time A07 (Fig. 4.13).  Clipping in late 

summer limited basal area growth of suckers compared to clipping in early summer by 

time A07.  Notably, clipping in early summer resulted in a 172% increase in basal area, 

while clipping in mid- and late summer resulted in an increase of around 60-70% in basal 

area, between the two times.  The trend established here, followed that observed for  
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Figure 4.12.  Effect of clipping intensity (A) and season of clipping (B) on mean bud 
density at the end of the growing season in 2006 (A06) and 2007 (A07), respectively.  
Bars indicate standard errors.  Means with different letters are significantly 
different at P < 0.05.   
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Figure 4.13.  Effect of season of clipping on mean basal area at the end of the 
growing season in 2006 (A06) and 2007 (A07), respectively.  Bars indicate standard 
errors.  Means with different letters are significantly different at P < 0.05.   
 

sucker density.  These results reported, showed a season and time interaction for basal 

area growth (Table 4.3).  On the other hand, clipping intensities did not significantly 

affect basal area growth (Table 4.3).     

 
Differences Between 2006 and  
2007 Sucker Responses 
  

Sucker Density.  Intensity and year interacted for change in sucker density (Table 

4.4).  The effects of clipping were more pronounced in 2006 compared to 2007 (Fig. 

4.14A; see also Fig. E.7A).  Clipping at any intensity reduced the number of suckers in 

2006, compared to the control, but even the control saw a small (approximately 5,000 

suckers/ha) loss.  Interestingly, fewer suckers died in 2007 regardless of clipping 

intensities.  The control did not differ between the years.  Suckers coped much better  
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Table 4.4.  ANOVA fixed effects of season, intensity of clipping, and year on the 
change in sucker density, sucker height, leader length, and basal area growth in 
2006 and 2007.   
________________________________________________________________________ 
Source   Num DF  Den DF F- Value 1P-value 

________________________________________________________________________ 
 
Suckers/ha 
Season    2    4  19.48  0.009 
Intensity   3  18    4.47  0.016 
Season x Intensity  6  18    2.36  0.074 
Year    1  24  34.32           <0.000 
Season x Year   2  24  16.81             <0.000 
Intensity x Year  3  24    2.91  0.055 
Season x Intensity x Year 6  24    1.32  0.288 
Sucker height (cm) 
Season    2    3.97  48.45  0.002 
Intensity   3  16.2  56.09           <0.000 
Season x Intensity  6  16    1.49  0.246 
Year    1  21    0.69  0.415 
Season x Year   2  21  22.80           <0.000 
Intensity x Year  3  21  19.67           <0.000 
Season x Intensity x Year 6  21    1.35  0.280 
Leader length (cm) 
Season    2    4.41           148.50             <0.000 
Intensity   3  17.2  60.86           <0.000 
Season x Intensity  6  16.9    2.05  0.115 
Year    1  21    0.22  0.644 
Season x Year   2  21  33.48           <0.000 
Intensity x Year  3  21  24.76           <0.000 
Season x Intensity x Year 6  21    2.36  0.067 
Basal area (m2/ha) 

Season    2    4    3.55  0.130   
Intensity   3  18    8.52  0.001 
Season x Intensity  6  18    5.02  0.004 
Year    1  24  11.11  0.003 
Season x Year   2  24    0.83  0.448 
Intensity x Year  3  24    3.13  0.045 
Season x Intensity x Year 6  24    1.37  0.268 
________________________________________________________________________ 
1P- value considered significant at P < 0.05. 
ANOVA = analysis of variance. 
Num DF, Den DF = numerator and denominator degrees of freedom, respectively.  
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Figure 4.14.  The effect of clipping intensity (A), and season of clipping (B) on mean 
sucker density changes for 2006 and 2007.  Bars indicate standard errors.  Means 
with different letters are significantly different at P < 0.05. 
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with the effects of clipping in 2007, probably because the suckers then were more 

mature and the weak ones had been eliminated in their first year of life.   

Season of clipping affected sucker survival, also (Table 4.4).  More (P ≤ 0.001) 

suckers were lost especially when clipped in early summer than in mid- or late summer, 

and particularly so in 2006 (Fig. 4.14B; see also Fig. E.7B).  Also, the results indicate 

that clipping in mid- summer was more harmful (P = 0.029) to sucker survival compared 

to clipping in late summer in the first year.  These trends are obviously due to 

phenological differences when clipping treatments were applied.  Late summer clipping 

came later in the growing season, and as expected, fewer suckers would likely die before 

the end of the current growing season.  In 2007, sucker mortality was not different 

regardless of season and far fewer suckers died compared to 2006, especially considering 

early- and mid-summer treatments.   

Sucker Height.  Clipping reduced (P ≤ 0. 000) sucker height growth in both 

years, compared to the control, and sucker height growth was affected more as the 

intensity of clipping increased, especially in 2006 (Fig. 4.15A; see also Fig. E.8A).  

Interestingly, the control suckers did not grow as much in 2007, as in 2006 (7 vs. 28 cm, 

respectively; Fig. 4.15A).  The results reported showed a significant intensity and year 

interaction for sucker height (Table 4.4).       

Season of clipping and year interacted for change in sucker height (Table 4.4).  

On average, clipping in early summer resulted in an increase in sucker height in both 

years (especially in 2006) (Fig. 4.15B; see also Fig. E.8B), suggesting suckers had time 

to re-grow before the current season was over.  Conversely, clipping in mid- and late 

summer caused a reduction in sucker height in both years.  Clipping in mid- and late  
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Figure 4.15.  The effect of intensity (A), and season (B) of clipping on mean sucker 
height changes for 2006 and 2007.  Bars indicate standard errors.  Means with 
different letters are significantly different at P < 0.05. 
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summer simply did not allow suckers enough time to re-grow and re-gain their pre-

clipping status before the end of growing season.   

 Leader Length.  Intensity and year interacted for change in leader length (Table 

4.4), suggesting that clipping affected leader length differently between the years.  

Clearly, clipping affected leader length in both years, compared to the control, and leader 

length tended to decrease more as the intensity of clipping increased (Fig. 4.16A; see also 

Fig. E.9A).  This is a similar pattern seen above in the case of change in height growth 

(Fig. 4.15A).  On average, control suckers gained 28 cm and 5 cm in 2006 and 2007, 

respectively. 

Leader length was affected differently by the season of clipping (Table 4.4; Fig. 

4.16B; see also Fig. E.9B).  Clipping in early summer resulted in a positive gain in leader 

length, compared to mid- and late summer clipping, and 2006 showed the greatest gain 

(27 cm), compared to 2007 (7 cm) (Fig. 4.16B).  Suckers clipped in mid- and late 

summer did not loose as much leader length in 2007, as in 2006 (Fig. 4.16B), suggesting 

that suckers coped much better with clipping as they grew bigger.   

 Basal Area.  Intensity and year interacted for change in basal area (Table 4.4; 

Fig. 4.17).  Clipping affected basal area growth in 2006, compared to the control.  

However, in 2007, clipping did not statistically affect basal area growth differently from 

the control, though there was a tendency for the control suckers to be numerically higher 

than for the clipping intensities.  Meanwhile, season of clipping did not significantly 

affect change in basal area.  Averaged across the three seasons, basal area growth was 

approximately 0.8 ± 0.3 m2/ha and 0.4 ± 0.3 m2/ha in 2006, and 2007, respectively. 
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 Figure 4.16.  The effect of intensity (A), and season (B) of clipping on mean leader 
length changes for 2006 and 2007.  Bars indicate standard errors.  Means with 
different letters are significantly different at P < 0.05.  
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Figure 4.17.  The effect of clipping intensity on mean basal area changes for 2006 
and 2007.  Bars indicate standard errors.  Means with different letters are 
significantly different at P < 0.05.  
 

 
Windows of Mortality 
 
 Clearly, clipping in early summer in the first year of growth resulted in more 

suckers dying compared to clipping in mid- or late summer (Figs. E.10A-C).  Natural 

mortality of suckers on the control plots was about 16% between the beginning and the 

end of the growing season in 2006.  In contrast, plots clipped in early summer saw an 

approximately 60-64% mortality of suckers between these times (Fig. E.10A).  

Meanwhile, clipping in mid- and late summer resulted in approximately 11-23% and 6-

14% mortality, respectively, between the beginning of the treatments and the end of the 

growing season in the first year (Figs. E.10B-C). 

 Minimal mortality was noted in early summer treated plots over-winter (October-

June time period) (Fig. E.10A).  However, for plots that were treated in mid- and late 
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summer, mortality ranged from 42-54% and 36-46%, respectively, between the end of 

the growing season in 2006 and beginning of seasons in 2007 (Figs. E.10B-C).   

 Clipping in the second year of growth resulted in about 6-10%, 2-5%, and 1-6% 

mortality of suckers, respectively, for early, mid- and late summer treated plots between 

the beginning of seasons and the end of the growing season (Figs. E.10A-C).  In contrast, 

the control plots saw sucker mortality of about 3%, 1% and 0.2%, respectively, between 

the beginning of early, mid-, late summer and end of the growing season in 2007.      

 
Plant Nutritional Responses 

 
 Crude Protein Content (%).  Generally, mean crude protein (%) content 

decreased with advancing season and intensity of clipping in 2006 (Fig. 4.18A).  

Unexpectedly, mean crude protein content of aspen leaves (as opposed to leaves and 

stems for clipped plots) was 7.4%, 5.5%, and 2.6% lower (P ≤ 0.017) than for suckers 

clipped at 20%, 40%, and 60% intensities, respectively, in early summer.  Mean crude 

protein content for clipped material at 20% and 40% intensities, was also higher (P ≤ 

0.009) than for material clipped at 60% intensity, for this season.  Clipping suckers at 

60% intensity, in mid- summer, resulted in material that had a 2.5% lower (P ≤ 0.020) 

mean crude protein content compared to the leaves.  Material clipped at 20%, 40%, and 

60% intensities in late summer, had a 3.1%, 4.1%, and 4.6% lower (P ≤ 0.006) mean 

crude protein content, respectively, than the leaves. 

 Similarly, as in 2006, mean crude protein content of clipped material generally 

decreased as the growing season advanced in 2007 (Fig. 4.18B).  No differences were 

noted between the leaves and the clipped plots within each season in 2007.  However, in  
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Figure 4.18.  Mean crude protein (%) content of aspen leaves and aspen suckers 
clipped at different intensities and seasons in 2006 (A) and 2007 (B).  ES = early 
summer; MS = mid- summer; LS = late summer.  Bars indicate standard errors.  
Means with different letters are significantly different at P < 0.05. 
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2007, crude protein content of material clipped at 20%, 40%, and 60% intensities in 

early summer were 7.4%, 5.4%, and 2.1% lower, respectively, than in 2006 (Fig. 4.18B).  

A similar pattern emerged for mid-summer clipping.  Crude protein content of material 

clipped at 20%, 40%, and 60% intensities, and for the leaves were 4.1%, 5.7%, 5.3%, and 

2.9% lower, respectively, in 2007 than in 2006.  Clipping at 20% and 60% in late summer 

did not affect crude protein content of material differently between the years, though 

crude protein levels tended to be numerically lower in 2007, compared to 2006 (Figs. 

4.18A-B).  However, values for the leaves, and for suckers clipped at 40% intensity in 

late summer were 6.8% and 2.1% lower in 2007, than in 2006.  These results reflect the 

significant intensity x season x year interaction in the ANOVA (Table 4.5). 

In Vitro True Digestibility (%).  Generally, IVTD of forages tended to decrease 

as the intensity of clipping increased and as the growing season progressed, though not 

by very much.  Unexpectedly, material clipped at 20%, and 40% intensities in early 

summer had higher (P ≤ 0.031) IVTD than the leaves (Fig. 4.19A).  There appeared to be 

 
 
Table 4.5.  ANOVA fixed effects of season and intensity of clipping, and year on 
mean crude protein content (%) of aspen suckers. 
________________________________________________________________________ 
Source    Num DF Den DF F Value 1P-value 

________________________________________________________________________ 
Season    2    4  21.52  0.007 
Intensity   3  18    4.35  0.018 
Season x Intensity  6  18    3.12  0.028 
Year    1  24           184.32           <0.000 
Season x Year   2  24    2.85  0.078 
Intensity x Year  3  24    5.42  0.005 
Season x Intensity x Year 6  24    9.95          < 0.000 
____________________________________________________________________________________________________________

1P -value considered significant at P < 0.05; ANOVA = analysis of variance; Num DF, 
Den DF = numerator and denominator degrees of freedom, respectively.  
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no apparent reason to substantiate this observation except to attribute it to the fact that 

the leaves were picked all over the entire plant.  As such a decrease in digestibility may 

be attributed to aging of leaves becoming increasingly less-digestible as they aged.  But 

this seemed unlikely because the growing season had just begun.  However, one expects 

digestibility to decrease with increasing intensity of clipping because of the increase in 

fiber component (in stems) of harvested material.  Not surprising though, plant material 

clipped at 60% in early summer resulted in a 2.7%, and 2.8% lower (P ≤ 0.022) IVTD 

than that clipped at 20% and 40%, respectively.  Clipping suckers at 20%, 40%, and 60% 

intensities, in mid-summer, resulted in a 6.1%, 10.7%, and 11.9% decrease in IVTD, 

respectively, compared to the leaves, in 2006 (Fig. 4.19A).  Sucker material clipped at 

20% intensity was also more (P ≤ 0.000) digestible than that clipped at 40% and 60% 

(4.5%, and 5.8% higher, respectively).  Compared to the leaves, the difference in 

digestibility increased as the intensity of clipping increased in late summer.  For example, 

suckers clipped at 20%, 40%, and 60% intensities resulted in a 6.6%, 8.8%, and 9.7% 

decrease (P < 0.000) in IVTD, respectively, compared to the leaves, in late summer.  

Also, clipping at 60% intensity caused a reduction (P = 0.012) compared to that clipped 

at 20% for this season. 

 In 2007, suckers clipped at 20%, 40%, and 60% intensities had a 7.3%, 8.9%, and 

10.7% lower (P < 0.000) IVTD, respectively, than the leaves, in early summer (Fig. 

4.19B).  In addition, IVTD decreased (P = 0.005) by 3.4% for suckers clipped at 60% 

compared to those clipped at 20% for this season.  Similar patterns were established by 

clipping in mid- and late summer in 2007 (Fig. 4.19B).  Clipping suckers at 20%, 40%, 

and 60% intensities in mid-summer resulted in a 6.1%, 7.4%, and 8.6% decrease (P < 
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Figure 4.19.  Mean in vitro true digestibility (%) of aspen leaves and aspen suckers 
clipped at different intensities and seasons in 2006 (A) and 2007 (B).  ES = early 
summer; MS = mid-summer; LS = late summer.  Bars indicate standard errors.  
Means with different letters are significantly different at P < 0.05. 
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0.000) respectively, compared to the leaves.  Clipping suckers at 60% intensity, in 

mid-summer, caused a 2.6% reduction (P = 0.029) in IVTD compared to clipping at 20% 

intensity.  Also, material clipped in late summer at 20%, 40%, and 60% intensities 

resulted in a 7.1%, 8.9%, and 8.4% lower (P < 0.000) IVTD, respectively, than for the 

leaves. 

 Comparisons between years indicated no difference in IVTD for the control in 

early summer, but suckers clipped at 20%, 40%, and 60% intensities, were 10.0%, 

11.6%, and 10.7% lower, respectively, in 2007 than in 2006 (Figs. 4.19A-B).  

Interestingly, in mid-summer, IVTD for the leaves was 6.8% lower in 2007 compared to 

2006.  Also, material clipped at 20%, 40%, and 60% were 6.7%, 3.6%, and 3.6% lower, 

respectively, in 2007 compared to 2006, for this season.  This was not surprising as 

suckers accumulated more fibrous material as they grew.  In late summer, even though 

IVTD of harvested sucker material was numerically lower in 2007 for all intensities, it 

did not differ statistically from that in 2006 (Figs. 4.19A-B).  Interestingly, with the 

exception of suckers clipped at 20% in mid- and late summer in 2006, digestibility of 

clipped material in mid-summer was consistently lower than that for late summer in both 

years when comparing each clipping intensity.  The results reported demonstrated a 

significant interaction between intensity x season x year in the ANOVA (Table 4.6).         

 
Biomass, Total Digestible Dry Matter, and  
Total Nitrogen Harvested in 2006 and 2007  
        
 The season and intensity of clipping affected the amount of clipped biomass of 

suckers harvested from the site (Fig. 4.20A ; Table 4.7).  Generally, clipped biomass 

increased substantially from 2006 to 2007 for early and mid-summer clipped plots,  
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Table 4.6.  ANOVA fixed effects of season and intensity of clipping, and year on 
mean in vitro true digestibility values (%) of aspen suckers. 
_______________________________________________________________________ 
Source    Num DF Den DF F Value 1P-value 

________________________________________________________________________ 
Season    2    4  77.33  0.001 
Intensity   3  18           157.16          < 0.000 
Season x Intensity  6  18    8.78  0.000 
Year    1  24           173.05          < 0.000 
Season x Year   2  24  28.90          < 0.000 
Intensity x Year  3  24    4.00  0.019 
Season x Intensity x Year 6  24    7.90          < 0.000 
____________________________________________________________________________________________________________

1P -value considered significant at P < 0.05; ANOVA = analysis of variance; Num DF, 
Den DF = numerator and denominator degrees of freedom, respectively. 
 
 
except for late summer clipped plots that did not significantly differ between the years.  

Clipping in early summer resulted in lower biomass than for mid- and late summer 

clipping in 2006, probably a reflection of the age and phenological stage of suckers when 

clipping treatments were applied.  On average, biomass of suckers clipped at 20% (144 ± 

15 kg/ha) and 40% (150 ± 15 kg/ha) was significantly lower than for 60% (222 ± 15 

kg/ha).    

 Total digestible dry matter was affected by season, and intensity of clipping (Fig. 

4.20B).  Not surprising the amount of digestible dry matter removed by clipping followed 

the trends observed above for biomass.  Total digestible dry matter increased for early 

and mid-summer clipped plots, but total digestible dry matter was not affected 

significantly by clipping in late summer between 2006 and 2007.  Meanwhile, total 

digestible dry matter for suckers clipped at 20% (117 ± 12 kg/ha) and 40% (120 ± 12 

kg/ha) was lower than for suckers clipped at 60% (175 ± 12 kg/ha).  These results 

reflected a significant season x year interaction, and intensity effect for total digestible 

dry matter (Table 4.7).   
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Figure 4.20.  The effect of season on mean biomass (A), total DDM (B), and total 
nitrogen (C) harvested by clipping in 2006 and 2007.  DDM = digestible dry matter.  
Means with different letters are significantly different at P < 0.05. 
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Table 4.7.  ANOVA fixed effects of season, intensity of clipping, and year on 
biomass, total digestible dry matter and total nitrogen harvested in 2006 and 2007.   
________________________________________________________________________ 
Source    Num DF Den DF F- Value 1P-value 

________________________________________________________________________ 
Biomass (kg/ha) 
Season    2    4    6.37  0.057 
Intensity   2  12    7.78  0.007 
Season x Intensity  4  12    1.32  0.319 
Year    1  18    9.38           <0.007 
Season x Year   2  18    4.30               0.029 
Intensity x Year  2  18    1.50  0.250 
Season x Intensity x Year 4  18    1.07  0.401 
Total DDM (kg/ha) 
Season    2    4    6.69  0.053 
Intensity   2  12    6.67             0.011 
Season x Intensity  4  12    1.03  0.433 
Year    1  18    8.88  0.008 
Season x Year   2  18    4.29             0.030 
Intensity x Year  2  18    1.50             0.251 
Season x Intensity x Year 4  18    1.00  0.432 
Total nitrogen (kg/ha) 
Season    2    4               4.34               0.099 
Intensity   2  12    7.08             0.009 
Season x Intensity  4  12    1.38  0.299 
Year    1  18    3.01  0.100 
Season x Year   2  18    4.41             0.028 
Intensity x Year  2  18    0.84             0.449 
Season x Intensity x Year 4  18    1.09  0.389 
________________________________________________________________________ 
1P- value considered significant at P < 0.05; DDM = digestible dry matter; ANOVA = 
analysis of variance; Num DF, Den DF = numerator and denominator degrees of 
freedom, respectively.  
 

 Similarly, the season, and intensity of clipping significantly influenced the 

amount of total nitrogen harvested in clipped materials (Table 4.7).  Except for early 

summer clipping, total nitrogen was not influenced differently by clipping in mid- and 

late summer between the two years (Fig. 4.20C).  Consistently, as observed above, on 

average, clipping at 20% (3.3 ± 0.4 kg/ha) and 40% (3.4 ± 0.4 kg/ha) resulted in clipped 
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materials that were significantly lower in total nitrogen than those clipped at 60% (5.1 

± 0.4 kg/ha).   
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CHAPTER 5 

DISCUSSION 
 
 

 Precipitation is considered one of the most important factors that influence aspen 

growth and development (Jones and DeByle 1985).  Research has also shown that plants 

in high resource environments are most likely to respond positively to lost tissues 

compared to the same plants under poor environmental conditions (Bartolome 1993; 

Relva and Sancholuz 2000).  In the present study, annual precipitation for 2005 and 2007 

was well above the long term average, while 2006 was 10% lower than average (Fig. 

3.1A).  However, April to October precipitation, the period within which clipping 

treatments were implemented, was within that of the long term average for all years of 

the study.  Temperature, a factor that is important for aspen regeneration and growth 

(Schier 1976) was also within the long term average for the area (Fig. 3.1B).   

In this study, the interconnectedness and possibility of resource sharing among the 

suckers in clipped and adjacent untreated areas were not controlled.  It is well 

documented that aspen suckers continue to get water and nutrients from the parent roots 

for some indefinite number of years (Zahner and DeByle 1965).  Therefore, caution for 

interpretation and discussion in this document was exercised as reasonably as possible.  

None-the-less, results of this study should reflect the “real world” where herbivores 

selectively browse on newly-emerged suckers resulting from clear-felling treatments. 

 
Sucker Density Responses 
 
 Sucker density in this study was affected by both season and intensity of clipping.  

Clear trends emerged that suggested that clipping in early summer was the least 
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detrimental to sucker survival compared to clipping in mid- or late summer (Figs. 4.1, 

4.7, and 4.8).  These trends are contradictory to conventional theory that suggests that 

clipping in early summer when carbohydrates are presumed to be at their lowest is 

detrimental to plant survival (Cook and Stoddart 1960; Willard and McKell 1978; 

Fitzgerald and Bailey 1984).  My results support Hypothesis 1 (a) that clipping in late 

summer exposes suckers to winter kill more than does early summer clipping.  It was 

difficult, though, to know exactly when these large changes in sucker density occurred 

for mid- and late summer treatments.  Whenever this happened, it is reasonable to assume 

that winter conditions exacerbated the effects of clipping on the dynamics of sucker 

numbers for the two seasons.  For aspen, clipping in early fall (late summer in the current 

study) stimulates shoot primordia to grow too late in the season to allow development of 

winter hardiness, and prevents shoots which had emerged earlier in the season from going 

into dormancy, leaving them susceptible to winter kill (Bailey et al. 1990).  It seemed 

unlikely that the late summer clipped plots incurred carbohydrate exhaustion after just 

one clipping event, when suckers clipped early in the growing season (when 

carbohydrates are presumed low) escaped the winter with minimal mortality.  Fitzgerald 

and Bailey (1984) observed that exhaustion of carbohydrates by annually repeated 

destruction of growing points required from six to eight years.  I recognize that the 

treatments in this study may not have impacted carbohydrate reserves to the extent that 

severe natural browsing on entire stands would have, as my treatment plots were just 

spots within an otherwise intact stand.  Therefore, the marked mortality for late summer 

clipped plots can be attributed to death of suckers due to the cold.  Actually, substantial 

numbers of dead suckers were observed in mid- and late summer clipped plots during 
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sampling in summer of 2007.  These results are consistent with other research findings 

in Canada on timing of browsing on aspen.  For example, Fitzgerald and Bailey (1984) 

observed that pastures browsed in early summer (June) had 29% aspen, compared to 

2.5% aspen for pastures browsed in late summer (August).  These results were reported 

one year after the treatments were implemented.  I also found that intensity of clipping 

did not significantly affect over-winter survival of suckers, leading me to reject 

Hypothesis 1 (b) that stated that increased intensities of clipping would result in increased 

winter mortality.  This finding probably further demonstrates aspen’s substantial 

tolerance to tissue removal. 

 Previous research indicates that sucker densities typically peak in the first or 

second year after disturbance, then decline rapidly in subsequent years (Schier and 

Campbell 1978).  Several factors, including root wounding from the clear-felling process, 

promotes suckering (Fraser et al. 2004).  In this study, dragging of logs when the sites 

were cleared probably contributed to root wounding, leading to considerable suckering in 

the summer of 2005.  Because the perimeter fences were taken down in late fall of 2005, 

due to fear of their being destroyed by the weight of snow, all of the suckers that had 

emerged in summer of 2005 were lost to deer and elk browsing during late winter/early 

spring of 2006.  Thus in the summer of 2006, the stands were suckering for the second 

time since the tree stands were felled.  As a result, fewer new suckers that might have 

otherwise had influence on the dynamics of sucker numbers were observed after the 

clippings were implemented.  Perhaps it is worth noting that survival of the remaining 

suckers after browsing and natural thinning is crucial, because about two cycles of 

suckering and browsing is about as much as aspen seem to tolerate.            
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 When comparing rate of change in sucker density within years, patterns 

emerged suggesting that early summer clipping resulted in high sucker mortality by the 

end of the (first) current growing season (2006) compared to mid- and late summer, in 

that order (Fig. 4.14B; Figs. E.10A-C), supporting my Hypothesis 1 (c) that clipping is 

more detrimental to sucker survival when done in the first growing season compared to 

the second growing season.  In early summer of 2006, the suckers had just resumed 

growth, and most of them had emerged during spring and summer that year, making them 

even more susceptible to clipping.  As expected, as the canopies of suckers expanded in 

2007, their ability to tolerate clipping increased, and the effects were not different 

between seasons (Fig. 4.14B).  These results seemed to support the notion that bigger 

plants have a more developed photosynthetic surface area and can better withstand some 

level of clipping than can young, small plants (Boege and Marquis 2005).  

 It is generally recognized that aspen mortality is highest during the first five years 

after the parent trees are harvested (Bartos et al. 1991), due to competition for nutrients or 

carbohydrates (reviewed by Frey et al. 2003), among other factors.  Perhaps it is worth 

noting that suckers get resources from the roots of parent plants.  This interconnectedness 

allows suckers to directly compete with each other for resources.  In the first growing 

season (2006), death of suckers was highest regardless of the intensity of clipping (Fig. 

4.14A), supporting in part my Hypothesis 1 (c) that clipping in the first growing season is 

detrimental to sucker survival compared to the second growing season.  Comparing the 

rate of change for the clipped plants and the controls, it was unlikely that most of the 

suckers died due to self thinning.  Additionally, studies have documented that herbivory 

can be most detrimental at the early stages of growth (Garrison 1963; Bergström and 
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Danell 1987), because plants invest much of their root resources into carrying out the 

physiological processes (e.g., photosynthetic surface area creation), required by suckers 

(reviewed by Frey et al. 2003).  Therefore, removal of foliage during this period further 

constrains the plant.  Typically, in this study, some suckers were observed to have a 

progressive dieback after being clipped, and those suckers eventually died by the end of 

the current growing season, especially in 2006.     

 Despite the fact that late summer clipping reduced sucker density relative to early 

summer clipping, the magnitude of the decrease was not of concern with respect to 

potential regeneration of the stand.  Actually, late summer treated plots that suffered the 

highest mortality had 20,444 suckers/ha by the end of the study.  Research has shown that 

an aspen stand will most likely fail to regenerate and sustain itself if the density of well-

formed stems falls below 1,250 stems/ha (Bartos and Campbell 1998a).  From an aspen 

stand management standpoint, sucker densities at the end of the current study, for all 

clipping seasons, were still high enough to ensure sustained stand regeneration.     

        
Sucker Growth Responses 
  

Early season herbivory is generally easier to compensate for in established plants, 

whereas immature and seedling plants can be poor tolerators of early season herbivory 

(Strauss and Agrawal 1999).  One year after clipping, early summer clipped suckers were 

significantly shorter than the controls for all clipping intensities (Fig. 4.2B), while leader 

length for clipped suckers was not different from the controls (Fig. 4.3B).  With regard to 

intensities, clipping at 20% and 40% in mid- and late summer seasons did not affect 

sucker height relative to the controls, but suckers clipped 60% were shorter (Fig. 4.2B).  
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Leader length was stimulated by mid- and late summer clipping (Fig. 4.3B).  These 

trends seem to support my Hypothesis 2 (a) that stipulated that early summer clipping is 

more harmful to sucker growth than mid- and late summer clipping; and Hypothesis 2 (b) 

that clipping limits sucker growth as the intensity of clipping increases.   

Lindroth (2001) noted that tolerance is a viable form of defense in plants with 

high intrinsic growth rates, large storage capacity, and high rates of photosynthesis, all 

traits of aspen.  Other researchers, e.g. Hewett and Wareing (1973) have hypothesized 

that increased growth after tissue loss may be a result of increased cytokinin levels in 

residual tissue, thus allowing compensation to occur.  Research on aspen has also shown 

that suckers having good competitive advantage can reach heights of 1 m within a single 

growing season (Jones and Schier 1985).  Julander (1937) studied the effects of ungulate 

browsing and clipping on quaking aspen sucker heights and found that suckers browsed 

or clipped > 75% of current year’s growth showed a decrease in height.  In contrast, 

Campa et al. (1992) observed no difference in sucker heights clipped at levels of 25%, 

50%, and 75%.  However, a major procedural difference from my study was that they 

severed all roots around their treatment plots to a depth of 31 cm.  This was observed to 

be the maximum rooting depth of aspen parent roots in the Lake States where the study 

was done (Schier et al. 1985).  Additionally, unlike the present study, their clipping was 

done in February, a period when nutrients in twigs are considered to be at their lowest 

levels (Alban 1985), as opposed to high nutrient loss associated with summer clipping 

(Bryant et al. 1983).  This suggests a major penalty for suckers clipped at 60% in my 

study.   
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Another factor to consider is that heavily browsed suckers may be placed at a 

competitive disadvantage if associated plants of other species are not browsed or grazed 

and grow up to over-shade the browsed suckers (reviewed by Belsky 1986).  However, 

under normal environmental conditions (e.g. adequate moisture, sunlight) herbaceous 

plants appear to have no appreciable effect on aspen sucker growth (Mueggler 1989; D. 

L. Bartos, personal communication, January 2008).  In the present study, associated 

vegetation never exceeded the heights of suckers.  Romme et al. (2005), researching the 

effects of clipping (levels not specified) on aspen sucker growth, observed no significant 

effect of herbaceous vegetation on sucker height growth in Yellowstone National Park.  

Whatever the reason might be, the weight of the evidence suggests that browsing aspen 

suckers at 60% intensity in mid- or late summer year-after-year can not be sustained.   

 After two consecutive years of clipping, sucker height growth was reduced by 

clipping relative to the control, with the reduction tending to increase as the intensity of 

clipping increased (Fig. 4.9).  Similar findings were reported by Puettmann and Saunders 

(2001), who observed no compensation, and growth decreased sharply with increasing 

clipping intensities after one growing season for white pine seedlings in Minnesota.  In 

yet another study, Bergström and Danell (1987) reported that heights of birch plants 

usually decreased with increasing clipping intensity.    

 Responses to herbivory may differ between years depending on the stage of plant 

growth when browsed (Maschinski and Whitham 1989).  In the current study, intensity 

and season of clipping affected sucker height growth dis-similarly (Figs. 4.15A-B) and 

leader length (Figs. 4.16A-B) in both years.  Perhaps it should not be surprising that 

suckers gained some height growth and leader length after being clipped in early summer 
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of the first year, but that they did not grow as much in the second year, leading me to 

reject in part my Hypothesis 2 (c) that says sucker growth will be restricted more in the 

first growing season than in the second growing season.  Zahner and DeByle (1965) 

noted that continued rapid growth of suckers indicated that the large, well-developed 

parent roots serve significantly in water and nutrient absorption for some time.  The year 

2007 was fairly wet (Fig. 3.1A) and soil conditions for plant growth were probably not 

limiting.  Actually, soil moisture content was relatively higher in early summer than 

either mid or late summer in 2007 (Table B.2), as the result of recent snow melt.  If 

indeed, the marked decrease in growth for control suckers in 2007 was not moisture 

related, it may have been the result of photosynthate being allocated to below-ground root 

development (Jones and Schier 1985).  However, if that were the case, then the clipped 

suckers would presumably have behaved likewise; instead, they demonstrated a rapid re-

growth in the second year (as noted above).  Other researchers have asserted that browsed 

trees grow in a such way as to re-establish the pre-browsed root/shoot ratio (e.g. 

Bergström and Danell 1987).   

 By study’s end, neither the control nor the clipped suckers had attained the 

postulated browse height of 1.5 m necessary to escape terminal leader browsing (Smith et 

al. 1972; see Fig. 4.9).  Monitoring terminal leader growth is important for the 

management of aspen suckers, for it is the region of elongation year-after-year (Keigley 

and Frisina 1998), and it defines whether a plant gains sufficient height to escape 

browsing.  Although I observed that mid- and late summer clipping stimulated sucker 

height growth and leader length in the following year, browsing this late may unduly 

expose suckers to winter kill.     
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 Browsing may stimulate branching of plants, due to broken apical dominance 

(Schier 1976), thus releasing lateral growing points from inhibition, and increasing the 

growth and fitness potential of the plant (Maschinski and Whitham 1989).  In the current 

study, twig density, an indicator of branching, tended to decrease as the intensity of 

clipping increased (Figs. 4.4A and 4.11A), and more twigs were present in early summer 

treated plots than in mid- and late summer treated plots, especially in the second year 

(Figs. 4.4B and 4.11B).  Guillet and Bergström (2006) observed a decrease in the number 

of twigs on willow (same family as aspen) plants with increasing (summer-time) clipping 

intensity.  Although twig density decreased as the intensity of clipping increased, twig 

density was higher in early summer than in mid- and late summer.  As noted above, early 

summer clipping gave suckers enough time to re-grow and presumably replenished 

resources before the dormant season began.  Because of broken apical dominance and 

adequate energy, it seemed reasonable that many buds opened up resulting in many twigs 

being produced.  Though mid- and late summer 2006 clipped suckers had a significant 

increase in twig density from time B06 to B07, the increase was not so pronounced as 

that for the early summer treatment.  Clipping for these seasons came much later in the 

season and probably did not give suckers enough time to replenish the resources before 

the growing season ended.  Arguably, this then implied that resources were probably 

limited at the beginning of the growing season the following year.  With inadequate 

resources, it seemed reasonable that the suckers devoted more resources to height growth 

(as shown earlier) for these seasons, and less into lateral expansion.  Furthermore, these 

trends could be due to less mortality for early summer treated plots compared to mid- and 

late summer treated plots.  Some researchers have observed that willow plants invest 
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more into compensatory growth after early summer browsing, as opposed to defense 

after late summer browsing (e.g., Herder et al. 2004).  Other studies have also shown that 

fast growing plants invest more into growth at a young age than into defense (reviewed 

by Coley et al. 1985).  This response is presumably geared to creating and replacing the 

photosynthetic surface area lost to herbivory early in the growing season rather than later 

in the season when plants can better withstand some level of browsing.   

 Usually, browsing affects seasonal changes in bud production on plants 

(Klimešová and Klimeš 2007).  Increased bud production can be a viable mechanism 

deployed by plants in response to browsing (Tuomi et al. 1994), as buds are responsible 

for the ultimate expansion of the photosynthetic surface area and subsequently growth of 

plants (Klimešová and Klimeš 2007), thus providing the basis for compensation to occur 

after tissue loss.  Not surprising, bud density in the present study tended to follow similar 

patterns displayed by twig density, because buds are produced on twigs.  Bud density 

decreased as the intensity of clipping increased (Figs. 4.5A and 4.12A).  For reasons 

advanced above in terms of resource availability, early summer clipping allowed for 

more bud recruitment than did mid- and late summer clipping (Figs. 4.5B and 4.12B).  

Bergström and Danell (1987) observed increased total numbers of buds on whole trees of 

birch plants with increasing intensity of clipping, but the number of buds decreased on 

the new twigs that emerged after the clipping treatment.   

 Classically, tree basal area is used as a measure of site occupancy in forest 

management (Jones et al. 1985b).  In this study basal area growth was affected by both 

season (Figs. 4.6 and 4.13) and intensity of clipping (Fig. 4.17).  In general, basal area 

growth tracked sucker density changes.  By the beginning of the second growing season, 
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basal area for suckers clipped in early summer (2006) was similar to mid- and late 

summer (2006) clipped suckers and had roughly doubled in amount from that observed 

one year earlier.  This finding could be attributed to minimal or no winter mortality for 

early summer clipped plots than for mid- and late summer clipped plots that experienced 

considerable mortality (see sucker density).  These trends in basal area growth were not 

surprising, since diameter growth for aspen suckers usually increases considerably with 

reduced competition for resources among suckers, as a result of mortality (Jones et al. 

1985b).   

 In the first growing season, clipping was detrimental to basal area growth 

regardless of intensity compared to the control (Fig. 4.17), refuting my Hypothesis 2 (b) 

that clipping limits growth more as the intensity of clipping increases.  These results were 

consistent with other clipping studies on woody plants.  For example, Saunders and 

Puettmann (1999) reported reduced diameter growth (implying reduced basal area 

growth) for white pine seedlings clipped at 50% and 100% of current year’s growth 

compared to the control.  However, with passing time, even though browsing continues, 

basal area usually increases (DeByle 1985; Keigley and Frisina 1998), but sucker height 

may be restricted.  Comparison between years indicated that basal area growth was not 

affected differently by clipping leading to rejection of Hypothesis 2 (c) that clipping 

limits sucker growth the most when done in the first growing season rather than in the 

second growing season.  Conversely, basal area growth for the control was significantly 

higher in 2006 than in 2007, probably an indication of adjustment in root/shoot ratio as 

the suckers aged (Jones et al. 1985b; Campa et al. 1992).   
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Nutritional Responses 

 
 For plants to cope and tolerate herbivory, they have to able to replace carbon and 

other nutrients associated with tissue loss.  Studies have demonstrated that early summer 

browsing decreases nitrogen concentration in leaves of browse trees in the next summer, 

while late summer browsing has the opposite effect, at least for one year (reviewed by 

Danell et al. 1994).  However, repeated browsing in late summer tends to decrease 

nitrogen concentration (reviewed by Danell et al. 1994).  Therefore, late summer 

browsing could be deleterious from the standpoint of plant growth and development.  On 

the other hand, winter browsing has been found to increase fiber concentrations the 

following year (Danell et al. 1985; Danell and Bergström 1989).  From the standpoint of 

the herbivore, these changes can have important implications.  For aspen systems where 

multiple resource use is of interest, it is appropriate for resource managers to be able to 

quantify the effects of herbivory in terms of tissue loss to browsing and what the plant 

can tolerate.  Likewise, changes in plant traits as a result of browsing (e.g. biomass, 

amount of twigs, buds, etc.) will have direct consequences for subsequent nutrition of 

browsing herbivores in terms of such nutritional factors as crude protein concentrations 

and digestibility (i.e. fiber content). 

 Crude Protein Content.  In general, forage plants are high in crude protein early 

in the growing season, and then decline in this component as the growing season 

progresses (Kubota et al. 1970; Cook 1971; Palo et al. 1985).  The results for the present 

study indicated that, true to this generalization, crude protein generally decreased as the 

growing season progressed (Figs. 4.18A-B).  Kubota et al. (1970) and Tew (1970b) 

reported such trends in crude protein content through the summer months for quaking 
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aspen in Alaska and Utah, respectively.  Surprisingly, mean crude protein for leaves 

plucked from nearby suckers was lower (P ≤ 0.017) than for the clipped suckers in early 

summer of 2006 (Fig. 4.18A).  There appeared to be no substantial reason for this 

observation, because clipped samples always contained some amount of stem material, 

albeit very little in early summer.  However, though unlikely, this pattern could be 

attributed to the fact that materials clipped contained substantial amounts of buds, a 

potential place for nitrogen accumulation.  Studies have also documented substantial 

movement of nutrients between the growing points (e.g., buds, leaves) and the perennial 

tissues (e.g., bark) of deciduous trees (e.g., Chapin et al. 1975; Chapin and Kedrowski 

1983).  Therefore, the lower crude protein content in leaves may have reflected a time 

effect, suggesting that nitrogen was not yet fully mobilized from the perennial tissues to 

leaves in early summer.             

 There is a tendency for nutrient concentrations in plant material to decline as the 

level of utilization by animals increases (Oelberg 1956; Cook and Harris 1968).  In the 

current study, mean crude protein appeared to decrease as the intensity of clipping 

increased for all seasons in 2006 (Fig. 4.18A).  However, no comparable differences were 

noted for all clipping intensities within a season in 2007 (Fig. 4.18B).  Other studies have 

noted that herbivory may alter nutrient cycling in plants (e.g., Dyer 1975).  In fast 

growing species, with large storage carbon reserves and high photosynthetic rates, leaf 

removal signifies loss of nutrients.  Where excess carbon cannot be used for growth it 

will accumulate as carbon-based secondary metabolites (Bryant et al. 1983).  Such fast 

growing species have been observed to have less nitrogen in the foliage the year 

following a severe defoliation (Bryant et al. 1991).  Generally, mean crude protein 
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content of suckers in 2007 was significantly lower than those for 2006 for all clipping 

intensities and across seasons.  The results for year two were in agreement with those of 

Campa et al. (1992) who observed no difference in crude protein content between clipped 

plots and the control for quaking aspen twigs after two years of simulated browsing.  

Many studies have observed that forage nutrients are diluted by structural carbohydrates 

as the plant matures (e.g., Short et al. 1974), and as intensity of utilization increases (e.g., 

Oelberg 1956; Kamstra et al. 1958; Short et al. 1974).  In the present study, the lack of a 

significant difference in 2007 between plucked leaves from off-plot suckers and leaves 

plus stems from the clipping treatments within a season, suggested that clipping intensity 

was probably not much of a contributing factor in influencing crude protein content at 

any particular time.  This might be attributed to the growing habit of suckers re-

distributing resources below-ground for root development, rather than to above-ground 

allocation as the canopies expanded (Campa et al. 1992). 

 Though chemical analysis is not an absolute measure of the nutritive value of 

range forage, it does provide a relative index to the nutritional value among species and 

the effect of utilization intensity during different seasons of the year (Cook 1971).  

Previous work by Ullrey et al. (1967) reported that dietary protein levels significantly 

influenced body weight of white-tailed deer fawns in Michigan.  In the present study, 

mean crude protein content of suckers (17.3%) would largely meet the nutritional 

requirements of adult deer (6-9%) (Ullrey et al. 1967; Mould and Robbins 1981), and 

growing deer (12-16%) (French et al. 1956) in the first year after clear-felling.  However, 

in the second growing season (2007) mean crude protein of suckers (< 11.8%) failed to 

meet the requirements for growing deer.  This was especially the case for the leaves and 
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the 40%, and 60% clipping intensities in late summer.  Although the winter months 

are considered critical for survival of cervids (Ullrey et al. 1967), the summer months can 

also be nutritionally important for wild ungulates (Renecker and Hudson 1988).  This is 

the time when body condition must be re-gained in a short period of time to ensure 

successful reproduction, growth and over-winter survival.  The results for the current 

study suggested that growing deer would not meet their late-summer protein 

requirements in the second year post-clear-felling if aspen suckers are the most protein-

rich forage available.  These findings probably further provide some insight into why 

both deer and elk consume more suckers but less notably so for leaves of mature aspen 

trees.  Perhaps, it is worth noting that at crude protein content > 17%, aspen suckers 

provide higher levels of crude protein than any of the associated species in the plant 

community, especially considering the fact that these landscapes no longer support the 

protein-rich forb component that they once did.  In fact, Ruyle (1983) analyzed the diets 

of sheep grazing Cedar Mountain ranges and reported dietary crude protein levels not 

exceeding 12% at any time during the summer.           

 Domestic livestock, especially sheep, utilize substantial amounts of aspen suckers 

on Cedar Mountain (Lucas 1969; Davis 2007) as well as on other high-elevation ranges 

across the West.  In the current study, crude protein requirements for maintenance (9.4%) 

and flushing (9.1%) of 70 kg sheep (Jurgens 2002) were met by leaves and materials 

clipped at all intensities in both years.  However, crude protein requirements for 70 kg 

ewes (13.4%) suckling single lambs and for 30-kg finishing lambs (14.7%) (Jurgens 

2002) were not met by leaves or by browse clipped at 40% and 60% intensities in late 

summer of year two.  From a personal observation, ewes with lambs utilized Cedar 
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Mountain range throughout the summer months for the entire duration of the study.  

Therefore, mean crude protein fluctuations during late summer in year two could limit 

sheep production on this range.  Davis (2007) observed considerable use of Crystalyx 

dehydrated molasses-protein supplement by deer and elk on Cedar Mountain, as well as 

by the cattle and sheep for which it was intended, suggesting in part that their nitrogen 

requirements were probably not being met by the general mix of forages on this range.  

He also observed considerable combined usage (49% by late summer) by deer and elk (he 

was unable to distinguish between the two) of aspen suckers that appeared within intact 

aspen stands.  However, the abundance of these suckers was many-fold less than would 

be found in a clear-felled stand such as mine.       

  In Vitro True Digestibility.  Analyses of material from the clipping intensities 

indicated that IVTD generally decreased as the intensity of clipping increased within a 

season (Fig. 4.19A-B).  This was consistent with many other studies that have 

documented that digestibility typically decreases as the intensity of utilization increases 

(Oelberg 1956).  In the free-ranging animal, this is generally the result of an increase in 

fiber content of harvested material.  Apart from the hand-plucked leaves that did not 

differ between seasons, digestibility in year one was highest in early summer compared to 

other seasons.  Moisture content of forages typically decreases as the growing season 

advances, and plants with high moisture content usually have less fiber and lignin and are 

highly digestible (Sullivan 1962).  In 2006, moisture content of harvested materials 

averaged about 68% for early-summer-clipped plots compared to 61% for late-summer-

clipped-plots.  Unexpectedly, IVTD for the leaves (89.9%-91.8%) was slightly lower 
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than for the 20%, and 40% clipping intensity in early summer.  This finding was 

consistent with the lower crude protein content of leaves observed above.   

 There was a moderate decrease in IVTD for the clipping intensities compared to 

the leaves for all seasons in 2007 (Figs. 4.19B).  This was not surprising because of the 

relatively lower fiber content in leaves than in twigs of suckers.  Unexpectedly, however, 

IVTD for mid-summer clipped materials was for the most part lower than for late 

summer clipped materials in both years (Figs. 4.19A-B).  Forage nutritive composition at 

the time of harvest is the cumulative result of plant growth and the environmental factors 

influencing the distribution of photosynthetically derived energy and nutrients in those 

plants (Van Soest et al. 1978).  Additionally, concentrations of soluble carbohydrates 

have been observed to change depending on the time of the year for deciduous trees 

(Wong et al. 2003).  For example, Wong et al. (2003) observed high levels of soluble 

sugars in senescing leaves of sugar maple (Acer saccharum Marsh.) in September, a 

period that corresponds with my late summer clipping.  They attributed the high levels of 

soluble sugars to the possibility of degradation of glycosidic compounds (e.g. 

anthocyanins and aromatic amino acids) and numerous other compounds (e.g. lipids and 

protein) to sugars during autumn (Kramer and Kozlowski 1979), suggesting overall 

increase in digestibility of harvested materials.  Actually, McCullough (1979) observed 

an increase in digestibility of aspen leaves and twigs by addition of carbohydrates 

(cornstarch).      

 A comparison between years indicated differences in IVTD within the clipping 

intensities for early and mid-summer clipped materials, with late summer clipped 

materials tending to be lower in 2007 than in 2006, though not statistically different 
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(Figs. 4.19A-B).  These results should not be surprising as suckers were growing, 

aging, and accumulating more fibrous structural material (Oelberg 1956; Johnston et al. 

1968; Cook 1971).   

 Research has shown that digestibility can be used as an integrative measure of 

forage quality for ruminant animals (Cook and Harris 1968).  Therefore, low forage 

digestibility may seasonally limit vertebrate populations on landscapes (Chen et al. 

1998).  For example, Blaxter et al. (1961) reported that for sheep an increase in diet 

digestibility from 50% to 55% increased body weight gain nearly 100%.  Therefore, 

small differences in diet digestibility would likely result in large differences in animal 

condition (Baker and Hobbs 1982).  However, in the present study digestibility of 

harvested materials were very high (> 70% for all seasons) in both years (Fig. 4.19A-B).  

It should be noted that the values observed in the present study are substantially higher 

than the literature values presented in Table 2.2 partly because those are in vitro dry 

matter digestibilities (IVDMD) instead of IVTD values.  Even considering the difference, 

values appear to be exceptionally high, considering that IVDMD (apparent 

digestigibility) is usually about 12.9 digestibility units lower than IVTD values (Ghadaki 

et al. 1975).  Research has also shown that IVDMD obtained by the DaisyII Incubator 

(ANKOM Technology) that I used can vary for some feedstuffs.  For example, Mabjeesh 

et al. (2000) reported a 17% and 21% higher IVDMD from the DaisyII compared to the 

Tilley and Terry method for sunflower meal and alfafa cubes, respectively.  Several 

factors have been advanced for this discrepancy.  For example, the porosity of the F57 

sample bags and the sample size per unit of bag surface area may affect the results 

(Nocek 1988; Vanzant et al. 1998; Mabjeesh et al. 2000) for forage materials.  
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Additionally, sample processing, particularly grind size, interacts with pore size of the 

bag and affects the extent of material disappearance (Mabjeesh et al. 2000).  Unlike, in 

my study, Mabjeesh et al. (2000) used a 2-mm pore-size Willey mill screen for grinding 

the samples while I used a 1-mm screen.  On the other hand, the standard grass hay I used 

had IVTD values that closely approximated (4% lower) values established at the Utah 

State University Skaggs Laboratory.  Therefore, the higher digestibility values observed 

in my study may represent a systematic bias due to escape of indigestible materials 

through the pores of the F57 bags during digestion in the DaisyII Incubator and also in the 

neutral detergent fiber procedure. 

  
Biomass, Total Digestible Dry  
Matter and Total Nitrogen  
Harvested in Aspen Suckers 
 
 The season and intensity of utilization of range plants are important 

considerations in a browsing management program to ensure that both plant health and 

animal productivity are sustained (Cook 1971; Holechek et al. 1998).  In this study, 

although season by intensity by year interaction was not significant, clipped biomass 

increased from 2006 to 2007 for all seasons and intensities.  Meanwhile, browsing 

management principles suggest browsing later in the growing season because plants then 

have a larger photosynthetic surface area to better withstand some level of browsing 

(Holechek et al. 1998).  In contrast to these browsing principles, harvesting aspen in early 

summer did not significantly reduce biomass, total digestible dry matter and total 

nitrogen harvested per ha compared to late summer harvesting, especially in 2007, due in 

part to lower sucker mortality over winter in early summer-clipped suckers.  These results 
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suggest that browsing herbivores would potentially benefit similarly in terms of 

harvestable biomass when browsing in early or late summer in the second year.  Previous 

research on management of ranges suggests that mid-summer browsing favors 

subsequent plant growth because carbohydrates are presumed highest then (Holechek et 

al. 1998), suggesting less impact on suckers browsed at that time.  From a browse 

management perspective, these trends suggested that in terms of sustained plant vigor 

(growth) and high biomass harvestable by herbivores, mid-summer browsing achieved 

both of these objectives.   

 From the standpoint of browsing (clipping) intensity, on average, harvested 

biomass for 20% (lightly) and 40% (moderately) clipped plots was lower than biomass 

for intensely (60%) clipped plots, suggesting, in part, that intensely clipped suckers were 

also stimulated and made-up for lost biomass.  Because harvested biomass for intensely 

clipped plots was significantly higher than for the two lesser intensities, the 60% clipping 

was probably not intense enough to surpass the maximum level of browsing beyond 

which suckers would not be stimulated, as suggested by the grazing optimum hypothesis 

(Belsky 1986).  These results of increased biomass production after experiencing tissue 

removal are supported by previous work by Julander (1937) who reported increased total 

biomass production for aspen clipped < 75%, and they further demonstrate the plant’s 

ability to persist and reproduce while sustaining moderate to heavy levels of browsing. 

 The high biomass, total digestible dry matter, and total nitrogen harvested may 

largely explain the browsing patterns we see on Cedar Mountain and elsewhere.  It has 

long been hypothesized that forage use by ungulates can be influenced by a number of 

factors (Kenney and Black 1984).  For example, Belovsky (1997) noted that herbivores 
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may use two criteria (a maximum digestibility and a maximum cropping rate) in 

maximizing their nutritional intake when confronted with a range of food resources.  

Other researchers have noted that the intake rate of forages depends upon (i) the potential 

rate at which it can be eaten, (ii) its accessibility, and (iii) its relative acceptability 

(Kenney and Black 1984).  Furthermore, the potential rate at which a feed component can 

be eaten is determined largely by the physical characteristics of the feed, such as its ease 

of fracture, size particles and water content (Kenney and Black 1984).  However, the size 

of the animal’s mouth, its degree of satiation, and its physiological state may also be 

important (Ellis 1978; Kenney and Black 1984; Milne 1991).  Therefore, the relatively 

high moisture content and digestibility of suckers observed in this study may partly 

explain the extensive ungulate browsing observed on Western landscapes.  Additionally, 

aspen suckers are usually easily accessible in nature because of the occasional clumps 

that they form when emerging from the soil.  As such, this clumping of suckers presents 

an opportunity for the animal to maximize intake with minimal foraging time.  Studies 

have shown that free-grazing animals have the capability of selecting for forages with 

relatively high nutrients that they require (Ozanne and Howes 1971).  For example, 

Ozanne and Howes (1971) observed that sheep grazing dry pasture selected for material 

with a high phosphate content.  The positive relationship between animal selectivity and 

plant nitrogen content is also well established. 

 Additionally, aspen communities provide shade, good foraging grounds and cover 

for both wild and domestic animals, especially during the hot summer months.  As 

research has shown, aspen systems contain the highest species diversity of all upland 

plant communities (Bartos and Campbell 1998a), and because of shade provided by the 
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aspen canopy, associated vegetation grows late in the season, providing green forage 

to ungulates.  Because of these factors, the likelihood of aspen suckers being selectively 

browsed is extremely high.   

 
Management Implications 
 

Western landscapes are home to both domestic and wild ungulates.  As has been 

observed (in this study), aspen suckers produce considerable amounts of potential forage 

that is highly nutritious.  Browsing these suckers would obviously improve the diets of 

free ranging animals during the summer months.  Meanwhile, efforts to restore aspen are 

faced with two major problems, i.e., the large herds of native ungulates (deer and elk) and 

domestic livestock that can lead to over-browsing.  Therefore, from an aspen restoration 

standpoint, it requires that we regulate use on aspen suckers by these ungulates.  

Practically, the only herbivore that can easily be controlled is sheep.  Because fencing of 

treated aspen stands to exclude deer and elk is usually prohibitively expensive, about the 

only current option is to follow the recommendations of Bartos and Campbell (1998a).  

Specifically, for any clear-felling program to successfully regenerate aspen in the 

presence of deer and elk, areas larger than 200 ha should be done to spread the browsing 

on suckers beyond the ungulates’ capability to destroy the response.  Additionally, 

several (on-site) methods to curb the problem of over-browsing on aspen suckers have 

been tried in other parts of the United States, with appreciable levels of success.  For 

example, Kota (2005) found that the hinge and slash treatment methods can be successful 

at deterring livestock, deer, and elk from accessing and browsing aspen suckers in the 

Black Hills of South Dakota.  He further noted that the hinge treatment provides better 
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protection of suckers at a less cost than fencing, such that larger areas can be treated.  

Where cattle are the main browsers of aspen suckers, Kota (2005) further suggested that a 

slash barrier will result in the same outcome as a livestock fence, but at a lower cost.             

Because most of the aspen-growing public lands are permitted out to ranchers for 

livestock grazing, it is critical that ranchers are involved right from the initial planning 

phase.  From a rancher’s point of view, summer range grazing is typically crucial for his 

year-long livestock enterprise.  As such, he likely would not be willing to agree to give 

up all or part of his grazing permit to rest recently treated pastures.  However, 

compromise solutions may be possible.  

Because sheep are of greater concern for use of aspen suckers than are cattle on 

high-elevation, southern Utah rangelands, I hereby propose a clear-felling program 

involving sheep grazing.  Based on the findings of this study, browsing at intensities ≤ 

40% in mid-summer would ensure sustained aspen stand development.  As noted above, 

managing aspen on landscapes is hampered by both native and domestic livestock.  I 

recognize that clear-felling operations increase the risks of over-browsing by both these 

species of animals.  Therefore, the 40% tolerable level in mid-summer should be the total 

maximum browsing allowable by both native and domestic animals.  Meanwhile, current 

Forest Service guidelines call for removal of livestock from treated pastures when use on 

suckers reaches 20% (D. L. Bartos, personal communication, March 2005).  Even though 

considerable numbers of suckers were lost when treatments were applied in mid- and late 

summer, sucker numbers were still high (≥ 20,444 suckers/ha) for all seasons of clipping 

by the end of the second growing season.  Therefore, mid- and late summer clipping 

appeared to be the best times for the treatments to be implemented.  Meanwhile, 
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monitoring is important to document the progress of the grazing program.  Therefore, 

it is important that small exclosures be created in all clear-felled stands to serve as control 

plots to monitor the effects of sheep browsing on the suckers.  Three possible scenarios 

for the management of pastures that have recently been clear-felled are proposed:   

Scenario A.  In areas where season-long grazing is practiced, as it is on most 

Forest Service lands, it will be difficult and financially costly for ranchers to rest the 

treated pastures altogether.  Therefore, because most growth of suckers would have 

occurred by the end of July, sheep grazing should be delayed for at least two months 

(June and July) until the beginning of August in the year following the clear-felling 

operation.  This deferred grazing should allow suckers time to grow and harden off 

(Dockrill et al. 2006), thus minimizing the impacts of browsing.  However, because of the 

unpredictable nature of weather conditions, it is critical that strict adherence to grazing 

capacity of the pastures is observed as close as possible.   

Because of the additional (and highly nutritious) forage provided by suckers in the 

years following clear-felling operation, the rancher might be cautiously permitted to 

increase his stocking rate as a reward for giving up his grazing permit in the early part of 

the summer grazing season.  It is important though, that this grazing arrangement is 

adhered to for at least five growing seasons before the normal grazing schedule gets back 

in place.  Presumably, by the end of the fifth growing season suckers will have grown and 

passed the 1.5 m safe height.  Additionally, it is critical that a monitoring protocol (e.g., 

sucker density, sucker height, leader length) be developed to ensure that aspen stand 

replacement is not compromized. 



 117
Scenario B.  For aspen ranges where deferred-rotation (Sampson 1913) 

grazing programs are in place, it may be easier to clear-fell multiple pastures at a time or 

in subsequent years.  When clear-felling in subsequent years, again delaying grazing on 

the treated pastures the year following clear-felling operation for at least two months 

during the summer growing season is critical.  Because the rancher and the range 

manager have an option of when and where to graze (due to multiple pastures), it is 

important that sheep do not graze the same pasture at the same time in successive years.  

Assuming a grazing program involving two pastures for the summer growing season, the 

pasture that would have been grazed first in the first year following clear-felling should 

be grazed last in the second year.  This arrangement ensures that suckers in both pastures 

get some time to re-grow at least for part of the growing season after being browsed.  The 

grazing process should be adhered to until terminal leader of suckers are out of reach of 

sheep.  Again, a monitoring protocol on suckers should be adhered to at all times.   

  Scenario C.  In addition to grazing strategies suggested under scenarios A and B, 

where there are small areas occupied by aspen (i.e. small clear-felling operations), it may 

be necessary to put supplements at strategically placed areas away from the treated stands 

to encourage better sheep distribution in the pastures.  Additionally, where supplementary 

feeding is not possible, herding sheep away from the treated stands from time to time 

may be required to encourage better animal distribution. 
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CHAPTER 6 

 
SUMMARY AND CONCLUSIONS 

 
 

Summary 

During 2006 and 2007 a simulated browsing study was conducted on high-

elevation range of southern Utah to determine the effects of three seasons (early, mid- 

and late summer) and four clipping intensities (0%, 20%, 40%, 60%) on aspen sucker 

density and growth characteristics.  Three aspen stands were randomly selected and clear-

felled in mid-July of 2005.  These stands were fenced with a 3 m-high game fence to 

protect suckers from being browsed.  Clipping treatments were imposed on suckers in the 

summers of 2006 and 2007 on permanently demarcated plots.  Data were collected on 

sucker density, height, leader length, twig density, bud density and basal area of suckers.  

Additionally, the clipped materials were oven-dried, weighed and preserved for 

subsequent crude protein and in vitro true digestibility evaluations.  These materials were 

also evaluated for total biomass, total digestible dry matter and total nitrogen yield on a 

per-hectare basis. 

More suckers died over the winter in plots that were clipped in late summer than 

those clipped in early summer.  However, in the first growing season, clipping in early 

summer resulted in death of more suckers compared to mid- and late summer clipping, 

but no such difference was noted between seasons for the second year.  More suckers 

died in the first growing season regardless of the clipping intensities compared to the 

control, but no difference was noted between the control and the clipping intensities in 

the second growing season.  By the end of the second growing season fewer suckers were 
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present for late summer treated plots (20,444 suckers/ha) than for early summer 

treated plots (34,944 suckers/ha).   

One year after early summer clipping, sucker height growth was restricted at all 

intensities of clipping compared to the control.  However, clipping at intensities 20% and 

40% in mid- and late summer did not significantly affect sucker height growth compared 

to the control.  Suckers clipped at 60% intensity in mid- and late summer were limited in 

height growth by the next clipping cycle.     

Leader length for suckers clipped in early summer was not affected differently by 

intensity of clipping, one year after clipping.  For mid- and late summer clipped plots, 

leader length was more than for the control suckers by the next clipping cycle in year 

two.  Despite having been clipped earlier during the growing season, on average, leader 

length for suckers clipped at 20% and 40% was not different from the control suckers by 

the study’s end.  However, for suckers heavily clipped (60%), leader length was on 

average shorter than the controls by the end of the study. 

Intensity and season of clipping affected twig and bud density on treated suckers.  

On average, there were fewer twigs on clipped suckers than on the control suckers in the 

second year, with a tendency to decrease with increasing clipping intensity.  In the second 

year, there were more twigs in early summer treated plots than they were in mid- and late 

summer treated plots.  Similarly, bud density tracked the pattern displayed by twig 

density. 

 Basal area of suckers treated in early summer was lower than for mid- and late 

summer treated plots in year one.  By the beginning of the growing seasons in year two, 

basal area growth for all seasons of clipping were not different.  But, by the study’s end 
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basal area growth for suckers clipped in early summer was significantly higher than 

for late summer treated plots. 

Generally, crude protein content of harvested materials decreased as the season 

progressed and as the intensity of clipping increased.  Crude protein ranged from 12.8% 

to 22.9% and 10.6% to 16.5% in 2006 and 2007, respectively.  Harvested materials were 

highly digestible for all seasons and intensities of clipping, with in vitro true digestibility 

values ranging from 80.1% to 93.4% and 75.2% to 90.7% in 2006 and 2007, respectively.  

Biomass (34 kg/ha), total digestible dry matter (31 kg/ha) and total nitrogen (1.1 kg/ha) 

harvested were lower in early summer than for mid- (181, 142, and 5 kg/ha, respectively) 

and late (217, 178, and 4.6 kg/ha, respectively) summer in 2006.  In 2007, biomass 

harvested in early summer (139 kg/ha) was lower than for mid-summer (260 kg/ha) 

season.    

 
Conclusions 

Browsing aspen suckers at intensities ≤ 40% in mid- and late summer would 

ensure that suckers continue to grow normally as the unbrowsed suckers.  Because early 

summer browsing limits sucker height growth, browsing in early summer should not be 

allowed.  Suckers clipped in early summer demonstrated far much reduced sucker height, 

such that it may take many years before suckers escape the browse zone.  As a result, 

suckers may remain within reach of browsers for many years (more than five years) and 

thus remain prone to repeated browsing.  It is crucial that a clear-felled aspen stand 

should be managed (to control browsing) until the sucker heights are at least 1.5 m tall.  
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This management may take about five years before the suckers grow out of reach of 

browsers.     

Nutritionally, browsing suckers at intensities 20% and 40% in mid-summer would 

provide browsers with crude protein content ranging from 18.1% to 19.2% and 12.8% to 

13.5% in the first year and second year of growth, respectively.  Additionally, browsing 

at these tolerable levels can potentially provide digestible dry matter ranging from 84 

kg/ha to 102 kg/ha and 164 kg/ha to 198 kg/ha in the first year and second year of 

growth, respectively.     

From an aspen restoration standpoint, designing grazing programs that ensure 

delayed use for at least the first two months of the growing season the year following 

clear-felling would ensure aspen stand development and growth.  Additionally, it is 

recommended that a protocol be developed to monitor the responses of suckers to 

browsing for at least five growing seasons on recently treated pastures. 

 
Research Limitations 
 

Because of the uncertainity on the responses of suckers due to unclipped 

neighbors, I suggest further (1) research involving actual livestock browsing.  Schier 

(1972) observed that removal of newly initiated suckers from root sections resulted in a 

greater number of suckers initiating than without removal, suggesting that apical 

dominance may have been exerted on clipped suckers by the unclipped suckers in the 

surroundings.  As a result, this may have down-played the responses of suckers in my 

treatments to the clipping intensities.  In contrast, Eliason (1971) found that the earliest 

developing suckers did not appear to inhibit the initiation of other suckers at the base of 
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growing suckers.  (2) As studies have shown, aspen is one of the most genetically 

diverse trees in North America.  My study was not able to address the genetic aspect of 

aspen and how genetics interact with browsing and season of browsing.  Therefore, 

further research should be undertaken in this regard, especially under natural conditions.  

(3) Additionally, this study was limited because I had only two years of data.  Because 

the years when treatments were implemented were fairly wet years, additional years of 

repeated clipping under variable weather conditions would potentially provide a better 

picture on the responses of suckers.  Climatic factors such as periods of wet or dry years 

may influence the responses by suckers differently compared to what was observed in 

this study.  Since the treatment plots are still in place, I recommend continued clipping 

and monitoring on the sucker responses for the next three years.  (4) Because the 

digestibility values observed in this study were on the high side (as reported in the 

literature), I suggest further analysis for the harvested materials using the procedure of 

Tilley and Terry (1963) to compare the results.  (5)  Increased levels (> 60%) of clipping 

may have impacted suckers negatively, resulting in lower sucker densities that are 

unsustainable with regard to the recommendations of Bartos and Campbell (1998a).  

Thus, research involving one or more additional intense clipping levels is suggested to 

determine the level of clipping that is unsustainable in terms of stand density.  (6)  Lastly, 

because my study did not cover a large geographic area, I recommend further research 

covering a wide range of areas across the West.     

Overall, my study should serve as a model to develop other research designs 

going forward on the effects of intensity and season on browsing aspen suckers.   
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Figure A.  The range of aspen in the conterminous western United States.  
Reproduced from Little (1971). 
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Figure B.1.  Photograph showing the newly clear-felling-coppice operation for one 
of the study sites. 
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Figure B.2.  Perimeter fence showing the contrasting browsing regimes inside and 
outside the exclosure.  See how heavily browsed the suckers are at the bottom left 
corner of the photograph (as shown by the arrow). 
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Figure B.3.  Photograph showing a regeneration of aspen suckers inside the 
exclosure after clear-felling operation.  
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Table C.1.  Soil textural classes and particle size distributions for study sites on 
Cedar Mountain, Utah.  
Site1  Soil texture  Sand    Silt   Clay 
     ----------------------------%------------------------------ 
 
1  Sandy-loam  70   20   10 
1  Sandy-loam  70   20   10 
1  Sandy-loam  69   21   10 
1  Sandy-loam  70   18   12 
 
2  Loam/Clay-loam 32   41   27 
2  Loam   37   41   22 
2  Loam   34   40   26 
2  Clay-loam  24   45   31 
 
3  Clay-loam  28   44   28 
3  Clay-loam  26   46   28 
3  Clay-loam  27   45   28 
3  Loam/Clay-loam 30   43   27 
1Four samples were collected from each site. 
 
 
 
 
 
 
Table C.2.  Soil moisture content (%) for study sites sampled at three seasons in 
2007.  
Season   Depth (cm)  Water Content (%)  SE1  
    
Early summer   15    9.43   
   30    9.55 
 
Mid-summer    15    5.58   1.39 
   30    4.56 
 
Late summer    15    3.33   
   30    3.33 
  
1SE = standard error. 
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Table C.3.  Deoxyribonucleic acid (DNA) extraction results for samples of aspen 
leaves collected at the three sites.  
Sample Allele 1 Allele 2 Allele 3 Allele 1 Allele 2 Allele 3 Allele 1 Allele 2 
1 210 224   119 122   156 169 
2 210 224   119 122   156 169 
3 210 224   119 122   156 169 
4 210 224   119 122   156 169 
5 210 224   119 122   156 169 
6 207 210 224 122     156 163 
7 207 210 224 122     156 163 
8 207 210 224 122     156 163 
9 207 210 224 122     156 163 
10 210 213   119 122   156 169 
11 210 213 224 119 122   156 163 
12 210 213 224 119 122   156 163 
13 213 230   119 122 128 162 169 
14 210 213 224 119 122   156 163 
15 210 213 224 119 122   156 163 

1-5, 6-10, and 11-15 = samples from site 1, 2, and 3, respectively. 
 
 
 
 
 
Table C.3. -continued 
Sample Allele 3 Allele 1 Allele 2 Allele 3 Allele 1 Allele 2 Allele 3 
1   99 101   184 193   
2   99 101   184 193   
3   99 101   184 193   
4   99 101   184 193   
5   99 101   184 193   
6 169 99 115   184 193 196 
7 169 99 115   184 193 196 
8 169 99 115   184 193 196 
9 169 99 115   184 193 196 
10   95 101 115 184 193 196 
11   97 99   193 196   
12   97 99   193 196   
13   99 103   184 193   
14   97 99   193 196   
15   97 99   193 196   

1-5, 6-10, and 11-15 = samples from site 1, 2, and 3, respectively. 
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Table C.4.  Regression equations for basal diameter (cm) and biomass (g) for the 
different seasons in 2006 and 2007. 
Year  Season   Regression equation  R2  n 
 
2006  Early summer  ln ay = 2.83 + 2.32 ln bx 0.83  50 
  Mid-summer  ln y = 3.12 + 2.90 ln x  0.89  50 
  Late summer  ln y = 3.20 + 2.22 ln x  0.90  50 
  cOctober:Whole plant ln y = 2.86 + 2.66 ln x  0.89  50 
      1Twigs ln y = 2.29 + 2.58 ln x  0.65  50 
 
2007  Early summer  ln y = 2.81 + 2.31 ln x  0.76  50 
  Mid-summer  ln y = 3.07 + 2.52 ln x  0.90  50 
  Late summer  ln y = 2.92 + 2.35 ln x  0.77  50 
  1October  ln y = 1.75 + 2.00 ln x  0.37  50 
a,bIndicate biomass, and basal diameter, respectively. 
cIndicate whole plant biomass and basal diameters were used to develop the regression equation at the end 
of the growing season.  Because suckers in 2006 had emerged in spring and summer that year, whole plant 
biomass was used in developing the regression equation.  1However, for the re-growth, basal diameter and 
biomass of twigs were used instead.         
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Table C.5.  Mean initial current year biomass production (kg/ha) for aspen 
suckers at the beginning of seasons in 2006 and 2007 on Cedar Mountain, Utah.   
________________________________________________________________________ 
Year  Season  Intensity (%)  Biomass   1SE   

       (kg/ha)    
     
________________________________________________________________________ 
 
 
2006  Early  0   177.6   83.75  
  Summer 20   190.8      
    40   215.4 
    60   164.9 
 

Mid-  0   322.3   83.75  
Summer 20   529.5      

    40                                433.5 
    60   668.3 
 

Late  0   462.6   83.75  
 Summer 20   824.4     
   40   536.7 

    60              575.5 
 
2007  Early  0   1196.1   414.59   
  Summer 20   925.1      
    40   1037.1 
    60   1035.6 
 

Mid-  0   987.1   414.59   
Summer 20   1807.4      

    40   852.2 
    60   1370.4 
 

Late  0   792.8   414.59  
 Summer 20   1950.4     
   40   1045.6 

    60              717.6 
1SE indicates standard error. 
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SAS Code for the Model for Analysis of Variance for Sucker Variables  
 
 Include SAS macro PDMIX800, available at 
  http://animalscience.ag.utk.edu/faculty/saxton/pdmix800.sas 
 Replace C:\WORK FILES\SAS RESOURCES in the %INCLUDE statement with  
 the appropriate location on your computer. 
 See comments within PDMIX800.SAS for documentation and citation. 
 PDMIX800 uses IML, so IML must be installed on your computer. 
 Note that critical values (e.g., LSDs) are reported in the LOG window!  
%include 'F:\KOKETSO TSHIRELETSO DISSERTATION DOCUMENTS\PROJECT 
SAS CODE\pdmix800.sas'; 
 
 
PROC IMPORT OUT= KKproject 
            DATAFILE= "F:\koketso Tshireletso dissertation documents\dissertation 
data\proj_kk1 A"  
            DBMS=EXCEL2000 REPLACE; 
     GETNAMES=YES; 
RUN; 
 
proc contents data=KKproject varnum; 
run; 
proc freq data=KKproject; 
 table timenumeric -- later_ns ; 
 run; 
 
title 'Before clipping measurements data in both years'; 
data BLUE;    
 set kkproject; 
 *IF timeNumeric=1; * Alternative subsetting statement; 
 if time in ('B06', 'B07');  
run; 
 
proc print data=blue; 
run; 
 
proc sort data=blue; 
 by site season treatment time; 
 run; 
 
proc means data=blue noprint; 
  by site season treatment time; 
  var suckerHt; 
  output out=suckerHt_Means mean=suckerHt; 
run; 
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proc print data=suckerHt_Means; 
run; 
 
data suckerHt_Means; 
 set suckerHt_Means; 
 *logsuckerHt = log(suckerHt); 
 run; 
 
Title ‘Model fitting’; 
 
proc datasets nolist; 
 delete lsmeans solutionr diffs mix_out; 
 run; 
proc mixed data=suckerHt_Means covtest cl nobound; 
 ods output lsmeans=lsmeans solutionr=solutionr diffs=diffs; 
 ods exclude solutionr diffs; 
  class site season treatment time; 
  model suckerHt = season|treatment|time /  ddfm=kr outp=mix_out; 
  random site / solution; 
  random site*season / solution; 
  random treatment*site*season / solution; 
  lsmeans season|treatment|time / pdiff adjust=tukey; 
run; 
 
/* Define macro variables: replace _ with pertinent variables 
 NOTE that many of these macro variables are case-sensitive 
 and MUST match the variable names (uppercase, lowercase, any  
 truncation) in the datasets!  
 This is set up for a three-way factorial (fixed effects factors) 
 with three variance components (random effects factors, e.g.,  
 block, whole plot, subplot) in addition to residual; add or  
 delete factors as need be.  */ 
%let factor1= Season;     /* Fixed effects factor 1 */ 
%let factor2= Treatment;     /* Fixed effects factor 2 */ 
%let factor3= Time;     /* Fixed effects factor 3 */ 
%let effect12 = Season*Treatment;   /* Interaction of factors 1 and 2 */ 
%let effect13 = Season*Time;   /* Interaction of factors 1 and 3 */ 
%let effect23 = Treatment*Time;   /* Interaction of factors 2 and 3 */ 
%let effect123 = Season*Treatmen*Time;  /* Interaction of factors 1 and 2 */ 
%let level1= Site;      /* Random effects factor 1 */ 
%let level2= Site*Season;      /* Random effects factor 2 */ 
%let level3= Site*Season*Treatmen;      /* Random effects factor 3 */ 
/* Create a new dataset with LSMEANS information to plot 
 +/- SE */ 
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data lsmeans; 
 set lsmeans; 
 hi = estimate + stderr; 
 lo = estimate - stderr; 
 run; 
data lsmeans2; 
 set lsmeans; 
 y=hi; output; 
 y=lo; output; 
 run; 
/* Plot interactions */ 
goptions reset=symbol; 
proc gplot data=lsmeans2(where=(effect="&effect12")); 
 title2 "&factor1 by &factor2 Interaction"; 
 symbol i=hilojt; 
 plot y*&factor2=&factor1; 
 run; 
proc gplot data=lsmeans2(where=(effect="&effect13")); 
 title2 "&factor1 by &factor3 Interaction"; 
 symbol i=hilojt; 
 plot y*&factor3=&factor1; 
 run; 
proc gplot data=lsmeans2(where=(effect="&effect23")); 
 title2 "&factor2 by &factor3 Interaction"; 
 symbol i=hilojt; 
 plot y*&factor2=&factor3; 
 run; 
proc sort data=lsmeans2; 
 by &factor3; 
proc gplot data=lsmeans2(where=(effect="&effect123")) uniform; 
 title2 "&factor1 by &factor2 by &factor3 Interaction"; 
 by &factor3; 
 symbol i=hilojt; 
 plot y*&factor1=&factor2; 
 run; 
proc sort data=lsmeans2; 
 by &factor2; 
proc gplot data=lsmeans2(where=(effect="&effect123")) uniform; 
 title2 "&factor1 by &factor2 by &factor3 Interaction"; 
 by &factor2; 
 symbol i=hilojt; 
 plot y*&factor1=&factor3; 
 run; 
goptions reset=symbol; 
/* Assess model assumptions */ 
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/* Level 1 variance */ 
proc univariate data=solutionR(where=(effect="&level1")) noprint; 
 title2 "&level1 variance"; 
 probplot estimate / normal (mu=est sigma=est); 
 histogram estimate / normal; 
 run; 
/* Level 2 variance */ 
proc univariate data=solutionR(where=(effect="&level2")) noprint; 
 title2 "&level2 variance"; 
 probplot estimate / normal (mu=est sigma=est); 
 histogram estimate / normal; 
 run; 
/* Include &factors as appropriate, i.e., those factor(s) for 
 which LEVEL2 is the experimental unit */ 
proc sort data=solutionR; 
 by &factor1; 
proc boxplot data=solutionR(where=(effect="&level2")); 
 plot estimate*&factor1 / boxstyle=schematic; 
 run; 
/* Level 3 variance */ 
proc univariate data=solutionR(where=(effect="&level3")) noprint; 
 title2 "&level3 variance"; 
 probplot estimate / normal (mu=est sigma=est); 
 histogram estimate / normal; 
 run; 
proc sort data=solutionR; 
 by &factor2; 
proc boxplot data=solutionR(where=(effect="&level3")); 
 plot estimate*&factor2 / boxstyle=schematic; 
 run; 
/* Residual variance */ 
proc univariate data=mix_out plot normal noprint; 
 title2 'Residual variance'; 
 probplot resid / normal (mu=est sigma=est); 
 histogram resid / normal; 
 run; 
/* Include &factors as appropriate */ 
proc sort data=mix_out; 
 by &factor1; 
proc boxplot data=mix_out; 
 plot resid*&factor1 / boxstyle=schematic; 
 run; 
proc sort data=mix_out; 
 by &factor2; 
proc boxplot data=mix_out; 
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 title3; 
 plot resid*&factor2 / boxstyle=schematic; 
 run; 
proc sort data=mix_out; 
 by &factor3; 
proc boxplot data=mix_out; 
 title3; 
 plot resid*&factor3 / boxstyle=schematic; 
 run; 
proc sort data=mix_out; 
 by pred; 
proc gplot data=mix_out; 
 symbol i=none v=plus; 
 plot resid*pred / vref=0; 
 run; 
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Figure E.1.  Effect of clipping intensity (A), and season of clipping (B) on mean twig 
density of suckers clipped once during their first year of growth.  The twig numbers 
for the three seasons were averaged over B06 and B07 sampling times.  B06, B07 = 
before suckers were clipped at the beginning of seasons in 2006, and 2007, 
respectively.  Bars indicate standard errors.  Means with different letters are 
significantly different at P < 0.05.     
 
 
 
 
 
 



 159
 
 
 

A

c

bcab
a

0
50

100
150
200
250
300
350
400

0 20 40 60
Intensity (%)

B
ud

s/
ha

 (x
 1

00
00

)

B

b
b

a

0
100
200
300
400
500
600

Early Summer Mid-Summer Late Summer
Season

B
ud

s/
ha

 (x
 1

00
00

)

Figure E.2.  Effect of clipping intensity (A), and season of clipping (B) on mean bud 
density of suckers clipped once during their first year of growth.  The bud numbers 
for the three seasons were averaged over B06 and B07 sampling times.  B06, B07 = 
before suckers were clipped at the beginning of seasons in 2006, and 2007, 
respectively.  Bars indicate standard errors.  Means with different letters are 
significantly different at P < 0.05.     
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Figure E.3.  Total number of new suckers (in all plots for the three stands) that 
emerged after treatments were implemented shown under each intensity and season 
of clipping.  These suckers were noted in the summer of 2007.  ES, MS, LS = early-, 
mid- and late summer, respectively. 
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Figure E.4.  Effect of clipping intensity (A) and season  and intensity (B) on mean 
leader length of suckers clipped twice during their life.  The leader length for the 
intensities were averaged over A06 and A07 sampling times.  A06, A07 = end of the 
growing season in 2006 and 2007, respectively.  Bars indicate standard errors.  
Means with different letters are significantly different at P < 0.05.   
 



 162

c

bc

ab

a

0

50

100

150

200

250

0 20 40 60

Intensity (%)

Tw
ig

s/
ha

 (x
 1

00
0)

Figure E.5.  Effect of clipping intensity on mean twig density of suckers clipped 
twice during their life.  Twig density for the different intensities were averaged over 
A06 and A07 sampling times.  A06, A07 = end of the growing season in 2006 and 
2007, respectively.  Bars indicate standard errors.  Means with different letters are 
significantly different at P < 0.05.   
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Figure E.6.  Effect of clipping intensity on mean bud density of suckers clipped 
twice during their life.  Bud density for the different intensities were averaged over 
A06 and A07 sampling times.  A06, A07 = end of the growing season in 2006 and 
2007, respectively.  Bars indicate standard errors.  Means with different letters are 
significantly different at P < 0.05.   
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Figure E.7.  The effect of clipping intensity (A), and season of clipping (B) on mean 
sucker density changes averaged over 2006 and 2007.  Bars indicate standard 
errors.  Means with different letters are significantly different at P < 0.05.  
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Figure E.8.  The effect of clipping intensity (A), and season of clipping (B) on mean 
sucker height changes averaged over 2006 and 2007.  Bars indicate standard errors.  
Means with different letters are significantly different at P < 0.05. 
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Figure E.9.  The effect of clipping intensity (A), and season of clipping (B) on mean 
leader length changes averaged over 2006 and 2007.  Bars indicate standard errors.  
Means with different letters are significantly different at P < 0.05. 
 
 



 166

A

0

20

40

60

80

100

120

Ju
ne Ju
ly

S
ep

te
m

be
r

O
ct

ob
er

Ju
ne Ju
ly

S
ep

te
m

be
r

O
ct

ob
er

2006 2007

S
uc

ke
r S

ur
vi

va
l (

%
)

Intensity 0%

Intensity 20%

Intensity 40%

Intensity 60%

 

B

0
20
40
60
80

100
120

Ju
ne Ju
ly

Se
pt

em
be

r

O
ct

ob
er

Ju
ne Ju
ly

Se
pt

em
be

r

O
ct

ob
er

2006 2007

Su
ck

er
 S

ur
vi

va
l (

%
)

Intensity 0%

Intensity 20%

Intensity 40%

Intensity 60%

 
 

C

0

20

40

60

80

100

120

Ju
ne Ju
ly

Se
pt

em
be

r

O
ct

ob
er

Ju
ne Ju
ly

Se
pt

em
be

r

O
ct

ob
er

2006 2007

S
uc

ke
r S

ur
vi

va
l (

%
)

Intensity 0%

Intensity 20%

Intensity 40%

Intensity 60%

 
 
Figure E.10.  Sucker survival of (A) early summer, (B) mid-summer and (C) late 
summer treated plots through the summer growing season in 2006 and 2007.  
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