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ABSTRACT

Two Highly Diverse Studies in Computing: A Vitruvian

Framework for Distribution and A Search 

Approach to Cancer Therapies 

by

Brian Smith, Master of Science

Utah State University, 2008

Major Professor: Dr. Stephen W. Clyde
Department: Computer Science

Solid cancer tumors must recruit new blood vessels for growth and maintenance. 

Discovering drugs that block this tumor-induced development of new blood vessels 

(angiogenesis) is an important approach in cancer treatment.  However, the complexity of 

angiogenesis and the difficulty in implementing and evaluating medical changes prevent 

the discovery of novel and effective new therapies. This paper presents a massively 

parallel computational search-based approach for the discovery of novel potential cancer 

treatments, using a high fidelity simulation of angiogenesis. Discovering new therapies is 

viewed as multi-objective combinatorial optimization over two competing objectives: 

minimizing the medical cost of the intervention while minimizing the oxygen provided to 

the cancer tumor by angiogenesis. Results show the effectiveness of the search process in 
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finding simple interventions that are currently in use and more interestingly, discovering 

some new approaches that are counterintuitive yet effective.

Distributed systems are becoming more prevalent as the demand for connectivity 

increases.  Developers are faced with the challenge of creating software systems that 

meet these demands and adhere to good software practices.  Technologies of today aid 

developers in this, but they may cause applications to suffer performance problems and 

require developers to abandon basic software concepts, such as modularization, 

performance, and maintainability.  This work presents the Vitruvian framework that 

provides solutions to common distribution goals, and distributes applications using 

replication and transparency at varying stages of application development.

(70 pages)
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CHAPTER 1

INTRODUCTION

This thesis consists of two publications in disparate areas of computer science.

With multiple authors on each publication, it is necessary to clarify my specific

contributions.

The first publication, which comprises Chapter 1, "An Orthogonal Approach to 

Distribution: An Introduction to the Vitruvian Framework," introduces the Vitruvian 

framework and explains how distribution can be accomplished through orthogonal 

services in a service-oriented architecture. I started development of the Vitruvian 

framework in March of 2007, and have been the sole developer. This work has since been 

verified and validated under the direction of Dr. Stephen Clyde. Dr. Clyde assisted with 

the formulation of examples and the writing of the paper.

The primary contribution of this work is the identification of a method that

provides distribution with replication while maintaining location and access transparency.

These contributions also include providing a foundation for the continued research of

replication strategies, object migration, object fragmentation, reliability, cross-platform

integration and cooperation, and distributed service-based software systems.

The second publication, which comprises Appendix 1, "Discovering Novel 

Cancer Therapies: A Computational Modeling and Search Approach," explains a method 

for finding possible therapies for cancer by using a search engine. This was accomplished 

with a high-fidelity computational model to generate a metric for the search engine, 

which probed the search space for parameters that reduced the delivery of oxygen to a 



tumor. Arthur W. Mahoney and Dr. Nicholas S. Flann researched and implemented the 

search engine. I researched and implemented the computational model under Dr. Flann's 

direction. Gregory J. Podgorski verified the biological fidelity of the model and results.

The preliminary work for the computational model began in CS6890, ST:

Computational Biology, offered Summer 2007 at Utah State University, with Dr. Flann as

the principle instructor. In this class, I led a team of four researchers that prototyped a

model using COMPUCELL. My team, which consited of Ranjitha Dhanas, Kamath Puru, 

Vineela Kalluru, and myself, displayed this work was displayed as a poster presentation 

at Utah State University. This prototype demonstrated angiogenesis emerging from a 

VegF diffusion gradient.

After the class, and under the continued direction of Dr. Flann, I extended this

work to create an enhanced model that met the biological fidelity required by the search

engine. I augmented the model to include the ECM fibers and stromal cells, which are

necessary to facilitate the emergence of anastomosis (loop formation in blood vessels);

this was implemented shortly after the preliminary work was presented to the Breast

Cancer Research Group at Huntsman Cancer Research Center, wherein anastomosis was

identified as a crucial and missing part of the model. Once the model included

anastomosis, I attempted to correctly identify the vessel loops formed as a result of this

process, which eventually led to a pressure diffusion model that governed the secretion of

oxygen at the cell level. I extended the model to include oxygen diffusion, which is the

secretion of oxygen from existing vasculature and endothelial cells contained in vessel

loops. Finally, I added the tumor cells to the model, and the resulting metric of oxygen
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was computed as the amount of oxygen available to the tumor. My primary contribution

to this work, under the direction of Dr. Flann, was the research and implementation of the

computational model exhibiting angiogenesis and anastomosis, which provides the

oxygen metric utilized by the search engine described in the publication. From a

computer science perspective this first paper enhances the knowledge of complex

systems created by emergent behaviors and properties.

Those involved in both of these publications perceive them to be avenues to 

future research, and I am pleased to have been a contributing factor to them.
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CHAPTER 2

AN ORTHOGONAL APPROACH TO DISTRIBUTION: 

AN INTRODUCTION TO THE VITRUVIAN FRAMEWORK1

Abstract

Distributed systems are becoming more prevalent as the demand for connectivity 

increases.  Developers face the challenge of creating software systems that meet these 

demands, while still trying to achieve basic quality goals, such as good modularization, 

performance, and maintainability.  The challenge is even greater when requirements for 

distribution are introduced late in the development cycle. This paper introduces a 

development framework, called Vitruvian, that allows programmers to create software 

systems with class hierarchies that are close to the problem domain and independent of 

distribution decisions. Then, at any point in the development cycle, developers can 

declare what is  distributed, and they can do so at virtually any level of granularity from 

high-level objects down to individual attributes. To minimize impact on the development 

life cycle, Vitruvian supports access and location transparency, plus a wide range of 

replication strategies.

2.1  Introduction

The world is rapidly becoming more connected, causing an increase in demand 

for software systems that are more interoperable and distributed, and that provide better 

opportunities for collaboration.  The shift from stand-alone, centralized systems to grid-

based applications presents challenges to software developers on three fronts: retro-fitting 

1 Co-authored by Brian Smith, and Stephen Clyde of Computer Science Department, Utah State 
University.
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existing applications with distribution capabilities, designing new distributed systems 

from the ground up, and accommodating new requirements for distribution in mid- 

development stream.  This paper focuses on the latter situation, wherein developers are 

well into a project and management announces that the product is now going on the 

“grid.”2 To this end, the current project presents a framework in a way that minimizes 

developer effort to distribute objects, without compromising functionality, extensibility, 

good modularization, performance, or maintainability.

In the last few years, there has been an explosion of frameworks, toolkits, papers, 

and books for developing distributed or grid-based applications. Compilations of such 

resources are maintained by several worldwide collaborations, including CERN [1], the 

Globus Alliance [2], Unicore [3], and GridBus [4]. The most predominate technologies 

focus on abstractions  of communications, typically through remote procedure calls 

(RPCs), remote method invocation (RMIs), or web services.  In general, these 

communication-centric technologies improve the development of new massively 

distributed applications without comprising functionality or extensibility.  However, 

when it comes to adding distribution to an existing application, they suffer from three 

common problems related to modularization, performance, and maintainability.

The first problem comes from having to restructure the class hierarchies of an 

application when introducing distribution. With communication-centric technologies, the 

structure of the application depends heavily on decisions about which services are local 

2 Here, the term “grid” does not refer to a specific technology; rather, it refers to the 
general notion of a distributed, service-oriented environment. 
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and which are remote.  These decisions need to be made early in the design process to 

minimize development efforts.

For example, consider a photo-library application that allows users to browse 

large image collections by date, photographer, or subject.  An initial analysis, without any 

consideration to distribution, would reasonably identify Photo Collection, Photo,  

Original Image, Thumbnail Image, and Photographer as key problem domain objects  

(see Figure 2-1). 

A subsequent design could parallel this conceptual model rather closely.  Assume 

that the system needs to be distributed using a communication-centric framework, such as 

.NET Remoting [5].  Remote objects in .NET must specify MarshalByRefObject.  Since 

all of the key objects in this application can be either remote or local, the developer must 

extend the design to include a parallel class structure for remote objects.  To allow some 

transparency for remote and local objects, the developers could introduce interfaces for 

the original classes.  Figure 2-2 shows a snippet of a design for this application consistent 

with principles of .NET Remoting. The two original classes of Photo and Photographer 

plus their association have been replaced by five classes, two interfaces, and two 

associations. Not only is the design more complex, it drifts away from the underlying 

conceptual model, weakening the program's modularization and maintainability.

A second problem occurs when distribution technologies try to provide access and 

location transparency without replication.  Since transparency frees developers from 

having to think about which objects are local or remote, operations and the data that they 

use can end up unknowingly and unnecessarily distanced. Simply substituting  remote 
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Figure 2-1. Photo library class structure.

Figure 2-2. Revised photo library class structure for .NET remoting.
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service invocations in place of local method calls can devastate an application's 

performance. Object replication can solve this problem by keeping copies of data local to 

computationally intense or time-sensitive operations.  Unfortunately, in communication-

centric frameworks, the addition of replication to a design adds yet another dimension of 

complexity and drives it further away from the original conceptual model.

A third problem deals with performance and maintainability in the presence of 

changing runtime traffic or load patterns.  For example, if object X initially resides on 

node A, and after a while, the objects on node B start accessing X more than objects local 

to A do, X should migrate to B to reduce network traffic and improve throughput. 

However, with communication-centric frameworks, distribution decisions tend to be 

static, unless the developers have explicitly added dynamic replication and migration 

capabilities – yet another level of complexity that can reduce understandability and 

maintainability. 

To address these problems in the context of late distribution requirements, a 

framework  must satisfy the following goals:

● Minimize changes to existing class hierarchies

● Encapsulate distribution decisions (location transparency)

● Simplify access to distribution objects (access transparency)

● Allow developers to make distribution decisions at virtually any stage of 

development

● Allow developers to declare or adjust replication and migration strategies without 

altering the core design
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● Automatically tune performance by either replicating or migrating objects in 

response to changing traffic and load patterns, according to declared replication 

and migration strategies.

2.2  Background and Related Work

Technologies and frameworks that aid developers in creating distributed 

applications are not new.  One early solution was Orca [6], which introduced a language 

that used replication and migration to overcome performance costs of remote-procedure 

calls.  CORBA and DCOM emerged in the mid 1990’s with the promise of providing 

open standards for distributed objects [7, 8, 9].  Today, J2EE [10, 11], Webservices [12], 

Java RMI [13, 14], and .NET Remoting [5] are some of the most common tools of the 

trade, each using forms of remote-procedure calls but with differing abstractions for 

building distributed applications.  

Many distribution methods and strategies build on these technologies, but they are 

subject to the same underlying issues.  For example, one method, suggested by [15], 

augments the Java RMI distribution model by using aspects to add access and location 

transparency,  creating a seamless integration of local and remote objects.  The class 

hierarchy changes are minimized by post-compiling distribution into the application at 

the very end of the development cycle.  This satisfies the first three goals listed above but 

not the last three goals, because the underlying distribution model does not offer any 

control over replication or migration. This deficiency can actually make the transparency 

a detriment to the application's performance. Consider the following function, which 

draws an object in a continuous loop to create a simple animation.
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     public void DisplayChangingShape(Shape A)
{

// continuously draw the changing A 
while (true)
{

// draw A using A’s color
Draw(A, A.Color);

// Do other things, such as change 
// the state of A and sleep a certain

 // amount of time to control the
 // frame-rate

...(snip)...
}

}

When A is a local object, accessing its color is a fast operation. However, if A is a 

remote object,  A.Color is similarly a remote-procedure, requiring a round-trip message 

across a network with communication delays that will result in unpredictable and 

unsatisfactory performance. The problem is not that location or access transparency are 

bad, but that by themselves they do not represent a complete solution to the basic 

distribution goals listed above.

Transparency must be coupled with replication to ensure application performance. 

Replication increases performance by bringing data and operations as close together as 

possible, which decreases access costs [6] and eliminates performance side effects 

otherwise hidden by transparency.

When using communication-centric technologies, the speed of the network 

carrying the round-trip message governs the performance of the distributed application. 

This model of distribution only yields significant performance increases by making the 

transmission speeds faster, which means that the developer cannot directly affect 

performance.  .NET Remoting and Java RMI address this problem by introducing 
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asynchronous communication patterns [5, 13], but this clutters the object interface and 

undermines transparency.

2.3  Overview of the Vitruvian Framework

Vitruvian is a distribution framework that successfully addresses the goals listed 

above by supporting:

● Access and location transparency

● Control over the granularity of the distribution units

● Distribution with replication

● A rich suite of replication strategies, plus the ability for developers to write their 

own

● Control over which replication strategy each distribution unit uses

In essence, the Vitruvian framework gives developers the ability to make and 

encapsulate all major distribution decisions independent of the application's core design. 

In doing so, it incorporates the three principles introduced by the Roman architect 

Vitruvius in the earliest work on architecture, De architectura [16].  These principles are 

firmitatis (durability), utilitatis (utility), and venustatis (beauty).  In the context of 

software systems, providing durability means ensuring correct, reliable, and secure 

execution in the face of change. Changes can come from new requirements, 

modifications to the design or code, or changes to the underlying platform or related 

software systems. Utility relates to reuse at multiple levels.  Systems with good utility can 

be leveraged through interoperability, design reuse, or code reuse.  Although there are 
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varying opinions on what comprises software “beauty,” symmetry and simplicity play a 

key role in creating elegant systems.

The Vitruvian framework is a service-oriented architecture (SOA), that focuses on 

encapsulating functional units of software (i.e., services) to improve reuse, parallel 

development activities, and rapid product packaging or repackaging in both stand-alone 

and distributed applications.  The heart of the framework is its service registry, which 

facilitates the location and initialization of local and remote services.  Section 2.3.1 

explain this component in more detail.  Because it is a SOA, the Vitruvian framework 

works best with an execution pattern that follows well understood object-oriented 

principles, such as low coupling, high cohesion, and data encapsulation [17].  Section 

2.3.2 describes one common execution pattern for Vitruvian and shows how the service 

registry is populated, initialized, and utilized.  Section 2.4 shows a staged integration of 

the framework into a sample application.

2.3.1  Service Registry

The Vitruvian framework includes a symmetrical singleton, called the service 

registry, that provides access to the services comprising an application.  A service 

implements a simple interface that 

• Gives the service an identity

• Defines symmetrical methods for starting and stopping the service.

A service's identity is globally unique.  The current implementation relies on 

.NET's guide to create that identity.  Service identities are one way, but not the only way, 
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to look up services in the service registry; the registry also supports look-up by service 

type.

The starting and stopping methods allow the service registry to automatically 

manage the service life lines  so programmers do not have to.  Typically, the start method 

resolves interservice dependencies (through the registry), and the stop method releases 

resources.

Services follow natural boundaries of encapsulation that overflow into classes that 

have smaller footprints and are easier to understand and maintain.

Although the developer builds most of the services for an application, Vitruvian includes 

a number of useful orthogonal services [18], like logging, persistence, and session 

management.  It even includes a plug-in service for dynamically loading extension 

classes, which in turn could instantiate and register new services at runtime.

2.3.2  General Execution Pattern

The Vitruvian framework uses an execution pattern  that centers on the service 

registry as the hub for object discovery. Using this pattern, an application first populates 

the service registry with services and then initializes the services through the registry.  It 

looks up services and executes until an exit point is reached.  Finally, the application 

cleans up the service registry, which in turn stops all remaining services.  This pattern 

increases a developer’s ability to maintain and understand a software system, because the 

functionality is encapsulated in the set of services contained in the service registry.

Below is a typical main routine for a program based on the Vitruvian framework.
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static class Program
{

static void PopulateServices()
{ 

XmlFramework.Deserialize(“myService.xml”, 
ServiceRegistry.Services);

   }

   static void Main()
   {

   PopulateServices();
     ServiceRegistry.Init();

            
  // Start up a form window & block

UIService form = ServiceRegistry.GetService<UIService>();
       Application.Run(form.AppForm);
       ServiceRegistry.Cleanup();
      }

}

In this example, the Main method first calls PopulateServices, which loads all the 

application's services from an XML file. For brevity, we only show a snippet of the XML 

file below.

<item type="Vitruvian.Windows.UIService, Vitruvian.Windows">
   <property name="MyAppForm" type="MyApp.MainForm, MyApp”>
     <property name="Text" value="My Form” />        

<property name="Width" value="800"/>
<property name="Height" value="600"/>

    </property>
  </item>

This item in the XML file defines a UIService consisting of a window of type 

MainForm, an initial title of  “My Form”, and size of 800x600.

After populating the service registry, the main routine initializes the services by calling 

the registry's Init method. At this point, the registry is ready for use. Next, the main 

routine looks up a UIService in the registry and passes its form to the Run method of the 

Application, a .NET component. This method blocks until the form window closes. 

Finally, the main routine stops all of the services by calling the Cleanup method of the 

registry.
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Although Vitruvian supports other execution patterns, this approach encapsulates 

the essence of the application in the services.  One of its benefits is that it offers a 

recursive view of the software system with multiple levels of detail.  In particular, it 

enumerates the services in the service registry, thus providing an overview of the system. 

For example, consider the photo management application introduced above. Listing the 

services in the registry allows one to discover that the application supports collections, 

photographs, photographers, thumbnails, and original images. By looking at the 

interfaces for this services, one could readily discover the above components' capabilities 

and relationships.  This technique introduces new developers to the functionality of the 

application, and even helps overcome communication barriers between software 

developers and management.

2.4  Staged Integration of Vitruvian into a 
       Sample Application

This section illustrates a step-wise integration of the Vitruvian framework into an 

ant colony simulation.  Section 4.1 describes this basic application and shows the key 

parts of a nondistributed implementation, which is representative of an SOA that a typical 

developer might create.  Section 4.2 shows a conversion of the stand-alone application 

into a SOA, using the Vitruvian framework.  Section 4.3 uses additional, built-in services 

of the framework to  distribute the application, and Section 4.4 applies various replication 

strategies to tune the application's performance.

This four-step sample scenario mimics a typical, yet simple, development cycle 

and demonstrates the migration of a centralized legacy system to a distributed system. 
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The ant simulation is relatively simple, but it still provides sufficient opportunity to 

illustrate the fundamental distribution techniques.

2.4.1  Step 1: Local Ant Colony Simulation

The stand-alone application created in this first step focuses on the movement and 

behavior of ants.  An ant is part of a colony and can explore the ground around the 

colony’s nest.  The ant’s goal is to locate food, transport it to the nest, and by using 

pheromones, direct other ants to the location of the food source.  Multiple colonies 

compete in the gathering of food, but they are not aggressive towards each other.  Figure 

2-3 shows classes and association that model these simple concepts.

The main program creates the ground and a single ant colony, and populates  it 

with ants.  We run the simulation for a set period of time, while continuously allowing 

the ants to move.  The resulting application is concise and true to its purpose, namely, the 

movement and behavior of ants.

static class Program
{

// main entry point
static void Main()
{

Ground ground;
Colony colony;

// Create and setup the ground
...(snip)...

// Create and populate the colony
...(snip)...

// Add the colony to the ground
      ground.Add(colony);

      // Run simulation for 10,000 steps
      for (int i = 0; i < 10000; i++)
      {

  // Move the ants
         foreach (Ant ant in colony)
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         ant.Move();

         // Display the ground, ants, etc.
         Display();                    
      }

}

// output a simple display of the
// ground, and for each colony,
// each ant’s position on the ground

   static void Display()
   {
   ...(snip)...

}
}

2.4.2  Step 2: Converting to SOA

This step uses the Vitruvian framework to create better encapsulations, provide an 

easy way to extend the application for multiple colonies, and facilitate the integration of a 

replaceable user-interface.  The main functional units, or services, of the application are 

the ground, the colony, and the user-interface.  The colony now encapsulates the 

movement of the ants by creating and managing a new thread.  The ground locates 

colonies by using the service registry, which now allows multiple colonies just by adding 

new colony services to the service registry.  Figure 2-4 gives an overview of the 

program’s services.

Figure 2-3. Object relationships in ants simulation.
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The XML file defining these services is shown below.

<item type="Ants.Ground, Ants">
   <property name="Width" value="36" />
    <property name="Height" value="36" />

</item>
  <item type="Ants.Colony, Ants">
    <property name="NumAnts" value="15" />
    <property name="Color" 

value="Black" />
  </item>
  <item type="Ants.Colony, Ants">
    <property name="NumAnts" value="10" />
    <property name="Color" value="Red" />
  </item>
  <item type="Vitruvian.Windows.UIService, Vitruvian.Windows">
    <property name="AppForm" type="Ants.DisplayForm, Ants">
      <property name="Text" value="Ants"/>
      <property name="Width" value="760"/>
      <property name="Height" value="800"/>
    </property>
  </item>

Figure 2-4. Services in ants simulation.

18



The developer nextapplies the execution pattern described above to initialize all 

of the services and open the AppForm.  The user-interface displays the ground, position 

of the colony nests, and positions of the ants by doing three things: finding the ground in 

the service registry, enumerating the colonies and ants, and drawing the objects.

Figure 2-5 shows the sequence of events resulting from the execution pattern 

described above, and the interaction of the services in the simulation. 

2.4.3  Step 3: Distributing the Simulation

Using the Vitruvian framework,  this step distributes colonies by adding the 

distribution service to the service registry and by marking the colony with attributes that 

indicate the replication strategy to use when synchronizing data.  The ant object contains 

Figure 2-5. Execution sequence in ants simulation.
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attributes specifying synchronization patterns because it can be reached through the 

colony.  For simplicity in demonstration, this example uses a classic client / server 

distribution model, but the concepts are not restricted to this model.

public class Ant
{

[SyncPattern(“RPC”)]
public Position Location
...(snip)...

[SyncPattern(“RPC”)]
public Colony Colony
...(snip)...

}

public class Colony 
{    

[SyncPattern(“RPC”)]
public Position Home
...(snip)...

[SyncPattern(“RPC”)]
public List<Ant> Ants
...(snip)...

}

So far, the only synchronization pattern specified for the ant and colony is the 

RPC pattern which, as previously discussed, is the pattern prominent distribution 

technologies use.  The RPC synchronization pattern makes remote calls to the remote 

objects every time the property or method is accessed.  Under this model, the application 

is unresponsive, because the drawing loop of remote colonies and ants is too slow.  It is 

obvious that other synchronization patterns are more appropriate, such as communicating 

the colony's nest only once because it does not change over the life of the application.

2.4.4  Step 4: Tuning Performance

The Vitruvian framework gives the developer the ability to easily tune the 

application by changing  the synchronization patterns, and thus control the replication 
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strategy.  In this step, changing the RPC pattern to other synchronization patterns 

improves the example application performance.  The tuned example follows:

public class Ant
{

[SyncPattern(“Poll”)]
public Position Location
...(snip)...

[SyncPattern(“Constant”)]
public Colony Colony
...(snip)...

}

public class Colony 
{    

[SyncPattern(“Constant”)]
public Position Home
...(snip)...

[SyncPattern(“Constant”)]
public List<Ant> Ants
...(snip)...

}

The two new synchronization patterns used are poll and constant.  Poll asks for 

the remote value of the property at a given frequency, while constant is communicated 

across the network only once.  The performance of the application increases, because 

these method calls return a local value when invoked.

The list of ants in the colony is a constant pattern, which means that once the 

colony of ants is populated,  modifications will not be replicated.  It is easy to imagine 

how changing design requirements could mandate that the distributed list of ants reflect 

these changes, which only requires changing the synchronization pattern.  The Vitruvian 

framework empowers the developer to manage changing distribution requirements 

throughout the application’s development cycle by facilitating the extension of the 

replication strategy, while improving application performance.
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2.5  Distribution in the Vitruvian Framework

This final section describes the details of the orthogonal distribution service. It 

meets the distribution goals stated in Section 2.1 by integrating replication strategies and 

synchronization patterns in a way that supports location and access transparency without 

compromising performance.  The distribution service connects to other applications, 

exchanges services, and provides access and location transparency to remote services and 

the objects reached through them.  The distribution service acts orthogonally to other 

services in the application, and is the only difference between the stand-alone version of 

an application and the distributed version.  The service can be added or removed at any 

stage of development, or even after deployment, which provides extreme flexibility in 

distribution decisions.

The following requirements drove the design of the Vitruvian distribution service:

• Connects to other applications

• Discovers the services contained in the remote service registry

• Provides a mechanism to replicate and synchronize the services and objects 

discovered through the remote application

• Maintains access and location transparency to remote services and objects

• Handles errors induced by remote connections

The distribution service fulfills the aforementioned requirements unobtrusively by 

generating dynamic types and instantiating proxy objects from those types the first time 

an object crosses the application boundary.  The dynamic type is a specialization of the 

original object’s type. This ensures access transparency because the application does not 
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differentiate between the new type and the base type.  The new type dynamically 

delegates the invocation of the method and properties to the specified synchronization 

pattern.

The Vitruvian framework accomplishes this during the encoding process by 

exchanging objects for object markers, which consists of two things: a unique identifier 

for the object, and the object’s type.  The session gives a message to the encoder, which 

encapsulates encoding and decoding of messages.  The serializer contained by the 

encoder replaces objects for object markers, and then serializes the object marker instead 

of the object; the serializer does not exchange primitive types for object markers.  The 

object broker that is utilized by the serializer manages the mappings between objects, 

object ids, and object markers (see Figure 2-6).

The encoder reverses the process when decoding a message, and exchanges object 

markers for objects with an additional step that creates proxies for unknown object ids 

(see Figure 2-7).  When the deserializer locates an object marker, it deserializes the 

marker and  requests the object, using the identifier in the marker, from the broker. 

When the identifier is unknown to the broker, the deserializer uses the proxy generator to 

create a proxy that derives from the type specified in the object marker, which is then 

added to the object broker to be used in subsequent exchanges.  The proxy generator 

emits a new type that derives from the object’s type, caches the new type for future use, 

and uses the new type to instantiate a proxy.  The new emitted type delegates invocations 

of methods and properties to  the synchronization pattern, which is specified by the 

developer through attributes: the entire distribution process is encapsulated in the 

23



distribution service, and the synchronization pattern provides a way for the developer to 

control and extend the replication strategy. 

The synchronization pattern extends the distribution framework and encapsulates 

a replication strategy, which completes the components necessary to provide distribution 

Figure 2-6. Object  object marker exchange.

Figure 2-7. Object marker  object proxy exchange.
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and replication with transparency.  The developer gains the freedom to control the 

replication strategy either by reusing previously implemented patterns or by writing 

patterns specific to the application’s needs.  The synchronization pattern has access to the 

proxy object, the session, and the service registry (See Figure 2-8).

The distribution process in the Vitruvian framework includes a few simple steps: 

add the distribution service to the service registry, mark the methods and properties of 

objects with an attribute that specifies the desired synchronization pattern, and possibly 

write custom synchronization patterns.  These steps must be done before distributing the 

objects, but they can be done at any stage of development.

2.6  Summary

The Vitruvian framework provides a foundation of orthogonal services that 

enhances application development, and gives a consistent development model that a 

range of applications, from stand-alone to massively distributed.  An orthogonal service 

Figure 2-8. Synchronization pattern override.
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that facilitates replication and transparency provides distribution. Synchronization 

patterns encapsulate replication strategies, of which some have been identified, but there 

are many more to discover and analyze. The Vitruvian framework provides mechanisms 

to dynamically adjust to changing network loads through object fragmentation and object 

migration, but this has not been thoroughly explored or implemented as of yet.  The 

granularity of the replication strategy is currently applied to methods and properties, but 

it could also be applied to entire objects and namespaces. Another readily achievable 

objective is port the Vitruvian framework to multiple platforms, thus providing cross-

platform distribution of services.
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CHAPTER 3

CONCLUSION 

This thesis incorporates two highly diverse studies in computing.  However, they 

are two studies that may well enhance each other in the future.  The realization of 

individualized cancer therapies may someday require the unification of these disparate 

computer science topics.  The model and search approach used to discover and validate 

therapies provides a process that may prove useful at an individual scale, while the 

distribution framework harnesses the needed computational power.

The computational model and search approach utilizes a massively parallel 

algorithm, but it is currently limited to the processing power of a single machine.  The 

solutions that were discovered in this project would benefit from massively distributing 

the application to explore the search space, and to increase the number of model runs 

with each parameter set.  The Vitruvian framework reduces the complexity of distribution 

and, hence, would be a natural candidate for this task.

The same model and search paradigm could be applied to individualized 

therapies.  This requires that the initial conditions are representative of the individual, 

after which known general solutions could be tested to determine the effectiveness of the 

therapy for that individual.   Such an approach would require many model runs to 

increase the confidence of the suggested therapy, and the timeliness of the suggested 

therapy would be crucial.  A system capable of these computational requirements is most 

likely realized in a massively distributed computing environment.
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These individual topics are diverse and have significant application in their 

respective  areas.  This project ended before unifying these topics, which leaves this 

possibility as future work. 
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Appendix 1:

DISCOVERING NOVEL CANCER THERAPIES: A COMPUTATIONAL 

MODELING AND SEARCH APPROACH3

Abstract

Solid cancer tumors must recruit new blood vessels for growth and maintenance. 

Discovering drugs that block this tumor-induced development of new blood vessels 

(angiogenesis) is an important approach in cancer treatment. However, the complexity of 

angiogenesis and the difficulty in implementing and evaluating medical changes prevent 

the discovery of novel and effective new therapies. This paper presents a massively 

parallel computational search-based approach for the discovery of novel potential cancer 

treatments using a high fidelity simulation of angiogenesis. Discovering new therapies is 

viewed as multi-objective combinatorial optimization over

two competing objectives: minimize the medical cost of the intervention while 

minimizing the oxygen provided to the cancer tumor by angiogenesis. Results show the 

effectiveness of the search process in finding simple interventions that are currently in 

use and more interestingly, discovering some new approaches that are counter intuitive 

yet effective.

A.1  Introduction

Cancer has become the leading cause of death for Americans between the ages of 

40 and 74 [6]. With survival rates at approximately 50%, new, more effective therapeutic 

treatments are urgently needed. However, given the complexity of cancer development, 

3 Co-authored by Arthur Mahoney, Brian Smith, and Nicholas Flann of Computer Science Department, 
Utah State University, and Gregory Podgorski of the Biology Department and Center for Integrated Bio 
Systems, Utah State University.
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discovering interventions through purely medical and experimental techniques is 

woefully slow. This paper introduces a massively parallel computational search-based 

technique that shows promise in rapidly discovering potential therapeutic interventions.

Many kinds of cancers involve solid tumors that during their development must 

recruit new blood vessels from the host tissues in order to grow and remain viable. These 

new blood vessels sprout from existing vessels and grow towards the tumor to provide 

needed nutrition and oxygen that enable the tumor to grow rapidly. Blocking this process 

of tumor-induced angiogenesis (the formation of new blood vessels) has been an 

important approach in cancer treatment [2]. This paper introduces a computational 

approach to search for novel intervention strategies that disrupt angiogenesis induced by 

solid tumors. In order to automate the computational search, a high fidelity simulation 

model of angiogenesis has been developed that is sufficiently abstract to be 

computationally feasible yet sufficiently detailed to identify specific medically-relevant 

intervention targets. Running this model correctly simulates the early stages of 

angiogenesis, when new blood vessels grow towards the tumor, form loops and allow 

blood to flow, thus secreting oxygen and feeding the tumor.

The simulation system integrates: (a) a cellular Potts model (CPM) that 

realistically captures mechanisms of endothelial cell growth, cell adhesion, extra cellular 

matrix (ECM) fiber adhesion and degradation, and tip cell chemotaxis and haptotaxis [5]; 

(b) a continuous model of vascular endothelial growth factor (VegF) secretion from the 

tumor, diffusion through the stroma (host tissue), and endothelial cell uptake and 

activation; (c) a discrete flow model that estimates blood flow through the irregular 
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network of vessels that emerge during angiogenesis; and (d) a continuous model of 

oxygen secretion from vessel loops, diffusion through the stroma and uptake by the 

tumor. This model captures behaviors, such as vessel branching, loop formation 

(anastomosis), progression and termination of tip movement, and activation and growth 

of new vessels. All these complex behaviors emerge from interactions among the simpler, 

biologically relevant component mechanisms of the model.

The state of the art in angiogenesis-blocking drugs is reviewed in [11]. Current 

drugs take a simplistic and reductionist approach to disrupting angiogenesis through 

interference with the VegF system, which diffuses from the tumor cells to the existing 

vascular, triggering the formation of new vessel growth and guiding the newly growing 

sprouts towards the tumor. These drugs either bind to the protein VegF ligand, thereby 

slowing its diffusion through the supporting tissue and interfering with its receptor 

binding, or binding to the VegF receptor on the endothelial cells, thus preventing 

activation and growth. While demonstrating some effectiveness at slowing the 

progression of the tumor, these drugs target only one obvious component of the 

angiogenesis process. To identify more effective medical interventions, it is necessary to 

consider disrupting other component mechanisms of angiogenesis and in addition, 

combinations of those mechanisms. However, the complexity of angiogenesis presents a 

multitude of component mechanisms that could be disrupted in multiple ways, presenting 

a large combinatorial space of possible therapies that is infeasible to search using 

laboratory-based biological methods. By utilizing a high fidelity simulation of 
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angiogenesis, this large combinatorial space can be efficiently searched and new potential 

therapies discovered.

The rest of this paper is organized as follows: First, the Monte Carlo-based search 

engine is described in Section A.2, followed by a description of the cellular Potts-based 

angiogenesis simulation system in Section A.2. Section A.3 describes the potential 

effective cancer therapies found by the search engine. Finally, Section 2A4 concludes the 

paper.

A.2  Search Method

The search engine uses an extension of the COMPUCELL [5] tissue simulation 

system that takes as input a vector of 23 parameters, denoted   as , runs a simulation of 

angiogenesis (blood vessel growth), and outputs a measure of oxygen absorbed by a 

cancer tumor. Based on literature and simulation studies of standard blood vessel 

morphologies, each of the 23 parameters has been assigned a normative value, which 

represents the untreated condition [1]. The normative parameter vector, N, contains the 

normative values for each parameter and is given in Table A-1. Running the simulation

with the normative parameter vector produces the expected progression of blood vessel 

growth in tissues adjacent to a tumor without treatment.

An effective therapy disrupts the normal progression of blood vessels, thereby 

reducing the oxygen provided to the tumor and arresting its growth. Each potential 

therapy is represented as a vector of deviations Δ  to the normative parameter values

N, where  = N + Δ . The search for effective therapies can be viewed as a 

combinatorial optimization over the space of parameter deviations, with fitness of each 
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potential therapy being evaluated using two competing minimization objective functions: 

(a) the estimated cost of medically implementing those changes in the patient, 

represented as Cost(Δ ), and (b) the estimated oxygen provided to the tumor by the 

simulated blood vessels formed when COMPUCELL is run under the changed parameter 

values, represented as O2(Δ ). The cost objective is described in Section A.1, the 

oxygen objective is described in Section A.2. 

Optimization occurs in the deviation space, X, defined as a subset of the  

vector space, where each Δ   X contains 23 parameters deviations (dimensions) bound 

by ranges. The deviation range for each parameters is limited to what changes are 

Table A-1. The Parameters Governing the Model in This Work.
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physically valid in the model and may be medically feasible to change in the future. 

Table A-1 gives details of each parameter, which are summarized below,

grouped by subsystem:

Equation A-1.

The subsystems are integrated into the cellular Potts model (CPM) and include 

endothelial cell growth, cell adhesion, the forces of chemotaxis and haptotaxis, the ECM 

(extra-cellular matrix fibers in the host tissue) adhesion and degradation, and finally a 

model of vasculoendothelial growth factor (VegF) secretion from the tumor, diffusion 

through the host tissue, and endothelial cell uptake and activation.

A.2.1  Improving Monte Carlo Search

The search engine uses a naive, improving Monte Carlo search algorithm to 

discover novel and potentially counterintuitive therapies in X that require the least 

medical cost for the largest average decrease in oxygen supplied to the tumor. To 

maintain medical practicality, the Monte Carlo search samples  vectors with at most 

three parameters deviated from nominal. The improving Monte Carlo search is an 

effective approach to this optimization problem because it maintains a set of promising 

 vectors while monotonically decreasing their estimated cost of clinical 

implementation.

The improving Monte Carlo search algorithm, Algorithm 1, used in this study 

takes as input a seeded list, S, of Monte Carlo deviation vector samples from X, the 
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maximum number, k, of active (non-zero) parameters in each sample, and returns a list, 

L*, containing promising deviation vectors found during the search. See the following 

algorithm.

1: MONTE_CARLO(S, k)
2: K(0) ← S
3: k(0) ← k
4: for i = 0 to k - 1 do
5: for j = 1 to n do
6: C[j] ← Cost(Kj

(i))
7: O[j] ← O2(Kj

(i))
8: end for
9: L ← Optimal(K(i), C, O)

   10: L* ← L
     11: K(i+1) ← Sample(L, k(i) - 1, n)
     12: k(i+1) ← k(i) - 1
    13: end for

   14: return L*
Let S be a list of n parameter deviation vectors sampled from X. For 1 ≤ j ≤ n,  

each deviation vector Δ j  S is defined as Δ j = (δp1, . . . , δpi;, . . . , δp23). If the 

deviation δpi ≠ 0, then the ith parameter is said to be “active”. A(Δ ) denotes the number 

of active parameters in the deviation vector .

The improving Monte Carlo search takes as input the list, S, and the maximum 

number of active (non-zero) parameter deviations, k, then searches over the combinatorial 

space, X. The algorithm maintains a list of promising deviation vectors, K. K is initially 

seeded with S, where each parameter deviation vector in S has the same number of active 

parameters, and A( j) = k for each deviation vector Δ j  S. Our Monte Carlo search 

operates in a “top-down” fashion. That is, at each iteration, it systematically reduces the 

number of active parameters in each Δ j  K until each vector has no active parameters 

remaining.
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Our improving Monte Carlo search proceeds in an iterative fashion as follows. At 

the ith iteration, the estimated cost and the amount of amount of oxygen supplied to the 

tumor are first evaluated for each Δ   K(i) using Cost() and O2(). The results are stored 

in the data structures C and O, respectively. The function, Optimal(K(i), C, O) is then

applied to K(i). Optimal() returns a list, L, of deviation vectors that demonstrate good 

effectiveness and have low cost. These promising deviation vectors are then given to the

Sample() function. Sample(L, k - 1, n) uniformly samples the list of promising deviation 

vectors in L and returns a new list with each selected  vector reduced by exactly one

active parameter. This reduction of a Δ  randomly selects one of the active parameters 

in Δ  and sets its deviation to 0, thus rendering that parameter inactive. Each promising

deviation vector is then perturbed by adding uniform noise to its active parameters while 

keeping the parameter deviations within the parameter range constraints. This set of 

perturbed and reduced deviation vectors becomes K(i+1) for the next iteration. During each 

iteration, the deviation vectors in L are appended to the list, L*, which contains every 

promising vector deviation discovered by the search thus far. The algorithm is described 

in pseudo-code in Algorithm 1.

A.2.1.1  Evaluating the Cost of Each Deviation Vector. Given a deviation vector 

defined as Δ  = (δp1, . . . , δpi, . . . , δp23), let the range of parameter i be Ri = Hi – Li..  

Then, the cost of a deviation vector is estimated by summing the weighted individual 

errors:
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Equation A-2.

The relative costs of changing parameters is determined by reviewing the 

literature on known medical intervention strategies [11] and considering the complexity 

of the biological subsystem to be manipulated. For example, changing the diffusion 

properties (via the ligand) or binding efficiency of VegF is already commercially viable 

and is, therefore, given a low cost, while changing the adhesive or elasticity of specific

cell types is complex and poorly understood and is, therefore, given a high cost.

A.2.1.2  Parallel Evaluation of Oxygen Supplied to the Tumor for Each Deviation 

Vector. The COMPUCELL model simulates angiogenesis, beginning with the secretion 

of VegF by the tumor. This induces the budding and growth of new blood vessels that 

sometimes form loops, enabling blood flow and oxygen delivery. The stochastic nature of

the simulation generates different morphologies based on an initial random seed tied to 

each individual simulation. Due to the differing morphologies, the search engine 

evaluates 256 random initializations for a given Δ . The metric O2(Δ ) is the average 

O2 absorbed by the tumor in each run.

For each simulation run, the domain is first initialized, as illustrated in Figure 
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A-1, with initial blood vessel at the top, the tumor on the bottom, and the stroma 

randomized with ECM fibers and stromal cells. The parameters used by COMPUCELL 

are set from  ← N + Δ , and it is run for 1,500 Monte Carlo Steps (MCS). The O2 

score of this run is calculated by accumulating the O2 absorbed by the tumor at each 

MCS.

The COMPUCELL simulations performed while evaluating O2(ΔKj
(i)) during each 

iteration are independent from each other. This implies that the improving Monte Carlo 

search is what is known as an embarrassingly parallel algorithm [3] [13].  Provided 

enough processors, the COMPUCELL simulations required for individual O2() 

evaluations, as well as multiple O2() evaluations themselves, can be performed 

concurrently and executed in nearly the same amount of time as a single simulation. On a 

modern processor, one simulation can be completed in five to seven minutes. Because the 

Monte Carlo search requires the execution of several thousand simulations, the algorithm

Figure A-1. The initial conditions of the angiogenesis simulation of 
the cell type domain σ[,]. The colors used are given in Table A-2.
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cannot be feasibly performed in a reasonable amount of time without the use of a large 

set of processors. The improving Monte Carlo search used in this study was implemented 

using the common master/slave paradigm and was executed on a 2,312-processor AMD 

OpteronTM cluster maintained by the Arctic Region Supercomputing Center.

A.2.2  Angiogenesis Model

The CPM facilitates the combination of simpler submodels into a larger model 

that is biologically accurate and computationally feasible. One advantage of the CPM is 

that multi-cellular pattern formation is an emergent property of local interactions between 

simple subcellular components. Another advantage is that all cellular mechanisms 

including adhesion, growth, death, haptotaxis, and chemotaxis are easily and realistically 

implemented within the same architecture. The cell types used in this work interact with 

each other through the process of energy minimization to create emergent morphologies 

exhibiting simulations of angiogenesis and anastomosis.

Table A-2. Cell Types Used in Simulation.
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A.2.2.1  Initial Conditions. In our simulation, the angiogenesis domain is modeled 

as a two-dimensional section bordered by the existing vasculature on the top and the 

tumor on the bottom, as a layer of four cells, as illustrated in Figure A-1. The distance 

from the existing vasculature to the surface of the tumor wall is 165 μm. The stromal area 

between the tumor and the vasculature is a mixture of medium, ECM fibers, and stromal 

cells. Each new sprout vessel is initially modeled as two cells. One cell is an endothelial 

tip cell, and the other is an endothelial-stalk cell that touches the existing vasculature.

A.2.2.2  Cellular Potts Model. The cellular Potts model [4] (CPM) is used to 

simulate the tissues and integrate the mechanisms in the angiogenesis process. The CPM 

represents the tissue domain as a two-dimensional array of lattice sites or pixels, each ≈ 

2μm square.  In all the simulations reported here, the tissue array is 100 by 120 pixels. 

Each cell within the tissue is represented as a set of contiguous pixels. Cell-cell contacts 

occur through adjacent pixels which belong to different cells. As the simulation is run, 

cells form new contacts and move with restrictions in size and in shape. All cell 

rearrangement is driven by a process of stochastic energy minimization.

The energy of a specific CPM tissue configuration is described by a Hamiltonian 

equation over the two-dimensional domain s, which comprises a set of pixels z, each with 

a designated cell id σz:

Equation A-3.
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The first term implements differential adhesion based on the type of each cell, 

denoted by τσz , by estimating the total surface energy between all contacting cells σz and 

σz'. This is done by summing J τσz , τσz' over all adjacent pixels z and z' where σz ≠ σz' . 

There are 7 cell types used in the angiogenesis simulation and they are listed in Table A-

2.  The J τ, τ' values are given in Table A-1. 

The second term in Equation A-3 implements an area constraint on cells where aσ 

is the actual area of a cell σ, and Aσ is σ’s target area. The elasticity of a cell (the ease 

with which the cell can change its area) is controlled by the parameter ετ. Table A-1 gives 

the elasticity values for the endothelial tip and stalk cells. The target area of a cell is 

dependent on the cell-type. For those cell types that do not grow (tumor τtu and stromal 

τst), the target area is fixed. For those cell types that grow (endothelial tip τt and stalk τs), 

the target area Aσ is incremented each model iteration. When a growing cell’s current 

target area reaches twice its original target area, it is split into two daughter cells, and the 

growing process repeats. In this work, all mitosis is symmetric, and the cleavage angle is 

chosen randomly. In angiogenesis, growth of endothelial cells is dependent on the 

presence of VegF and is controlled by the threshold value ατ given in Table A-1.

Low energy cell arrangements are determined by repeatedly copying the state of 

one pixel σ[x, y] at x, y to an adjacent pixel at x', y' for pixels belonging to different

cells. Let s be the configuration before the copy and s' be the configuration after the copy; 

then ΔHs, s' < 0 is defined as Hs' - Hs. Further, if ΔHs, s'  < 0, the state change is always
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accepted, and if ΔHs, s' = 0, the state change is accepted with probability 0.5. Otherwise, 

the state change is accepted with probability ℮-(ΔHs, s')/ T, where T is the temperature,

representing the agitation of the cells [4].

In angiogenesis, the endothelial tip cell responds to haptotaxis [1] based on the 

local concentration of ECM in the tissue, and chemotaxis [7] based on the local 

concentration of VegF. To integrate these mechanisms into the CPM, two additional 

terms are added to the energy change function ΔHs, s':

Equation A-4.

The level of VegF at pixel x, y is defined as V [x, y] with the strength of the 

chemotactic force controlled by parameter μσ given in Table A-1; the level of ECM at 

pixel x, y is defined as E[x, y] with the strength of the haptotactic force controlled by 

parameter kH also given in Table A-1. How V[x, y] and E[x, y] are initialized and 

calculated is described in following sections.

To run the simulation forward from the initial conditions, a pixel and its neighbor 

are randomly selected, and a pixel state copy is considered as described above. One 

iteration of the simulation is termed an MCS (for Monte Carlo step) and comprises of 

repeatedly choosing a random pixel n times, where n is 16 times the number of the pixels 

in the domain, which is 100 x 120 in the simulation model described here. The remaining 

subsections describe each subsystem in detail.

A.2.2.3 Secretion and Uptake of VegF. The recruitment of vessels by tumor cells 

is accomplished through the secretion of VegF, and the resulting VegF diffusion gradient. 
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The VegF exerts a chemotactic force on the endothelial tip cells, and thus induces vessel 

growth towards the tumor. The level of VegF at location x, y is defined as V[x, y] and is 

controlled by the following reaction-diffusion equation:

Equation A-5.

There are four parameters that govern the VegF system. The coefficient of 

diffusion of VegF DV > 0 is assumed to be homogeneous throughout the simulation 

domain. The degradation of VegF is also considered constant, at λV > 0. The two 

functions SV(x, y) and B(x, y, V[x, y]) describe the secretion and the absorption, 

respectively, of VegF in the domain. SV(x, y) describes the secretion of VegF from tumor 

cells positioned on the right border of the domain, while B(x, y, V[x, y]) describes the 

binding and uptake of VegF by the endothelial cells.

The secretion of VegF is at a constant rate o from the tumor cells, positioned 

along the bottom side of the domain.

The binding and uptake of V by the endothelial cells is defined in B(x, y, V) and is 

limited to a maximum rate of β > 0.0 over the external surface of the endothelial cells. 

This is realistic since the capacity to bind and uptake VegF will saturate to a rate-limit.
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A.2.2.4 Stroma. The ECM in the stroma exerts haptotactic forces on the 

endothelial tip cells. This force can cause the vessel paths to be diverted towards other 

vessels, resulting in anastomosis. The stroma is modeled using a combination of a 

discrete and a continuous model. The discrete model is over the [,] domain and represents 

stromal cells st and the ECM fibers denoted by e. The continuous model contains the 

concentration level of ECM fiber proteins and is stored in the E[,] domain.

A.2.2.5 Degradation of ECM fibers in E. The secretion of proteolytic enzymes by 

endothelial tip cells degrades the level of ECM protein when the endothelial cells are 

over or next to the ECM [12]. To model this process, the level of ECM at a point x, y is 

assumed to decay exponentially at those locations occupied by an endothelial tip cell, or 

directly adjacent to that cell. This effect is illustrated in Figure A-2. It is assumed that the

(a) [,] (MCS=600)          (b) E[,] (MCS=600)

Figure A-2. σ[,] and E[,] domains where the τt cells create vessel paths
exhibiting anastomosis. The τt cells are pink, and the τs cells are red. The

degradation of τe fibers is evident in the E lattice, where red indicates high
concentrations of the ECM protein and blue indicates low concentrations.

The vessel paths also exhibit haptotactic influence from the ECM.
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 rate of decay of ECM proteins is higher when the tip cell is over the fiber than next to it. 

The behavior is captured in the following equations:

The physical effects of the ECM fibers are modeled within the CPM, where all 

the fibers are denoted σ[x, y].τ = τe over the domain. τe is inelastic and initially arranged 

in random lines representing fiber bundles (see Figure A-2). By integrating the ECM 

fibers into the CPM domain, the sprout’s morphological development is affected by the 

growing sprouts pulling along the surfaces of the fiber bundles and being turned by the 

fiber bundle obstructions.

Initially, the ECM fibers are allocated a level of ECM protein E[x, y] uniformly, 

then decayed according to Equation A-5 in the presence of endothelial tip cells. To model 

the removal of the physical fibers once the ECM protein has been sufficiently degraded, 

the fibers become interstitial fluid (medium) when E[x, y] drops below a fixed threshold 

η (given in Table A-1). This change in type is implemented by changing σ[x, y].τ from τe 

to τm.

A.2.3  Emergent Properties

The new blood vessels shape, structure and network emerge from the complex 

interplay among the mechanisms of differential cell adhesion, VegF activated growth, 

chemotaxis, haptotaxis, tip cell-based ECM degradation, and the secretion, diffusion, and 

uptake of VegF.
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A.2.3.1  Angiogenesis. The VegF chemical field is used as a growth signal to the 

τs cells. When the chemical level is above the threshold αe, the cells grow. This method of 

growth, coupled with the uptake of VegF, the adhesion of cell types, and the chemotactic 

influence of the VegF gradient, produces the emergent property seen in tumor-induced 

blood vessel growth in animals. The τt cells climb the VegF gradient using the 

chemotactic force. The τt and τs cells uptake a portion of the VegF that is contained in 

their lattice pixels. The τs cells grow and divide in the presence of VegF and adhere to the 

τt cells. This creates a vessel growth pattern that follows the movement pattern of the  τt  

cells. In effect, the τt cells pull the τs cells through the VegF gradient. The τs cells grow 

directly behind the τt cells, but they do not continue to grow as the cells get further from 

the τt cell. This is due to the low levels of VegF concentration that are left in the growth 

path due to accumulated uptake. Since the ECM is only degraded by the τt cells, the τs 

cells are often bounded by the remaining ECM fibers as they grow, forming regular width 

curving vessels under nominal conditions.

A.2.3.2  Anastomosis. The emergent property of anastomosis loop formation is 

critical to the usefulness of the simulations in evaluating cancer disruptions, since oxygen 

is only secreted by vessel loops. Anastomosis arises from the inclusion of complex 

stroma in the model, which causes the separate sprouts to bend and collide. The path of τt 

cells is a combination of many factors, including the haptotactic force provided by the 

ECM fibers, the chemotactic force of the VegF gradient, the adhesive force of stromal 

cells encountered, and the density of ECM fiber bundles which provide obstructions.
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A.2.3.3  Endothelial Tip Cell Growth Termination. When two sprouts join 

together, it is common for one of the endothelial tip cells to continue growing, while the 

other becomes dormant. This desired behavior has been explicitly programmed into other 

models [9] [8], but in this system, the behavior naturally emerges from interactions of 

subcomponents. When two sprouts join together, the endothelial tip cell loser to the 

higher concentrations of the VegF gradient may often continue, while the other will stall 

out. It is common for the leading tip cell to continue growing towards the tumor through 

the chemotactic force, and thus consume the VegF available to both sprouts. The other 

endothelial tip cell will most likely terminate progression towards the tumor due to lack 

of VegF activation and gradient. The dominant endothelial-tip cell pattern recursively 

emerges to create an inverse tree-like vessel structure. This structure is consistent with 

biological observations and is illustrated in Figure A-3.

    (a) Cells  (b) O2 secreting cells only

Figure A-3. (a) Typical angiogenesis morphologies form an inverted tree-like
structure with some tip cells being dominated by other sprout cells. (b) Only

endothelial cells in loops that have sufficient blood flow secrete O2. 
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A.2.4  Oxygen

The level of O2 at location x, y is defined as O2[x, y] and is controlled by the 

following reaction-diffusion equation:

Equation A-6.

There are four parameters that govern the O2 system. The coefficient of diffusion 

of O2  D2 > 0 is assumed to be homogeneous throughout the simulation domain. The 

degradation of O2 is also considered constant at λ2 > 0. The two functions S(x, y) and U(x, 

y, O2[x, y]) describe the secretion and the absorption, respectively, of O2 in the domain. 

S(x, y) describes the secretion of O2 from endothelial cells contained within loop 

structures in the resulting morphology (see below for an explanation), while 

U(x, y, O2[x, y]) describes the absorption of O2 by the tumor cells.

The secretion of O2 is at a constant rate α from the surface of all endothelial cells 

that are within loops formed by anastomosis. It is realistic to assume that only those

sprouts that successfully link with other sprouts and form loops will be able to secrete O2, 

because they will be capable of maturing and carrying a flow of blood through

the formed vessel. To determine which endothelial cells secrete O2 during the 

angiogenesis simulation, a pressure diffusion model is calculated at the cell level to 

identify loops as contiguous paths along contacting endothelial cells that contact the 

original blood vessel at distinct locations. The flow (pressure difference) between cells is 
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used to classify a cell as secreting ,thereby enabling the correct implementation of S(x, y) 

above when the O2 diffusion equation given in Equation A-6 is solved.

The absorbtion of O2 by the tumor is defined in U(x, y, O2) and is limited to a 

maximum rate of υ > 0.0 over the external surface of the tumor cells. This is realistic

since the capacity to absorb oxygen will saturate to a rate-limit based on the maximum 

reaction rate on the membranes of the tumor cells.

Finally, the objective function O2(ΔP) can be defined. First the parameters that 

control the simulations are set  ← N + Δ , the domain initialized, and the simulation 

is run 1,500 Monte Carlo steps (MCS). Let O2[x, y]t be the oxygen array at MCS t, then 

the oxygen score for this random initialization is:

A.2.4.1 Summary of Angiogenesis Simulation.  A CPM is used to model tissue and 

cells as a stochastic energy minimization process over an array of pixels. Chemical 

gradients create cell signaling. VegF is secreted by the tumor cells and absorbed by the 

endothelial cells, thereby forming a diffusion gradient from the tumor to the vessel 

sprouts. The endothelial tip cells respond to the VegF concentration by moving towards 

higher concentrations. The VegF also activates the endothelial sprout cells to grow. VegF 

is consumed by the endothelial cells, and eventually the concentration is low enough that 
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the endothelial sprout cells become inactive. A vessel emerges that follows the 

chemotactic path of the endothelial tip cell.

The ECM fibers form obstructions to the endothelial cells. The tip cell degrades 

the ECM, until the protein concentration is low enough to become interstitial fluid. The 

tip cells adhere to the ECM fibers which causes a haptotactic force along contacting 

fibers. The ECM diverts the vessel sprouts, causing them to grow towards other sprouts. 

As anastomosis occurs, one of the tip cells may become dormant while the other tip cell 

continues to progress towards higher concentrations of VegF. This competition between 

tip cells results in blood vessels exhibiting an inverted tree structure, since this model 

only represents the early stages of angiogenesis and does not consider the formation of 

new tip cells. (see Figure A-4).

Oxygen begins to secrete from the endothelial cells as the difference in blood 

pressure across the created network increases above a threshold. The oxygen diffuses

O2 (MCS=300)          O2 (MCS=1430)

Figure A-4. O2 values over the domain, where high concentrations of oxygen
are red and low concentrations are blue. O2 is secreted from vessels that

form loops, diffuses through the stroma, and is absorbed by the tumor cells.
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 through the medium and reaches the tumor. The tumor cells consume the available 

oxygen, which is used as the principle metric for the search engine.

A.3  Results

The Monte Carlo improving search method was run on the AMD OpteronTM 

cluster at the Arctic Region Supercomputing Center. The oxygen score of each parameter 

vector was evaluated by running it on 256 processors in parallel, using different random 

initial ECM fiber and stomal cell configurations, and different random seeds to the 

stochastic CPM. Each angiogenesis simulation took approximately five to seven minutes 

of cpu time. A total of 140 solutions were generated and evaluated for this preliminary 

study. Figure A-5 shows example morphologies form solutions c and j given in Figure 7.

Out of these 140 solutions generated, the best 22 near-pareto optimal solutions are 

given in Figure A-6 as a pareto-optimal frontier, and in detail in Figure A-7. Reviewing 

the results, it is clear that the Monte Carlo improving search is capable of discovering

  (a) Solution c (b) Solution j

Figure A-5. Example morphologies from solutions c and j given in Figure A-7.
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novel and potentially important cancer therapies quickly. All the solutions presented 

reduce the oxygen to the tumor during early development, with the optimal solutions 

reducing oxygen by approximately 50%. This level of reduction will significantly slow 

the growth of the tumor and has the potential to improve the survivability rate of patients 

[10].

By reviewing the individual solutions in Figure A-7, it is satisfying to see that the 

currently medically viable strategy of disrupting VegF [11] is discovered in solutions b 

and m, which both reduce the effectiveness of uptake of VegF by the endothelial cells, 

Figure A-6. Results: The Pareto optimal frontier and near optimal potential
cancer therapies identified by the Monte Carlo reducing search process. The
best solutions provide the minimum O2 to the tumor (vertical axis) for the

least estimated treatment cost (horizontal axis). The point labels correspond
to the solutions shown in Figure 1-7.
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and in solution g, which increases the degradation rate of VegF. Of more interest are the 

many solutions found that are quite novel and counter-intuitive, and while it is possible to 

form a post hoc explanation of each solution’s effectiveness, it is very unlikely that these 

Figure 1-7. Results: Near Pareto optimal model disruptions found by
the search engine. Each column represents one solution with the letter
designations (across the top) corresponding to those in Figure 1-6. The

parameter disruptions for each solution is given in the column, with white
meaning no change, red a reduction and blue an increase. The size of the
box represents the magnitude of the change. The average O2 provided to

the tumor and cost is given in the last two rows.
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solutions could have been manually discovered. Consider one of the most effective 

solutions c, that works by slightly reducing the threshold parameter which controls when 

the degraded ECM fibers become medium. In other words, solution c suggests 

strengthening the ECM fibers in the tissues neighboring the tumor. A typical morphology 

for solution c is illustrated in Figure A-5(a) and shows clumped, stunted vessels 

intermixed with nondegraded ECM. Or consider solution j that suggests reducing Jt, st 

thereby increasing the adhesive force between endothelial tip cells and stromal cells. A 

typical morphology for solution j is illustrated in in Figure A-5(b) and shows poorly 

formed thick vessels, with each of the four original tip cells stuck to a stromal cell that it 

encountered while moving up the VegF gradient. Solution j is an example of the power of 

this method to discover novel potential cancer therapies that disrupt the angiogenesis 

process in unexpected ways.

A.4  Conclusions

This work has described a massively parallel combinatorial search method for 

exploring the space of possible angiogenesis-blocking medical interventions for treating 

cancer. The method combines a high fidelity angiogenesis simulation system with a 

massively parallel Monte Carlo improving search process. In a preliminary study of only 

140 sample model disruptions, many effective and medically feasible therapies were 

found. A few of the solutions were simple techniques that disrupt the VegF system and 

are currently being deployed. Significantly, many of the solutions were novel and, 

surprising, strongly suggest that this work could lead to the development of powerful new 

anti-cancer treatments.
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