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AN OPTIMAL STOPPING APPROACH TO THE 

CONSERVATION OF BIODIVERSITY 

ABSTRACT 

In the past two decades, a considerable amount of concern has been expressed in academic 

and in nonacademic circles about the decline in the world's diverse biological resources. Recently, 

Swanson (l995b) has suggested that the problem of biodiversity loss is really a problem of regulating 

the natural habitat conversion process in which naturally existing species have systematically been 

replaced by human chosen ones. In this way of looking at the problem, a decision maker' s central 

task is to determine the optimal point at which this conversion process should be halted. In this 

paper, I show how the theory of optimal stopping can be applied to model the biodiversity loss 

problem as described above. Specifically, I pose the underlying conservation question within the 

framework of a Markov decision process. I then show how to determine the optimal point at which 

this conversion process should be halted. 

Key words: biodiversity, dynamic, habitat, optimal stopping, stochastic 



AN OPTIMAL STOPPING APPROACH TO THE 

CONSERVATION OF BIODIVERSITyl 

1. Introduction 

In the last two decades, a considerable amount of concern has been expressed in academic 

and in nonacademic circles about the loss of diversity in the world's biological resources. As 

Perrings et al. (l995b) noted, there are many levels at which one can discuss the problem of 

biodiversity loss. The most popular characterizations have portrayed the problem as essentially one 

of genetic and species diversity loss. This notwithstanding, a consensus is emerging among 

economists and ecologists that in thinking about biodiversity loss, the appropriate concept to focus 

on is not genetic or species diversity, but the notion of ecological resilience.2 According to this view, 

biodiversity matters primarily through its role in promoting resilience, " ... where resilience refers 

to the amount of disturbance that an ecosystem can sustain before a change in the control or the 

structure of the ecosystem will occur" (Batabyal 1996a, p. 487). 

As a part of this new focus on the diversity of ecological function, Swanson (1995b) has 

suggested that the global decline in biodiversity is best viewed as a process of natural habitat 

conversion in which naturally existing species have been systematically replaced by human selected 

ones. According to Swanson, if we are to ameliorate the problem of biodiversity loss, we need to 

focus on this "extinction process." In this view of the underlying problem, the central task for a 

decision maker is to halt this habitat conversion process at an optimally determined point in time. 

II acknowledge financial support from: (i) the Faculty Research Grant Program at Utah State University, and 
(ii) the Utah Agricultural Experiment Station, Utah State University, Logan, UT 84322-4810, by way of project 
UTA 024. Approved as journal paper No. 4936. I thank an anonymous referee for hislher input; I alone am responsible 
for the output. 

2For more on this line of thinking, see the papers in Perrings et al. (l995a), and in Swanson (l995a). 
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In this paper, I shall pursue this way of looking at the biodiversity loss problem. Specifically, 

I shall cast the underlying conservation question within the context of a Markov decision theoretic 

framework. 3 I shall then use an optimal stopping rule to provide an answer to the question of when 

the habitat conversion process should be halted. 

The rest of this paper is organized as follows. Section 2 formulates and discusses the 

theoretical framework in detail. Section 3 offers concluding comments and discusses directions for 

future research. 

2. The Theoretical Framework 

My model is based on Ross (1970, pp. 188-190) and on Batabyal (1997b), and the spirit of 

the analysis is related to that contained in Batabyal (1997a). I shall first describe the infinitesimal 

look ahead stopping rule (ILASR) and a theorem which provides conditions under which it is 

optimal to stop using the ILASR. As Ross (1970, p. 188) noted, the ILASR can be thought of as a 

policy that stops a stochastic process precisely in those states for which stopping immediately yields 

a higher payoff than waiting an additional time h. Let S be the set of states for which stopping 

immediately yields a higher payoff than waiting an additional time h. Then it can be shown that 

Theorem 1 (Ross 1970, p. 188): If S is closed, i.e., once a stochastic process enters S, the process 

cannot exit S, then under certain regularity conditions, the ILASR is optimal. 

The biodiversity conservation problem can now be cast in a Markov decision theoretic 

framework. This will then enable me to use Theorem 1 to determine when the habitat conversion 

process should be halted. I shall model the underlying decision problem as one that is faced by a 

3For more on Markov decision processes, see Derman (1970). 
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national government that is interested in conserving its scarce biological resources.4 The government 

solves its problem in a dynamic and stochastic framework. The framework is dynamic because the 

underlying conservation question involves halting a phenomenon-the conversion of natural 

habitats-that is taking place over time. The framework is stochastic because the habitat conversion 

process is stochastic and because the decision to halt this conversion process depends fundamentally 

on the uncertain availability of information regarding the desirability of such an action. 

I assume that this information is produced according to a nonhomogeneous Poisson process 

{I(t):t'? a} with a continuous, nonincreasing intensity function yet). Information is acquired by the 

government independently, and this information has a common cumulative distribution function F( • ) 

with finite mean. By letting the information acquisition process follow a nonhomogeneous Poisson 

process, I am leaving open the possibility that it is more likely that information will be received at 

certain times than at other times. Since it is unlikely that the conversion of natural habitats is taking 

place uniformly over time, allowing for the above possibility would appear to be necessary. I assume 

that any information that is not used immediately by the government in deciding whether or not to 

halt the habitat conversion process can be used subsequently. The specific source of information 

production is not critical to my analysis. It could be the result of research and development 

undertaken by the government, or it could be the result of activities undertaken by private agencies. 

In any event, from the perspective of the government, information is costly to acquire. As such, I 

shall incorporate this cost in the overall decision problem faced by the government. 

Upon acquiring information, the government decides whether to halt the conversion of 

41 have posed the decision-making problem at the level of a country. However, a change of scale-to a region 
within a country or to a region encompassing more than one country--does not affect the analysis qualitatively. 
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natural habitats or to permit conversion and wait for additional information. Let li(.) be the 

government's utility function. I assume that li(·) is a continuous, one-to-one, and strictly monotone 

function. This utility function maps information about halting conversion to utility from halting 

conversion. In other words, if i(t) is the information acquired by time t, then U(t) =li{ i(t)} denotes 

the utility to the government from halting the habitat conversion process. Further, since li(·) is a 

continuous, one-to-one, and strictly monotone transformation of I(t), 'it, it follows that the 

government's utility {U(t):tz O} is itself a nonhomogeneous Poisson process with a continuous and 

nonincreasing intensity function, say, 8(t).5 Further, successive utility realizations are independent, 

with a cumulative distribution function G(·). This distribution function also has a finite mean. 

At any point in time, should the government choose not to halt the conversion process, it 

incurs benefits and costs. The benefits stem from retaining flexibility. The government leaves open 

the possibility that more and better information will be received in the future that may call into 

question the wisdom of a current decision to halt the habitat conversion process. The costs arise 

from two sources. First, the government has to pay to obtain information about the conversion 

process. Second, it loses the current utility from halting this conversion process. I shall denote the 

net benefit per unit of time from not halting the habitat conversion process by B. 

The state (see Figure 1) at any time t is denoted by the pair [t, U(t)], where U(t) is the utility 

that will be received should the government choose to halt the habitat conversion process at time t. 

The reader should note that with this specification of the state, I have a two-action-halt or do not 

halt-Markov decision process. If the government halts the habitat conversion process in state 

5See Wolff (1989, p. 26) for further details. 



Step 1 

Government's decision problem at time t: 

Take action I-halt conversion process or 

Take action II-do not halt conversion process and wait for time h 

Step 2 

Government's decision is based on a comparison of the payoffs from the two actions 

Step 3 

Compare U {payoff from action I} with EU {payoff from action II; see eqn. (2)} 

T 

Step 4 

Halt conversion process iff U ~ EU 

Otherwise, wait for additional information 

Figure 1. Conceptual Diagram of the Optimal Stopping Approach 
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[t, Vet)] , the government's utility from t onwards will be V(t). On the other hand, if the government 

chooses not to halt the conversion process and waits for an additional time h, then its expected utility 

will be 
t+h t+ h 

{I - f 8(r)dr} e V + f 8(r)dr e E[max(Y, V)] + Bh + o(h) . (1) 

In equation (1), Y is a random variable representing the utility to the government from information 

received in [t, t+h], and E[e] is the expectation operator.6 Equation (1) can be simplified to 

t+h 

V + f 8 (r)dr f(y-U)dG(y) + Bh + o(h). 

u 
(2) 

Intuitively speaking, the government should halt the habitat conversion process upon acquiring 

information i(t) at time t if and only if the utility from halting, i.e., Vet), exceeds the expected utility 

given in equation (2) from postponing action and allowing habitat conversion to continue for an 

additional time h. Alternately put, the habitat conversion process should be halted now if and only 

if 
t +h 

V ~ V + f 8 (r)dr f(y-U)dG(y) + Bh + o(h). 

u 
(3) 

Now canceling the common terms on both sides of equation (3), dividing both sides of equation (3) 

by h, and then letting h-+ 0 yields 

o ~ 8(l) f(y-U)dG(y) + B. (4) 
u 

Equation (4) gives us the condition for determining whether the habitat conversion process should 

6The o(h) tenn in equation (1) is a technical requirement that stems from the defmition of a nonhomogeneous 
Poisson process. Specifically, because {U(t):t~O} is a nonhomogeneous Poisson process, Prob{ U(t+h) - U(t) = 8(t)h 
+ o(h). See Ross (1996, chapter 2) for further details. 
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be halted now. From equation (4) I can define the set S, i.e., the set of all states for which halting 

the habitat conversion process now yields a higher level of utility than permitting habitat conversion 

to continue for an additional time h. This set is 

S {(t, U): e(t) f(y-U)dG(y)~ -B}. (5) 
u 

The reader should note that S is a closed set. This follows from the fact that as t increases, e(t) does 

not increase and the integral in equation (5) does not increase as well. I can now apply Theorem 1, 

which I stated at the beginning of this section, and conclude that the government should halt the 

habitat conversion process at time t if and only if the utility from halting the habitat conversion 

process is U(t), where U(t) solves 

e(t) f(Y-U)dG(y) -B. (6) 
u 

Equations (5) and (6) together tell us that the habitat conversion process should be halted at time t, 

if, in an expected utility sense, it does not pay the government to wait for information about the 

consequences of halting the habitat conversion process beyond time t. 

2a. An Example7 

Our government is considering whether or not to halt the habitat conversion process that is 

at work in this country. As indicated in the previous discussion, this government receives 

information about the consequences of halting this habitat conversion process at any particular time. 

Suppose that there are only three states-states 0, 1, and 2-in which the utilities to the government 

7Th is example is adapted from Batabyal (1996b); the government utilities (in dollar terms) have been chosen 
so as to be consistent with the range mentioned by Simpson, Sedjo, and Reid (1996, p. 164). 
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(in dollar terms) from halting the habitat conversion process are $38,000, $40,000, and $42,000, 

respectively. Let the probabilities of obtaining these utilities be Po = 112, PI = 3/8, and P2 = 118, 

respectively. Further, let B = -$50 be the net benefit per unit of time from not halting the habitat 

converSion process. Finally, suppose that the government uses a discount factor of P = 0.99 in 

making its decision. 

To provide an answer to the "When to halt the habitat conversion process" question, suppose 

that once a decision to halt the process has been made, the corresponding Markov decision process 

goes to state infinity and that it stays there indefinitely, accruing a net benefit of B = $0. Now 

standard computations tell us that in this example, the government's optimal policy calls for not 

halting the habitat conversion process when the utility is $38,000 and halting the conversion process 

when the utility is either $40,000 or $42,000. Further, the government should halt the conversion 

process in state 1; this decision results in the receipt of utility in the amount of $40,000. 

3. Conclusions 

In this paper I modeled the question of biodiversity conservation as an optimal stopping time 

problem within the context of a Markov decision process. In this context, I provided an answer to 

the question as to when the habitat conversion process should be halted optimally. This answer 

involves a comparison of the utility obtainable from halting the habitat conversion process at time 

t, i.e. , U(t), with the expected utility to be obtained by not halting and waiting for new information 

beyond time t. 

The analysis of this paper can be generalized in a number of directions. In what follows, I 

suggest three possible extensions. First, one can make the net benefit from waiting-the B 

j 
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term-explicitly stochastic. When this is done, the government's decision will depend on the 

interaction between this stochastic process and the utility stochastic process. 

Second, alternate specifications for the information production function can be analyzed. In 

this paper, I have provided a rather simple specification in which information is produced in 

accordance with a nonhomogeneous Poisson process. More general specifications will permit more 

elaborate analyses of the connections between information production and the optimal time at which 

the habitat conversion process should be halted. 

Finally, one can consider the impact on the optimal time to halt the conversion process when 

the government uses randomized or nonstationary stopping rules. An analysis of this aspect of the 

problem will enable us to compare the implications of using alternate stopping rules for the 

conservation of biodiversity. 

References 

Batabyal, A. A. 1996a. "Review ofC. Perrings, K.-G. Maler, C. Folke, C. S. Holling, and B.-O. 
Jansson, (eds.), 'Biodiversity Loss: Economic and Ecological Issues'." Kyklos 49:486-7. 

Batabyal, A. A. 1996b. "The Timing of Land Development: An Invariance Result." American 
Journal of Agricultural Economics 78: 1 092-7. 

Batabyal, A. A. 1997a. "An Information Theoretic Perspective on the Conservation of 
Biodiversity." Unpublished manuscript, 16 p. 

Batabyal, A. A. 1997b. "The Impact of Information on Land Development: A Dynamic and 
Stochastic Analysis." Journal of Environmental Management 50: 187-92. 

Derman, C. 1970. Finite State Markovian Decision Processes. New York: Academic Press. 

Perrings, C., K.-G. Maler, C. Folke, C. S. Holling, B.-O. and Jansson, (eds.). 1995a. Biodiversity 
Loss: Economic and Ecological Issues. Cambridge, UK: Cambridge University Press. 



10 

Perrings, C., K.-G. Maler, C. Folke, C. S. Holling, and B.-O. and Jansson. 1995b. "Introduction: 
Framing the Problem of Biodiversity Loss." In C. Perrings, K.-G. Maler, C. Folke, C. S. 
Holling, and B.-O. Jansson (eds.), Biodiversity Loss: Economic and Ecological Issues. 
Cambridge, UK: Cambridge University Press. 

Ross, S. M. 1970. Applied Probability Models with Optimization Applications. San Francisco, CA: 
Holden-Day. 

Ross, S. M. 1996. Stochastic Processes, 2nd edition. New York: Wiley. 

Simpson, R. D., R. A. Sedjo, and J. W. Reid. 1996. "Valuing Biodiversity for Use In 
Pharmaceutical Research." Journal of Political Economy 104: 163-85. 

Swanson, T. M. (ed.). 1995a. The Economics and Ecology of Biodiversity Decline: The Forces 
Driving Global Change. Cambridge, UK: Cambridge University Press. 

Swanson, T. M. 1995b. "The International Regulation of Biodiversity Decline: Optimal Policy and 
Evolutionary Product." In C. Perrings, K.-G. Maler, C. Folke, C. S. Holling, and B.-O. 
Jansson (eds.), Biodiversity Loss: Economic and Ecological Issues. Cambridge, UK: 
Cambridge University Press. 

Wolff, R. W. 1989. Stochastic Modeling and the Theory of Queues. Englewood Cliffs, NJ: 
Prentice-Hall. 


	An Optimal Stopping Approach to the Conservation of Biodiversity
	Recommended Citation

	tmp.1347397208.pdf.cM3zq

