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Multivariate Linear Regression

John Kidd

April 18, 2013

Abstract

A common multivariate statistical problem is the prediction of two or more response

variables using two or more predictor variables. The simplest model for this situation

is the multivariate linear regression model. The standard least squares estimation

for this model involves regressing each response variable separately on all the predictor

variables. Breiman and Friedman [1] show how to take advantage of correlations among

the response variables to increase the predictive accuracy for each of the response

variable with an algorithm they call Curds and Whey. In this report, I describe an

implementation of the Curds and Whey algorithm in the R language and environment

for statistical computing [6], apply the algorithm to some example data sets, and discuss

extensions of the algorithm to linear classification methods.
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1 Introduction and Background

1.1 The Multiple Regression Model

One of the most widely used statistical methods is multiple linear regression, in which

a numerical response is modeled as a linear combination of values on two or more nu-

merical predictor or explanatory variables. Examples include predicting oxygen uptake

as using fitness and anthropometric measurements on the subjects, insurance profits as

using industry and economic variables, human mortality rates using measurements of

socio-economic status and air pollution, and species abundances using ecological and

climate measurements. The multiple linear regression model may be written as:

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi for i = 1, 2, . . . , n (1)

where Yi is the value of the response variable for the ith observation, xi1, xi2, . . . , xip

are the values on the explanatory variables for the ith observation, εi is a random

error, and β0, β1, . . . , βp are unknown parameters that must be estimated. Usually it is

assumed that the εi are statistically independent, with common mean 0 and variance

σ2, and are approximately normal in distribution. This model in matrix form may be

written as:

Y = Xβ + ε (2)

where
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Y =



Y1

Y2

...

Yn



X =



1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
...

1 xn1 xn2 · · · xnp



β =



β0

β1

...

βp


ε =



ε1

ε2

...

εn



.

1.2 Least Squares Estimation and Prediction

Given a set of parameter estimates, β̂ = (β̂0, β̂1, . . . β̂p)
T , one can compute fitted or

predicted values, Ŷi, by substitution into equation (1) and setting the random error

term equal to zero. That is,

Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂pxip for i = 1, 2, . . . , n.

or, in matrix form, Ŷ = Xβ̂.

To estimate β, we may minimize the sum of squared deviations between the ob-

serve response variable value, Yi, and the predicted values, Ŷi. That is, we minimize

RSS(β) =
n∑
i=1

(Yi − Ŷi)2 = (Y − Xβ)T (Y = Xβ) with respect to β. Assuming the

columns of the matrix X, the predictor variables, are linearly independent, the least

squares estimator of β has the elegant form

β̂OLS = (XTX)−1XTY. (3)
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1.3 Shrinkage Estimation

For the multiple linear regression model when the predictor variables are correlated, a

different estimation procedure called ridge regression [3] yields more stable parameter

estimates (the β̂j ’s) and smaller prediction error. Following the notation of equation

(3), the ridge regression estimate of β may be written

β̂(τ) = (XTX + τI)−1XTY, (4)

where I is the identity matrix with 1’s down the diagonal and 0’s in all the off-diagonal

entries, and τ is a shrinkage parameter. Typically, τ is estimated by minimizing predic-

tion error or by graphical means. Ridge regression is a shrinkage estimation procedure

in the sense that as τ increases, the β̂j(τ)’s decrease in magnitude, sometimes changing

sign in the process. As τ gets very large, all the β̂j(τ)’s will tend to zero.

Other forms of shrinkage have also been shown to provide more stable parameter

estimates as well as smaller prediction errors [2, 4, 5, 9, 11].

1.4 Canonical Correlation

Canonical Correlation analysis is a method for characterizing the linear associations

among two sets of variables. Let X be an n × p matrix with the columns being the

measured values of one set of variables, and Y be an n × q matrix with the columns

being the values on the other set of variables. Assume, without loss of generality, that

q ≤ p.

Let V1 and W1 be vectors such that XV1 and YW1 maximizes the correlation among
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all linear combinations of variables in X and Y. This maximal correlation, c1, is the

first canonical correlation.

Next, V2 and W2 are found so that XV2 and YW2 maximizes the correlation among

linear combinations of variables in X and Y, subject to the constraint that V2 ⊥ V1

and W2 ⊥ W1. The correlation, c2, is the second canonical correlation. The process is

continued, yielding q canonical correlations and vectors V1, V2, ...Vq, and W1,W2, ...,Wq.

The vectors W1,W2, ...,Wq may be stacked together to create a matrix T that may

be used to transform the variables in Y into canonical coordinates, the coordinate

system that yields the canonical correlations.

1.5 The Multivariate Linear Regression Model

The multivariate linear regression model extends the multiple linear regression model

to predicting two or more response variables using the same suite of predictor variables.

We may write the model as

Y = Xβ + E, (5)

where Y is an n × q matrix, the columns of which are q response variables. In this

model X is an n× (p+ 1) matrix comprising, as columns, p predictor variables and a

column of 1’s for the intercept term. E is an n× q matrix of residual or random error

terms, and B is a p× q matrix of coefficients to be estimated. The kth column of B is

the vector of coefficients for the predictor variables for the kth response variable.

The least squares estimate of B may be expressed as
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[
β̂1, β̂2, . . . , β̂q

]
= B̂ = (XTX)−1XTY =

[
(XTX)−1XTY1, (X

TX)−1XTY2, . . . , (X
TX)−1XTYq

]

Thus, the β̂j ’s corresponding to the kth response variable use only information

from the kth response variable. In situations in which the response variables are highly

correlated this result seems counter intuitive, and it is this observation which motivated

Breiman and Friedman [1] to develop an alternative approach. Their Curds and Whey

algorithm employs elements of canonical correlation and shrinkage estimation to use

the relationships among the response variables to enhance the accuracy of predictions

for each of the response variables.

2 The Curds and Whey Procedure Setup

The general idea behind the Curds and Whey algorithm is to take the least squares

regressions, and then to modify the predicted values from those regressions by shrinking

them using the canonical correlations between the response variables and the predictor

variables. Thus, the equation can be thought of as:

Ỹ = MŶ (6)

Where M is the matrix estimated such that M = T−1DT with T being a q × q

matrix, where q is the number of response variables one is trying to predict, whose

rows are the canonical correlation coordinates of the response variables, and D is a
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diagonal matrix where each entry di is a function of the canonical correlations and the

proportion or predictors to size of the data set (and each di is less than one). In order to

search for the best M, and to follow an intuitive progression, I will show two methods

to find M. One is very general and simple, and does not involve cross-validating the

data, where the other produces a general cross validation rather than the full cross

validation.

2.1 Standardizing Data

When dealing with multivariate data, often variables are measured on different scales.

For many procedures, this can lead to one or more predictor variables having a much

larger influence on the response than others simply because of its scale. This can

make interpretation difficult, as well as cause extreme observations to influence results.

Standardizing data puts all variables on similar scales and prevents variables from

exhibiting large influence because of their scale alone.

With the Curds and Whey algorithm, not only do the predictor variables need to be

on the same scale, but due to use of canonical correlations of the response variables, the

response variables also need to be standardized. If they were not, there is a risk that

one response variable that is on a larger scale may throw off some of the predictions

for the other response variables.

The standardization used in this project was to subtract off the mean from all obser-

vations of a variable and then division by the standard deviation. This transformation

is the ”conversion to z-scores” from introductory statistics classes.
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2.2 Finding D

There are two was to estimate the optimal shrinking matrix, D. In the simplest case

given r = p/N , with N being equal to the total number of observations, define the di’s

as:

di =
c2i

c2i + r(1− c2i )
, i = 1, 2, ..., q (7)

This gives improved predictions compared to ordinary least squares, but it does not

provide enough shrinkage to be optimal. A second approach, based upon generalized

cross-validation sets the di’s as follows:

di =
(1− r)(c2i − r)

(1− r)2c2i + r2(1− c2i )
, i = 1, 2, ..., q (8)

In some instances, this will result in a di that is less than 0. In this case, the di’s

are restricted to 0.

3 The Procedure

The Curds and Whey algorithm follows these steps:

1. Standardize response and predictor variables.

2. Transform Y to the observed canonical coordinate system, Y* = TY.

3. Perform a separate ordinary least squares regression of each of the Yi*’s on all

the predictor variables X, obtaining a new variable, we’ll call Ŷi*.
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4. Separately scale (shrink) each of the Ŷi*’s by the corresponding di (8). Or, it can

be thought of as Ŷ*. This gives a new set, called Ỹ*.

5. Transform back to the original Y coordinate system, Ỹ = T−1 Ỹ*.

3.1 General Example

In general terms, the process can be described in a more straight forward manner in

the language of a statistical package. I accompany this with coded examples from R.

Say one has data, and to work with the cancor package [7], one has to split into two

matrices or predictor and response variables, named accordingly. For the example, I

use the following randomly generated data, which has 100 observations. There are

5 response variables on 20 predictor variables. (For reproducibility, I set the seed to

1000)

> set.seed(1000)

> predictors <- matrix(rnorm(2000, 50, 4), 100, 20)

> for(i in 1:10){

+ predictors[,i] <- predictors[,i] * i

+ }

> response <- predictors %*% matrix(rep(1 : 5, each = 20) , 20, 5) +

+ matrix(rnorm(500, 0, 50), 100, 5)

First, I will standardize all of the data in two parts: one for the response variables

and one for the predictor variables.
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> for(i in 1:5){

+ mean <- mean(response[, i])

+ sd <- sd(response[, i])

+ response[, i]<-(response[, i] - mean) / sd

+ }

> for(i in 1:20){

+ mean <- mean(predictors[, i])

+ sd <- sd(predictors[, i])

+ predictors[, i]<-(predictors[, i] - mean) / sd

+ }

Next, I obtain the canonical correlations of the data, and transform the response

variables into the canonical correlation coordinates. In R, this looks like:

> cancor.all <- cancor(predictors, response)

> cancor.cor <- cancor.all$cor

> cancor.y <- cancor.all$ycoef

> yPrime <- as.matrix(response) %*% cancor.y

Next I perform ordinary least squares regression on the transformed response vari-

ables on the original predictor variables, and find the predicted values from the OLS

regression. In R:

> new.yPrime.data <- data.matrix(cbind(yPrime, predictors))

> yPrime.lm <- lm(new.yPrime.data[, 1:5] ~ new.yPrime.data[, 6:25])

> yhat.Prime <- yPrime.lm$fitted.values
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Next, I obtain the shrinkage matrix, D, by equation (3). In words, this is a bit

difficult to describe. So, I rewrite it with several variables. Lets call (1 − r) A. Then,

call the ith correlation squared subtract r B. Then, call (1−r) squared C, just remember

r2 is r squared, and call 1 subtract the ith correlation squared D. Then, (8) could be

rewritten as:

di =
A ∗B

C ∗ (c2i + r2 ∗D)
(9)

Hopefully this formulation is simpler than (8). Continuing the example, just re-

member that there are 20 predictor variables (p), 100 observations (N), and 5 response

variables (q).

> r <- 20 / 100

> di <- rep(0, 5)

> di <- {(1 - r) * ({cancor.cor^2} - r)} /

+ {({1 - r}^2) * (cancor.cor^2) + ({r^2} * {1 - cancor.cor^2}) }

> for(i in 1:5){

+ di[i] <- max(di[i], 0)

+ }

> D <- diag(di)

At this point, I take the last couple of steps to get the final Ỹ by shrinking Ŷ*

(yhat.Prime in R), to yield Ỹ* (yhatstar in the following R code). I then transform

back into the original Y coordinate system by multiplying Ỹ* by the inverse of the

canonical coordinate matrix T−1, (cancor.y in R), which yields Ỹ (yFinal in R).
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> yhatstar <- yhat.Prime %*% D

> yFinal <- yhatstar %*% solve(cancor.y)

For some ease, and further usability, one can extract some more information from

the data using another least squares regression. If one regresses the new Ỹ on all of

the predictor variables, one can argue that one has the coefficients needed to predict

Ỹ from the original predictor variables.

> yFinal.lm <- lm(yFinal~predictors)

> CurdsCoeffs <- yFinal.lm$coefficients

It is possible to do some checks to verify that this has worked. To save room, recall

that there are 100 observations, and 5 response variables. Therefore, there are 500

measurements. Using R, it can be checked to see if the predictors (with a column of

1’s added for the intercept term), multiplied by the coefficients equals the Ỹ (yFinal)

matrix. Each test of equivalency will return a 1 if the two values are equal, and a 0

if they are unequal. Thus, summing up all the results will give the number that are

equal between the two. Rounding to 8 or so places to account for computer rounding

error may also be advisable.

> sum( round( cbind( 1, predictors) %*% CurdsCoeffs, 8) ==

+ round( yFinal, 8))

[1] 500

Therefore, it can concluded that the given coefficients will predict the ỹ from the

original predictor variables.
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3.2 Measuring Improvement

In trying to measure the improvement achieved in Curds and Whey over ordinary least

squares regression. In the original paper, Breiman and Friedman [1] suggest using the

predictive error. This involves finding a model for the data without observation n being

included, finding the predicted value for observation n from the model, and then finding

the residual between the predicted value for Yn (Ŷn) and the actual Yn and squaring

the difference ((Ŷn − Yn)2). One then finds the average for all N observations. Define

Predi to be the predictive error for the ith response variable. It may be written as:

Predi =
1

N

N∑
n=1

(Ŷn − Yn)2, i = 1, 2, ..., q (10)

Where q is the number of response variables, and, as before, Ŷn is the predicted

value for observation n with the nth observation dropped. That is, one finds a model

with Yn being excluded from the model, then using the predictor variable values for

observation n and the model, finds a predicted value for Yn, (Ŷn). Finally, square the

differences, and find the average.

One then can find the average predictive error by the following:

Predave =
1

q

q∑
i=1

Predi, i = 1, 2, ..., q (11)

In ordinary least squares regression, this is very straightforward and simple to

compute. There are some diagnostic tools for finding the residual with the nth value

omitted. This is done by taking the residual for the nth observation from the OLS
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model, dividing by one minus the nth diagonal of the hat matrix, and then squaring

that quantity. If r is the vector of residuals and H is the hat matrix, then use:

(
rn

1−Hn,n
)2 (12)

Then, taking the sum of all the values and dividing by N to get the predictive error

for the qth response variable.

To do this in R, I will make use of the lm.influence call in the MASS package [10].

This package gives influence diagnostics for ordinary least squares models fitted by the

lm function in the stats package [7]. I am able to pull the hat matrix easily from the

influence function. Then take the average of the residuals divided by the hat matrix

diagonals (given from ”hat”) squared. A loop must be used for each response variable.

> example.data <- cbind(response, predictors)

> preError.lm <- lm(example.data[, 1:5] ~ example.data[, 6:25])

> preError <- rep(0, 6)

> for(i in 1: 5){

+ preError[i] <- sum( (preError.lm$residuals[, i] /

+ (1 - lm.influence(preError.lm)$hat))**2) /

+ 100

+ }

> preError[6] <- sum(preError[1:5] / 5)

> preError

[1] 0.38204778 0.09367968 0.05548279 0.03263117 0.01470052 0.11570839
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Here, preError[6] and preError.std[6 ] are the average of the predictive errors for

the 5 response variables. This is called preError in R because this is the predictive

error before running Curds and Whey.

With regards to the Predictive Error after Curds and Whey, due to the shrinkage,

I have not been able to find a quick method, and have had to resort to brute force by

running loops through to drop each observation and to fit a new model. This turns

into a process that is easily implemented into a function. This function will allow us

to output the error from the ordinary least squares regression as well as the predictive

error after Curds and Whey.

The code for the function is omitted, but the values of the ”preError” and ”postEr-

ror” were saved as example.preError and example.postError. I then put those into

a matrix called compare for easy comparison. One should see on the first line that

example.preError is exactly equal to preError.std from above. Then, one can compare

the predictive errors for ordinary least squares and for Curds and Whey (pre and post

error).

> preError

[1] 0.38204778 0.09367968 0.05548279 0.03263117 0.01470052 0.11570839

> example.preError

[1] 0.38204778 0.09367968 0.05548279 0.03263117 0.01470052 0.11570839

> compare

Ordinary Least Squares Curds and Whey

[1,] 0.38204778 0.27894416
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[2,] 0.09367968 0.08207534

[3,] 0.05548279 0.04317539

[4,] 0.03263117 0.02884861

[5,] 0.01470052 0.01325166

[6,] 0.11570839 0.08925903

For some perspective, one can look at the differences and percentages of change:

Difference Percentage

[1,] 0.103103617 26.987101

[2,] 0.011604345 12.387260

[3,] 0.012307408 22.182386

[4,] 0.003782560 11.591864

[5,] 0.001448858 9.855829

[6,] 0.026449358 22.858635

The difference column is the difference of the OLS prediction error and the Curds

and Whey prediction error. One can see that every value is positive, showing and

improvement for every predictor. The second column is the percentage of improvement

from the OLS to Curds and Whey procedure. (This is calculated by finding what

percentage the Curds and Whey error is from the OLS error, and subtracting that

from 1 to find the improvement, and then displayed as a percentage). The smallest

improvement is almost 10% in this scenario, with improvement increasing up to almost

27%.
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4 Real World Examples

4.1 Chemometrics

An example given by Breiman and Friedman [1] deals with chemometrics. In this

data set, take from [8]. There are 56 observations (N = 56), each with 22 predictor

variables (p = 22), and 6 responses (q = 6). The data were taken from a simulation of a

low density tubular polyethylene reactor. The predictor variables are all temperatures

measured at equal distances along reactor together with the wall temperature of the

reactor and feed rate. The responses are:

• y1: number-average molecular weight

• y2: weight-average molecular weight

• y3: frequency of long chain branching

• y4: frequency of short chain branching

• y5: content of vinyl groups

• y6: content of vinylidene groups

A log transformation was applied to all six response variables to correct for right-

skewness. The average absolute correlation of response variables is .48, but it can be

seen in the following table that y3 is more weakly correlated with the other variables.

In some cases, the correlation between y3 and the other variables is actually negative.

17



lr1 lr2 lr3 lr4 lr5 lr6

lr1 1.00000000 0.9566719 0.06507871 0.2543081 0.2551151 0.2591868

lr2 0.95667189 1.0000000 -0.12843581 0.2824976 0.2655915 0.2755877

lr3 0.06507871 -0.1284358 1.00000000 -0.4997273 -0.4839793 -0.4787396

lr4 0.25430811 0.2824976 -0.49972730 1.0000000 0.9744166 0.9782465

lr5 0.25511507 0.2655915 -0.48397932 0.9744166 1.0000000 0.9760463

lr6 0.25918676 0.2755877 -0.47873960 0.9782465 0.9760463 1.0000000

> chemo.compare

Ordinary Least Squares Curds and Whey

y1 0.5517121 0.5397667

y2 1.0996896 0.7647241

y3 0.2463759 0.2289689

y4 0.1188889 0.1046603

y5 0.2705596 0.1796938

y6 0.1813059 0.1388877

Ave 0.4114220 0.3261169

> chemo.compare2

Difference Percentage

y1 0.01194537 2.165145

y2 0.33496542 30.459998

y3 0.01740700 7.065220

y4 0.01422853 11.967928
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y5 0.09086581 33.584397

y6 0.04241816 23.395909

Ave 0.08530505 20.734198

> chemo.shrinkage

[1] 0.9934 0.9735 0.8644 0.1621 0.1293 0.0000

To visualize the results, I graphed the values of the prediction error along with a

line to indicate equal errors.
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As every value is below the line, it can be seen that each predictor and the average

all saw improvement. One can also see that y2 and y5 saw significant improvement.

y3, as might be expected due to its lower correlation did not see quite as high of an

improvement, and y1 did not improve very well either. Overall, though, there was an

average improvement of almost 21%. One can also see the shrinkage factors (8) that

were applied to the data listed below under chemo.shrinkage.

4.2 Automobile Data

The next data set is one that concerns different attributes of cars. For the predictor

variables, there are twenty-one variables, such as make of car, number of doors, type

of fuel, engine size, horsepower, cylinders, and a few others. These predictors include

factors as well as numeric values.

The response variables are:

• y1: Miles Per Gallon: City

• y2: Miles Per Gallon: Highway

• y3: Price

In this case, it seems intuitive that the two MPG responses will be correlated, but

One may want to check the overall correlation between all three variables.

MPG.City MPG.High price

MPG.City 1.0000000 0.9723499 -0.7026849

MPG.High 0.9723499 1.0000000 -0.7155898

price -0.7026849 -0.7155898 1.0000000
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So, one can see that the two MPG variables are highly correlated with each other,

and are highly negatively correlated with price. As bigger cars tend to be use more

fuel and are often luxury cars, they would be more expensive.

Running the analysis on this data as I did before yields the following results:

> auto.compare

Ordinary Least Squares Curds and Whey

City MPG 0.1571167 0.1557632

Highway MPG 0.1694486 0.1667852

Price 0.1304048 0.1289536

Ave 0.1523233 0.1505007

> auto.compare2

Difference Percentage

City MPG 0.001353513 0.8614701

Highway MPG 0.002663353 1.5717764

Price 0.001451179 1.1128264

Ave 0.001822681 1.1965871

> auto.shrinkage

[1] 0.9921 0.9154 0.6812

In this case, there is not a large improvement over the ordinary least squares re-

gression, but if one notices the shrinkage factors, it can be seen that there is not a lot

of shrinkage taking place. Still, there is a small improvement again across all of the
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response variables. It still can be noted that the prediction error for this data is small

even under ordinary least squares regression, so even a small amount of improvement

is worthwhile.

I ran a second analysis with a smaller set of predictors to see how much improvement

can be achieved. A few of the predictors seem likely to be directly tied to miles per

gallon, so they should be included. The new set of predictors then includes make, gas

type, engine size, weight, cylinders, fuel system, bore size, stroke, compression, power,

and rpm.

> auto.compare

Ordinary Least Squares Curds and Whey

City MPG 0.1562651 0.1558749

Highway MPG 0.1578281 0.1573520

Price 0.1555377 0.1551778

Ave 0.1565437 0.1561349

> auto.compare2

Difference Percentage

City MPG 0.0003901853 0.2496945

Highway MPG 0.0004761433 0.3016847

Price 0.0003599060 0.2313946

Ave 0.0004087449 0.2611060

> auto.shrinkage
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[1] 0.9956 0.9326 0.7544

Again, as may be the case with these data only, we do not see an incredible amount

of improvement over ordinary least squares regression, but we again do see improvement

in for every predictor. It does seem to lend evidence to the idea that the algorithm

returns more accurate results with a larger number of predictors. This of course can

be at least partially explained by the knowledge that more predictors always leads to

a more accurate prediction, though those extra predictors may only be modeling noise

in the data.

4.3 Teen Crime Data

The final data set deals with violent crimes committed by teens in all 50 states and

Washington D.C. The data was collected between the years of 1985 and 1993. It

contains many possible predictor and response variables, so I will list them all as xi

values. All the variables are as follows:

• x1: Percentage of Seniors that graduate from High School

• x2: Standardized transformation of Scoring Method used in Survey

• x3: Number of 1 to 14 year-olds in 1985

• x4: Number of 1 to 14 year-olds that died in 1985.

• x5, x6: x3 and x4 repeated but for 1991.

• x7, x8: Percentage of Kids living in Poverty in 1985, 1991 respectively.

• x9 to x19: Percentage of Kids living in Single Parent Families from 1983 through

1993 respectively.
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• x20 to x25: The Median income in 1987 through 1992 respectively.

• x26 to x33: Juvenile Violent Crimes per 100,000 people in 1985 to 1992.

A lot of research has been done on this data, and in a lot of circumstances, the

Juvenile Violent Crime rates have been the natural response variables. With this data,

I go through the data twice, once with all of the predictor variables to view the change

in predictive accuracy, and then once with a more specialized set of predictors.

Firstly, I run the Curds and Whey procedure trying to predict the Juvenile Crime

Rate using all of the other variables available. This yields:

> teen.compare

Ordinary Least Squares Curds and Whey

1985 1.3669879 0.9187600

1986 1.3781500 0.9715483

1987 1.4473000 1.0028335

1988 1.1187575 0.8797412

1989 1.1236404 0.8882148

1990 0.9926789 0.9158647

1991 0.8966329 0.8608297

1992 1.1402116 0.8899276

Ave 1.1830449 0.9159650

> teen.compare2

Difference Percentage

1985 0.44822787 32.789455
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1986 0.40660178 29.503448

1987 0.44446650 30.710046

1988 0.23901636 21.364447

1989 0.23542552 20.952035

1990 0.07681423 7.738074

1991 0.03580321 3.993073

1992 0.25028395 21.950659

Ave 0.26707993 22.575637

> teen.shrinkage

[1] 0.7493 0.6070 0.5509 0.0855 0.0000 0.0000 0.0000 0.0000

Thus again, there is improvement in every category, and some substantial improve-

ment on some years. It should be noted that 1990 and 1991 saw the least improvement,

which improvement is almost an order of magnitude less than the most improved. The

following graph shows, as it did with the chemometrics example, that each Curds and

Whey prediction has a smaller error than the OLS predictions.
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The second set to be tested includes only the predictors involving the percentage

of single parent households and median income. This returns the results:

Second Check:

> teen.compare

Ordinary Least Squares Curds and Whey

1985 0.6891016 0.6050609

1986 0.6968589 0.5983855

1987 0.7448917 0.6334626
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1988 0.6760759 0.5666972

1989 0.6171540 0.5428756

1990 0.5519348 0.5483529

1991 0.4643568 0.4708149

1992 0.7028250 0.5645866

Ave 0.6428999 0.5662795

> teen.compare2

Difference Percentage

1985 0.084040759 12.1956987

1986 0.098473403 14.1310394

1987 0.111429116 14.9591020

1988 0.109378696 16.1784633

1989 0.074278426 12.0356387

1990 0.003581946 0.6489799

1991 -0.006458074 -1.3907567

1992 0.138238388 19.6689632

Ave 0.076620332 11.9179266

> teen.shrinkage

[1] 0.8202 0.5936 0.5343 0.0000 0.0000 0.0000 0.0000 0.0000
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Again, it is seen that 1990 and 1991 do not receive the same improvement from

Curds and Whey as do the other years. In fact, in this case, the prediction for 1991 is

slightly worse than it was before. To try to understand what might be causing this, I

next looked at the correlation between the response variables:

JVCAR85 JVCAR86 JVCAR87 JVCAR88 JVCAR89 JVCAR90 JVCAR91

JVCAR85 1.0000000 0.9655667 0.9511003 0.9107886 0.8981195 0.9049542 0.9126092

JVCAR86 0.9655667 1.0000000 0.9763015 0.9413312 0.9417452 0.9506291 0.9490129

JVCAR87 0.9511003 0.9763015 1.0000000 0.9572283 0.9524495 0.9390007 0.9284937
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JVCAR88 0.9107886 0.9413312 0.9572283 1.0000000 0.9581374 0.9472979 0.9355166

JVCAR89 0.8981195 0.9417452 0.9524495 0.9581374 1.0000000 0.9425560 0.9390979

JVCAR90 0.9049542 0.9506291 0.9390007 0.9472979 0.9425560 1.0000000 0.9762858

JVCAR91 0.9126092 0.9490129 0.9284937 0.9355166 0.9390979 0.9762858 1.0000000

JVCAR92 0.9102105 0.9365655 0.9340547 0.9498841 0.9437584 0.9426121 0.9680579

JVCAR92

JVCAR85 0.9102105

JVCAR86 0.9365655

JVCAR87 0.9340547

JVCAR88 0.9498841

JVCAR89 0.9437584

JVCAR90 0.9426121

JVCAR91 0.9680579

JVCAR92 1.0000000

Some things that can be noticed is that 1990 and 1991 are more highly correlated

with each other than any other year.

In the end, the focus largely is on how the average improvement was fairly sub-

stantial (over 10%), and conclude that overall, Curds and Whey did provide a good

increase in prediction accuracy.
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5 Further Work

Being able to improve upon linear regression with multiple response variables opens

up possibilities for future work in other related areas in statistics. One possible field

is classification with linear or near-linear classifiers. As most linear classifiers perform

at a similar level, any amount of improvement may be a significant contribution to the

subject. With regards to what has been found thus far, more work can be done to

increase the utility of this procedure to include such things such as hypothesis tests.
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