DIFFERENTIAL ABSORPTION LIDAR FOR GREENHOUSE GAS MEASUREMENTS

Stephen E. Maxwell, Sensor Science Division, PML

Kevin O. Douglass, David F. Plusquellic, Radiation and Biomolecular Physics Division, PML

> Joseph T. Hodges, Roger D. van Zee Process Measurements Division, MML

Daniel V. Samarov Statistical Engineering Division, ITL

James Whetstone, Special Assistant to the Director for Greenhouse Gas Measurements

- Program & Project Objectives
- What is measured
- Background about LIDAR and Differential Absorption LIDAR
- Our Approaches
- Results and Current Status

CHALLENGES FOR GHG EMISSION MEASUREMENTS

Bottom-Up		Top-Down	
Electricity Generation	Agriculture Landfills Coal Mines	Forests & Woodlands	Satellite Observations
Stationary Sources	Distributed/Area Sources	Regional Sinks/Sources	International
0.005–0.05 km	0.5–5 km	10–100 km	100–1,000 km
CEM Technology • Gas Concentration Standards • Stack Gas Velocity Fuel Calculation- Based Approaches • Fuel Quantification • Fuel Property Analysis	Open Path Measurements • Optical Reference Data • Advanced LIDAR Methods	Atmospheric Monitoring • Optical Spectral Reference Data • Advanced Measurement Tools Surface-Based Networks • Gas Concentration Standards • Wind Velocity Standards	Size or Extend the Measurement Atmospheric Monitoring • Satellite Observations • Radiometry • Optical Spectral Reference Data • Microwave Standards • Atmospheric Transport Methods

Measurement Tools, Methodologies, Application Areas, and Spatial Scales

- Develop and validate advanced measurement tools that improve the quantitative determination of GHG sources and sinks and the accuracy of climate science measurements
- Deliverable: Transfer new, validated diagnostic and measurement technologies to the private sector and embody their methods in documentary standards.

Project Objectives – Diff. Absorption LIDAR

- Develop methods for accurately quantifying greenhouse gas emissions from natural and anthropogenic distributed sources and sinks.
- Develop an indoor testing facility to rigorously test hardware components and software algorithms in well quantified conditions.

SUPPORT MEASUREMENT BASED GHG INVENTORIES

GHG Flowrate (Flux)

 $\dot{m}_{\text{ghg}} = \sum \dot{m}_t x_{gi}$

Where: \dot{m}_t is total mass flow rate

 x_{gi} is relative abundance of ith gas

Inventory: Sum of continuous flux over a year (either emissions to or capture from the atmosphere)

For a flux measurement, both the density of GHG and its velocity are required, along with error contributions from both quantities.

- Construct prototype DIAL systems for the detection of GHGs from distributed area sources
 - 3 5 km range
 - ~10 meter spatial resolution
- Integrate DIAL concentration measurements with measurements of wind speed (Doppler LIDAR)
- Develop and assess GHG flux retrieval algorithms and understand measurement uncertainties

WHAT IS LIDAR?

- 4) A data system digitizes and stores the signals
- 5) Range is found from pulse time-of-flight (150 m/ μ s)

WHAT IS DIAL?

- 3) Exploit the fact that the ABSORPTION of trace gases (CO₂, CH₄, H₂O, etc) STRONGLY depends on wavelength
- Ratio of captured reflected light at two different wavelengths as a function of time reveals the density of the measured gas as a function of distance

ABSORPTION FEATURES RELEVANT FOR GHG DIAL

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Λ

DIFFERENTIAL ABSORPTION LIDAR (DIAL) CARTOON

ADVANTAGES OF OPERATION IN THE NEAR IR

- Eye safety
- Wide availability of laser sources
- High sensitivity detectors (PMT)
- COTS technology from telecom industry
- Relatively weak absorption strength means DIAL can probe longer distances
- Minimal water absorption

NIST ROAD MAP TO GHG REMOTE SENSING

LIGHT SOURCE: PULSED OPO LASER SYSTEM: RISTRA

Rotated Image Singly-Resonant Twisted RectAngle

200 MHz spectral linewidth

RISTRA Optical Parametric Oscillator Features

New technology

A tunable high energy laser source with good beam quality needed for long range remote sensing

 Wavelength ranges Signal 1595 nm – 1650 nm

Idler 2995 nm – 3082 nm

LIGHT SOURCE: PULSED FIBER AMPLIFIER

Repetition rate: 500 kHz (designed for short range) Mean power : 3W Peak power : 25-30W Energy/pulse : 6µJ

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce Provides a tunable high energy laser source with good beam quality needed for long range remote sensing AND ultra-portable, no alignment needed

SMALL-SCALE HARD-TARGET SYSTEM

OPTICAL LAYOUT: HARD-TARGET DIAL

FLOW CELL

COMPARISON OF HT DIAL TO NDIR MONITOR

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

NIST

ETALON-BASED HIGH-SPEED WAVELENGTH SWITCHING

MULTI-WAVELENGTH HETERODYNE DIAL CONCEPT

- Produce multiple wavelengths simultaneously across the absorption line of
- Heterodyne detection puts each frequency point (black dot) on the absorption curve into a separate detection channel.

THE 2ND PARAMETER – WIND SPEED MEASUREMENT

- A 2 mph (1 m/s) wind velocity yields a 1 MHz Doppler shift at 1.6 mm
- Doppler shift can be measured using heterodyne techniques or by exploiting filter properties of Fabry-Perot cavities.

Several approaches are being pursued:

- 1. OPO laser system
- 2. Fiber amplifier system
- 3. Commercially available systems
- \rightarrow We estimate 5 10 mph resolution limit
- \rightarrow 2 mph resolution limit
- \rightarrow 2 mph resolution

NIST DIAL TEST FACILITY CONFIGURATION

RESULTS AND SUMMARY

- Designed and constructed two prototype DIAL systems for the detection of GHGs from distributed area sources
 OPO operating at 100 Hz
 - Fiber based amplifier operating at 500 kHz
- Developed new methods to perform rapid sequential scans for direct detection and single pulse multi-l scans for heterodyne detection.
- Developing an indoor test facility for characterization of the DIAL system in a controlled environment.
- Goal is to move system outside to characterization of GHG densities and fluxes at the few km scale