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ABSTRACT 

Forensic and Anti-Forensic Techniques for Object Linking and  

Embedding 2 (OLE2)-Formatted Documents 

 

 

by 

 

Jason Daniels, Master of Science 

 

Utah State University, 2008 

 

Major Professor: Dr. Robert F. Erbacher 

Department: Computer Science 
 

 

Common office documents provide significant opportunity for forensic and anti-

forensic work.  The Object Linking and Embedding 2 (OLE2) specification used 

primarily by Microsoft’s Office Suite contains unused or dead space regions that can be 

overwritten to hide covert channels of communication.  This thesis describes a technique 

to detect those covert channels and also describes a different method of encoding that 

lowers the probability of detection.  

The algorithm developed, called OleDetection, is based on the use of kurtosis and 

byte frequency distribution statistics to accurately identify OLE2 documents with covert 

channels.  OleDetection is able to correctly identify 99.97 percent of documents with 

covert channel and only a false positive rate OF 0.65 percent.   

The improved encoding scheme encodes the covert channel with patterns found in 

unmodified dead space regions.  This anti-forensic technique allows the covert channel to 
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masquerade as normal data, lowering the probability that any detection tool is able to 

detect its presence. 

(132 pages) 
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CHAPTER 1 

INTRODUCTION 

1.1 Forensic Computing 

Stated simply, forensic computing is the science of collecting, discovering, and 

preserving digital data for use in court or in the protection of businesses, public entities, 

and private individuals.  Put differently, “…computer forensics is considered to be the use 

of analytical and investigative techniques to identify, collect, examine and preserve 

evidence/information which is magnetically stored or encoded” [7:1]. 

 Forensic computing is a multi-discipline science in which computer science joins 

forces with information systems, law enforcement, the legal community, and social 

science [2].  In addition, businesses, the military, academics, and individuals use forensic 

computing for their own purposes [2].  The forensic computing community has defined 

several models with which to handle digital devices involved in an investigation. 

Generally the approach is as follows [2, 21]:  

1. Identification 

2. Preparation 

3. Approach of strategy 

4. Preservation 

5. Collection 

6. Examination 

7. Analysis 

8. Presentation 

9. Return of evidence 

 

 The overarching goal is to provide evidence proving the innocence or guilt of a 

party.  A large part played by the computer science discipline, however, is the 

development of tools that enable investigators to examine and analyze (steps 6 and 7) the 
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collected data.   Computer forensics specializes in finding digital data to assist in an 

investigation.  However, this is not an easy task. Creating steganographic techniques, 

performing encryption, and the large amount of disk space that needs to be searched are 

by no means trivial tasks. In fact, much research has been done around the detection of 

stenographic algorithms and finding hidden data files in large disk spaces [9, 12, 14, 19, 

26]. 

1.2  Anti-Forensics 

Anti-forensics is the science of avoiding the detection of incriminating data either 

by destroying it entirely or hiding it from an investigator.  Anti-forensic techniques can 

be broken into four different categories: destroying evidence, hiding information, 

elimination of sources, and counterfeiting evidence [13, 22].   

The destruction of evidence can be either a physical or logical destruction. While 

the preferred method is to use a grinder on the hard drive platters, physical destruction 

may also include other methods, such as using a magnet to destroy a hard drive. 

Whatever the method of choice, the result is the same: making retrieval of information 

impossible.  Logical destruction wherein the incriminating bytes are overwritten with 

random bytes is also a highly effective means of making data retrieval impossible.  When 

the data is destroyed, forensic attempts to collect the evidence is obviously hampered. 

Hiding evidence of foul play or other data is applicable for hacked servers or data 

on a local computer.  Techniques used to hide the presence of a hacked machine include 

modifying logs, applications, runtime-libraries or even the operating system itself, 

preventing incriminating evidence to be returned, and thus making the system appear as if 
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it had never been compromised [5].  Additional anti-forensic methods conceal the 

existence of illegal data on a local machine owned by a criminal.  Most of these methods 

covertly hide data in non-portable ways directly on the hard drive.  These include the use 

of slack space between partitions, using the hidden protected area (HPA) sector, the 

creation of bad sectors on the hard drive and the storage of data on those sectors, or even 

the creation of second hidden OS [1].   

Portable digital documents can also be used to hide the presence of data via 

encryption, masquerading, or steganography.   Encryption shows the existence of data, 

but if done properly, encryption can prevent the actual data from ever being recovered.   

Files masquerading as other documents can be achieved as simply as changing the 

extension of the file (e.g. jpg to txt), or more sophisticated schemes can be employed to 

place the data in other documents, append it to the end of an executable [9].  

Steganography or the hiding of data in some cover medium creates a stego medium that 

on cursory inspection will appear to have not been tampered with or to have anything 

notably wrong about the file – despite the hidden data [23].  The locations and ways data 

is hidden inside other media is called a covert channels and has a defined maximum 

hiding capacity [18]. 

The elimination of sources can be simply the fact that data is never recorded – 

digitally or otherwise.  The counterfeiting of evidence is the modification of the files to 

incriminate someone besides the defendant. Examples of this may include simply the 

recording of misleading information or the modification of files (e.g., modifying the last 

modified date, or changing the metadata in a Word document) 
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1.3  Forensic Computing with OLE2 

Documents 

Programmatic features of an application can assist in forensic computing. An 

example may include an application maintaining meta-data on a document or tracking 

how a document changes.  This meta-data or change tracking can contain specific 

information about the creator of the document, track when and by whom it is updated, 

and even track the actual changes that were made.  A prime example is the use of the 

tracking feature. Many companies and individuals have been put in the hot seat when the 

tracked changes were brought to light [11, 31].   

Most of the undesired outcomes from the use of this meta-data have been passive 

in their creation and usually have resulted from a misunderstanding of the features of the 

applications by users.  However, there are other users that aggressively manipulate 

documents to hide information and use said documents to covertly communicate sensitive 

information without being detected by authorities.  Recently, a new technique for 

implementing data hiding was developed that finds slack or unused space in the 

document and then encodes a covert channel of hidden data without any visual indication 

the file has been tampered with.  This technique was developed for the Microsoft OLE2 

format, which is used in Microsoft (MS) Word, MS Excel, and MS PowerPoint 

documents [6]. 

This new data hiding technique provides a big problem for investigators and 

employers.   Employees or criminals may prevent an investigator or employer from 

discovering covert plans, shared industrial secrets, or other illegal activity by simply 

hiding information in a common document format used on most computers.  An 
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employee could send confidential information out of the company and leave no clue of 

the illegal activity.  Although there are no visual clues of data being hidden, there still 

exist telltale signs that can be used to potentially detect the modified documents. 

This thesis a) presents a statistical-based detection tool to find the presence of 

covert channels in OLE2-formatted documents and b) introduces an improved method of 

encoding covert channels that lowers the probability of detecting hidden data. 

A guide to the rest of this thesis: Chapter 2 reviews related works, Chapters 3, 4, 

and 5 review the OLE2 format and statistical properties.  Chapter 6 focuses on an anti-

forensic technique for improving data hiding.  Chapter 7 reviews the forensic computing 

experiments and results of detecting hidden data.  Chapters 8 and 9 present future works 

and the conclusion.  
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CHAPTER 2 

RELATED WORK 

Information hiding occurs in various digital mediums: file systems, networking 

protocols, and digital documents.  There is a large body of research and development that 

exploits the ability to hide information in images [29], audio files [32], executables [8], 

and movie files [30].  However, comparatively little work has been done regarding hiding 

data in common office documents.    

Cantrell et al. [4] and Byers [3] explored the ability to hide information in MS 

Office documents and found ways to hide information in the metadata sections of the 

documents.  This method works, but is easily detected. Research in this area points out 

that large sections of documents are uniformly 0x00 or 0xFF, however; any time those 

sections are exploited, the document becomes corrupt and cannot be reopened in the 

native MS Office application.  Contrell et al. [4] specifically point out that nearly all 

types of documents are vulnerable to inserting data past the end of the EOF marker, in 

which case the documents can still be reopened.   

Tsung-Yuan et al. [17] introduce a steganographic method of hiding data in 

Microsoft documents by using the tracking mechanism available in Microsoft Word.  

Using a synonym dictionary with the track changes feature, one is able to make the 

document appear as though it had simply been through several editorial revisions when in 

reality, the tracked changes are hidden data. 

A paper by Castiglione et al. [6] presents StegOlè, a method of hiding data in the 

unused sectors of the Microsoft compound document file format, otherwise known as the 
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OLE2 Compound Format.  This methodology is based on the fact that the document 

format uses fixed 64- and 512-byte sector sizes, some of which are left in unused sections 

of the document.  Using the file’s index or section allocation table (SAT), unused sectors 

are identified and overwritten without negatively impacting the visual or functional 

aspect of the document.  After the cover document is modified into a stego-document, the 

file may continue to be the same size and can be opened by the native application.  A 

combination of compression, AES encryption, and an SHA-1 hash are used in 

combination to maximize space, secrecy, and message verification on extraction 

Existing detection tools concentrate on finding hidden information on file systems 

[10], images [12], video files [28], executables [15], databases [20], and networks [27].  

Currently, there are no known techniques for detecting covert channels in common office 

documents.   

At the time of the original literature search for this thesis, December 2006 and 

January 2007, only a minimal amount of research had been published on creating covert 

channels in OLE2 formatted documents.   In fact, Cantrell et al. [4] and Byers [3] were 

the only known articles hiding data in MS Office documents.    However, the work in [3 

and 4] resulted in corrupt files native applications could not open.   Shortly after doing 

reviewing the literature, I started developing of a data-hiding tool for OLE documents, 

and eventually I successfully implemented a data-hiding scheme.  The developed 

algorithm is able to encrypt and embed, and then extract and decrypt any message into an 

OLE2-formatted document.   The modified document file size is not modified nor is the 
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look of the document impacted; furthermore the document’s integrity is not 

compromised, allowing the file to be opened by its native application.   

In September 2007, I looked for additional research articles and found [6] by 

Castiglione.  The article introduced StegOlè, which implements essentially the same 

algorithm I had developed.  There are some minor feature differences between the two 

implementations, but the core idea of finding and overwriting unused sectors is identical.  

Even though both methods were developed independently of each other, because StegOlè 

was developed and published first, this work uses it as the reference implementation.  

Specifically, StegOlè adds covert channels for testing my detection tool and provides a 

base from which to lower the detection rate of my encoding even further. 

 The work for this thesis goes beyond the work done by StegOlè.  In the current 

work, I develop and implement a detection tool for finding any OLE2 document 

containing a covert channel.  The rest of this thesis is organized as follows. After 

showing how the covert channels are detected, I propose new encoding techniques that do 

a better job of lowering the detection rate. Chapters 3 through 5 provide a review of the 

used statistical methods and the OLE2 format. Chapters 6 and 7 discuss the details and 

results of the detection tool and encoding schemes. Chapter 8 presents future work in this 

area.  Finally, Chapter 9 gives the conclusion. 
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CHAPTER 3 

COVERT CHANNELS IN OLE2-FORMATTED DOCUMENTS 

This thesis focuses on the detecting data hidden in unused portions of the OLE2 

format and improving that method to decrease the ability to detect the covert channel.  

The following sections introduce the StegOlè algorithm, the stegomedia detection, and 

my proposed modification to the StegOlè algorithm to decrease its detectability. 

Microsoft Office Suite uses the Object Linking and Embedding 2 (OLE2) as its 

Compound Document format.  The power of this format is the ability to contain multiple 

document types within a single file, allowing a single application to embed the contents 

of different applications.   The format is entirely structured around the idea of sectors and 

streams.  An OLE2 document has multiple streams representing the different objects 

embedded in the document.  Each stream, and the file as a whole, is partitioned into 512- 

byte sectors. In other words, regardless of the actual data size, the file size is always a 

factor of 512.  

A master table identifies each of the streams and the starting sector.  To manage 

which sector belongs to which stream, a summary information stream maintains a block 

allocation table (BAT).   This BAT is essentially an array of 4-byte integers that represent 

each sector in the document.   Often, a block is unused and is identified with a -1; other 

valid entries maintain a linked list of sectors.  Basically, each entry contains the next 

sector number in the stream.  The terminating sector can be identified by the -2 as the 

value of the entry in the BAT.  
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Creating covert channels in the OLE2 format takes advantage of properties of this 

format: the fix sector size and the unused sectors.   Often, a particular stream does not 

terminate on exactly the 512 byte boundary. In such cases, the space between the end of 

the stream and the sector can safely be overwritten.   When a sector is discovered as 

unused, it is also considered as dead space in the BAT, and that particular sector can be 

entirely overwritten with no fear of overwriting valid data.  



11 

 

CHAPTER 4 

A STATISTICAL APPROACH TO DETECTING COVERT CHANNELS  

4.1 Statistical Methods for Identifying 

Unknown Files 

 Research has shown how unknown files can be identified using statistical 

analysis.  Using byte frequency analysis and byte frequency correlation combined with 

file header/trailer techniques, McDaniel et al. achieved a 95.6 percent detection rate [16].  

Kolter et al. provide a method of detecting unknown malicious code in executables using 

machine learning with boosted decision trees.  By using 500 n-grams or data points from 

the byte code, Kolter et al. were able to gain a 98 percent detection rate and a 0.5 percent 

false positive detection rate [15].  Karresand et al. showed the use of a byte frequency 

distribution of a sliding and its derivative to be effective in uniquely identifying different 

types of documents [14].  Erbacher et al. showed that data types contained within a file 

can be potentially identified using kurtosis, byte averages, standard deviations, and 

standard deviation averages [9].  The current work builds on previous work using 

statistical analysis to identify covert channels inserted into OLE2 formatted documents. 

4.2 Detecting Covert Channels  

The manner in which StegOlè hides data and the format of OLE2 documents 

allows for a unique approach for detection.   The covert channel is not actually encoded 

as part of the existing data; rather, it is hidden in unused portions of the document.  This 

method of hiding data coupled with the fact that OLE2-formatted documents are 

guaranteed to be split into 512 sections byte allows the use of sliding window statistical 
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analysis to locate any stegomedia.  Based on previous research, at the start of this project, 

my expectation was that a statistical analysis would be able to correctly identify files 

modified to hide data.  I used two statistical analysis techniques to analyze each window, 

viz., byte frequency distribution (BFD) [14] and kurtosis [9], both of which have been 

used successfully in file type identification.  I identified and chose these particular 

measurements based on the work and analysis done by Kerrasand [14] and Erbacher [9]. 

As is demonstrated in this thesis, choosing these methods was an apt decision.     

4.3 Kurtosis 

Often used to identify unknown data, kurtosis is a statistical algorithm used to 

show the peakedness of a set of data.  Higher kurtosis values indicate large swings in the 

data’s values, as opposed to more consistent data which have lower kurtosis values.  Used 

by Erbacher in 2007 [9] to efficiently detect file types, it is calculated by multiplying the 

number of elements in the data set by the sum of the difference between the average 

value taken to the 4th power.  This total is divided by the square of the sum of the 

difference between the average value and each element take to the 2nd power. 

 

            

(1)
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4.4 Byte Frequency Distribution 

The second statistic used to detect the existence of convert channels is the byte 

frequency distribution (BFD).  First presented by Karresand et al. in 2006, the BFD is a 

method of creating a unique numerical representation of a distribution of a set of bytes 

[14].  This statistic is exactly what is says it is, a distribution of the number of times each 

byte value is encountered in a set of data. The result is a distribution with 2
8
 or 256 

entries, the maximum value for a byte.  Averaging multiple distributions of the same type 

of data creates a mean distribution and corresponding standard deviation distribution.  

The combination of the distribution of mean values and standard deviations define what 

is called a centroid, or a fingerprint of sorts that is theoretically unique for that particular 

type of data.  

Given a centroid and any particular BFD, just how closely the two are related can 

be calculated by determining the distance between the two with a quadratic formula. The 

quadratic formula in essence is the sum of distances between each byte value count, 

weighted by the standard deviation.  Hence, the more consistent the data (lower standard 

deviation) the more weight that particular value will weigh into the measurement.   In 

more detail, the difference is taken between the window byte count (si) and the mean of 

the Centroid (ci).  The difference is squared and divided by the corresponding standard 

deviation (sigmai).  A smoothing factor (alpha) is added to the standard deviation to avoid 

division by 0 errors.  The resulting value is then summed up with the distances for each 

value in the distribution.    
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(2)

 

 

4.5 Summary 

I use these statistical algorithms together on each sliding window to create a 

unique numerical representation of the data.  Called WindowPrints, these representations 

are similar to fingerprints in that they have multiple points of reference for determining 

uniqueness.   Comparing the distance between the pre-calculated WindowPrints for 

StegOlè data with those from other documents being analyzed determines if the said 

documents contain covert channels.  
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CHAPTER 5 

STATISTICAL PROPERTIES OF OLE2-FORMATTED DOCUMENTS 

5.1 The Data Set 

As stated earlier, OLE2 specifies a compound document format that allows a 

single file to contain many other files, such as images, data, sound, etc.  The common 

office documents created by the Microsoft Office, e.g., Word, Excel, PowerPoint, are 

implementations of this specification.  Because the principals and techniques identified 

here are applicable across the board to all documents that use the specification, the data 

used for experiments and analysis here come primarily from MS Word documents.  In 

addition, I collected representative datasets for Excel and PowerPoint documents for a 

smaller set of experiments. 

 Each set of documents gathered for these experiments was randomly collected 

from various websites and varies in size and content.  I collected a total of 293 MS Word 

documents, ranging in size from 20.5 kilobytes to 4,858 kilobytes.  The contents of the 

documents range from primarily text to forms with several tables, while others contain 

images of various sizes.  To determine the impact caused by specific data, two additional 

Word documents were created and tested separately from the larger dataset, one 

containing only images and one with only embedded OLE objects.  The PowerPoint 

dataset contains 99 documents ranging in content and size from 26.5 to 31,148 kilobytes.  

The Excel data set contains 109 files ranging in size from 10.0 to 8,108 kilobytes. 

5.2 The Payload 

 StegOlè requires the hidden message be entered as text from the command line, 
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because of this limitation all the experimentation done with text data (see Figure 1).   The 

algorithm can easily be modified to encode other types of data, Table 1 shows that after 

encryption, these other types of data also share very similar kurtosis and BFD properties.  

The kurtosis value vary from the text value be less the 0.63 percent and the BFD distance 

only differs by less the 1.45 percent.  These results show that as long is encryption is 

being used, the experiments and results explained are agnostic to the type of data being 

hidden. 

5.3 Experiments with the Kurtosis 

Statistic 

 To begin, let us do an overview of the kurtosis values found in an OLE2 

document and how they change when the documented are modified by StegOlè.  Based 

on the OLE2 specification to use 512-byte blocks, a 512-byte sliding window is applied 

to both an  

 

 

Figure 1. Sample of payload data used in experiments 

 

Table 1.  Kurtosis and BFD Comparisons with Different Data 

Average 

Kurtosis

Percent 

Difference 

from Text 

Data

Average BFD 

Distance

Percent 

Difference 

from Text 

Data

Text  Data 1.803 -- 468.580 --

Bitmap Data 1.795 0.45% 473.912 1.14%

JPG Data 1.813 0.53% 475.380 1.45%

MP3 Data 1.792 0.63% 466.849 0.37%  

2   Byte Payload:   ‘:)’ 

16  Byte Payload:   ‘16_This paper is’ 

32  Byte Payload:   ‘32_This paper is intended to exp’ 

64  Byte Payload:   ‘64_This paper is intended to explain the configuration and usage’ 

128 Byte Payload:   ‘128_This paper is intended to explain the configuration and usage  

                     of the Log Miner featureThis paper is intended to explain the ‘ 
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unmodified Word document and then the same document after it has been modified by  

StegOlè to contain hidden data.  The kurtosis value is calculated for each window and 

mapped next to each other.  When comparing the two side by side, differences in the 

kurtosis indicate sectors containing hidden data.   

 

Table 2 illustrates this. The highlighted sections wherein the kurtosis differ are those 

sections that have been modified to create the covert channel, in other words to contain 

the hidden data. 

 The highlighted windows, 80, 120, and 129, indicate hidden data.  Further 

analysis shows that if the entire 512 bytes are overwritten, the kurtosis value will be on  

 

Table 2. Kurtosis Values for Original and Modified Document with 512-byte Sliding 

Window. 

Window 

Count 

Original 

Document 

Tampered 

Document Difference 

77 8.313 8.313 0.000 

78 3.138 3.138 0.000 

79 8.798 8.798 0.000 

80 24.975 1.852 -23.123 

81 4.450 4.450 0.000 

82 7.885 7.885 0.000 

83 0.000 0.000 0.000 

…. … … … 

118 6.281 6.281 0.000 

119 26.315 26.315 0.000 

120 4.692 2.119 -2.573 

121 3.220 3.220 0.000 

122 3.722 3.722 0.000 

123 4.445 4.445 0.000 

124 6.360 6.360 0.000 

125 4.496 4.496 0.000 

126 6.017 6.017 0.000 
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127 7.692 7.692 0.000 

128 10.197 10.197 0.000 

129 11.566 9.527 -2.040 

130 2.668 2.668 0.000 

average 1.804 with a standard deviation of 0.039.   The windows with different kurtosis 

values do not land within the expected range (e.g. window 129).  Instead, they are only 

partially overwritten with hidden data.   This is confirmed when the kurtosis value is 

calculated with a 64-byte sliding window.  The comparison of the unmodified and 

modified documents illustrate how only 64 bytes of the 512 bytes are overwritten with 

hidden data.  For example, window number 129 in Table 2 has a kurtosis value of 9.527, 

which is different from the original document but still outside the expected range. 

 

5.4 Experiments with Byte Frequency 

Properties  

 The byte frequency distribution is a good mechanism for viewing a profile of the 

data contained in a document.  The real usefulness of the BFD is when centroids [14] are 

created with specific data.  Using the BFD distance calculation, one can determine how 

closely other sections of data may or may not be related to a given centroid. To showcase 

what different BFDs look like, I created several centroids from different data, including 

an entire Word document, StegOlè, standard text, and JPG data.  Figure 2 gives a profile 

of an entire OLE2 Word document composed entirely of text and one composed only of 

images.  In the end, the type of data contained in the document does not affect the ability 

to hide or detect information. 

Figure 2 shows the average number of byte values found in the 512-byte sliding 

windows of a Word document.  It also shows a concentration of byte values around the 
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lower case alphabet ASCII values, with a spike at byte value 30 for the ASCII space 

character. There is also a smattering of upper case ASCII characters, between 65 and 90.   

 

Figure 2. Graph of byte frequency distributions for Word documents.  

 

This is expected for a Word document composed primarily of text.  An interesting 

characteristics of this centroid is the incredibly high count of byte value  0 (average of 

222 and a standard deviation of 190) and the generally lower value of all the other byte 

values.  While this is a general view of the byte distribution, it is not consistent through 

the entire document, showcased by the standard deviation for each byte value, which is 2-

4 times higher then the mean, indicating high of variance between the different windows.  

Figure 3 presents an excerpt of an existing Word file and shows a side by side 

comparison of the original document and the same document containing a covert channel.  

Note the high variability of byte values, especially in the unseen used sections of the 
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document.  This excerpt also shows how sometimes the unused section is simply filled 

with zeros. 

 When a centroid is calculated for a specific type of data, the BFD values 

normalize, and lower standard deviations emerge. As shown in Figure 4, the distribution 

for text appears as expected with a concentration around the alphabet and space ASCII 

values, while the StegOlè data and JPG data are fairly evenly distributed across all values.  

When mapping the values next to each other, I unexpectedly discovered that the binary 

distributions for the two are very similar.  

 To generate the centroid for the covert channels created by StegOlè requires 

several steps.  First, because each modified document only has two modified sectors, I 

modified multiple documents to contain hidden data.  Then, I extracted 512-byte window 

sections from those documents by using the technique to identify the covert channel 

sections (see Section 5.2).  The resulting centroid is subsequently generated by 

calculating the mean and standard deviation of those harvested windows.  See Figure 4 

for a visual representation of the StegOlè centroid.  When the BFD distance between the 

StegOlè Centroid and each sliding window in a Word document is taken, the distances 

will generally vary from the 400s for similar data to 8.38x10
10

 for dissimilar data.  In this 

thesis, future references to the BFD distance indicate distances between the StegOlè 

centroid and a given data set.  

 Experiments using 64-byte sliding windows did not yield any interesting data. I  

found that when windows smaller than 512 bytes are used, there just is not enough data to 

generate a distribution with any interesting characteristics.  This supports the conclusion 
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made by Kerresand et al. [14] to not use windows smaller then 512 bytes. 

 

5.5 Dead Space Properties of OLE2 

Documents   

 My original research created an algorithm to find within dead space regions of the 

OLE2 format vulnerable sections that can be overwritten without affecting the 

document’s integrity.  The development of this algorithm is based on POI File System 

(POIFS) [24], an open source, Java-based implementation of the OLE2 format.  By 

leveraging this tool, the Section Allocation Table (SAT) is read and the dead space sectors 

can be identified.  This algorithm developed independently of StegOlè, identified nearly 

all the same dead space sectors that StegOlè uses to hide data. These sectors, referred to 

as dead space, exist in every OLE2 Document that has been examined.  Analysis of 293 

randomly collected word documents (see Figure 5) show there is an average of 1699.8 

bytes (7680 bytes maximum and 368.64 bytes minimum) of dead space per file that can 

be overwritten without increasing the file size.  A significant observation is the lack of 

correlation between the size of the file and the amount of dead space in a given file. 

5.6  Similarity between 

PowerPoint and Excel 

Documents 

Further analysis of other document types using the OLE2 format, shows similar patterns 

to those in Word documents.  Figure 6 shows a comparison of the average dead space and 

number of dead space regions in a set of Word, Excel, and PowerPoint documents.  The 

Word data set is as described in Section 5.1, the Excel and PowerPoint datasets are 
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composed of 103 and 99 randomly collected documents, respectively.  Figure 6 also 

includes sample Word documents containing specific data, one only with images and the 

other containing only embedded OLE objects.  Other than PowerPoint documents which 
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Figure 3. Character data dump from original Word document (left) and altered Word 

document (right). 

|od --format=c  -Ad --width=8             || od --format=c  -Ad --width=8    | 

|   --skip-bytes=37392                    ||    --skip-bytes=37392           | 

|   --read-bytes=7024                     ||    --read-bytes=7024            | 

|   --output-duplicates                   ||    --output-duplicates          | 

|   testing_doc_109_orig.doc              ||    testing_doc_109_tampered.doc | 

| Byte  |                                 ||      Tampered Document with     | 

|Offset |     Original Document           ||       a Covert Channel          | 

 0037520       T   h   e       t   r   a  ||        T   h   e       t   r   a 

 0037528   n   s   c   r   i   p   t   i  ||    n   s   c   r   i   p   t   i 

 0037536   o   n       w   a   s       d  ||    o   n       w   a   s       d 

 0037544   o   n   e       b   y       W  ||    o   n   e       b   y       W 

 0037552   e   s   l   e   y       J   o  ||    e   s   l   e   y       J   o 

 0037560   h   n   s   t   o   n       (  ||    h   n   s   t   o   n       ( 

 0037568   w   w   j   o   h   n   s   t  ||    w   w   j   o   h   n   s   t 

 0037576   o   n   @   a   o   l   .   c  ||    o   n   @   a   o   l   .   c 

 0037584   o   m   )   .  \r  \r  \r  \0  ||    o   m   )   .  \r  \r  \r  \0 

 0037592  \0  \0  \0  \0  \0  \0  \0  \0  ||   \0  \0  \0  \0  \0  \0  \0  \0 

 0037600  \0  \0  \0  \0  \0  \0  \0  \0  ||   \0  \0  \0  \0  \0  \0  \0  \0 

 0037608  \0  \0  \0  \0  \0  \0  \0  \0  ||   \0  \0  \0  \0  \0  \0  \0  \0 

 0037616  \0  \0  \0  \0  \0  \0  \0  \0  ||   \0  \0  \0  \0  \0  \0  \0  \0 

              ......                      ||             ...... 

              ......                      ||             ...... 

 0042792  \0  \0  \0  \0 350  \0  \0  \0  ||   \0  \0  \0  \0 350  \0  \0  \0 

 0042800  \0  \0  \0  \0  \0  \0  \0  \0  ||   \0  \0  \0  \0  \0  \0  \0  \0 

 0042808  \0 350  \0  \0  \0  \0  \0  \0  ||   \0 350  \0  \0  \0  \0  \0  \0 

 0042816  \0  \0  \0  \0  \0  \0 350  \0  ||   \0  \0  \0  \0  \0  \0 350  \0 

 0042824  \0  \0  \0  \0  \0  \0  \0  \0  ||   \0  \0  \0  \0  \0  \0  \0  \0 

 0042832  \0  \0  \0 341  \0  \0  \0  \0  ||   \0  \0  \0 341  \0  \0  \0  \0 

 0042840  \0  \0  \0  \0  \0  \0  \0  \0  ||   \0  \0  \0  \0  \0  \0  \0  \0 

 0042848 337  \0  \0  \0  \0  \0  \0  \0  ||  337  \0  \0  \0  \0  \0  \0  \0 

              ......                      ||             ...... 

              ......                      ||             ...... 

 0042944  \0  \0  \0 001 017  \0  \0 004  ||   \0  \0  \0 001 017  \0  \0 004 

 0042952  \0  \0 022   d   h 001 001  \0  ||   \0  \0 022   d   h 001 001  \0 

 0042960  \0  \a  \0  \0 003   $ 001 022  ||   \0  \a  \0  \0 003   $ 001 022 

 0042968   d   h 001 001  \0   a   $ 001  ||    d   h 001 001  \0   a   $ 001 

 0042976  \0  \b  \0  \0 021 204 320 002  ||   \0  \b  \0  \0 021 204 320 002 

 0042984 022   d   h 001 001  \0   ` 204  ||  022   d   h 001 001  \0   ` 204 

 0042992 320 002  \0 005  \0  \0  \r 306  ||  320 002  \0 005  \0  \0  \r 306 

 0043000 005  \0 001 260 023  \0  \0 026  ||  005  \0 001 260 023  \0  \0 026 

 0043008 034  \0 037 260 320   /     260  ||  034  \0 037 260 320   /     260 

 0043016 340   =   ! 260  \b  \a   " 260  ||  340   =   ! 260  \b  \a   " 260 

 0043024  \b  \a   # 220 240 005   $ 220  ||   \b  \a   # 220 240 005   $ 220 

 0043032 240 005   % 260  \0  \0  \0  \0  ||  240 005   % 260  \0  \0 265 232 
 0043040  \0  \0  \0  \0  \0  \0  \0  \0  ||  305 272   +   L 334 207   |   K 

 0043048  \0  \0  \0  \0  \0  \0  \0  \0  ||  234 371 204   + 346   F   - 274 
 0043056  \0  \0  \0  \0  \0  \0  \0  \0  ||  306 245 355 250 002 350 022 017 

 0043064  \0  \0  \0  \0  \0  \0  \0  \0  ||  001   2   j   Y 260  \r 222   9 
 0043072  \0  \0  \0  \0  \0  \0  \0  \0  ||    4   | 370   G 200   = 364 362 

 0043080  \0  \0  \0  \0  \0  \0  \0  \0  ||    ]   | 001 371 362 264 226  \b 
 0043088  \0  \0  \0  \0  \0  \0  \0  \0  ||  025   x 006 321 362   A 024   ( 

              ......                      ||             ...... 
              ......                      ||             ...... 

 0043496  \0  \0  \0  \0  \0  \0  \0  \0  ||  231   Q 030 351 225   ( 251 202 
 0043504  \0  \0  \0  \0  \0  \0  \0  \0  ||  336   ~   q 016 227   G 303 

 0043512  \0  \0  \0  \0  \0  \0  \0  \0  ||    ]  \a   ,   # 227 222 204   a 

 0043520 024  \0 021  \0  \n  \0 001  \0  ||  024  \0 021  \0  \n  \0 001  \0 

 0043528   i  \0 017  \0 003  \0  \0  \0  ||    i  \0 017  \0 003  \0  \0  \0 

 0043536 004  \0  \0  \0  \0  \0   0  \0  ||  004  \0  \0  \0  \0  \0   0  \0 

 0043544  \0   @ 361 377 002  \0   0  \0  ||   \0   @ 361 377 002  \0   0  \0 

 0043552  \f  \0 006  \0   N  \0   o  \0  ||   \f  \0 006  \0   N  \0   o  \0 

 0043560   r  \0   m  \0   a  \0   l  \0  ||    r  \0   m  \0   a  \0   l  \0 

 0043568  \0  \0 002  \0  \0  \0 020  \0  ||   \0  \0 002  \0  \0  \0 020  \0 

 0043576   _   H 001 004   m   H  \t 004  ||    _   H 001 004   m   H  \t 004 

              ......                      ||             ...... 
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Figure 4. Byte frequency distribution for different text, StegOle covert channel and JPG. 

 

Figure 5. Available dead space (KB) in Word documents. 
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which generally contain more dead space and more dead space regions than other types 

of documents, the patterns of available dead space generally match those found in the 

larger dataset.  This additional space found in PowerPoint documents is a bonus, as it 

increases the potential payload.  Unlike a PowerPoint document, even though a Word 

document with only embedded OLE objects has more dead space and a few more dead 

space regions than typical Word documents, it still falls within the norm of Word 

documents.   Thus, collecting and enumerating this data demonstrates that each document 

type is uniquely vulnerable to containing covert channels.  While a particular document 

type or data type may result in a higher capacity for the covert channel, all will be able to 

contain hidden data that will not affect the behavior or functionality of the document 

itself. 
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Figure 6. Dead space averages for different OLE2 documents. 
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CHAPTER 6 

A BETTER WAY TO HIDE DATA  

6.1 Decreasing the Probability of 

Finding True Positives 

Changing our focus to anti-forensics, in this chapter, I describe a method of 

decreasing the ability to detect the presence of any covert channels in an OLE2 

document.  A proficient method to achieve lower true positive detection and increase the 

false positives is to encode the covert channel to be statistically similar to the existing 

document.  This not only includes picking a single target statistical value and encoding 

the covert channel to match, but includes variable statistical values similar to those found 

in the document itself.  By matching the statistical values this way, distinguishing 

between documents that actually contain covert channels and those that do not is 

extremely difficult.  Any threshold defined to detect the differences is inevitably plagued 

with large numbers of false positives, rendering the detection algorithm useless. 

6.2 Exploring OLE2 Vulnerable 

Regions  

Every OLE2 document has dead space regions (see Figure 5) that can be 

exploited to contain a covert channel.  These regions have unique properties different 

from the rest of the OLE2 document, because the data has no value to the document 

itself.   From the dataset of 293 unique documents described earlier, I extracted and 

reviewed for common statistical properties the dead space regions.  As shown in Table 3, 

the single most common data points are regions of only zeros, accounting for 39.56  
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Table 3. General Kurtosis Properties of Dead Space Regions. 

 

percent of the all the dead space regions. Unfortunately, no data can be hidden in these 

regions, so the focus turns to those containing any non-zero data. Of the 220 regions, 

there were 98 that generated unique kurtosis values (excluding outliers).  Figure 6 shows 

the distribution of the 98 different values, the majority of values being between 1 and 10 

and between 20 and 30.  Ironically, even though there are fewer dead space regions with 

kurtosis values between 20 to 30 than between 1 to 10, when all the data is considered, 

the kurtosis values between 20 to 30 account for 16.5 percent of the data points while the 

1 to 10 range accounts for a smaller 12.9 percent. Given this information, I deduce that 

maintaining kurtosis values in the 20 to 30 range will result in a covert channel with the 

lowest detectability.  By focusing on the kurtosis value it is expected and has shown 

through the experimentation that the BFD distance changes accordingly and blends into 

the statistical similarities of the document as well. 

 

 

Total Population Of Unique Values*

Dead Space Regions 365 98

Minimum 1.04 1.11

Maximum 508.94 126.01

Averge 27.22 18.18

Std. Dev. 47.94 16.26

ZERO Count 220 0

Non ZERO Values 144 98

Median 21.69 20.63

* Excludes Outliers

General Kurtosis Properties of Dead Space Regions 
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Figure 7. Graph of unique kurtosis value. 

 

6.3 Experiments with Different 

Encodings of the Payload 

The purpose of the experiments was to determine the best combination of payload 

and filler values needed to blend with the existing documents.  I took several approaches. 

The first was simply encoding the payload with a base 64 encoding, the second attempt 

was to insert data only every third byte.  In additional I tried several more experiments 

modifying the payload density until the payload was statistically similar to the 

surrounding data.  In these experiments, the measurement used to indicate the payload 

density was in bytes per 512 bytes region.  For example, if the payload is 52, there are 52 

bytes of actual data encoded in a 512 byte region, while the rest is filler data, either 0 or 

255.  

Each experiment explored how the kurtosis and BFD distance thresholds need to 

change to account for the new encoding and how detection results change.   
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Table 4 shows the expected thresholds needed to detect each of the different 

encodings.  Each successive encoding attempted to increase the kurtosis and BFD 

distance, this results in a general trend of the threshold increasing from a kurtosis 

threshold of 2.2 and BFD distance of 1400 to 38 and 165000, respectively.   A different 

set of documents was then encoded with each type of encoding, and a detection algorithm 

(see Chapter 7) with each of the different thresholds was run against those documents.  

The results for each encoding and the detection results are discussed in detail in the 

following sections.  In general, however, the experiments prove that in order to detect the 

different encodings the threshold must be raised. The drawback is that the higher the 

thresholds the more false positives are encountered.  

 

Table 4. Detection Thresholds Needed to Detect Each Encoding. 

 

 

32 Byte Load 
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StegOle 

(Reference) 1.80 1.75 1.87 406 296 547 2.2 1400

Base64 4.30 2.99 7.80 2477 716 3601 8 4000

Every 3rd 

Byte 4.02 3.56 4.42 68776 2559 80559 5 80000

52 Byte Load 

w/ 255 13.31 10.65 15.99 305609 305354 306723 17 350000  
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6.3.1 Base 64 Encoding Experiment 

The simplest and easiest encoding scheme to test was a base 64 encoding.  Using 

the sun.misc.Base64Encoder, I encoded and hid the payload in an OLE2 document.  The 

resulting analysis showed an increase of the average kurtosis to 4.3 and the average BFD 

distance to 2477.  Immediately these values pushed the covert channel into a range 

undetectable by the current detection algorithm.   Table 5 shows how the detection tool 

reacted to the increased variability in the new encoding.  The reference thresholds of 2.2 

and 1400 resulted in almost none of the encoded documents being detected.  However, 

when the threshold was raised to a kurtosis value of 8 and BFD distance of 4000 all the 

documents were detected.  As expected, the number of false positives increased each time 

the threshold was raised. 

 

Table 5. Detection Results for Base 64 Encoding. 

 

Used Threshold     

Kurtosis 
Threshold  

BFD 
Threshold 

False 
Positive 
Percent 

False 
Negative 
Percent 

2.2 1400 0.71% 97.37% 

8 4000 0.71% 0.00% 

5 80000 19.86% 0.00% 

17 350000 33.33% 0.00% 

18 145000 32.62% 0.00% 

22 155000 46.81% 0.00% 

26 160000 64.54% 0.00% 

38 165000 89.36% 0.00% 
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6.3.2 Every Third Byte Experiment 

Encoding every third byte with a payload byte was done based on multiple 

observations of such a pattern.  The scheme resulted in a 33 percent density or roughly 

168 bytes per region.  When the filler bytes were set to zero, the resulting kurtosis 

average value of 4 was similar to the Base64 Encoding; however, the BFD distance was 

significantly higher at 80000 (see  

Table 6).  The predicted threshold found 95.66 percent of the encoded documents 

(4.44 percent false negative rate).  The false positive percent also increased to 17 percent.  

Each subsequent threshold resulted in zero false negatives, but the false positive percent 

increased over the previous experiment. 

6.3.3 52-Byte Payload with Filler Bytes 

Set to 255 Experiment 

 Another pattern regularly seen is the first part of a dead space region contains 

varying values, followed by a bunch of zeros.  In my next experiment, I used filler values  

 

Table 6.  Detection Results for Every 3rd Byte Encoding. 

 

Used Threshold     

Kurtosis 
Threshold  

BFD 
Threshold 

False 
Positive 
Percent 

False 
Negative 
Percent 

2.2 1400 0.63% 97.04% 

8 4000 1.27% 74.81% 

5 80000 17.09% 4.44% 

17 350000 31.65% 0.00% 

18 145000 31.65% 0.00% 

22 155000 43.67% 0.00% 

26 160000 61.39% 0.00% 

38 165000 90.51% 0.00% 
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of  255 instead of zeros.  This experiment showed an average kurtosis value of 

13.31 and an average BFD distance of 305609.  This BFD distance was significantly 

higher than in any other experiment, but the kurtosis value still was not as high as was 

hoped for.  The detection results in 

Table 7 show that all the modified documents were discovered with the predicted 

thresholds.  An important observation is how the lower thresholds had high false negative 

rates (45 to 86 percent).  

6.3.4 52-Byte Payload Experiment 

Encoding the first 52 bytes of a region with data followed by 450 bytes of 0 

closely matched data patterns seen in the data.  This payload density of 10 percent had 

kurtosis values slightly higher than when using a filler of 255 with a value of 14.62, but 

the BFD distance dropped significantly, down to 143378.  With the new threshold values 

of 18 and 145000,  

 

Table 8 shows all the modified documents were detected.  It also makes sense that 

the previous threshold with a kurtosis of 17 and BFD distance of  

 

Table 7.  Detection Results for 52 Byte with 255 Filler Values Encoding. 

 

Used Threshold     

Kurtosis 
Threshold  

BFD 
Threshold 

False 
Positive 
Percent 

False 
Negative 
Percent 

2.2 1400 0.68% 86.90% 

8 4000 0.68% 81.38% 

5 80000 13.51% 45.52% 

17 350000 27.03% 0.00% 
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18 145000 27.03% 0.00% 

22 155000 41.89% 0.00% 

26 160000 58.78% 0.00% 

38 165000 86.49% 0.00% 

 

 

Table 8. Detection Results for 52 Byte Encoding. 

 

Used Threshold     

Kurtosis 
Threshold  

BFD 
Threshold 

False 
Positive 
Percent 

False 
Negative 
Percent 

2.2 1400 0.00% 95.73% 

8 4000 0.00% 82.32% 

5 80000 18.60% 73.17% 

17 350000 31.01% 0.00% 

18 145000 30.23% 0.00% 

22 155000 41.86% 0.00% 

26 160000 54.26% 0.00% 

38 165000 86.05% 0.00% 

 

350000 also found all the modified documents.  They also have similar false positive  

percents, because the kurtosis values are similar and BFD distances are so different, it 

indicates that the kurtosis threshold is the bounding value.  

6.3.5 42-Byte Payload Experiment 

This experiment was the same as the previous experiment, but I only encoded the 

first 42 bytes of the region with actual data, with filler values of zero.  This resulted in a 

kurtosis value of 18.88 and a BFD distance of 151058.  The predicted threshold in 

OleDetection with a kurtosis of 22 and BFD distance of 15500, not only correctly 

detected all the modified documents but also resulted in a jump to 40 percent of the 

documents falsely identified as containing a covert channel, as shown in  
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Table 9.  

6.3.6 32-Byte Payload Experiment  

A payload of 32 bytes per 512 byte region showed the best combination of 

kurtosis values and matched the general document statistics.  The resulting kurtosis 

values were in the 20-30 range – the kurtosis value most commonly encountered in the 

dataset.  In combination with the average BFD distance of 157621, the new thresholds in 

OleDetection were set high enough to detect all the modified documents (see  

 

 

Table 10) and incorrectly identify 54.43 percent of the remaining documents as 

containing a covert  

 

 

Table 9. Detection Results for 42 Byte Encoding. 

 

Used Threshold     
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False 
Positive 
Percent 

False 
Negative 
Percent 

2.2 1400 1.50% 92.50% 

8 4000 1.50% 79.38% 

5 80000 12.03% 77.50% 

17 350000 25.56% 0.63% 

18 145000 25.56% 0.00% 

22 155000 39.85% 0.00% 

26 160000 54.14% 0.00% 

38 165000 88.72% 0.00% 
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Table 10. Detection Results for 32 Byte Encoding. 

 
Used Threshold     

Kurtosis 
Threshold  

BFD 
Threshold 

False 
Positive 
Percent 

False 
Negative 
Percent 

2.2 1400 0.63% 90.37% 

8 4000 1.27% 74.81% 

5 80000 15.19% 74.81% 

17 350000 27.22% 4.44% 

18 145000 27.22% 0.00% 

22 155000 41.77% 0.00% 

26 160000 54.43% 0.00% 

38 165000 87.34% 0.00% 
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channel.  This combination had a high enough false positive rate and a close enough 

blend to the existing document’s properties to be the most promising approach. 

6.3.7 22-Byte Payload Experiment 

Dropping the payload to 22 bytes or ~5 percent gave the highest average kurtosis 

value of 34.66 and an average BFD distance of 163672.  Table 11 shows the detection 

results with the corresponding thresholds of a kurtosis of 28 and BFD distance of 165000 

not only found all the modified documents it also incorrectly identified a whopping 89-92 

percent (see Tables 5-11) of the documents as containing a covert channel.  However, a 

drawback to this value is the uniqueness found in the kurtosis values above 30. Only 3 

percent of the overall dead space regions had kurtosis value from 30 to 40.  It should be 

noted that if this encoding is used, thresholds can be set in such a way as to detect the 

covert channels and only have a 3 percent false positive error rate. 

6.4  Experiment Conclusion 

Diluting the payload density is a careful balance between detection and actually 

being able to provide enough bandwidth as to still be usable.  Limiting the payload to 32 

bytes per 512 region is probably sufficient to avoid most detection attempts, taken a step 

further to alter regions between an “every third byte” encoding and a “32-byte payload” 

encoding would more closely blend in with the overall existing data patterns that already 

exist in the dead space regions.  
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Table 11. Detection Results for 22 Byte Encoding. 

 

Used Threshold     

Kurtosis 
Threshold  

BFD 
Threshold 

False 
Positive 
Percent 

False 
Negative 
Percent 

2.2 1400 0.68% 91.72% 

8 4000 0.68% 80.00% 

5 80000 14.86% 80.00% 

17 350000 25.00% 12.41% 

18 145000 23.65% 1.38% 

22 155000 39.86% 0.69% 

26 160000 56.76% 0.00% 

38 165000 91.89% 0.00% 

   

 

 



38 

 

CHAPTER 7 

EXPERIMENTAL RESULTS FOR DETECTING COVERT CHANNELS 

7.1 Experiments 

The experiments described in this chapter demonstrate the effectiveness of the 

detection algorithm.  The first publication and tool for creating covert channels in the 

dead space of OLE2 documents was in May 2007, this means the possibility of 

encountering a modified OLE2 document on the internet is very low.  However, given 

how common OLE2 documents are and the potential for a quick, widespread adoption for 

malicious use, there a significant need to create a mechanism to detect its. 

The experiments described here were run against the dataset of 293 collected 

documents (see Section 5.1), of which ~50 percent were randomly modified to hide a 

message using StegOlè.  Thus, my first task was to collect a set of OLE2 documents and 

modify a subset to contain a hidden message.  As stated previously, success is achieved 

when a high percentage of the modified documents are correctly identified with a low 

false positive rate.  The developed detection tool uses the kurtosis statistic in combination 

with the BFD to precisely identify documents that have been modified to contain a covert 

channel.  The following sections describe the experiments that led to the development of 

this tool. 

7.2 Failed First Attempt  

The initial intent was to create a general purpose detection tool that considered the 

document as a whole without taking into account any information the OLE2 format might 

provide.   The approach used a sliding window of 512 bytes and then used the BFD and 
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kurtosis statistics to identify modified sections of the document.  I quickly realized this 

approach was not feasible because the data patterns generated by StegOlè match those of 

any other binary data type, such as JPG and BMP images.  

 Statistics gathered on several different binary formats, including JPG, BMP, MP3, 

and covert channel data from StegOlè, show how the kurtosis and BFD data patterns 

overlap between the different types of data. Table 12 and 6 followed by Figure 8 and 9 

contain detailed data illustrating this pattern overlap.  The data was generated from 16 

different samples of 512 byte windows randomly taken from files of the given format, the 

kurtosis and BFD distance are then calculated and summarized. 

 The JPG and MP3 data shown in Table 12 are a close match to the StegOlè hidden 

data in Table 13.  Specifically, the difference between the average kurtosis values of 

JPG/MP3 data and the StegOlè Hidden Data average is less then 0.2.  Even though the 

minimum values are lower then the StegOlè min value, the maximum values are very 

close (within 0.05). See Figure 9.  The StegOlè BFD distance data has a narrower range, 

between 296.927 and 547.679, than the JPG or MP3 data, but the min values of the data 

ranges, 478.076 and 445.507 respectively, do not overlap. See Figure 9.   

The bitmap data (BMP) does not overlap as significantly with the StegOlè data as 

with the JPG or MP3, yet there is enough overlap for it to be misidentified.  The BMP 

kurtosis data points on average differ by 0.5. and the overall data ranges do not overlap.  

The sampling of BFD distances for the BMP here do not show an overlapping either, but 

they are still close, with roughly only a 7.1% difference between the high StegOlè BFD 

distance and the low value of the BMP distance.  Even though this sampling does not 
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Table 12.  Kurtosis Value and BFD Distance Patterns for JPG and MP3 Data. 

 

 

Table 13. Kurtosis and BFD Distance Patterns for BMP and StegOlè. 

ID Kurtosis B FD Distance Kurtosis BFD  Distance

0 1.864 557.619 1.701 724.324

1 1.880 751.896 1.819 445.507

2 1.662 859.855 1.868 515.760

3 1.836 592.729 1.838 505.495

4 1.731 608.064 1.733 551.383

5 1.880 616.000 1.782 694.210

6 1.683 874.547 1.702 637.129

7 1.788 569.273 1.849 697.657

8 1.737 524.309 1.817 809.938

9 1.749 583.262 1.835 816.192

10 1.779 524.439 1.765 578.427

11 1.729 478.076 1.816 685.461

12 1.748 604.885 1.771 760.590

13 1.818 487.540 1.800 774.252

14 1.890 508.664 1.874 532.204
15 1.707 632.147 1.812 601.904

Average 1.780 610.832 1.799 645.652

Min 1.662 478.076 1.701 445.507

Max 1.890 874.547 1.874 816.192

Std Dev 0.071 116.147 0.052 112.776

JPG (Image) Data

JPG Statistics

MP3 (Sound) Data

MP3 Statistics

ID Kurtosis BFD Distance Kurtosis BFD D istance

0 2.331 739.414 1.864 456.889

1 2.545 657.912 1.756 389.996

2 2.331 589.474 1.782 439.945

3 2.225 799.953 1.749 547.679

4 2.339 765.989 1.810 508.936

5 2.362 668.586 1.787 490.766

6 2.171 963.891 1.759 516.013

7 2.388 649.128 1.841 396.611

8 2.392 1111.846 1.872 301.004

9 2.519 629.496 1.809 296.927

10 2.480 721.579 1.814 303.970

11 2.400 656.525 1.794 394.606

12 2.332 789.442 1.872 314.663

13 2.294 649.216 1.757 300.787

14 2.445 727.427 1.794 379.075

15 2.392 672.385 1.798 465.210

Average 2.372 737.016 1.804 406.442

Min 2.171 589.474 1.749 296.927

Max 2.545 1111.846 1.872 547.679

Std Dev 0.095 129.955 0.039 83.346

Bitm ap Statistics

StegOle Hidden Data

S tegOle Statistics

Bitmap (bmp) Image Data
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Figure 8. Graph of kurtosis data patterns for MP3, BMP, StegOle, and JPG data. 

 

show an overlap in the data values, they are close enough that when they are put into 

practice, detecting the difference between the BMP and StegOle data is difficult.  

Another important detail is to have the final threshold used for the detection tool 

incorporate all of these binary types, creating many additional false positives.  

Establishing a threshold able to distinguish between general binary data and StegOlè 

covert channels requires more than can be provided with the kurtosis and BFD distance 

individually or in combination.  The additional element that enables this detection to 

work is to use the OLE2 specification to identify the sections of a document that need to 

be tested.   
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Figure 9. Graph of BFD distance patterns for MP3, BMP, StegOle, and JPG data. 
 

7.3 Detection Tool Experimental 

Results 

The ability to concentrate on specific vulnerable dead space regions allows the 

use of the kurtosis and BFD statistics to precisely identify documents that have been 

tampered with to hide data.  I developed detection algorithm that given an OLE2 

document, the dead space sectors are identified and statistics created.  The statistics are 

then compared against a threshold for the kurtosis and the BFD. If the threshold is met, 

the document is considered to contain hidden data.   

 I performed several iterations of experiments to determine the best threshold to 

use.  I tested each threshold against 11 different data sets of 293 Word files or a total of 

3223 files, Excel and PowerPoint datasets were also validated against of the final 

thresholds.  I randomly selected roughly 50% of the documents from each data set and 

modified them to contain a covert channel. Each data set hid a different amount of data in 
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its covert channel.  For example, data set one had 148 randomly picked documents 

modified by StegOlè to hide two bytes of data.  I modified each subsequent data set to 

hide increasingly more data (see Table 14).   

7.3.1 Initial Exploration of Threshold 

Values 

Based on the results of the experimentation described in Section 7.2, I targeted the 

dead space regions and calculated the statistics for each region.  The remaining question 

was the thresholds to use to indicate those documents containing a covert channel.   

 Given the data in Table 13, the first round of tests used thresholds set to a single 

standard deviation from the average.  The kurtosis value set to 1.81 and the BFD distance 

set to 490.  The results showed on average a 69.2 percent detection rate, well short of the 

desired mark.   I then set the thresholds to the max value encountered in Table 13, a 

kurtosis value of 1.87 and BFD distance of 547.  This showed an improved performance 

with an average discovery of 73.5 percent but still was not high enough. The following 

four sections describe my experiments in achieving the desired threshold. 

 

 

 

 

 

Table 14. Details for Each Test Data Set. 

1 2 3 4 5 6 7 8 9 10 11

Bytes Hidden (Bytes) 2 16 32 64 128 256 512 1024 2048 4096 Assorted

Tampered Files 148 155 148 144 131 151 133 143 137 140 147
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7.3.2 Experiment 1  

 Experiment 1 required that a WindowPrint have a kurtosis value of less than 1.99 

and a BFD distance of less than 900 in at least 50 percent of the windows. I selected this 

threshold based on visual observations made of the modified data.  The results were 

promising, with a majority of true-positive detection rates around 97 percent and no false 

positives.  The surprising exception to this was dataset 8, containing 1024 bytes of hidden 

data wherein only 88 percent of the documents were detected.  This anomaly can be 

explained by the fact that hiding 1024 bytes of data requires hiding data in two and 

sometimes three sectors.  However, not every sector is completely overwritten; in fact, 

analysis showed that only one or two of the sectors were modified enough to meet the 

threshold.  This resulted in less then 50 percent of the window prints passing the 

threshold, thus failing to be identified as containing hidden data. 

Figure 10. Graph of detection rates for unsuccessful thresholds. 
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7.3.3 Experiment 2  

Experiment 2 was a slight modification of Experiment 1 to account for the 

observations made. In fact, Experiment 2 varied from Experiment 1 only in the fact that if 

a single window had kurtosis values of less then 1.99 and BFD distances of less then 900 

it would be considered to contain hidden data.  This effectively qualified most of the 

documents that had been missed in the first experiment.  The slight change caused the 

true positive detection rate jumped 99.7 percent with a false positive rate of 0.62 percent. 

7.3.4 Experiment 3  

Experiment 3 was an attempt to get 100 percent true positive detection while still 

keeping the false positive rate low.  The thresholds were increased to 2.2 for the kurtosis 

and less than 1400 for the BFD distance.  The increased threshold provided the best result 

with an average of 99.97 percent detection rate, while the false positive rate only 

increased to 0.65 percent.  See Figure 11. 

7.3.5 Experiment 4  

Experiment 4 kept the same threshold values as Experiment 3,a kurtosis threshold 

of less then 2.2 and a BFD distance of less then 1400, but it indicated a file as having 

been modified if any single window print met either of the two thresholds – not 

necessarily both.   This resulted in 100 percent true positive identification but also an 

unacceptably high false positive rate of 65.18 percent.   

This experiment shows how the combination of statistics provides the success of 

this detection algorithm.  Taken individually, they do not provide sufficient data to 

accurately identify the difference between a modified and nonmodified file.  A summary 



46 

 

of  the thresholds used for each of the experiments is found in Table 15. 

7.3.6 Experimental Validation with Excel 

and Powerpoint Documents 

It is also important to show that the encoding and detection also works for Excel 

and Powerpoint documents.  From each dataset, I randomly selected files and modified 

them to hide data of assorted sizes. With the threshold from Experiment 3 (kurtosis of 2.2 

and BFD of 1400), I executed the detection algorithm against  the dataset to identify the 

modified documents.  For the Excel dataset, of the 109 documents, 30 were modified, and 

OleDetection correctly identified 100 percent of the modified documents while 

incorrectly identifying five false positives.  In the PowerPoint dataset, of the 99  

documents, 42 were modified with hidden data.  Of those, 38 or 90.5% were correctly 

identified with a false positive rate of 9.5%.  
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Figure 11. Graph of detection rates for the different datasets. 
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Table 15. Summary of Experiment Thresholds. 

 

The data highlights two points: first, OleDetection work for all OLE2 document 

types, and, second the threshold could be tweaked for each document type for better  

results.   Yet even so, with the results are not as flawless on these datasets as those for the 

Word dataset, the detection rate is still respectable and is in the realm of usability.  It is 

not unreasonable to point out that because each document deals with data in a slightly 

different format, when a section of the document is no longer used, it will carry with it 

characteristics of that data.  The thresholds identified here have been fine tuned for the 

Word document, the most common of the MS Office documents. With a little tweaking 

and experimentation, a higher detection rate could be achieved for these types of 

documents.  

7.3.7 Experiment Summary 

The value of any detection algorithm is its ability to have a high true positive 

detection rate and a low false positive count. A point of comparison is the detection 

algorithm developed by Kolter et al. which was able to achieve detection rates of 

unknown malicious executables at around 98 percent with a false positive rate of 0.5 

percent [15].  Using this as a reference point, Experiment 3 has great results with a 99.97 

percent positive detection rate and a 0.65 percent false positive rate.  As stated above, 

 Kurtosis Threshold Predicate BFD Threshold Required Window Count 

Experiment 1  < 1.99 AND < 900 > 50% 

Experiment 3 < 1.99 AND < 900 At least 1 Window 

Experiment 4 < 2.2 AND < 1400 At least 1 Window 

Experiment 5 < 2.2 OR < 1400 At least 1 Window 
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even though the results for the Excel and PowerPoint datasets were a bit lower, a few 

modifications of the thresholds should result in a higher detection rate.  

A different approach is to combine the detection rate and false positive into a 

single representative number that can indicate the overall value of a particular detection 

algorithm.  This value is a calculated for each dataset by taking the detection rate 

multiplied by 100 minus 2 times the percent of false positive. For example, if a given 

threshold resulted in a 95 percent detection rate with a 3 percent false positive, the value 

for that threshold would be 89.  This approach allows for a quantitative approach to 

evaluating the impact of the false positive detection of the overall algorithm.  Figure 12 

shows this combined evaluation value for each experimental threshold.  Figure 12 

highlights an already obvious conclusion, that Experiment 4 is of no real value because of 

the high false positive detection.  This approach helps distinguish between Experiments 2 

and 3 wherein the numbers are significantly closer, and the superiority of one is not 

nearly as obvious.  This approach shows that Experiment 3 has the superior threshold 

with an average value of 98.67.  The specific numbers graphed in Figure 12 are shown in 

Table 16. 

7.4 Implementation Details 

The OleDetection application is a console-based program able to identify OLE2-

formatted documents that have been tampered with to contain hidden data.  This 

implementation allows for the validation of the identified improvements in the algorithm 

improvements and the accuracy of the numbers.  The implementation can examine a 

directory full of documents or, if needed, a single file.  The approach used in  
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Figure 12. Graph of the relative value for each detection threshold. 
 

 

Table 16. Average Accuracy of Each Experiment. 

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Average True Positive 97.00% 99.71% 99.97% 100.00%

Average False Positive 0.00% 0.62% 0.65% 22.99%

Average Algorithm Value 93.82 98.81 99.29 77.01

 

 

OleDetection has a three step process for identifying OLE2 documents with hidden data.  

Step 1 digests the OLE2 document with OleSteganography and determines the dead space 

regions. Step 2 extracts the data binary data from those regions and generates the 

statistics.  Finally, Step 3 compares the calculated statistics against the predetermined 

threshold; if that threshold is met, the document is considered to contain hidden data.  
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7.4.1  OleSteganography – Finding the 

Dead Space Regions 

 Written as part of this research, OleSteganography is a library that is able to find 

the dead space regions of OLE2-formatted documents.  It is built on top of POIFS, an 

open-source Java implementation of the OLE2 file system specification [25].  To begin, 

one must remember that OLE2 is a compound file format, or rather a file containing other 

documents. The development of my method included 1820 lines of code in 17 different 

classes.  The class diagram for this is shown in Figure 14. The ability of a document to 

contain other data gives the appearance of a file system with containers, leaf data, and 

indexes to identify the location of data. OleSteganography depends on code that has been 

inserted into the POIFS code base to identify the dead space regions.  When a document 

is given to OleSteganography, it instantiates a POIFSFileSystem object which, in turn, 

creates a POIFSDocument.  The POIFSDocument is the memory representation of the 

actual OLE2 document.  To determine the contents and the different streams of data 

contained in the document, a BlockAllocationTableReader which reads the 

BlockAllocationTable (BAT) starting at offset 0x4C from the start of the document is 

instantiated.  The custom code in the BlockAllocationTableReader detects when a 

particular block is  a DeadSpaceRegion object into a list with the byte offsets to the 

region not being used (see Figure 13). Once the entire BAT has been read and all the 

Deadspace regions are identified, OleSteganography is able to retrieve the 

DeadSpaceRegion objects. 

 While this code has similarities to what StegOlè does, when it identifies convert 

channels to insert data into, it is not tied to StegOlè’s implementation.  The algorithm 
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 Figure 13. Code inserted into POIFS to gather dead space regions. 

 

//Looping through each sector of the document as identified by the BAT   

while(children.hasNext()){ 

    Object nextChild = children.next(); 

    if (!(nextChild instanceof DocumentProperty)){ 

      LOGGER.info("Error...unable to process a child of the Docuement: " + nextChild); 

      continue; 

    } 

    DocumentProperty property = (DocumentProperty) nextChild; 

    String name = property.getName(); 

    try { 

      int startBlock = property.getStartBlock(); 

      potentialDeadSpaceByDocumentName. 

                      put(name,batReader.getPotentialDeadSpaceList(startBlock)); 

      int documentSize = property.getSize(); 

      int lastByteOfDeadSpace; 

      int startByteOfDeadSpace; 

 

      //The BAT indicates if this block is used or not, if it isn’t it is  

      //susceptible to covert channels 

      if (!batReader.isValidBlock(startBlock)){ 

        startByteOfDeadSpace = startBlock * BLOCK_SIZE + documentSize; 

        lastByteOfDeadSpace = (startBlock +1)*BLOCK_SIZE-POIFSConstants.ZERO_OFFSET; 

      } else { 

        //This grabs any dead space between the end of the data and  

        //the end of the block  

        int lastBlock = batReader.getLastBlockInChain(startBlock); 

        int numberOfBlocks = batReader.getBlocksInChain(startBlock); 

        if (numberOfBlocks *BLOCK_SIZE < documentSize){ 

          System.out.println("Unable to calculate dead space for "  

                          + name + ", the report size " 

                          + documentSize  

                          + " is greater than the # of allocated blocks "  

                          + numberOfBlocks); 

          continue; 

        } 

        int lastByteOfDataOffset = (documentSize –  

                                             (BLOCK_SIZE * (numberOfBlocks - 1))); 

        if (documentSize < (BLOCK_SIZE * (numberOfBlocks - 1))) { 

          lastByteOfDataOffset = 0; 

        } 

        startByteOfDeadSpace = (HEADER_BLOCK_SIZE * BLOCK_SIZE) +  

                               (lastBlock * BLOCK_SIZE) +  

                                lastByteOfDataOffset; 

        lastByteOfDeadSpace = (HEADER_BLOCK_SIZE * BLOCK_SIZE +  

                              ((lastBlock + 1) * BLOCK_SIZE)) -  

                              POIFSConstants.ZERO_OFFSET; 

      } 

      //Add the new deadSpaceRange to a list, for later user 
      deadSpaceRanges.add( 

                     new DeadSpaceRange(startByteOfDeadSpace, lastByteOfDeadSpace)); 

    } catch(IllegalStateException e){ 

      System.out.println("Something bad happened for property " + name + " : " + e); 

    } 

  } 
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Figure 14. OleSteganography class diagram. 
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described here is a standard approach to reading OLE2 documents and identifying this 

type of covert channel.   Experiments have shown that the regions found by 

OleSteganography do not identify every region that has been modified by StegOlè; 

however, this does not hamper its ability to identify those documents that contain covert 

channels.  The point here is that even if StegOlè changes the location of the covert 

channel, this process is still be able to identify enough of the regions to detect the hidden 

data.    

7.4.2  OleDectection – Extracting Data and 

Calculating Statistics 

Once the dead space regions of the document are identified, the data needs to be 

extracted and the statistics calculated.  Refer to the class diagram of OleDetection in 

Figure 15 for a general overview of the classes used and  

Figure 16 for the critical piece of code doing the work.  The code developed for 

this portion has about 1500 lines of code in 23 different classes.   

To extract the correct regions from the document, OleDetection uses the concept 

of a WindowIterator.   The WindowIterator follows the iterator design pattern, providing 

an array of integers representing the byte value in the indicated data window for each 

item in the iteration.  The SlidingWindowIterator provides consecutive windows of data 

from a document; this is used mostly during analysis and testing.    The  

RegionWindowIterator retrieves nonconsecutive windows from a document based on a 

list of DeadSpaceRegions retrieved from OleSteganography.   

A WindowPrint encapsulates all of the data and statistics for a DeadSpaceRegion.  

The WindowPrint is created with the WindowPrint.Builder and built from the original  
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Figure 15. OleDetection class diagram. 
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Figure 16.  Code for detecting presence of covert channels. 

 

 

 

 

 

 

  private boolean presenceOfHiddenDataDetected(File suspectedFile) throws IOException { 

    LOGGER.debug("detecting tampered file on : " + suspectedFile); 

    if (suspectedFile == null || !suspectedFile.exists()) { 

      throw new NullPointerException( 

              "Invalid file used to detect presence of hidden data.  \n\tunmodifiedDoc=" + 

                      suspectedFile); 

    } 

    boolean result = false; 

    //Find the suceptible regions of the document to analyze 

    OleSteganography oleSteganography = new OleSteganography(new FileInputStream(suspectedFile)); 

    List<DeadSpaceRange> deadSpaceRanges = oleSteganography.getDeadSpaceRanges(); 

 

    //Provide easy access to the indicated dead regions using the WindowIterator 

    WindowIterator windowIterator = new RangeWindowIterator(suspectedFile, deadSpaceRanges); 

    int maxWindows = windowIterator.getMaxWindowsCount(); 

    ArrayList<WindowPrint> windowPrints = new ArrayList<WindowPrint>(maxWindows); 

 

    //Statistics that will be generated 

    ByteFrequencyDistribution byteFrequencyDistribution = new ByteFrequencyDistribution(); 

    final KurtosisStatistic kurtosisStatistic = new KurtosisStatistic(); 

 

    //Loop through each DeadSpace range and generate the Kurtosis and BFD 

    while (windowIterator.hasNext()) { 

      ArrayList<Integer> currentWindow = windowIterator.next(); 

      WindowPrint.Builder builder = new WindowPrint.Builder(); 

      builder.setWindowId(windowIterator.getCurrentWindowCount()); 

      builder.setWindowSize(windowIterator.getCurrentWindowSize()); 

      builder.setKurtosis(kurtosisStatistic.calculate(currentWindow)); 

      builder.setBfd(byteFrequencyDistribution.calculateDistribution(currentWindow, 

                                                                     maxDistributionValue)); 

      WindowPrint curWindowPrint = builder.create(); 

      windowPrints.add(curWindowPrint); 

      LOGGER.debug("Kurtosis Stat for window " + windowIterator.getCurrentWindowCount() 

              + " is " + curWindowPrint.getKurtosis()); 

    } 

 

    //Actually calculate if the particular regions meet the required thresholds 

    int suspectedWindowCounts = 0; 

    for (WindowPrint each : windowPrints) { 

      double bfdDistance = Centroid.STEGOLE_CENTROID.calculateDistance(each); 

      if (bfdDistance < Centroid.HIDDEN_DATA_BFD_THRESHOLD && 

              each.getKurtosis() < Centroid.HIDDEN_DATA_KURTOSIS_THRESOLD) { 

        suspectedWindowCounts++; 

      } 

    } 

    double percentWindowsSuspected = (double) suspectedWindowCounts / (double) windowPrints.size(); 

    if (suspectedWindowCounts >= 1) { 

      writer.println("Hidden Data Detected:\t " + suspectedFile); 

      result = true; 

    } 

    else { 

      writer.println("untampered file     :\t " + suspectedFile); 

      result = false; 

 

    } 
  } 
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integer array, statistics, and meta-data.  The centroid class maintains a profile for each 

type of data, as described in Section 4.4, and calculates the BFD distance between a 

known centroid and a given WindowPrint.  Each statistic is encapsulated in its own 

object and  implements either the SimpleStatistic or DistributionStatistic interface.  The 

KurtosisStatistic is a SimpleStatistic that given an array of integers, calculates the 

kurtosis value base on Formula 1 (see Section 4.3).   The BFD is generated using the 

ByteFrequencyDistribution base in Formula 2 (see Section 4.4).   

7.4.3  Threshold Comparison 

The final step in the process is to determine just how close the set of 

WindowPrints came to meeting the threshold.  Each WindowPrint’s statistics are 

compared against the individual statistic threshold. If the set of statistics are determined 

to meet the threshold, a running counter is increased.  The result is a count of 

WindowPrints representing a covert channel in the document.  The final determination as 

to whether the document as a whole has been modified is to compare this running total 

against the required number of WindowPrints.   

7.4.4 Using OleDetection 

OleDetection is a command line application not only able to detect the presence 

of covert channels, but to analyze and provide data on the documents.  Figure 17 shows 

how to interact with the application for detecting the covert channel for a single file, and 

Figure 18 is an example of how to find all tampered files in an entire directory. 
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Figure 17. Using OleDetection to test an individual file for a covert channel. 
 

 

C:\Tools\jdk\bin\java  oledetection.OleDetection -f testDoc.doc 
HIDDEN DATA DETECTED:  testDoc.doc 
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Figure 18. Detecting covert channels with OleDetection for an entire directory. 

C:\Tools\jdk\bin\java  oledetection.OleDetection -d “.\Document Repository\\” 

 

Detecting tampered files in: .\Document Repository\2 Bytes 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_0.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_1.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_10.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_100.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_101.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_102.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_103.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_104.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_105.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_106.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_107.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_108.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_109.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_11.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_110.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_111.doc 

............. 

............. 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_93.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_94.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_95.doc 

HIDDEN DATA DETECTED:  .\Document Repository\2 Bytes\testing_doc_96.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_97.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_98.doc 

untampered file     :  .\Document Repository\2 Bytes\testing_doc_99.doc 

 

  

The list of tampered files are: 

testing_doc_1.doc 

testing_doc_100.doc 

testing_doc_102.doc 

testing_doc_103.doc 

testing_doc_104.doc 

testing_doc_108.doc 

testing_doc_109.doc 

testing_doc_11.doc 

testing_doc_110.doc 

testing_doc_111.doc 

..... 

testing_doc_95.doc 

testing_doc_96.doc 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

***** Summary ***** 

Files Examined                 : 293 

Error Count is                 : 0 

Detected Tampered file count   : 148 

......................................................................... 

The undetected files               : 

Number of Undetected Files         : 0 

......................................................................... 

The incorrectly identified as being tampered with files: 

Number of false positives          : 0 

......................................................................... 

Number of Known Tampered Files     : 148 

Number of Correctly Dectected Files: 148 

Number of Undetected Tampered Files: 0 

Number of false positives          : 0 

Correct Detection Accuracy         : 1.0 
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CHAPTER 8  

FUTURE WORK 

This work shows how covert channels can be detected and hidden in OLE2 

documents.  This work can be expanded by finding other file types with similar 

vulnerabilities and applying the principles shown here to those files.   

This thesis shows that Kurtosis and BFD have valuable properties that can be 

used to detect the presence of hidden data, but more work can be done to find other 

statistical metrics that can be used individually or in combination to detect covert 

channels or malicious ware.   These two statistical methods have shown here work well 

together. Further investigation can be done to see if other type of viruses and malicious 

programs can be detected.  The thresholds for these statistics can also be modified 

slightly to more accurately identify covert channels hidden in Excel and PowerPoint 

documents.  Another direction for future work would be adding the detection method to a 

runtime environment, such as a mail server, to detect and handle documents containing 

covert channels. 

The improved method of encoding the covert channels provides an additional 

challenge to the forensic computing community.  Further research can investigate 

methods and techniques to accurately identify documents with the improved hiding 

technique.  One possibility is to improve the OleDetection technique to detect this new 

method of encoding covert channels.  Additional methods of encoding the data in ways 

that increase entropy should also be explored.  

 



60 

 

    CHAPTER 9 

CONCLUSION 

The anti-forensic computing community is constantly in search of more and better 

places to hide information.  The only way to stay ahead of those looking to thwart 

legitimate means of storing and transporting data is to provide better methods for 

detection and understand the extent to which data can be hidden. This work has 

succeeded on both points.  The presented detection methodology is able to detect covert 

channels inserted into the sample OLE2 documents using StegOle.  In addition, a new 

encoding approach has proven to be effective in overturning currently known detection 

algorithms. It does so by changing its statistical fingerprint to match the surrounding data. 

OleDetection is an application able to analyze and detect covert channels 

embedded into the dead or slack space of OLE2 documents.  For readers interested in a 

detailed approach to this project, the code is included in Appendix A and Appendix B.  

Using kurtosis and byte frequency distributions (BFD) statistics, with a 99.97 percent 

average true positive accuracy and with only a .65 percent false positive rate, this 

application identified those sampled Word documents modified with covert channels.  

These solid results show how statistics can be used to detect those efforts by the anti-

forensic community to covertly hide data.  

The thresholds for OleDetection were tweaked toward Word documents. As such, 

the results for detecting the covert channels in Excel and PowerPoint documents were not 

quite as good, with an average of 95 percent detection rate between the two and a false 

positive percentage of ~12 percent.  The belief is that these results will improve with a 
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larger data set and slight modifications to the thresholds to better account for the type of 

data contained in these additional OLE2 documents.  

The new encoding mechanism takes a novel approach to blend covert channels 

with the surrounding document.  Conversely, lowering the density of the payload to 

match the data being replaced results in the kurtosis, BFD, and potentially other statistical 

tools to lose some of their potency in discovering covert channels.  Specifically, the 

approach causes so many false positives to occur, that the detection algorithm is rendered 

useless.  Several experiments show that a payload density of 32 bytes per 512 bytes or ~6 

percent caused a false positive detection to rise to 27 percent, much too high to be usable 

in any sort of general application. 

The work presented here improves the field of forensics and anti-forensics by 

showing how statistical tools can be successfully used to detect covert channels and by 

showing how much more difficult it can be to detect the covert channels if they are 

encoded correctly.  
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