
Utah State University
DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies, School of

12-1-2008

Application Of Structural Control For Civil
Engineering Structures
Abdollah Shafieezadeh
Utah State University

This Thesis is brought to you for free and open access by the Graduate
Studies, School of at DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an authorized
administrator of DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

Recommended Citation
Shafieezadeh, Abdollah, "Application Of Structural Control For Civil Engineering Structures" (2008). All Graduate Theses and
Dissertations. Paper 142.
http://digitalcommons.usu.edu/etd/142

http://digitalcommons.usu.edu
http://digitalcommons.usu.edu/etd
http://digitalcommons.usu.edu/gradstudies
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


 
 

APPLICATION OF STRUCTURAL CONTROL FOR CIVIL ENGINEERING 

STRUCTURES 

 

by 

 

Abdollah Shafieezadeh 

 

A thesis submitted in partial fulfillment  
of the requirements for the degree 

 
of  
 

MASTER OF SCIENCE 
 

in 
 

Civil Engineering 
 
 
 
 
 
 
 

Approved: 
 
 
Keri Ryan       YangQuan Chen 
Major Professor      Committee Member 
 
 
Marvin Halling      Byron R. Burnham 
Committee Member                 Dean of Graduate Studies 
 

 
UTAH STATE UNIVERSITY 

Logan, Utah 
 

2008 



 

 

ii 

ABSTRACT 

Application of Structural Control for Civil Engineering Structures 

by 

Abdollah Shafieezadeh, Master of Science 

Utah State University, 2008 

 
Major Professor: Dr. Keri L. Ryan 
Department: Civil and Environmental Engineering 

This study presents the application of control methods in seismic mitigation of 

structural responses. The study consists of two parts. In the first section, fractional order 

filters are utilized to enhance the performance of the conventional LQR method for 

optimal robust control of a simple civil structure. The introduced filters modify the state 

variables fed back to the constant gain controller. Four combinations of fractional order 

filter and LQR are considered and optimized based on a new performance criterion 

defined in the paper. Introducing fractional order filters is shown to improve the results 

considerably for both the artificially generated ground motions and previously recorded 

earthquake data. In the second part, frequency dependent filters are introduced to 

improve the effectiveness of active control systems designed to mitigate the seismic 

response of large scale civil structures. These filters are introduced as band pass pre-

filters to the optimally designed H2/LQG controller to reduce the maximum singular 

value response of input-output transfer matrices over a defined frequency range. 

Furthermore, a structured uncertainty model is proposed to evaluate robustness of 
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stability and performance considering nonlinear force-deformation behavior of structures. 

The proposed perturbation model characterizes variations in the stiffness matrix more 

accurately, thereby reducing overconservatism in the estimated destabilizing 

perturbations. The aforementioned techniques are applied to the nonlinear SAC three 

story steel building. Numerical results indicate that introducing filters can enhance the 

performance of the system in almost all response measures, while preserving robustness 

of stability and performance.       

      (70 pages) 
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CHAPTER I 

INTRODUCTION 

Mitigation of structural responses against earthquakes and strong winds has 

always been a strong challenge for civil engineers. Besides life safety, enhanced 

performance objectives for the seismic response of civil structures in large earthquakes 

are increasingly targeted to avoid large economic losses associated with damage in 

structural and nonstructural components. Substantially improved performance can be 

achieved through the application of structural control methods, and the last two decades 

have led to major accomplishments in the development of control devices and algorithms 

to enhance the performance of structures.   

Optimal control theories are amongst the most popular candidates in control of 

civil structures such that they are typically the baseline controllers against which new 

approaches are judged. When the structure is fully observed, linear quadratic regulators 

(LQR) are very powerful in disturbance rejection and have guaranteed robust stability 

properties.  

Fractional order control (FOC) referred to a class of controllers that utilize 

fractional order operators as a part of their structure became popular in the control 

community in the last few decades. The idea of extending the integer order of differential 

operators (derivative and integral) to arbitrary real numbers is not new and has come a 

long way since Leibniz pointed out the idea in a letter to L’Hospital in 1695. However, 

the unfamiliar idea of taking fractional operator and lack of powerful computational 

resources prevented the wide use of fractional operators in engineering fields for a long 

time. Recently, fractional order calculus has found many applications in different fields 
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of science such as material modeling, theory of fractals, theory of control of dynamical 

systems, biological systems, signal processing, and etc. The pioneering works in FOC 

has been conducted by Manabe where he studied the frequency and the transient 

response of the non-integer integral and its application to control systems. Oustaloup 

proposed the CRONE (Commande Robuste d’Ordre Non Entier which means fractional 

order robust control) control system which is a frequency domain technique for the 

robust control of perturbed systems using the unity feedback configuration. The other 

major type of FOC is the PI�Dµ controller introduced by Podlubny; a generalization to 

the well established Proportional Integral Derivative (PID) controller in which the order 

of integral and derivative are arbitrary real numbers. The satisfactory performance of 

FOC in disturbance rejection and reference command tracking has been demonstrated 

through numerous investigations.        

 Since the input ground acceleration disturbances to the system are stochastic in 

nature, representing their power spectrum characteristics by static filters such as the 

Kanai-Tajimi filter cannot accurately capture the overall properties of the earthquake.  A 

limited number of studies have introduced frequency domain techniques to enhance 

LQR/LQG controller performance. The application of frequency dependent weighting 

functions were studied to model the input excitation and to weigh regulated outputs in 

place of constant weighting matrices in LQG control method. Further improvements in 

response may be possible by using filters to adjust the frequency content of the input 

disturbance used to design the controller.        

 Unlike the LQR method, robustness of the LQG approach to uncertainties is not 

guaranteed and the control design should be checked for robustness for each specific 



 

 

3 

application. Uncertainties in modeling large scale structures result from imprecise 

information on system properties (e.g. mass, damping, and stiffness matrices) and input 

disturbances; and are compounded by the complex behavior of structures that respond in 

their nonlinear range.  Perturbations techniques have been applied to check robustness of 

stability and performance, where uncertainty in system properties were represented by 

unstructured perturbation matrices or block diagonal perturbation matrices for mass, 

damping, and stiffness.  In the block diagonal approach, each diagonal matrix is still an 

unstructured perturbation matrix. However, even more accurate results are achievable if 

structured uncertainty models are utilized for each of the perturbation matrices in the 

global block diagonal uncertainty model.       

 The application of FOC in the control of seismically excited civil structures has 

been introduced in this study where four variants of FOC were considered. The first three 

variants implemented FOC as a filter on the input to a coupled static gain, while the last 

controller applied FOC in conjunction with an optimal linear quadratic regulator (LQR). 

Simulation results for artificially generated and real recorded input ground accelerations 

on a linear 2-story shear building model with active controllers showed a considerable 

enhancement is achievable in different structural responses through the application of 

FOC.           

 Also investigated in this study is the performance improvement of optimally 

designed H2/LQG controllers using band pass pre-filters, which provide the flexibility to 

shape the frequency response of input-output transfer matrices, thereby reducing their 

maximum singular value response over the frequencies of concern. Finally, a general 

approach using structured perturbation theory is presented which can verify robustness of 
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stability and performance of nonlinear structures. The structured perturbation model 

quantifies the stiffness variations induced by nonlinear force-deformation behavior of 

structural elements, and applies these variations as bounded structured uncertainties to 

the model stiffness matrix. 
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CHAPTER II 

FRACTIONAL ORDER FILTER ENHANCED LQR FOR SEISMIC PROTECTION  

OF CIVIL STRUCTURES1 

Abstract 

   This study presents fractional order filters to enhance the performance of the 

conventional LQR method for optimal robust control of a simple civil structure. The 

introduced filters modify the state variables fed back to the constant gain controller. Four 

combinations of fractional order filter and LQR are considered and optimized based on a 

new performance criterion defined in the paper. Introducing fractional order filters is 

shown to improve the results considerably for both the artificially generated ground 

motions and previously recorded earthquake data. 

 
1  Introduction 

   Today, mitigating structural responses against natural hazards like earthquakes and 

strong winds has become one of the most challenging topics in structural engineering. 

Much research has been done on control devices to be implemented as structural 

elements and control algorithms applied to those devices to enhance the performance of 

the structure. Because of their simplicity and ease of use, of all the algorithms proposed 

for civil engineering structures, the linear quadratic regulator (LQR) and linear quadratic 

Gaussian (LQG) algorithms have become very popular. Indeed, they are usually used as 

a baseline for evaluation of other control schemes.  

   An overview of the applications of the LQR method in seismic excited structures has 
                                                 
1 Coauthored by Abdollah Shafieezadeh, Keri Ryan, and YangQuan Chen 
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been given by Soong [1]. Yang et al. [2] proposed a scheme to include the effect of 

acceleration response in the control gain. This is achieved by adding a weighted 

acceleration component to the performance index and finding new gains in terms of state 

space variables. The effectiveness of an Instantaneous Optimal Controller applied to a 

10-story steel building frame was investigated by Chang and Henry [3]. Ankireddi and 

Yang [4] implemented LQG controllers to control wind excited tall buildings. Controller 

parameters were obtained through optimization of a multi objective performance 

criterion in which the root mean square (RMS) response of the subjected structure and 

the control force were constrained to be less than some prescribed values due to practical 

issues. Guoping and Jinzhi [5] proposed the use of an optimal control method for seismic 

excited linear structures considering time delays by transforming the equations into 

discrete time form. The optimal controller gain was obtained directly from the time delay 

differential equation (DDE), and can therefore be available for the case of a large time 

delay. The H2/LQG method was implemented in a control scheme by Ramallo et al. [6] 

to evaluate semi-active control of a base-isolated building relative to passive isolation. 

To enforce the dissipation requirement for the semi-active device, a clipping secondary 

controller was used to filter the output of the H2/LQG controller. Simulation results for 

seismic-excited structures showed that smart dampers controlled by the H2/LQG 

algorithm can provide superior protection from a wide range of ground motions 

compared to the passive designs [6]. Adeli and Kim [7] presented a hybrid feedback-least 

mean square algorithm for control of structures through integration of the LQR or LQG 

algorithm and the filtered-x LMS method. Wang8 introduced an LQG-� controller, 

which considers robustness and extends the LQG control design method with a relative 
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stability and an adjustable gain parameter. The simulations of the controller on both wind 

and earthquake-excited buildings for some perturbations of the stiffness parameter k led 

to good performance. 

   In this paper, a fractional order controller is implemented in conjunction with the LQR 

algorithm on a fully actuated two story shear building (actuators at each story). Artificial 

ground accelerations generated by filtered white noise are used as the input excitations in 

the design phase. Four combinations of FOC and LQR are simulated. To compare the 

performance of combined LQR-FOC methods with the traditional LQR, these controllers 

with their optimal parameters are subjected to previously recorded ground motions in 

addition to the artificial motions used for design. The results obtained demonstrate a 

considerable achievement in attenuating structural response. 

 
2  Simple Benchmark Civil Structure Model 

   The deformation response q of structural systems to ground acceleration  can be 

shown by the following system of equations: 

    (1) 

where M, C, and K are mass, damping, and stiffness matrices, respectively. E and l are 

influence vectors (or matrices) due to the applied control force u and the earthquake 

acceleration , respectively. The state-space representation of the above equation is 

     (2) 

where the state vector is x = [  ,  ]T , and 

,  , and    (3) 

In the above matrices, n denotes the system dimension (number of degrees of freedom) 
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and m is the number of actuators. Total floor accelerations and relative story drifts are of 

concern for controlling the structure. Based on (1), these parameters are defined in terms 

of state variables and control inputs: 

    (4) 

and 

   (5) 

where  and  represent story drifts and total accelerations, respectively. Equations (4) 

and (5) are converted to state space representation for outputs, leading to the following 

simple relationship 

    (6) 

with Cz and Dz defined as 

    (7) 

 
3  The Baseline Controller: Weight Optimized  
    Linear Quadratic Regulator 

A commonly used performance index for optimal controllers has the form 

   (8) 

where R is an m×m positive definite matrix and Q is a 2n×2n weighting matrix such that 

Q − NR−1NT is semi-positive definite. To control story drifts and accelerations defined in 

the output z (6) instead of state variables x, a performance index aimed at attenuating z 

and u is defined: 

     (9) 
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Using the method proposed by Yang et al. [2] leads to the following matrices for (8) 

   (10) 

where Qz and Rz are gain matrices defined for output response and control force. Using 

the standard linear quadratic (LQR) design with Matlab, we obtain the following full 

state feedback control law 

u = −KLQRx       (11) 

where KLQR is the optimal feedback gain matrix obtained using [K,S,E] = 

LQR(SYS,Q,R,N) in Matlab. 

   In this work, we wish to establish an optimal baseline performance for comparison to 

other control schemes. Therefore, an additional parameter optimization procedure is 

applied to search for a best set of gain matrices Q and R. To simplify the case, diagonal 

structures of Q and R are assumed. Henceforth, this baseline controller will be referred to 

as “weight optimized LQR controller.” 

 
4  Proposed Fractional Order Control Scheme 

   4.1 Basic Idea and Definitions. After Newton and Leibniz discovered calculus in the 

17th century, fractional-order calculus has been studied as an alternative calculus in 

mathematics [9,10]. As claimed by Chen et al. [11], fractional order calculus will play an 

important role in smart mechatronic and biological systems. Recently, in the control field, 

fractional order dynamic systems and controls have received increasing attention [12–16]. 

Pioneering works and recent developments in application of fractional calculus to 

dynamical systems and controls can be found in [17–23]. For a more detailed explanation 

about fractional dynamics and control, refer to [24] and [25]. 

   Clearly, four variations are relevant for closed-loop control systems: 1) integer order 
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(IO) plant with IO controller; 2) IO plant with fractional order (FO) controller; 3) FO 

plant with IO controller and 4) FO plant with FO controller. In control practice, the 

fractional-order controller is more common, because the plant model may have already 

been obtained as an integer order model in the classical sense. From an engineering point 

of view, improving or optimizing performance is the major concern [26]. Hence, our 

objective is to apply fractional order control (FOC) to enhance the integer order dynamic 

system performance [21,26].  

   In this paper, we propose to include a fractional derivative or integral of the state x in 

the feedback control law similar to (12): 

     (12) 

where KFOC is the gain matrix to be found using optimization procedures. 

   Several definitions for fractional order derivatives and integrals have been proposed. 

One of the main issues in applying these definitions is the initialization problem. Lorenzo 

and Hartley [27,28] have demonstrated that using constants to represent the background 

history of the subjected function is not an adequate way to handle initialization for 

fractional differintegral operators. This problem can be solved by introducing an 

initialization function in which the history of the subjected function plays a major role 

[27,28]. In seismic control of structures, the history of structure response is unknown and 

as a result, finding the initialization function is almost impossible. However, the external 

excitations on the system prior to earthquake or strong winds are usually too small to 

load the structure to its yield capacity, such that the prior structural response is highly 

likely to be strictly linear. Also, the random nature of external excitations can be 

modeled as the output of linear filters, called shaping filters, applied to white noise input 
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[1,29]. Incorporating these shaping filters into the structure model, a new system with 

white noise input will be formed. The expected value of the state and output of this linear 

system with white noise input is theoretically zero. Furthermore, the magnitude of 

structural response due to dynamic loads on the structure prior to the earthquake is 

negligible compared to the response of the structure during earthquake. Thus, a good 

approximation of the history of structural response prior to earthquake is a constant equal 

to zero. In such cases, different definitions of fractional differintegral operators result in 

the same solution. The zero prior response approximation may be inaccurate for wind-

sensitive structures – tall buildings in windy zones – where the magnitude of structural 

response is comparable before and during the control period. 

   In this study, the Caputo definition for a fractional differintegral operator is used in 

which  is defined as follows [30,31]: 

     (13) 

where n is an integer satisfying n − 1<�<n and � is the Euler Gamma function. The 

optimal value of the fractional order �, a real number such that � in (−1, 1), will be 

explored. Four variants of the FOC-LQR scheme in (12) considered in this paper are as 

follows: 

1) KLQR = 0, KFOC = −KWOLQR 

     (14) 

2) KLQR = 0, KFOC determined from optimization 

(a) same � for all states 
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      (15) 

 (b) different � for each state 

      (16) 

3) KLQR = KWOLQR, KFOC determined from optimization, (different � for each state) 

     (17) 

where KWOLQR denotes the gain matrix of the weight optimized LQR. Further 

explanation of the above cases is given in the following sections. 

   4.2 Modified Oustaloup’s Approximation Algorithm. The approximation algorithm 

presented by Oustaloup et al. [32] is widely used. In this method, a frequency band of 

interest is considered, within which the frequency domain responses are fit by a bank of 

integer order filters to the fractional order derivative. For the present study a 

modification to Oustaloup’s approximation method [33,34], which can improve the 

fitting in the boundary regions is applied. Suppose that the frequency range to be fit is 

given by [�A, �B]. It is easy to show that the term s� can be substituted with 

      (18) 

where 0<�<1, s = j�, b > 0, d > 0, and 

    (19) 

In the frequency range �B<�< �H, using the Taylor series expansion 



 

 

13 

   (20) 

with 

     (21) 

the following expression for s� can be obtained 

    (22) 

Truncating the Taylor series to 1 leads to 

    (23) 

   Compared to Oustaloup’s approximation algorithm, the equation given in (23) has one 

additional component that can overcome the boundary fitting problem. The second 

component in the right hand side of (23) can be evaluated directly by Oustaloup’s 

method using the zigzag piecewise approximation in the Bode plot. 

   The above continuous-time approximation is explained in more detail in [33] and a 

Simulink block is provided and illustrated in [34]. As a side remark, other finite integer 

order approximation schemes in discrete-time form are available [35]. In this paper, we 

use the Simulink block for s_ based on modified Oustaloup’s approximation from [34]. 

 
5 Numerical Example 

   The structure considered is a two story shear building excited by ground motions at the 
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Fig. 1   Schematic view of a simple 2-story structure 

 
base level. A schematic view of the structure together with its degrees of freedom is 

shown in Fig. 1. Structural mass and stiffness are given in Table 1. Natural periods of the 

building are 0.3 and 0.14 seconds for the first and second modes, respectively. Rayleigh 

damping is applied based on 2% damping in each mode. The magnitude of control force 

applied to the structure is bounded to ±20 kN. 

 
   5.1 LQR Weight Optimization Process. One of the biggest issues in implementing 

optimal controllers is selecting the best gain parameters. The control gain obtained from 

the LQR algorithm is completely dependent on the objective function defined in (8). 

Through this index, designers can emphasize attenuation of the structural responses that 

are of greatest concern. While this index provides intuition to select the pattern for gain  

 
Table 1   Structural parameters 

  
Floor masses (kg)   Stiffness (kN/m) 

m1=6000  k1=6141 

m2=4000  k2=3509 
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matrices, it will not result in an optimal design. Furthermore, the force capacities of both  

actuators (to apply force) and connections (to which force is exerted) are limited, and as 

a consequence, the calculated input force should be bounded. This issue also increases 

the complexity of choosing gain matrices. To solve this problem, a performance criterion 

different from the one introduced in (8) is proposed: 

    (24) 

where zc and z0 are the output of the controlled and uncontrolled cases, respectively. The 

first component emphasizes the mitigation of the root mean square response and the 

second component the peak response. The parameters �1 and �2 in the function give 

designers the ability to specialize the performance index for specific purposes. For 

instance, if the aim is to resist against extreme events like earthquakes, peak response 

rather than RMS response should be reduced or minimized to prevent collapse. However, 

in windy zones where the occupants comfort level is of greater concern, RMS response 

would govern design requirements and emphasis can be placed on the first component of 

the performance index. The objective function defined above (24) is used in an 

optimization process to find the most appropriate weighting parameters in (8). 

   The nature of earthquakes is stochastic and a controller designed for only one 

earthquake record may not give good performance during other earthquakes. To account 

for this property of the excitation, 64 artificially generated earthquake records are used in 

the optimization procedure. To produce these records, white noise signals were passed 

through a Kanai-Tajimi filter [36]. The MATLAB SIMULINK package and 

Optimization Toolbox were used to simulate the building, controller, and earthquake 

records. Figure 2 shows the optimization model in SIMULINK. 
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Fig. 2   The Simulink model of the LQR control 

 
In this paper �1 and �2 are assumed to be 1 and 2 respectively. The optimization process 

led to Qz = diag([20.919, 60.993, 8.216e-7, 48.427]) and Rz = diag([6.088e-7, 9.9783e-

7]). 

5.2 Combined FOC and LQR. As mentioned in previous sections, four general 

formations for the controller structure are considered. RMS and peak structural responses 

for each controller type together with the uncontrolled and optimal LQR controlled 

structures excited by the 64 artificially generated ground motions are presented in Table 

2. As expected, response reduction in the optimal LQR controlled structure is significant 

compared to the uncontrolled case; 67% reduction is achieved in J. 

   In Case (1) of combined FOC and LQR, the controller is assumed to have only the 

fractional part, i.e. KLQR = 0, and the input is derived through (14). The gain matrix for 

�-order state variables, KFOC, is the optimized weight LQR gain matrix KWOLQR and 

the only parameter to be identified is the fractional order, �. Peak and RMS responses of 

the structure for different values of � normalized with respect to the comparable 

optimized LQR responses are shown in Fig. 3. The value of � that minimizes the relative 
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response varies for different types of response measures and outputs but is generally 

somewhere between 0 and 0.2 (Fig. 3). Using the objective index in (24), _opt is found to 

be 0.05. As can be seen, this controller does not result in significant reduction in 

response compared to the optimized LQR method. This result could have been predicted 

beforehand, because the only parameter optimized is the order, �, and the weight 

optimized LQR gain matrix clearly is not the best choice for this case. Thus, reduction in 

the J factor with respect to the optimized LQR is only 2% (Table 2). 

   For Case (2a), KFOC is defined from optimization rather than assumed as KWOLQR  

 
Table 2   Root mean squares (RMS) and peak structural responses with their 
standard deviations for the optimization part 

Drift (cm) Acceleration (g)   Controller 
Type 

Response 
Measure 1st 

floor(SD*) 
2nd 

floor(SD) 
1st 

floor(SD) 
2nd 

floor(SD) J 

RMS    
0.985 

(0.148) 
0.966 

(0.149) 
0.464 

(0.064) 
0.865 

(0.134) W/O 
Control 

Peak 
2.976 

(0.412) 
2.908 

(0.425) 
1.444 

(0.188) 
2.602 

(0.380) 

12 

RMS    
0.318 

(0.019) 
0.259 

(0.017) 
0.179 

(0.010) 
0.197 

(0.013) LQR 

Peak 
1.086 

(0.160) 
0.896 

(0.148) 
0.622 

(0.080) 
0.707 

(0.134) 

3.955 

RMS    
0.304 

(0.019) 
0.250 

(0.019) 
0.175 

(0.010) 
0.180 

(0.013) Case(1) 

Peak 
1.061 

(0.174) 
0.914 

(0.171) 
0.626 

(0.083) 
0.687 

(0.148) 

3.889 

RMS    
0.074 

(0.014) 
0.024 

(0.006) 
0.155 

(0.010) 
0.154 

(0.010) Case(2a) 

Peak 
0.615 

(0.143) 
0.236 

(0.105) 
0.608 

(0.105) 
0.633 

(0.145) 

2.517 

RMS    
0.075 

(0.015) 
0.022 

(0.006) 
0.155 

(0.010) 
0.157 

(0.010) Case(2b) 

Peak 
0.616 

(0.144) 
0.213 

(0.113) 
0.605 

(0.104) 
0.629 

(0.143) 

2.496 

RMS    
0.108 

(0.008) 
0.059 

(0.006) 
0.175 

(0.009) 
0.153 

(0.008) 
Case(3) 

Peak 
0.552 

(0.092) 
0.353 

(0.092) 
0.658 

(0.067) 
0.658 

(0.144) 

2.754 

*SD stands for standard deviation. 
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(15). Since KFOC is 2 × 4, 9 parameters must be found in an optimization process. 

Simulation results show large improvements in responses where J is reduced by 36% 

with respect to the optimized LQR method. In particular, story drifts are reduced 

significantly. Story drifts in the first and second stories are reduced by 77% and 91% for 

RMS drift and 43% and 76% for peak drift, respectively (Table 2). Although mitigation 

of acceleration response is not as significant as for drift, a considerable reduction is still 

seen. Accelerations in the first and second floor are reduced by 13% and 10% for RMS 

acceleration and 2% and 10% for peak acceleration, respectively (Table 2). 

    In Case (1) and Case (2a), the order � was considered to be the same for all state 

variables. In the controller configuration for Case (2b), different values of � are assigned 

for each state variable; hence three extra variables are added to the system. Case (2b) 

results in relatively similar performance to the previous Case (2a) where the same order 

was used for all state variables. The objective index J is reduced by 37% relative to the 

optimized LQR method, compared to 36% for the controller of Case (2a) (Table 2). 

Therefore, the increased computational complexity to identify different fractional orders 

for the state variables introduces only marginal benefit. 

    In Case (3), a fractional order controller is added to the weight optimized LQR, i.e. 

KLQR = KWOLQR, and the gain matrix for the fractional part and the orders of state 

variables are found through optimization. In this case, J is reduced by 30% with respect 

to the weight optimized LQR method, showing less improvement compared to Case (2a) 

and Case (2b). 

    A graphical representation of the results of Table 2 is given in Fig. 4. Comparing the 

responses of the uncontrolled and controlled structures reveals the effectiveness of 
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Fig. 3   Relative response of the case 1 controller 

 
various control techniques in mitigating structural response during earthquakes. 

Introducing fractional order filters into the controller structure reduces considerably the 

inter-story drift response for both the peak and RMS measures, but reduces only slightly 

the acceleration response. Case (2a) and Case (2b) perform similarly and give the largest 

response reduction (Fig. 4). 

   5.3   Simulation Results for Real Ground Motions. To observe the performance of 

the various controllers introduced here to realistic excitation, the building structure is 

subjected to the following previously recorded ground motions with peak ground 

accelerations (PGA) as listed: 1940 El Centro at Imperial Valley (PGA 0.3129 g), 1995 

Kobe at Japanese Meteorological Agency (PGA 0.8213 g), and 1994 Northridge at 
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Sylmar (PGA 0.8433 g). The gain matrices and fractional state variables, found from the 

optimization processes in the previous section, are applied to the controllers. Simulation 

results are presented in Table 3. 

   The response trends for realistic ground motions are similar to those produced by 

optimization, which verifies the procedure used to obtain the best parameters for the gain 

matrix and/or the order of state variables. According to the results presented in Table 2 

based on the 64 artificially generated ground motions, the objective index and almost all 

response measures for case (3) are larger than the corresponding values for cases (2a) 

and (2b). This trend is also reflected in structural responses to the El Centro earthquake 

in Table 3; that is, the case (2b) controller gives the best response, and the performance 

index for case (3) is 36% larger. However, the case (3) controller gives the best response 

and the lowest objective index for the Kobe and Northridge motions. 

 

Fig. 4  Structural performance of the building for different controllers subjected to 
artificially generated ground motions 
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Table 3 Root mean squares (RMS) and peak structural responses 
 

Drift (cm) Acceleration (g) 
1st floor 2nd floor 1st floor 2nd floor 

Controller 
Type Earthquake 

RMS Peak RMS Peak RMS Peak RMS Peak J 

ElCentro 0.287 1.206 0.287 1.317 0.143 0.771 0.256 1.182 12 
Kobe 0.533 2.82 0.493 2.469 0.269 1.472 0.441 2.207 12 

W/O 
Control 

Northridge 0.829 4.695 0.81 3.873 0.391 2.598 0.725 3.462 12 
ElCentro 0.108 0.676 0.084 0.494 0.062 0.366 0.064 0.367 4.795 
Kobe 0.347 2.223 0.301 1.843 0.183 1.191 0.227 1.536 8.534 LQR 
Northridge 0.314 3.264 0.288 2.832 0.161 1.755 0.225 2.363 7.026 
ElCentro 0.107 0.695 0.084 0.523 0.061 0.44 0.06 0.367 5.035 
Kobe 0.349 2.287 0.313 1.985 0.182 1.274 0.226 1.547 8.841 Case(1) 
Northridge 0.324 3.368 0.306 3.003 0.164 1.849 0.233 2.404 7.306 
ElCentro 0.011 0.228 0.004 0.088 0.055 0.36 0.054 0.351 2.69 
Kobe 0.172 1.148 0.093 0.981 0.17 1.221 0.185 1.381 6.084 Case(2a) 
Northridge 0.164 2.196 0.115 1.637 0.142 1.497 0.166 1.972 5.004 
ElCentro 0.011 0.234 0.004 0.071 0.055 0.36 0.055 0.336 2.645 
Kobe 0.18 1.246 0.099 1.053 0.175 1.407 0.194 1.45 6.594 Case(2b) 
Northridge 0.168 2.185 0.117 1.723 0.144 1.749 0.169 2.054 5.303 
ElCentro 0.037 0.278 0.02 0.256 0.069 0.492 0.058 0.331 3.594 
Kobe 0.168 1.194 0.109 0.977 0.171 1.05 0.174 1.381 5.881 Case(3) 
Northridge 0.166 2.267 0.124 1.531 0.147 1.545 0.16 1.868 4.977 

 
 
   Results also indicate that the relative reduction in response achieved during the El 

Centro earthquake is much more than that obtained in the Kobe and Northridge 

earthquakes. Although artificial records generated by the Kanai-Tajimi filter in the 

optimization procedure have power spectral density curves relatively close to real ground 

motions, their pattern in time domain could be much different. In this sense, the artificial 

records used for optimization are apparently more representative of the El Centro record 

than of the Northridge or Kobe record. Furthermore, the PGAs of the Northridge and 

Kobe records, which are roughly 2.5 times the PGA of the El Centro records, lead to 

greater demands on the amplitude of the input force. As mentioned previously, an upper 
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and lower bound is placed on the control force to account for actuator and joint 

capacities. These bounds prevent controllers from applying the theoretically desired 

forces, which leads to substantial degradation of the efficiency of the control system 

when the difference between the desired and applied forces is considerable. 

 
6 Conclusion And Future Research Efforts 

   The application of fractional order filters in conjunction with an LQR controller has 

been introduced in this paper. Several combinations of FOC and LQR were considered 

and subjected to optimization to find the most appropriate parameters. 64 artificially 

generated earthquakes were used to optimize the controller gains. Simulation results 

demonstrated that introducing the fractional order filter into the LQR controller led to a 

great advance in attenuating the response over optimized LQR alone. The best 

performance was produced when a single fractional order was assigned to all state 

variables and the gain matrix was found from optimization. Considering distinct 

fractional orders for each state variable did not appreciably improve the performance, 

and in some cases induced a higher structural response. Simulating the system with 

actual recorded ground motions led to the same trends for response attenuation, implying 

that the optimization process works well. 

   To develop a simple model with which to apply proposed controller, the structure has 

been assumed to be fully observable. However, this assumption is far from realistic and 

considering noise effects will degrade the efficiency of controllers. Next, the 

performance of the proposed controllers should be assessed in a more realistic setting, 

where observer-based controllers are designed based on filtered noise measurements. 

Also, dynamics of actuators, nonlinearity in the system due to plastic deformation of 
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structural elements, and time delay are some of the issues that have not yet been 

investigated and should be addressed in future research. 
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CHAPTER III 

ROBUST STABILITY AND PERFORMANCE OF FILTER ENHANCED H2/LQG  

CONTROLLERS FOR NONLINEAR STRUCTURES 

Abdollah Shafieezadeh and Keri L. Ryan2 

SUMMARY 

This study illustrates the application of frequency dependent filters to improve 

the effectiveness of active control systems designed to mitigate the seismic response of 

large scale civil structures. These filters are introduced as band pass pre-filters to the 

optimally designed H2/LQG controller to reduce the maximum singular value response 

of input-output transfer matrices over a defined frequency range. Furthermore, a 

structured uncertainty model is proposed to evaluate robustness of stability and 

performance considering nonlinear force-deformation behavior of structures. The 

proposed perturbation model characterizes variations in the stiffness matrix more 

accurately; thereby reducing over-conservatism in the estimated destabilizing 

perturbations. The aforementioned techniques are applied to the nonlinear SAC 3-story 

steel building. Numerical results indicate that introducing filters can enhance the 

performance of the system in almost all response measures, while preserving robustness 

of stability and performance.  

 

1. INTRODUCTION 

Enhanced performance objectives for the seismic response of civil structures in 
                                                 
2 Coauthored by Abdollah Shafieezadeh and Keri Ryan. 
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large earthquakes are increasingly targeted to avoid large economic losses associated 

with damage in structural and nonstructural components.  Substantially improved 

performance can be achieved through the application of structural control methods, and 

the last two decades have led to major accomplishments in the development of control 

devices and algorithms to enhance the performance of structures [1, 2].  Optimal control 

theories have been shown to be effective for civil structures. When the structure is fully 

observed, linear quadratic regulators (LQR) are very powerful in disturbance rejection 

and have guaranteed robust stability properties [3]. Numerous applications of LQR and 

linear quadratic Gaussian (LQG) methods in structural control have been proposed, e.g. 

[4-7]. As evidence of the preeminence of LQR and LQG methods, they are typically the 

baseline controllers against which new approaches are judged [8-12], and a number of 

investigations have focused exclusively on enhancing these methodologies to improve 

system performance in the time domain [13-15].     

 In seismic control applications, characteristics of the input ground acceleration 

disturbance to the system, represented by its power spectrum, cannot be accurately 

captured over all frequencies by static filters such as the Kanai-Tajimi filter [16].  A 

limited number of studies have introduced frequency domain techniques to enhance 

LQR/LQG controller performance. Frequency dependent weighting functions were 

applied to the input excitation and regulated outputs in place of constant weighting 

matrices in LQG control method [17, 18]. Min et al. [19] extended the weighting 

functions to sensor noise and demonstrated experimental results to verify the satisfactory 

performance of frequency domain optimal control design methods. Further 

improvements in response may be possible by using filters to adjust the frequency 
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content of the input disturbance used to design the controller.   

 Unlike the LQR method, robustness of the LQG approach to uncertainties is not 

guaranteed [20] and the control design should be checked for robustness for each specific 

application. Uncertainties in modeling large scale structures result from imprecise 

information on system properties (e.g. mass, damping, and stiffness matrices) and input 

disturbances; and are compounded by the complex behavior of structures that respond in 

their nonlinear range.  Perturbations techniques have been applied to check robustness of 

stability and performance, where uncertainty in system properties were represented by 

unstructured perturbation matrices [21-23] or block diagonal perturbation matrices [24-

27] for mass, damping, and stiffness.  In the block diagonal approach, each diagonal 

matrix is still an unstructured perturbation matrix. However, even more accurate results 

are achievable if structured uncertainty models are utilized for each of the perturbation 

matrices in the global block diagonal uncertainty model.    

 The goals of this investigation are: (1) to improve the performance of optimally 

designed H2/LQG controllers using band pass pre-filters, which provide the flexibility to 

shape the frequency response of input-output transfer matrices, thereby reducing their 

maximum singular value response over the frequencies of concern; and (2) to present a 

general approach using structured perturbation theory to verify robustness of stability 

and performance of nonlinear structures. The structured perturbation model quantifies 

the stiffness variations induced by nonlinear force-deformation behavior of structural 

elements, and applies these variations as bounded structured uncertainties to the model 

stiffness matrix.  
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2. SYSTEM MODEL AND REFERENCE H2/LQG CONTROLLER 

An optimal H2/LQG controller is designed to serve as a baseline against which to 

assess filter enhancements.  The design techniques described are applicable to any civil 

structure with an active control system that includes dynamic actuators for control forces 

and sensors for observers.  The H2/LQG controller is known to be optimal for a linear 

structure initially at rest. While the structural response may be nonlinear in a large 

seismic event, this nonlinearity can be minimized through an effective active control 

system. Therefore, the controller is designed based on the H2/LQG strategy, and 

nonlinear behavior is indirectly accounted for through numerical optimization. 

 The governing equations of a structure subjected to earthquake ground 

acceleration, assuming the system remains linear, are as follows 

 
gg0u000 xEMuExKxCxM ����� −=++                                                 (1) 

 
where vectors x and u contain the relative story displacements and input control forces, 

respectively, and gx��  contains the earthquake ground acceleration. M0, C0, and K0 are the 

nominal mass, damping and stiffness matrices of the structure, and Eg and Eu are 

influence matrices mapping the input ground acceleration and applied control forces to 

the displacement degrees of freedom. Absolute acceleration responses at story levels are 

measured as feedback to the controller. The state-space representation of this system in 

the linear state with defined inputs ut=< gx��  u T>T and measured outputs (story 

accelerations) ym is  

 
ttuBAzz +=�                                                             (2a) 
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The index m represents measured responses and � is the measurement noise.  

 Optimal H2/LQG control methods minimize the average linear system response 

and control force in the form of a time cumulative performance index. Traditionally, the 

objective function for the performance index J of a system with n degrees of freedom 

and r controllers has the following form: 

 

( )
 ++= ft
dtJ

0

TTT 2 NuxRuuQxx                                             (4) 

 
where R is an r by r positive definite matrix and Q is a 2n by 2n weighting matrix such 

that Q-NR-1NT is semi-positive definite.      

 The Kanai-Tajimi filter [16] is frequently used to approximate the average power 

spectral density (PSD) of typical ground motions. Earthquake accelerations to the 

structure are modeled in the control design phase by passing a white noise signal through 

the Kanai-Tajimi filter, which has the following transfer function. 
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This transfer function represents the total acceleration response of a single degree of 

freedom (SDOF) system with natural frequency gω  and damping gζ  to an input white 

noise. These parameters can be adjusted based on the earthquake magnitude, ground 

resonant frequency, and attenuation of seismic waves.    

 In the low frequency range, the magnitude of the PSD of real ground motions 

decreases with decreasing frequency, but the Kanai-Tajimi filter cannot capture this trend. 

Implementing another second order filter [28] can improve the ground acceleration 

model in the low frequency range. The corrective filter is defined as 

 

2
ppp

2

2

cor 2 ωωζ ++
=

ss
s

W                                                    (6) 

 
Appending this shaping filter to the Kanai-Tajimi filter, the transfer function from input 

white noise to ground acceleration is  

 
TKcorwxg −= WWW ��                                                    (7) 

 
 Performance objectives are often imposed on a combination of state variables and 

control forces, known as regulated outputs. Here, the control system is designed to 

minimize story drifts driftx  (structural damage) and absolute accelerations absx��  

(nonstructural damage), while at the same time limiting the required force demands u on 

the controllers. Based on the linear model (Equation (1)), the regulated outputs 

T
TT

abs
T

driftreg uxxy ��=  are accessible through 

 
tregregreg uDzCy +=      (8a) 
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Introducing weighting or gain matrices Qy and Ry, the performance index in terms of 

regulated outputs can be represented by 
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Equation (9) is a specialization of Equation (4) with 

 

regy
T

reg CQCQ = , yregy
T

reg RDQDR += , regy
T

reg DQCN =                 (10) 

 
 Gain matrices Qy and Ry (Equations (9) and (10)) are found through a numerical 

optimization procedure.  The following form is selected for these matrices:  

 

[ ]( )p
rms1

p
rmsy , xxQ ��αdiag= , [ ]( )11.2 �diagy α=R                           (11) 

 
where xrms and rmsx��  are the root-mean-square (RMS) drift and absolute acceleration 

response of the uncontrolled structure. Parameters �1, �2, and p provide partial control on 

the relative magnitude of the elements of the gain matrices Qy and Ry. Optimizing the 

gain matrices for large earthquakes that induce nonlinear structural response may reduce 

the controller effectiveness under linear response in a moderate earthquake, which is 

judged to be an acceptable tradeoff. 
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3. ENHANCING CONTROLLER PERFORMANCE USING FILTERS 

Despite the improvement offered by the second shaping filter, the Kanai-Tajimi 

filter is somewhat ineffective in capturing accurately the major characteristics of ground 

motions, e.g. maximum power, dominant frequency, and bandwidth. The PSD response 

of the Kanai-Tajimi filter with corrective filter is compared to the PSD of several 

recorded ground accelerations in Figure 5. The PSD of real ground motions differ 

substantially from the representative Kanai-Tajimi filter (Figure 5) in the frequency 

range of 0.5 Hz to 15 Hz.  As this frequency range typically includes the fundamental 

frequency of the linear structure and the strongest ground accelerations, the associated  
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Figure 5. The PSD of Kanai-Tajimi filter with corrective shaping filter (Equation (7)) 
compared to PSD of the following recorded earthquake accelerations: 1940 El Centro at 
Imperial Valley Sta. (PGA, 0.461 g), 1994 Northridge at Sylmar Sta. (PGA, 0.569 g), 
1995 Kobe at JMA Kobe Sta. (PGA, 1.282 g), and 1974 Tabas at Tabas Sta. (PGA, 0.809 
g). 
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frequency response of input-output transfer matrices over this frequency range may 

influence the total response of the structure and the overall performance of the controller.

 Based on Bode’s sensitivity integral, if the open loop transfer function is stable, 

then  

 

( ) 0ln
0

=

∞

ωω djS                                                       (12) 

 
where S is the sensitivity matrix of the closed loop system [29, 30]. Equation (12) 

implies that magnitudes of S < 1 over some frequencies must be balanced by magnitudes 

> 1 over other frequencies, referred to as the water bed effect [30]. A pre-filter Wpre to 

the controller (Figure 6) changes the shape of the maximum singular value (SV) response 

of an input-output transfer matrix. Based on the water bed effect, pre-filters are 

strategically applied to reduce the maximum SV response of transfer matrices over the 

frequencies that contribute most to the response. Although the transfer matrices represent 

the linear state of the structure in contrast to the expected nonlinear behavior, an 

effective controller will minimize inelastic response such that the response of transfer 

matrices is close to the actual response.     

 Several filter shapes, e.g. low pass filters, high pass filters, and band pass filters, 

can be considered. The more general band pass filter is derived by multiplying a low and 

high pass filter together to obtain: 

 
 

( )blhshlasc
lhshls

W
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+++=
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Figure 6. Schematic diagram of the structure, controller and pre-filter. 

where l and h represent the low and high transition frequencies, and a, b, and c are 

scaling coefficients. When b = 1, the peak magnitude |Wbp| of the filter and the frequency 

fp at which it occurs, is  

 
( ) dBacfW 10pbp log.20)( −= , sec.p radhlf =   (14) 

 
As the pre-filters aim to mitigate frequency response over a relatively narrow range (0.5 

to 15 Hz), a narrow band width is imposed by setting h=l+1. Figure 3 illustrates the 

effect of parameter variation on filter response in the Laplace domain: a controls the 

magnitude of the filter over the band pass region (Figure 7(a)), b controls the magnitude 

of the filter at low frequencies (Figure 7(b)), and c controls the filter magnitude over all 

the frequencies uniformly  (Figure 7(c)). Finally, l translates the filter along the 

frequency axis (Figure 7(d)). Thus, through these four parameters, almost every 

characteristic of the band pass filter can be controlled. 
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4. ROBUST STABILITY AND PERFORMANCE 

Since the H2/LQG control approach is based on the linear state of the system at 

rest, the controller stabilizes the structure in the linear state, but the system is not 

guaranteed to remain stable or have satisfactory performance when it responds 

nonlinearly. In the approach outlined here, the whole system (structure with controller) is 

examined for robust stability and robust performance by treating nonlinearities as 

uncertainties in the system [30, 31].        

 Several approaches have been proposed to investigate robust stability and 

performance of systems [30]. Structured singular value analysis (µ  analysis) requires that 
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Figure 7. Influence of variation of parameters (a) a, (b) b, (c) c, (d) l  on the magnitude of 
the band pass filter, with respect to a reference (solid line) filter with a=2, b=1, c=1, and 
l=10. 
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observed perturbations to the system are less than the smallest destabilizing perturbation 

matrix quantified by maximum SV. Under structured uncertainties, µ  analysis leads to 

larger bounds on the destabilizing perturbation matrix and is therefore less 

overconservative.          

 The following two theorems are the basis for µ  analysis. Assume the system 

transfer matrix GP is a stable, real-rational, proper matrix with the following structure 

(Figure 8) 

 

11 12
P

21 22

� 	
= 
 �
� �

G G
G

G G
     (15) 

 
where G11 has M1 inputs and N1 outputs and G22 has M2 inputs and N2 outputs. 

Theorem 1[30] (Robust Stability): Let �>0. The loop shown in Figure 8 is well-posed 

and internally stable for all perturbation matrices ( )���∈ with 
β
1<

∞
� if and only if 

 
( )( ) βωµ

ω
≤

ℜ∈
j11sup G

�
     (16) 

 
where  

( ) ( ){ }+∞ ∈∈∈= CsallforsRH 00:: �����  
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S and F represent the number of repeated scalar and full blocks, respectively. C is the 
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Figure 8. Loop diagram of the system for robust stability and robust performance 
analyses [30]. 

 
 

field of complex numbers and +C  represents the closed right half plane. 

Theorem 2[30] (Robust Performance): Let �>0. For all ( )���∈  with
β
1<

∞
� , the 

loop shown in Figure 8 is well-posed and internally stable and ( ) β≤
∞

�G ,PuF  if and 

only if 

 
( )( ) βωµ

ω
≤

ℜ∈
jPP

sup G
�

                                                    (17) 

 
where Fu is the upper fractional transformation operator, �(�) is the same as in 

Theorem 1, and  

 

�
�
�

�
�
�

∈∈�
�

	


�

�
= × 22

f
f

P ,: NMC���
�0
0�

�

 

 
M2 and N2 are the overall dimensions of w and z in Figure 8 respectively. 

4.1. Perturbation of stiffness due to nonlinearity     
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 The principal nonlinearity in a building is due to yielding of structural elements. 

As the end deformation of a structural column or beam exceeds its yield limit, the 

incremental behavior of the element is characterized by a reduced tangent stiffness on the 

force-deformation relation. Depending on the number of yielded elements and the extent 

of yielding in each member, the total stiffness of the structure degrades from its initial 

state to a substantially reduced state.       

 An equivalent shear model of a building structure is proposed to clearly identify 

stiffness nonlinearities for use in perturbation analyses. Suppose the story stiffness 

degrades from the maximum initial stiffness kini to the minimum post-yield stiffness kpy 

following complete formation of plastic hinges in a given story. The post-yield 

stiffnesses can be inferred from the story force-deformation relations of a complete 

model of the structure. An initial stiffness matrix Kini for the equivalent shear model, 

constructed from the elastic story stiffnesses, is 
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��
K                       (18) 

 
The mass matrix for the equivalent shear model MSM is a diagonal lumped mass matrix, 

and Rayleigh damping is used to generate the damping matrix CSM.   

 As the building yields, the values of individual story stiffnesses vary, but the 

structure of the stiffness matrix in Equation (18) is preserved. To treat story stiffnesses 

kini,i as perturbed stiffness components, the matrix Kini is transformed to a matrix Kd in 

terms of drift degrees of freedom: 



 

 

41 

TKTK d
T

ini = ,     

nn×

�
�
�
�

�

	










�

�

−

−
=

110

11
01

��
T ,    [ ]( )nkkdiag ini,ini,1d ,,�=K         (19) 

 
where T is the transformation matrix from displacements to drifts. The stiffness 

perturbations caused by structure nonlinearity are modeled by multiplicative 

perturbations as follows: 
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where �k and �k are 

 
[ ]( )ndiag kk1k ,, δδ �=� ,   1k ≤iδ ,    [ ]( )ndiag kk1k ,, αα �=�              (21) 

 
and  

 

i

i k

kk
��
�

�
��
�

� −
=

ini

pyini
kα      (22) 

 
The diagonal stiffness K  represents a perturbation of the story stiffness about reference 

stiffness (kini,i+kpy,i)/2 that is midway between the initial elastic and post-yield stiffness of 

each story. For K  defined as in Equation (20) and for all possible �k (Equation (21)), 

∞∞
≤ dKK .         

 The loop diagram of the system with specified perturbations is shown in Figure 9, 

where Kco represents the controller and Wdrift, Wacc, and Wuco represent weighting filters 

on the story drift, absolute acceleration, and control force respectively. The standard 
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diagram for perturbation analysis is shown in Figure 10. Based on the system loop 

diagram (Figure 9), input-output relations for the standard model (Figure 10) are as 

follows: 
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where P� is the transfer matrix relating the input up to the stiffness perturbation matrix yk. 

Similarly, Pin-out and Pco represent transfer matrices from input up to regulated outputs 

yout and controller inputs yco respectively. The state space representation of the plant 
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Figure 9. Loop diagram of the system with stiffness perturbation. 
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Figure 10. Standard diagram for perturbation analysis. 

 
model P in Figure 6, which deviates from the representation of the original model in 

Equation (2a), is determined based on the loop diagram of the system in Figure 9, and 

represented by the following equations: 

 
ppppp uBzAz +=�                     (24) 

 
where 
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Taking the Laplace transform of Equation (24), Zp is found to be 

 
( ) pp

1
pp UBAIZ −−= s                                                      (26) 

 
Based on previously defined parameters and Equation (26), P� is  
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Similarly, Pin-out is defined as 
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and Pco is found to be 
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Using the lower fractional transformation operator Fl, the combined structure-controller 

model GP in Theorems (1) and (2) is 

 
( )coP KP,G lF=                         (30) 
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5. APPLICATION TO AN EXAMPLE STRUCTURE 

5.1. System considered (benchmark structure)     

 The system considered in this study is a 3-story steel building designed by 

Brandow & Johnston Associates for the SAC steel project that has been widely used as a 

benchmark to evaluate the efficiency of control methods [32-34].  The building was 

designed to meet the seismic code requirements of the 1994 UBC for a location in Los 

Angeles, California. The lateral seismic loads are resisted by perimeter moment resisting 

frames (MRF) in each direction, and the model is simplified to a single multi-bay MRF 

that carries half of the seismic mass of the floor at each story level in the horizontal 

direction and 1/6 of the story gravity load in the vertical direction. The elevation view of 

the model frame is shown in Figure 11 with moment connections indicated by dots.  A 

finite element model of the frame in Matlab has been provided by [34] for benchmark 

control evaluation, and is utilized here. In the model, the columns are assumed to remain 

elastic, while the moment-rotation response of the beams is elastic-perfectly plastic with 

a nonlinear transition from the initial to post-yield region. Rayleigh damping is applied to 

the frame, calibrated to a damping ratio �=4.3% in the first and third modes. Consistent 

with the benchmark problem definition, the damping matrix is proportional to the initial 

elastic stiffness of the structure regardless of the observed nonlinear response, even 

though this assumption can overestimate the effects of viscous energy dissipation [35]. 

The first three natural frequencies of the structure are: 0.99, 3.06, and 5.83 Hz. The 

control devices consist of ideal actuators applied at each level, whose force capacities are 

to be determined based on performance objectives.     

 Three bins of motions developed for the SAC project are selected here to evaluate  
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Figure 11. Elevation view of the lateral moment frame for the 3-story benchmark 
building [34]. Moment connections are indicated by dots. 
 
 
the controller performance using nonlinear response history analysis.  The three bins – 

containing 60 total motions – represent a 2%, 10%, and 50% probability of exceedance 

(PE) in 50 years for a Los Angeles, California site with soil type SD. 

5.2. H2/ LQG controller        

 An H2/LQG controller is designed based on a reduced order model provided in 

the benchmark problem [34].  In the reduced order model, frame members are assumed 

to be axially rigid, and rotational degrees of freedom are eliminated by static 

condensation, leaving only 3 lateral degrees of freedom. The natural frequencies of the 

reduced order model are 0.98, 2.98, and 5.69 Hz, which are close to the first three natural 

frequencies of the complete model.        

 The following performance objectives are selected for the controlled system: 

maximum story drift � 2%, maximum story acceleration � 1.4 g, and maximum number 



 

 

47 

of plastic hinges � 6 for any ground excitation in the three bins. The performance 

objectives selected by designers should reflect careful consideration of the tradeoff in 

cost versus performance. The objective of linear (damage free) structural response is 

appropriate if it can be reasonably attained.  For this example, linear response was 

achievable but with very large control forces (4400 kip for a single story).  The selected 

performance objectives balance cost and performance while achieving an important 

objective of this study, to improve controller performance in nonlinear structures. 

 From numerical results, the minimum story control force that satisfies the 

performance objective is found to be around 2700 kips, which is assumed to be 

achievable. For this control force, numerical simulations were performed to search 

among several combinations of gain matrix parameters to minimize the story drifts and 

floor accelerations.  The resulting design parameters are: �1=5e-8, �2=1e-6, p=0.5. This 

controller is intended to represent the best H2/LQG control design without pre-filters.  

5.3. Pre-filters to controller        

 Two pre-filters fpre drift and fpre acc (Figure 12(a)) have been selected to minimize 

the maximum SV of drift and total acceleration transfer matrices, respectively, in the 0.5 

to 15 Hz frequency range, without restricting the maximum control force. Adding the 

pre-filter fpre drift (l=8 Hz, a=0.825, b=1, and c=0.95) reduces the maximum SV of the 

drift transfer matrix from 4 Hz to 11 Hz and the total acceleration transfer matrix from 1 

Hz to 9 Hz (Figures 12(b) and (c)) relative to the reference H2/LQG controller. Since fpre 

drift considerably increases the maximum SV of the absolute acceleration and control 

force transfer matrices at frequencies larger than 9 Hz (Figures 12(c) and (d)), absolute 

acceleration and control force demands are expected to increase in the time domain.
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 Adding the pre-filter fpre acc (l=26 Hz, a=0.775, b=1.05, and c=1) maintains or 

reduces the maximum SV of the total acceleration transfer matrix for frequencies less 

than 30 Hz (Figure 12(c)) and slightly reduces the maximum SV of the drift transfer 

matrix for frequencies above 8 Hz (Figure 12(b)) relative to the reference H2/LQG 

controller. The increase in absolute acceleration SV for frequencies above 30 Hz is of 

concern only if the earthquake contains significant energy in the high frequency range. 

Adding fpre acc leads to a reduction in the maximum SV of the control force transfer 

matrix for frequencies below 12 Hz but a substantial increase beyond 12 Hz, suggesting 

that the control force demands will be larger for most of the earthquakes (Figure 12(d)). 
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Figure 12. Frequency response of input-output transfer matrices for reference controller 
with various pre-filters, including: (a) the shape of the filters, (b) maximum SV of the 
transfer matrix from input to story drifts, (c) maximum SV of the transfer matrix from 
input to absolute acceleration, and (d) maximum SV of the transfer matrix from input to 
control force.  
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variables in the filter, where the search range is narrowed by first assessing the controller 

performance in the frequency domain. Consequently, the search range includes only pre-

filter parameters that reduce the average maximum SV of the transfer matrices for both 

drift and absolute acceleration from 0.5 Hz to 15 Hz relative to the H2/LQG controller.  

Figure 13 indicates the response reduction in the maximum story drift, absolute 

acceleration, and control force in the time domain with respect to varied filter parameters 

a and l (b=0.95 and c=1).        

 The parameters of the optimal filter fpre opt – shown by the black circles in Figure 

9 – are l=20 Hz, a= 0.95, b=1.05, and c=0.95. Maximum SV frequency responses of the 

system with fpre opt (Figures 12(b)-(d)), which are reduced over a wide frequency range 

relative to H2/LQG, suggest that the controller will be effective in reducing response in 

the time domain.         

 The results of nonlinear time history analyses of the building with different 

controllers subjected to the 3 ground acceleration bins described previously are presented 

in Table 4. As expected, pre-filters fpre drift and fpre acc improve drift and acceleration 

responses, respectively, with respect to the H2/LQG controller, but degrade the response 

in other measures. The optimal pre-filter, on the other hand, is seen to reduce the values 

of nearly all response measures. For the largest 2% PE in 50 (2 in 50) year acceleration 

bin, peak and residual drifts are reduced by 9.3% and 18.4% compared to H2/LQG. The 

peak and RMS accelerations decrease by 0.3% and 2.5% respectively, and the maximum 

control force increases by a minor 1.0%. Compared to H2/LQG, the number of plastic 

hinges drops for the 10 in 50 and 50 in 50 year bins and is unaffected for the 2 in 50 year 

bin. In summary, the optimal pre-filter consistently reduces both drift and acceleration to 
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Figure 13. Reductions in (a) average drift, (b) average absolute acceleration, and (c) 
average required control force of the system enhanced with pre-filter relative to H2/LQG 
as a function of filter parameters a and l (b=0.95 and c=1). 
 

achieve superior performance. As a side note, each controller reduces the structural 

response substantially compared to the uncontrolled system and the effectiveness of the 

pre-filters should be considered in this context [Table 4]. 

 
5.4. Demonstration of robust stability and performance   

 Applying the combined structure/controller model of Equation (30) and Figure 9, 

Theorems (1) and (2) are applied to investigate robustness of stability and performance 

of the example structure with different controllers subjected to uncertainties in the 

stiffness matrix. The story force-deformation relation for each story level is characterized 

through a nonlinear static analysis of the unreduced structure model subjected to linear 

lateral load distribution over the height of the structure (Figure 14). Initial stiffnesses kini 

and post-yield story stiffnesses kpy derived from the story force-deformation relations are 

reported in Table 5. The first three natural frequencies of the equivalent shear model 

based on initial stiffness are 0.99 Hz, 2.52 Hz, and 3.84 Hz, where the first natural 

frequency matches that of the unreduced model.     

 To verify stability robustness, structured singular values of the first block in the 
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system transfer matrix ( )( )ωµ j11G
�

 are found through µ  analysis (Theorem 1). Both the 

H2/LQG controller and the controller with optimal pre-filter are robustly stable 

considering the maximum stiffness variation in either direction (Figure 15(a)). As the 

entries of matrix Ak (Equation (21)) represent the maximum magnitude of stiffness 

deviation from the nominal state, the parameter �=1 (Equation (16)). Therefore, to be 

robustly stable, � is required everywhere to be �1, which is true for both controllers 

(Figure 15(a)). The upper bound maximum SV �=0.84 indicates that the system remains 

stable for diagonal perturbations smaller than 1/0.84. Including a pre-filter has negligible 

influence on the � values, and therefore does not affect the overall stability robustness 

(Figure 15(a)). 

To verify robustness of performance, structured singular values of the complete 

system transfer matrix ( )( )ωµ jPG
�

 are found through µ  analysis considering the two 

uncertainty matrices in Figure 10 (Theorem 2). To apply Theorem 2, the bounds on the 
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Figure 14. Story force-deformation relations for the unreduced structure model 



 
 

Table 4. Response of the structure for the uncontrolled case together with the response of the structure with H2/LQG controller 
without pre-filter, with fpre drift, fpre acc, and fpre opt subjected to 60 SAC LA ground motions. 

Mean   Max 
Controller 

Type 

Probability 
of 

Exceedance 
in 50 Years 

Max. 
Drift (%) 

Res. 
Drift (%) 

Max. 
Acc. (g) 

RMS 
Acc. (g) 

No. 
P. H. 

Max. 
Force(kip)   

Max. 
Drift (%) 

Res. 
Drift (%) 

Max. 
Acc. (g) 

RMS 
Acc. (g) 

No. 
P. H. 

Max. 
Force(kip) 

10% 2.56 0.694 0.81 0.15 17.40   4.82 1.759 1.54 0.21 18.00  

2% 5.76 1.168 1.11 0.19 18.00   12.06 4.395 1.95 0.24 18.00  Uncontrolled 

50% 1.43 0.172 0.66 0.13 10.60     4.57 0.771 1.28 0.17 18.00   

10% 0.55 0.018 0.54 0.08 0.20 1118  0.83 0.123 0.80 0.12 2.00 1699.40 

2% 0.97 0.072 0.88 0.14 3.00 1852.3  1.73 0.239 1.34 0.19 6.00 2670.20 

H2/LQG 

without   

pre-filter 50% 0.30 0.016 0.35 0.05 0.30 663.51   1.06 0.091 0.91 0.12 6.00 1735.10 

10% 0.51 0.023 0.58 0.09 0.00 1737.30  0.81 0.108 1.13 0.13 0.00 2124.90 

2% 0.84 0.035 0.94 0.15 2.50 2775.00  1.27 0.189 1.81 0.21 6.00 3372.70 
H2/LQG 

with fpre drift 

50% 0.26 0.015 0.38 0.06 0.00 1634.30   0.67 0.049 0.84 0.12 0.00 1952.80 

10% 0.53 0.020 0.51 0.08 0.10 1192.00  0.83 0.123 0.73 0.11 2.00 1808.10 

2% 0.97 0.074 0.86 0.13 3.70 1878.60  1.69 0.256 1.31 0.17 12.00 2604.90 
H2/LQG 

with fpre acc 
50% 0.30 0.014 0.38 0.05 0.10 828.88   0.93 0.077 0.89 0.10 2.00 1774.50 

10% 0.53 0.018 0.51 0.08 0.00 1157.00  0.81 0.071 0.80 0.12 0.00 1739.00 

2% 0.92 0.056 0.85 0.14 3.00 1880.60  1.57 0.195 1.34 0.19 6.00 2697.60 
H2/LQG 

with fpre opt 
50% 0.29 0.012 0.34 0.05 0.10 705.82   0.95 0.049 0.83 0.11 2.00 1704.70 
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Table 5. Initial and post-yield stiffnesses of each story. 
 Stiffness (kip/in) 

Story No 

Initial 

(kini) 

post-yield 

(kpy) 

1 782.8 117.4 

2 477.7 41.7 

3 333.5 20.9 

 

system outputs are introduced through weighting filters Wdrift, Wacc, and Wuco (Figure 

9). These weighting matrices normalize the response by the target values 

corresponding to the performance objectives selected for controller design (story drift 

� 2%, story acceleration � 1.4 g, and control force � 2700 kips). Therefore, weighting 

matrices have the following form: 

 

[ ]( )111
02.0
1

drift diag
h

=W                                                 (31a) 

 

[ ]( )111
4.1
1

acc diag
g

=W                                                   (31b) 

 

[ ]( )111
2700

1
uco diag=W                                                 (31c) 

 
where h is the height of one story (h=156 in).     

 Structured singular values of the perturbed system for the H2/LQG and 

optimal pre-filter controllers are presented in Figure 15(b). The peaks of the 

structured singular values are slightly larger than 1 for both controllers at very low 

frequencies (Figure 11(b)). Therefore, nonlinearly responding systems with optimal  
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Figure 15. Structured singular values for (a) robust stability and (b) robust 
performance analysis. 

 

controllers are nearly robust in performance. While the relative � values of the 

optimal pre-filter controller show frequency dependent variation with respect to the 

H2/LQG controller, the variations are rather insignificant and do not affect the upper 

bound �, and performance robustness can also be concluded to be unaffected by pre-

filters. 

6. CONCLUSIONS 

The effectiveness of applying a frequency dependent pre-filter to an H2/LQG 

controller to improve the controlled response of a nonlinear structure was investigated 

in this study. These pre-filters provide control on the shape of the maximum SV 

response of input-output transfer matrices, which is used to minimize response 

measures over frequencies of concern. Optimal H2/LQG controllers with and without 

pre-filters were designed for an example SAC nonlinear 3-story steel building, and 

the performance of the structure with different pre-filters was evaluated by nonlinear 

response history analysis using 60 SAC ground motions. The following conclusions 

are drawn regarding the use of pre-filters: 



 

 

55 

• Maximum SV response of transfer matrices is a good predictor of the resultant 

performance in the time domain, even when the controlled structure is lightly 

nonlinear. 

• Specific response measures such as drift and total acceleration can be further 

reduced in the time domain through the application of pre-filters that reduce 

the corresponding response over a target frequency range. 

• An optimal pre-filter can be found that consistently reduces essentially all 

response measures compared to the controller without pre-filter, without 

increase in the maximum control force. 

• Application of pre-filters leads to considerable reduction in the maximum 

peak response over all 60 SAC motions, but the reduction in mean peak 

response is not significant. 

 Furthermore, a generally applicable framework to evaluate robustness of the 

stability and performance of nonlinear responding structures was developed. In the 

proposed perturbation model, uncertainties are treated as perturbations of individual 

stiffness components, and the more accurate structured singular value analysis (µ  

analysis) can be applied. Since the variations in stiffness are bounded by the initial 

and the post-yield stiffness, the nominal model for robustness evaluation represents a 

structure with stiffness matrix midway between the maximum (initial linear) and 

minimum (fully yielded) states. Consequently, uncertainties are symmetric with 

respect to the nominal model.  Structured singular values derived by µ  analysis for the 

SAC structure demonstrated that the optimal H2/LQG controller with and without 

pre-filter is completely robust in stability and nearly robust in performance with 
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respect to the performance objectives considered for the structure. 
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CHAPTER IV 

CONCLUSIONS 

In the first part of the study, fractional order filters are introduced in conjunction with 

an LQR controller. Several combinations of FOC and LQR were considered and the 

optimal parameters were found through numerical optimization for 64 artificially 

generated earthquakes. Based on simulation results, introducing the fractional order 

filter into the LQR controller led to a great advance in attenuating the response over 

optimized LQR alone. The results also showed that considering distinct fractional 

orders for each state variable did not appreciably improve the performance, and in 

some cases induced a higher structural response. Simulation results showed that the 

system with actual recorded ground motions give the same trend in terms of response 

attenuation, implying that the optimization process works well. The structure model 

which has been used in the study is fully observable, while this assumption is not 

realistic. Also, nonlinearity of the structure, time delay, and dynamics of actuators are 

among the issues that have not yet been investigated and should be addressed in 

future research.     

Furthermore, the application of pre-filters to H2/LQG controllers was 

investigated in this study. Singular value analysis showed that response mitigation is 

achievable through changing the shape of the maximum SV response of input-output 

transfer matrices. These reductions can be achieved in one or more response measures.  

 Moreover, a general perturbation model for capturing nonlinearities in 

robustness evaluation of structures was developed. The proposed perturbation model 

give the least conservative results since uncertainties are treated as perturbations of 
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individual stiffness components. µ  analysis results for the SAC structure 

demonstrated that the optimal H2/LQG controller with and without pre-filter is 

completely robust in stability and nearly robust in performance with respect to the 

performance objectives considered for the structure. Since the damping of a structure 

usually depends on the stiffness, nonlinear force deformation behavior of structural 

elements will affect the damping matrix of the whole structure. Therefore including 

perturbation of the damping matrix due to stiffness variations can result in more 

precise bounds on the smallest destabilizing perturbation bounds which is the subject 

of future studies. 
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