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ABSTRACT 

 

 

Development of a Mathematical Model for 3D Reconstruction of 

 

Target Objects by Photogrammetry 

 

 

by 

 

 

Keith F. Blonquist, Master of Science 

 

Utah State University, 2008 

 

 

Major Professor: Dr. Robert T. Pack 

Department: Civil and Environmental Engineering 

 

 

This thesis outlines the development of a mathematical model which can be used 

to perform 3D reconstruction of a target object from surveillance images.  3D 

reconstruction is a common procedure in photogrammetry, but performing 3D 

reconstruction from surveillance images can be more difficult than typical 

photogrammetry applications. 

Surveillance images are generally captured in an unsystematic manner because 

there is no control over the target that is being photographed.  Surveillance images can 

have a wide variety of fields of view, are often captured with uncalibrated cameras, and 

typically the targets are objects for which there is no other a priori information.  For 

these reasons, performing 3D reconstruction from surveillance images may not be 

possible using standard photogrammetric methods, especially when the angular fields of 

view of the images are rather narrow. 



 iv 

Several alternative methods and algorithms have been developed in 

photogrammetry to handle some of the complications mentioned above.  For example, 

close-range photogrammetry methods are designed to deal with situations where images 

are captured from varying and random aspects.  However, the majority of these models 

were not designed to accommodate images with a narrow angular field of view.  In 

satellite imagery, sensor models have been created which are well-suited for narrow 

angular fields of view, but these models generally assume images that were captured in a 

systematic manner with available ground control information.  Hence, existing models 

and methods may not be adequate to perform 3D reconstruction from surveillance images 

in all situations. 

The model developed herein is a robust model based on principles from close-

range photogrammetry, satellite imagery, and computer vision.  Previous work has been 

relied upon, and routines from several areas have been tied together to form a 

comprehensive algorithm that is capable of accurate 3D reconstruction in a wide variety 

of circumstances.  The flexibility and precision of the model are demonstrated using 

several sets of actual surveillance images and a series of synthetic images. 

(188 pages) 
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CHAPTER 1 

 

PRIMER 

 

 

1.1 Problem Statement 

 

 

Photogrammetry is defined as “the art, science, and technology of obtaining 

reliable information about physical objects and the environment through processes of 

recording, measuring, and interpreting photographic images…” (Wolf and Dewitt, 2000)  

One common application of photogrammetry is determining the 3D geometry of a target 

object from images of the target object.  This process is typically referred to as 3D 

reconstruction.   

The process of 3D reconstruction is important for many applications because it 

allows one to accurately determine the 3D geometry of an object without having to come 

in direct contact with the object.  This is used to determine the topography of landscapes 

from aerial images and satellite imagery, to measure the movement of unstable hill slopes 

from a distance, to make precise measurements in industry and production, to document 

crime scenes and archeological or historical sites, and for various other purposes. 

Most of the above mentioned applications involve 3D reconstruction of objects 

that can also be modeled and measured by other means.  For example, measurements 

made by surveying can assist in determining topography and monitoring hill slopes, and 

direct measurements can generally be made in industry, production, and other sites.  

Also, quite often the imagery for these applications is captured in a somewhat controlled 

environment using calibrated sensors. 
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There has been a great deal of research and development in photogrammetry in 

order to perform 3D reconstruction.  This research and development has led to several 

different algorithms and methods for 3D reconstruction.  The primary method is the 

bundle triangulation algorithm, which will be discussed in this chapter.  Other common 

photogrammetry algorithms used to assist in 3D reconstruction are the relative orientation 

of two images, and the Direct Linear Transformation (DLT), which are also discussed 

later in this chapter. 

One interesting application, and the subject of this thesis, is photogrammetric 3D 

reconstruction using surveillance images.  There are cases where it is desired to 

determine the 3D geometry of a target object for which there is no a priori information 

available, except surveillance imagery.  Because surveillance involves capturing images 

without control over the target object and without direct access to the target object, 3D 

reconstruction from surveillance images poses some difficulties that are not encountered 

in some of the applications mentioned above.  Sets of surveillance images generally have 

very diverse properties and will often be collected using uncalibrated cameras, the images 

will likely not be captured in any systematic fashion, and no additional information about 

the target will generally be available.   

There are some limitations of the photogrammetry methods currently in use.  

Some of these shortcomings become apparent when trying to perform 3D reconstruction 

using surveillance images.  Difficulty when using surveillance images generally arises 

from four key factors: 
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1) The surveillance images may have been captured from various aspects and 

angles and from different locations with respect to the target.  There is generally 

no systematic manner in which the images were captured. 

2) The images may have been captured at various distances from the target and 

therefore have a wide variety of angular fields of view.  A narrow angular field of 

view typically leads to difficulty. 

3) The images may have been captured with cameras and lenses which are 

uncalibrated or possibly from imaging systems for which the interior orientation 

parameters (IOP) are unknown.   

4) The target object will most likely be an object for which there is no a priori 

knowledge available.  The only accessible information will generally be the 

surveillance images alone. 

This large diversity of image information and lack of target information causes problems 

when using many of the standard photogrammetric algorithms.  The purpose of this thesis 

is to develop a mathematical model and algorithm that facilitates the process of 3D 

reconstruction from surveillance images having very diverse properties.  The desired 

result is a photogrammetric model which can perform accurate 3D reconstruction in a 

variety of circumstances and from widely varying surveillance image sets. 

This chapter will outline some of the fundamental principles of photogrammetry, 

and outline some of the standard methods currently in use in photogrammetry.  Next, 

some of the specific difficulties that arise when applying standard photogrammetric 

methods to surveillance imagery will be discussed.  Finally, some other methods found in 

research in different fields of study will be discussed. 
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1.2 Introduction to Photogrammetry 

 

 

An introduction to some of the fundamental principles and topics in 

photogrammetry is given here.  The perspective projection, collinearity equations, 

relative orientation of two images, bundle triangulation algorithm, and the Direct Linear 

Transformation (DLT) are discussed. 

 

1.2.1 Perspective projection 

 

An image of an object is a 2D representation of a 3D object.  The mathematical 

model which relates the position of an object in 3D space to its position on a 2D image is 

called a projection.  Most standard photogrammetric algorithms are based on the 

perspective projection.  The perspective projection approximates the imaging process and 

it is sometimes referred to as the pin-hole camera model. 

The perspective projection models the sensor as a plane (referred to as the image 

plane) and a point (referred to as the perspective center).  It is assumed that a point on the 

target in 3D space, its corresponding point on the image plane, and the perspective center 

all lie on a straight line.  Or in other words, it is assumed that all light rays from the target 

pass in a straight line from the target, through the perspective center to the image plane.  

Figure 1.1 shows this geometry. 

The distance from the image plane to the perspective center is referred to as the 

principal distance.  The image plane shown in Figure 1.1 captures a negative image, or 

mirror image of the target object.  For this reason it is generally referred to as the 

negative image plane.  It is often convenient to consider another image plane, known as 

the positive image plane. 
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Figure 1.1.  Geometry of the perspective projection. 

 

The positive image plane and negative image plane are parallel to each other.  The 

focal axis is the line perpendicular to the image planes which passes through the 

perspective center.  The point where the focal axis intersects the positive image plane is 

known as the principal point of an image.  Figure 1.2 shows the negative image plane and 

the positive image plane. 

While the negative image plane is where the negative of an image is physically 

captured in a camera, when the negative is developed it produces an image as though it 

were captured on the positive image plane.  In the discussion, figures, and equations that 

follow the positive image plane will be referred to and the negative image plane will be 

disregarded.  In the remaining discussion “image plane” will refer to the positive image 

plane.  Figure 1.3 is a 3D depiction of the perspective projection. 

As shown in Figure 1.3, the target point in 3D space (X, Y, Z), the point on the 

image (x,y), and the perspective center (Xc, Yc, Zc) all lie on a straight line. The principal 

distance is denoted by f and the principal point of the image is denoted by (xo, yo).  The 

XYZ coordinate system is the coordinate system for the 3D points (X, Y, Z).  The xyz 
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Figure 1.2.  Positive image plane and negative image plane. 

 

 

 

 

Figure 1.3.  3D depiction of the perspective projection. 

 

 

coordinate system is the coordinate system of the image; the z-axis is the focal axis.  The 

2D coordinate system on the image plane (the coordinate system in which image 

coordinates are measured) has axes parallel to the x- and y-axes of the image coordinate 

system, and the focal axis passes through the image plane at the principal point (xo, yo). 
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There is a rotation of the image coordinate system (xyz) with respect to the 3D 

coordinate system (XYZ).  This rotation can be described by three ordered rotations 

about the X-axis, Y-axis, and Z-axis, respectively.  These rotations will be denoted 

by ( )κϕω ,,  which is standard in photogrammetry.  This rotation can also be described by 

a 3 x 3 rotation matrix.  (For additional information on rotation matrices see Appendix 

A.1.)  The six parameters ( )ZcYcXc ,,,,, κϕω  are referred to as the exterior orientation 

parameters (EOP) because they describe the position and orientation of the camera in 3D 

space.  The three parameters (f, xo, yo) are referred to as the interior orientation 

parameters (IOP) because they describe geometry within the camera. 

 

1.2.2 Collinearity equations and the 

coplanarity equation 

 

The collinearity equations (1.1) are the fundamental equations describing the 

perspective projection (Wolf and Dewitt, 2000).  They express the 2D image coordinates 

(x, y) of a point with 3D coordinates (X, Y, Z) as a function of the EOP (perspective 

center coordinates and three rotation angles) of an image denoted by ( )κϕω ,,,,, ZcYcXc  

and the IOP (principal distance and principal point coordinates) of an image denoted 

by ( )yoxof ,, : 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 










−+−+−

−+−+−
−=










−+−+−

−+−+−
−=

ZcZmYcYmXcXm

ZcZmYcYmXcXm
fyoy

ZcZmYcYmXcXm

ZcZmYcYmXcXm
fxox

333231

232221

333231

131211

    (1.1) 

In these equations (1.1), the m terms are from the rotation matrix which describes 

the rotation of the image coordinate system with respect to the 3D coordinate system.  
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These nine matrix terms can be expressed as a function of the three ordered rotation 

angles ( )κϕω ,, ; the explicit equations for these terms are given in the appendix (equation 

A.6).  The collinearity equations are used extensively in photogrammetry and form the 

basis of the bundle triangulation algorithm. 

The coplanarity equation is an extension of the collinearity equations when two 

images are considered.  The coplanarity condition states that for a given point in 3D 

space (X, Y, Z), the point lies on a common plane with the two perspective centers of the 

two images (Xc, Yc, Zc)1 and (Xc, Yc, Zc)2 and the two image points (x, y)1 and (x, y)2.  

This is shown in Figure 1.4. 

The coplanarity equation (1.2 and 1.3) is expressed as a vector triple product 

(Mikhail, Bethel, and McGlone, 2001).  The three vectors in the triple product are the 

baseline vector which is the vector from one perspective center to the other, and then one 

vector for each image which points from the perspective center to the image point.  These 

vectors are expressed mathematically as:  

















−

−

−

=

















12

12

12

ZcZc

YcYc

XcXc

b

b

b

Z

Y

X

      

1

1

1

1

1

















−

−

−

=

















f

yoy

xox

M

w

v

u
T  

2

2

2

2

2

















−

−

−

=

















f

yoy

xox

M

w

v

u
T   (1.2) 

where for each image (x, y) is the image point, f is the principal distance, xo and yo are 

the coordinates of the principal point, and M is the rotation matrix.  The coplanarity 

equation is then: 

0

222

111 =

wvu

wvu

bbb ZYX

         (1.3)  
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Figure 1.4.  The coplanarity condition. 

 

The coplanarity equation can also be rearranged to form the essential matrix A 

(Mikhail, Bethel, and McGlone, 2001): 

[ ] 0

2333231

232221

131211

1
=

















−

−

−

















−−−

f

yoy

xox

aaa

aaa

aaa

fyoyxox     (1.4) 

These two forms of the coplanarity equation (1.2 – 1.4) will be used later in the 

discussion of methods for the relative orientation of two images. 

 

1.2.3 Bundle triangulation algorithm 

 

The bundle triangulation algorithm (also known as bundle block adjustment, or 

multi-image triangulation) is a standard procedure in photogrammetry.  It is the primary 

algorithm in photogrammetry for 3D reconstruction.  It is a robust algorithm capable of 

simultaneously solving for the EOP, the IOP, and the 3D coordinates of target points.  It 

also provides statistical information regarding the precision of the calculated solution.  

The standard bundle triangulation algorithm is based on perspective projection, and is 

derived from the collinearity equations. 
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The primary input for the bundle triangulation algorithm is a set of point 

correspondences across the images which are being analyzed.  A point correspondence is 

when a particular point on the target object in 3D space is located in several images—i.e. 

the image coordinates across several images are recorded for a given point on the target.  

Figure 1.5 shows point correspondences across two images.  The bundle triangulation 

algorithm requires that a set of point correspondences has been collected. 

The second major input for the bundle triangulation algorithm is a set of initial 

approximations of all unknowns.  The bundle triangulation algorithm is an iterative 

procedure that begins with the initial approximations and updates these values with each 

iteration.  The initial approximations must be fairly close to the actual values in order for 

the bundle triangulation algorithm to converge to an accurate solution.  These initial 

approximations can be obtained in several different ways.  As will be seen later, 

obtaining reliable initial approximations can prove to be the most problematic step of the 

3D reconstruction process. 

Given a set of point correspondences and a set of satisfactory initial 

approximations, the bundle triangulation algorithm can solve for the EOP and the IOP of 

the images and the 3D geometry of the target points, and give statistical information 

regarding these values.  This makes the bundle triangulation algorithm a valuable tool in 

photogrammetry.  Two special cases of the bundle triangulation algorithm based on some 

of the assumptions for surveillance imagery are outlined in the appendix.  Also, for a 

more comprehensive discussion of the bundle triangulation algorithm, see (Luhmann et 

al., 2006; Wolf and Dewitt, 2000; Mikhail, Bethel, and McGlone, 2001). 
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Figure 1.5.  Point correspondences across two images. 

 

1.2.4 Relative orientation of two images 

 

Relative orientation is the process of finding the rotation and translation of one 

image with respect to another image.  There are several methods currently in use in 

photogrammetry to solve for the relative orientation of two images.  If the relative 
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orientation of two images is solved for, the two images can be used to perform 3D 

reconstruction.   

Generally in relative orientation, the EOP of the first image (three rotation angles 

and perspective center) are “fixed” along with one of the coordinates of the perspective 

center of the second image.  This leaves five unknowns—the three rotation angles of the 

second image and two of the coordinates of the perspective center of the second image.  

Also, it is generally assumed that the IOP (principal distance and principal point) of the 

images are known. 

Two standard methods for finding the relative orientation of two images will be 

discussed here.  Both of these methods are based on the coplanarity equation.   

The first method to solve for the relative orientation of two images is analytical 

relative orientation based on the coplanarity equation.  The coplanarity equation is 

linearized in terms of the five unknowns (three rotation angles and two perspective center 

coordinates for the second image); then an iterative least-squares method is used to solve 

for the five unknowns.  This method requires a set of point correspondences between the 

two images and initial approximations of the five unknowns.  The specific equations for 

this method and a more in-depth discussion can be found in (Mikhail, Bethel, and 

McGlone, 2001). 

The second method for the relative orientation of two images comes from 

research in the field of computer vision and is also based on the coplanarity equation.  

Using a series of point correspondences between the two images, the terms of the 

essential matrix (equation 1.4) can be solved for.  Once the terms of the matrix have been 

obtained, the five unknown orientation parameters of the second image can be derived 
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from these matrix terms.  The equations for this method and a more in-depth 

discussion are found in (Pan, Brooks, and Newsam, 1995; Pan, Huynh, and Hamlyn, 

1995). 

 

1.2.5 Direct linear transformation 

 

The Direct Linear Transformation (DLT) (Abdel-Aziz and Karara, 1971) is a 

standard photogrammetry method to solve for the EOP and the IOP of a single image 

relative to a set of 3D coordinates.  This method requires that the 3D coordinates of 

several points on the target are known and are visible in the image. 

The DLT can be derived from the collinearity equations.  The EOP and the IOP of 

the camera are described by 11 L-terms.  The L-terms can be solved for from a set of 

control points with known XYZ coordinates.  The set up is as follows: 
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  (1.5) 

In equation (1.5), ( )11 , yx  represent the image coordinates of the target point 

( )111 ,, ZYX  etc…  The L terms can be solved for by inverting the matrix on the right side.  

Once the L terms have been derived from the control information, the EOP 
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( )κϕω ,,,,, ZcYcXc  and IOP (f, xo, yo) can then be solved for from the L terms.  A 

more in depth discussion of the DLT can be found in (Mikhail, Bethel, and McGlone, 

2001; Luhmann et al., 2006). 

 

1.3 Surveillance Imagery 

 

 

While the standard photogrammetry techniques outlined above are sufficient to 

perform 3D reconstruction for many applications, they are not suitable to produce reliable 

3D models of target objects in all situations.  These methods are based on certain 

assumptions which may not always be applicable to surveillance imagery.  Some of the 

specific challenges faced when using surveillance imagery will be discussed in detail. 

 

1.3.1 Narrow angular field of view 

 

As noted above, the great majority of photogrammetry algorithms are based on 

perspective projection.  This model works well for many imaging systems.  However, 

there is one primary drawback to the perspective projection—as the distance to the target 

being imaged increases, the angular field of view of the relevant portion of the resulting 

image decreases.  This is shown in Figure 1.6. 

 

 

 

Figure 1.6.  Decreasing angular field of view with increasing distance to target. 
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As the distance to the target increases and the angular field of view decreases, 

the perspective projection is susceptible to instability and low precision.  Note that as the 

distance to the target increases, the angular field of view becomes narrower and the light 

rays from the target become more parallel. 

Another demonstration of this is shown by the synthetic images of a unit cube in 

Figure 1.7.  The image on the left is a synthetic image of a unit cube generated as though 

the sensor were 3 units away.  The image on the right is a synthetic image of the same 

unit cube generated as though the sensor were 15 units away (the distance to target and 

principal distance have been multiplied 5x).  Note that the edges of the cube appear 

nearly parallel in the image generated at a further distance.  This is the primary effect of a 

narrowing angular field of view.  The two images are shown superimposed in Figure 1.8. 

In situations where the angular field of view of an image (or the relevant portion 

of an image) is too narrow, the algorithms based on perspective projection commonly fail 

to produce satisfactory results due to numerical instability and near linear dependencies 

between camera orientation parameters (both EOP and IOP) (Gruen and Li, 2003; 

Grodecki and Dial, 2003).  In particular, the bundle triangulation algorithm, relative 

orientation algorithms, and the DLT are prone to instability in circumstances of narrow 

angular field of view.  In these situations, other methods may need to be employed in 

order to reach an accurate solution. 
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Figure 1.7.  Synthetic images of a unit cube. 

 

 

Figure 1.8.  Synthetic cube images superimposed. 

 

1.3.2 Lack of ground control and 

sensor orientation information 

 

In most photogrammetry applications there is spatial information available which 

describes the geometry of the target or the position and orientation of the sensor with 

respect to the target.  For example, in most aerial photogrammetry and satellite imagery 

applications there are ground control points with known coordinates visible in the 

images.  Or, coordinates of points which are visible in the images can be obtained 
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through surveying.  Also, most aerial photography aircraft and remote sensing 

satellites are outfitted with GPS or inertial navigation equipment which describes the 

position and orientation of the sensor at the time the image was captured.  In many other 

photogrammetric applications, such as monitoring hill slope movement, or in production 

and industry, the orientation of images can be measured by other means when the images 

are captured.  Also, in many of these cases, the general geometry of the object being 

imaged can be measured by other means to provide an initial approximation of its 3D 

geometry. 

Most photogrammetric algorithms are dependent to some extent on ground 

control and sensor orientation information.  Specifically, the bundle triangulation 

algorithm requires initial approximations of the EOP, the IOP, and target coordinates; the 

analytical relative orientation algorithm requires an initial approximation of the EOP and 

the IOP; and the DLT requires that the 3D coordinates of several points are known.  For 

the bundle triangulation algorithm and the analytical relative orientation algorithm, these 

initial approximations are generally derived from the ground control and sensor 

orientation data.  The measured coordinates required by the DLT are also generally 

provided by ground control. 

As noted above, in most surveillance applications, the images are captured 

without control over the target object, without direct access to the target object, and from 

variable locations.  Hence, there will be no control information available for the images 

or the target object.  When this information is not available, as will be the case with most 

surveillance imagery, initial approximations for the bundle triangulation algorithm and 

analytical orientation algorithm will have to be derived in another manner.  Also, in order 
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to use the DLT, 3D coordinates of several points on the target will have to be obtained 

differently. 

For this thesis it is desired to develop a robust 3D reconstruction algorithm that 

arrives at an accurate solution in the absence of ground control information and sensor 

orientation information.  Thus, additional methods or algorithms will have to be 

developed to bypass this problem. 

 

1.3.3 Camera calibration 

 

One important step in most photogrammetry applications is the calibration of the 

camera/lens.  This calibration gives information about the sensor, such as the principal 

distance, and location of the principal point (the IOP).  It may also be desired to solve for 

lens distortion parameters.  There are many calibration methods available to find the IOP 

for a given camera/lens, most of which are done in a laboratory.  In some cases, however, 

one may wish to work with images captured with an unknown or uncalibrated sensor.  

For example, a set of surveillance images may have been captured with uncalibrated or 

unknown sensors.  Hence, it is desired to develop a model which is not vulnerable to 

camera calibration.   

In the case where an uncalibrated sensor has been used it is necessary to either 

approximate the IOP, or solve for them during the 3D reconstruction process.  The IOP 

can be included as unknowns and solved for in the bundle triangulation algorithm (known 

as self-calibration).  However, in the case of a narrow field of view sensor this may not 

be possible due to the numerical instabilities described in section 1.3.1.  Also, camera 

calibration often requires that image coordinates are collected over the whole of the field 
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of view of an image.  In many surveillance images, the target will not fill a sufficient 

portion of the field of view in order to perform an accurate calibration.  Hence, camera 

calibration can introduce additional difficulties. 

 

1.3.4 Varying aspects 

 

Many photogrammetric algorithms were developed for determining the 

topography of the ground from aerial photographs.  These aerial photographs are 

generally captured as an airplane or satellite travels in a straight path over the target (the 

ground) with the camera pointed downward.  This type of photogrammetry is referred to 

as topographic photogrammetry.  For other applications, images are captured at various 

aspects around the target.  This is generally referred to as non-topographic or close-range 

photogrammetry.  Figure 1.9 shows the difference between image collection in 

topographic photogrammetry and non-topographic photogrammetry. 

The uniformity in the manner of image collection in topographic photogrammetry 

is utilized in many of the photogrammetry applications and algorithms in use.  For 

example, this regular method of capturing images can provide very good initial 

approximations of the EOP for both the bundle triangulation algorithm and the 

 

 

Figure 1.9.  Difference in imaging geometries between topographic 

       and non-topographic photogrammetry. 
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analytical relative orientation algorithm.  Because the camera remains pointed 

downward, there is very little rotation between two images, and because the camera is 

generally aligned with the direction of flight, there is only an appreciable translation in 

one direction between two images. 

Surveillance images will not typically be collected in a uniform manner.  They 

will be captured from various locations, sometimes from moving platforms.  Also, in 

surveillance there is no control over the location of the target object.  So any methods in 

topographic photogrammetry which rely on the above assumptions are generally invalid 

when using surveillance images. 

In cases like surveillance imagery where the images were not collected in a 

uniform manner, there is often rotation about all three axes and translation in all three 

directions from one image to another.  The field of non-topographic photogrammetry has 

been developed to handle these situations.  Some of the primary algorithms used in non-

topographic photogrammetry are analytical relative orientation, bundle triangulation, and 

the DLT.  Note however, that when these algorithms are applied to non-topographic 

photogrammetry it is often more difficult to obtain initial approximations of the EOP than 

for topographic photogrammetry. 

 

1.3.5 Summary of complications of 

surveillance imagery 

 

Surveillance images therefore provide a unique combination of challenges.  In 

particular, there is the unusual mix of close-range photogrammetry with narrow angular 

field of view.  The differing aspects from which the images are captured incline one to 

rely upon the methods of close-range photogrammetry.  However, due to the fact that 
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images may be captured at great distances from the target and have a narrow angular 

field of view, it becomes necessary to employ methods from other areas of 

photogrammetry, such as satellite imagery. 

 

1.4 Research 

 

Several areas of research will be discussed which may provide insight as to how 

3D reconstruction can be performed from surveillance imagery.  Research in three areas 

will be discussed: non-topographic photogrammetry, satellite imagery, and computer 

vision. 

 

1.4.1 Research in non-topographic 

photogrammetry 

 

The first area of interest is the field of non-topographic, or close-range, 

photogrammetry.  As mentioned before, a large percentage of photogrammetry 

applications and developments are in the field of topographic (aerial) photogrammetry.  

The field of non-topographic photogrammetry deals with image sets that were captured 

from a variety of distances and aspects around the target.  This less-structured geometry 

is the manner in which most surveillance images will be captured.  Thus, methods 

developed for non-topographic applications may be more useful when working with 

surveillance images.  Two specific methods have been researched and will be mentioned 

here: the orthogonal projection model and single image orientation based on parallel 

projection. 

First, an orthogonal projection model has been developed by Ono and Hattori 

(2002) in order to measure movement of cliff faces from long distances.  This model 
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makes use of parallel (orthogonal) projection in order to accommodate images with a 

narrow angular field of view and considers images taken from different aspects.  While 

the model does accommodate non-topographic imaging geometry and images with a 

narrow angular field of view, the model they present is dependent upon some prior 

knowledge of the target—specifically this model requires that the coordinates of several 

control points are known in order to develop initial approximations.  For the purposes of 

using surveillance imagery it is desired to derive a model which does not rely upon 

ground control or prior knowledge of the target, so the model outlined by Ono and 

Hattori does not fully solve the problems presented by surveillance images.  However, 

this model provides a good example of the use of parallel projection in a non-topographic 

setting.  This model will be discussed in more detail later and serves as the basis for many 

of the relations that will be drawn between the parallel projection and perspective 

projection in sections 3.3 and 3.4. 

Second, an algorithm was developed by Kyle (2004) to orient a single image with 

respect to an object.  It serves essentially the same purpose as the DLT, except it is based 

on parallel projection instead of perspective projection.  This algorithm is a good 

candidate for images that were captured at varying aspects and have a narrow angular 

field of view.  However, this algorithm is dependent upon some prior knowledge of the 

target and is only valid for one image individually.  Thus, the algorithm presented is not 

adequate alone to solve the problems faced when using several surveillance images.  This 

algorithm, however, does give insight into the parallel projection and will be used later as 

part of the method to orient surveillance images for 3D reconstruction. 

 



 23 

1.4.2 Research in satellite imagery 

 

Another branch of photogrammetry in which research has been conducted is 

satellite imagery.  Satellite imagery is a form of topographic photogrammetry because the 

sensor travels essentially in a straight line over the target with the sensor pointed 

downward.  Thus, many of the assumptions made in topographic photogrammetry apply 

to satellite imagery, but will not apply to surveillance images.  However, imaging sensors 

that have been deployed on satellites generally have a very narrow angular field of view.  

The narrow angular field of view introduces additional problems which are not solved by 

typical photogrammetry techniques.  The surveillance imagery used for this project will 

benefit from the research which has been done for satellite imagery due to the possibility 

of images which have a narrow angular field of view. 

Morgan (2004) researched the epipolar resampling of linear array scanner scenes 

using principles of parallel projection.  The work by Morgan includes a rigorous 

mathematical development of parallel projection geometry.  However, his work is 

primarily concerned with topographic photogrammetry and may not be directly 

applicable to non-topographic applications such as 3D reconstruction from surveillance 

images.  Also, his work assumes that ground control is available.  Hence, the work 

presented by Morgan is not sufficient by itself to solve the problem at hand, but the 

parallel projection model outlined therein provides insight on the parallel projection. 

 

1.4.3 Research in computer vision 

 

Computer vision is a field in which computers are used to automatically analyze 

images.  Applications include object recognition and navigation, among others.  To a 
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certain degree, research in computer vision has been conducted independent of 

research in photogrammetry and some work has been duplicated.  As a result, there have 

been some developments made in computer vision which have not been widely known or 

used in the photogrammetry community.  One particular algorithm from computer vision 

will be discussed here. 

Huang and Lee (1989) have detailed an algorithm for use in computer vision 

which solves for the motion and structure of a target object from three orthographic 

(parallel) images.  Their algorithm assumes that the input images are orthographic 

images; also, the algorithm they present is limited to exactly three images.  Surveillance 

images which are used for 3D reconstruction will generally not be truly orthographic 

images, but depending on the field of view, they may be approximately orthographic.  

Also, it is will often be desired to work with more than, or perhaps less than, three 

images.  Thus, this algorithm does not provide a full solution to the problems introduced 

by surveillance images.  However, this algorithm provides a key starting point as it does 

not require any additional knowledge about the target—only a set of point 

correspondences. 
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CHAPTER 2 

TESTS OF STANDARD PHOTOGRAMMETRY TECHNIQUES 

 

USING ACTUAL SURVEILLANCE IMAGES 

 

 

This chapter discusses some tests that were conducted using three sets of actual 

surveillance images.  Standard photogrammetric techniques were used to perform 3D 

reconstruction to reveal any possible weaknesses of the standard methods. 

 

2.1 Test Procedure 

 

The procedure for the tests will be discussed here.  This procedure is a series of 

steps involving several standard photogrammetry techniques.  The two primary inputs 

that are generally available from surveillance imagery are: 

1) a set of point correspondences (x, y) across the images 

2) approximations of the IOP (f, xo, yo) for each of the images 

The first step is to begin with two of the images and perform relative orientation.  

Relative orientation can be carried out following the essential matrix method or by 

analytical relative orientation (these methods are described in section 1.2.4).  The 

essential matrix method requires the set of point correspondences for the two images, and 

the approximate IOP.  Analytical relative orientation requires these two inputs plus one 

additional input: the approximate relative orientation of the first two images (the 

approximate EOP).  These algorithms result in an initial approximation of the relative 

orientation of these two images.  Next 3D reconstruction is performed using equations 

(A.44, A.45) in the appendix; this results in initial approximations for the 3D coordinates 
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of the points on the target.  Given these initial approximations of the EOP for two 

images, the IOP, and 3D point coordinates, the bundle triangulation algorithm is 

performed to refine the initial approximations.  The bundle triangulation algorithm 

produces 3D coordinates, along with the EOP of the two images, residuals, 1-sigma 

errors, and back-projected image coordinates.  The residuals, 1-sigma errors, and back-

projected image coordinates give a measure of the precision of the solution.  The flow 

chart for this procedure is shown in Figure 2.1 (assuming the essential matrix algorithm). 

 

 

     Figure 2.1. Flow chart for relative orientation of two images and bundle 

triangulation using standard photogrammetry methods. 
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Next, each remaining image is added in turn to the solution by the following 

steps:  First, the DLT is used to obtain an initial approximation of the EOP—this is 

possible because initial approximations of the 3D coordinates have already been found.  

Note that generally when using the DLT actual control point coordinates are used, 

however because the DLT is being used for approximations only, approximate 3D 

coordinates can be used.  After using the DLT to get an initial approximation of the EOP, 

the solution is refined using single image resection as explained in the appendix (section 

A.2.2).  Next, the 3D coordinates are re-calculated by equations (A.44, A.45) including 

the newly oriented image.  Then, the bundle triangulation algorithm is performed to 

refine the solution.  The flow chart for this process is shown in Figure 2.2. 

By repeating the process outlined in Figure 2.2, each image is added to the 

solution and the initial approximations are updated until the final image is added and a 

final result is obtained.  As a final step, the resulting model can be scaled.  This can be 

done if the approximate distance to the target is known for one of the images, or if the 

approximate distance between two points on the target is known. 

 

2.2 Haddock Images at Close Range with the CANON 5D 

 

 

The first set of images used to test the standard algorithms was a series of eight 

images of the Coast Guard Vessel Haddock, taken in San Diego Harbor, CA.  The images 

were taken with a 12.7 megapixel CANON 5D digital camera with a 400 mm lens at 

distances ranging from approximately 300 m – 450 m.  The eight images that were used 

are shown in Figure 2.3. 
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Figure 2.2.  Flow chart for additional images using standard photogrammetry methods. 
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Figure 2.3.  Eight images of the Haddock at close range with the CANON 5D. 
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This dataset is, in some respects, a good representative of surveillance imagery.  

The images were taken from several points of view so each of the images has an aspect 

which is quite different from the other images.  While the images were taken roughly in a 

circle around the target, there was no strict pattern or order in the image collection as is 

the case with topographic photogrammetry.  There was no control information recorded 

for the image locations.  Also, the target did move somewhat between images and the 

images were captured from a moving platform.   

The images were taken with a camera for which no calibration had been 

performed so the precise IOP were unknown.  Good approximations were available 

however, which may not be the case with all surveillance imagery. 

The target has an unknown geometry—there was no control information given for 

the target.  

The images do have one characteristic that will not be the case with all sets of 

surveillance imagery—the images were captured at a modest range with the vessel 

largely filling the field of view of the camera.  So, these images were expected to cause 

only minor limitations due to narrow angular field-of-view.  Also, because the target  

nearly fills the field of view for several of the images, an accurate self-calibration to solve 

for the IOP may be possible. 

Thus, this test does not fully investigate the problems that can arise from 

surveillance imagery, but it does provide a good starting point. 

Sixty-five point correspondences were located on the images.  The point 

correspondences were manually selected and point coordinates were measured in pixels.  

Not all 65 points were visible in all images.  Several of these point correspondences are 
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shown on one of the images in Figure 2.4.  This set of point correspondences was the 

first input to the standard algorithms. 

The next input was the approximate IOP.  The images were taken with a CANON 

5D digital camera with a 400 mm lens.  A nominal value of 400 mm was chosen as the 

approximate value for the principal distance.  While the focal length is a good 

approximation of the principal distance, it is not necessarily the true principal distance. 

This value had to be converted into units of pixels to match the units of the image 

coordinates that were collected.  The CANON 5D has an imaging element which is 35.8 

mm x 23.9 mm (4368 pixel x 2912 pixel).  Thus, the value for the principal distance was 

400 mm * (4368 pixel / 35.8 mm) = 48770 pixel.  Because the principal points of the 

images were not known exactly, it was assumed that the center pixel of each image 

 

 

Figure 2.4.  Point correspondences on the Haddock. 
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(2184, 1456) was the principal point.  As noted above, the vessel largely fills the field 

of view for several of the images, so a self-calibration to solve for the IOP may be 

possible with these images.  For these tests, self-calibration was not performed.  

With these inputs defined, the standard methods were carried out following the 

procedure described above.  The final results consisted of a set of 3D coordinates, the 

EOP for each image, residuals, 1-sigma errors, and back-projected image coordinates.  

The scale for the final model was chosen by approximating the distance between two 

points on the target (specifically, two of the points on the stern of the ship were compared 

with the water depth markers on the hull of the ship near the stern) and then scaling the 

model to match this approximate distance.  Because the units of the model are not exactly 

(m), the units will be designated as (~m). 

The results from this set of Haddock images were very informative.  The first 

output of the algorithms was the set of XYZ coordinates of the target.  These were plotted 

and were shown to visually resemble the 3D geometry of the points on the actual target.  

This gave some initial confidence in the solution from the standard photogrammetric 

methods. 

The next output of the algorithms was the set of image residuals.  For each point 

on each image the total residual was calculated using equations (A.29 – A.31).  The mean 

of the total residuals across all eight images was 0.88 pixels with a maximum of 3.27 

pixels.  These values were favorable when considering that each point coordinate was 

only collected to roughly the nearest pixel. 

The final output that was considered for these images was the set of 1-sigma 

errors.  The 1-sigma errors were calculated with equations (A.32 – A.37).  The mean of 
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the total 1-sigma errors for the 65 points was 0.006 ~m (0.020 ft) and the maximum 

total 1-sigma error for the 65 points was 0.015 ~m (0.048 ft).  These 1-sigma errors are 

calculated as part of the bundle triangulation algorithm and are based on the assumption 

that the residuals follow a normal distribution.  The 1-sigma errors obtained for this test 

were very favorable. 

As a second test, analytical relative orientation was used to find the relative 

orientation of the first two images instead of the essential matrix approach.  This method 

requires an initial approximation for the relative orientation of the first two images. An 

initial approximation was made by assuming that the first two images were taken from 

the same distance and by guessing at the vertical and horizontal angular difference 

between the two points of view for the first two images.  Using these initial 

approximations for the relative orientation of the first two images, analytical relative 

orientation was performed.  Then, the procedure continued in the same manner as 

explained for the first test.  The 3D reconstruction equations (A.44, A.45), bundle 

triangulation algorithm, and DLT were used to add each of the additional images.  The 

results from this second test were nearly identical to the results from the first test. 

Therefore, for this set of surveillance images, the standard photogrammetric 

algorithms were capable of performing accurate 3D reconstruction. 

 

2.3 Haddock Images at Medium Range with the CANON 20D 

 

The second set of images used to test the standard photogrammetric algorithms 

was a series of six images, also of the Coast Guard Vessel Haddock, taken in San Diego 

Harbor, CA.  The images were taken with an 8.2 megapixel CANON 20D digital camera 
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with a 400 mm lens at distances ranging from approximately 1100 m – 1700 m with an 

average of 1475 m.  The six images that were used are shown in Figure 2.5. 

This dataset is also a good representative of surveillance imagery.  The imagees 

were captured from different points of view.  There was no control information available 

for the target or the EOP.  The images were taken with an uncalibrated camera.  Also, the 

 

 

Figure 2.5.  Six images of the Haddock at medium range with the CANON 20D. 
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images were taken at a greater range than the previous images resulting in a narrower 

field of view.  The vessel does not fill a significant portion of the field of view for any of 

the images, making self-calibration unlikely. 

For the first input, a total of 46 point correspondences were collected from the six 

images, again with some points missing on some images.  The IOP were approximated to 

roughly match the CANON 20D.  The CANON 20D has a 22.5 mm x 15.0 mm (3504 

pixel x 2336 pixel) imaging sensor.  Thus, a value of 62293 pixel was chosen as the 

principal distance (62293 pixel = 400 mm * 3504 pixel / 22.5 mm), and the principal 

point was chosen as the center of the images (1752 pixel, 1168 pixel). 

With all of the inputs defined, the standard photogrammetric algorithms could be 

carried out in the same manner as for the previous image set.  As before, the first step was 

to calculate the relative orientation of the first two images using the algorithm outlined in 

(Pan, Brooks, and Newsam, 1995; Pan, Huynh, and Hamlyn, 1995).  After using this 

algorithm to obtain an initial approximation of the orientation of the first two images, 3D 

reconstruction was performed with equation (A.44, A.45).  However, at this point it was 

noted that the residuals for this 3D reconstruction were extremely high (on the order of 

7,000 pixel).  Also, by inspecting the 3D coordinates which resulted from this 3D 

reconstruction it was apparent that they did not resemble the geometry of the actual 

points on the target.  Thus, the approximation of relative orientation resulting from the 

essential matrix method was inaccurate.  Upon attempting to continue with the process, 

the bundle triangulation algorithm failed to refine the solution, indicating that the initial 

approximations were not sufficiently close to the true solution to lead to convergence.  
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Finally, upon attempting to add additional images using the DLT, the solution did not 

converge to a better result. 

This deficiency of the standard methods was to be expected due to the narrow 

angular field of view of the images.  As mentioned above, as the angular field of view 

decreases, the light rays from the target become more parallel, and the calculations based 

on the perspective projection become unstable.  For example, Fraser and Yamakawa 

(2004, p. 277) mention,  

[W]ell known shortcomings of over-parameterization … are encountered in the 

application of collinearity-based models for satellite imagery, and … can also be 

experienced with the DLT.  These arise from projective coupling between 

parameters of sensor position and spatial orientation. 

 

In an attempt to improve the results, several different pairs of images were put into the 

essential matrix algorithm in order to find a pair of images which did lead to 

convergence.  Eventually, it was observed that by beginning with the first and sixth 

images, an accurate orientation was achieved.  Then, continuing with the procedure, the 

second and fifth images were added using the DLT and bundle triangulation algorithm.  

At this point, it should be noted that the solution from these four images had a mean total 

residual of 0.87 pixels (comparable to the first test) and a mean total 1-sigma error of 

0.067 ~m (0.220 ft).  Thus, the standard methods were successful in performing 3D 

reconstruction from four of the six images.  However, upon attempting to add the third 

and fourth images using the DLT, the solution became unstable. 

The complication with the third and fourth images was most likely due to the fact 

that the target covers a smaller portion of these two images and hence there is a narrower 

angular field of view for the relevant portion of these images than the other images.  
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After realizing that these images could not be added to the current solution by using 

the DLT, attempts were made to orient these images using the essential matrix approach.  

Some experimentation revealed that by beginning with the sixth image and fourth image, 

the essential matrix approach was capable of producing an accurate initial approximation 

for the relative orientation of these two images.  Then by following the procedure as 

before, the first, second, fifth, and third images were added in order.  The final results 

were a mean total residual of 1.16 pixels and a maximum total residual of 3.41 pixel.  The 

mean total 1-sigma error was 0.036 ~m (0.117 ft) with a maximum of 0.172 ~m (0.564 

ft).  This represented an accurate 3D reconstruction, although not without some effort. 

As a double-check of the results from this test, matching points on the target from 

the eight-image test were compared with corresponding points on the target from the six-

image test.  There were 38 corresponding points on the two models.  A 3D rigid 

coordinate transformation (similarity transformation) was used to convert both models 

into a common coordinate frame.  The RMSE between corresponding points was 

calculated for each point; the mean was 0.049 ~m (0.161 ft).  Note that the mean 1-sigma 

error for the first model was 0.006 ~m (0.020 ft) and the mean 1-sigma for the second 

model was 0.036 ~m (0.117 ft).  So, the correlation between the two models is on the 

same order as the 1-sigma errors for the second model.  This indicates an added degree of 

confidence in the results of the tests. 

Next, it was desired to perform 3D reconstruction by beginning with analytical 

relative orientation.  This method requires an initial approximation for the relative 

orientation of the first two images, so an initial approximation was made by assuming 

that the first two images were taken from the same distance and by guessing at the 
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horizontal and vertical angular difference between the two images.  It was necessary to 

make several trial-and-error guesses before the relative orientation step converged, but 

eventually an accurate 3D reconstruction was obtained from the first two images.  The 

remaining images were then added using the method described above.  The resulting 

model had a mean total residual of 1.33 pixel and a mean total 1-sigma error of 0.035 ~m 

(0.115 ft).  This model was compared with the model from the first part of the test using a 

3D rigid coordinate transformation.  The RMSE between the two models was computed 

for each point; the mean was 0.033 ~m (0.108 ft).  Thus, the models were equivalent up 

to the order of precision of the individual models.  Hence, an accurate 3D reconstruction 

was also obtained by beginning with analytical relative orientation, despite the initial trial 

and error. 

In conclusion, this test revealed that the standard methods began to show some 

instability due to narrow angular field of view, but were still able to produce an accurate 

3D reconstruction. 

 

2.4 Petrel Images at Further Range with the CANON 1Ds 

 

The third set of images used to test the standard photogrammetric algorithms was 

a series of four images of the Coast Guard Vessel Petrel, taken in San Diego Harbor, CA.  

The Petrel is the same class of vessel as the Haddock, and therefore should very closely 

match the Haddock.  The images were taken with a 16.7 megapixel CANON 1Ds digital 

camera with an 800 mm lens at distances ranging from approximately 3000 m – 4300 m 

with an average range of 3550 m.  The four images that were used are shown in Figure 

2.6. 
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Figure 2.6.  Four images of the Petrel at further range with the CANON 1Ds. 

 

This dataset is also a good representative of surveillance imagery.  The images 

were captured from different points of view.  There was no control information available 

for the target or the EOP.  The images were taken with an uncalibrated camera.  Also, the 

images were taken at a greater range than the previous images resulting in a narrower 

angular field of view.  The target only filled a very small portion of the field of view for 

each image. 

For the first input, 46 point correspondences were collected from the four images 

which matched the 46 point correspondences collected in the previous Haddock test 

(assuming that points on the Petrel match points on the Haddock).  The IOP were 

approximated to roughly match the CANON 1Ds.  The CANON 1Ds has a 36 mm x 24 
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mm (4992 pixel x 3328 pixel) imaging sensor.  Thus, a value of 110934 pixel was 

chosen as the principal distance (110934 pixel = 800 mm * 4992 pixel / 36 mm), and the 

principal point was chosen as the center of the images (2496 pixel, 1664 pixel). 

With all of the inputs defined, the standard photogrammetric algorithms could be 

carried out in the same manner as for the previous image set.  As before, the first step was 

to calculate the relative orientation of the first two images using the essential matrix 

algorithm outlined in (Pan, Brooks, and Newsam, 1995; Pan, Huynh, and Hamlyn, 1995).  

Once the relative orientation was found, 3D reconstruction was performed using these 

two images.  The residuals for this calculation were very high (on the order of 7,000 

pixel).  When proceeding with the bundle triangulation algorithm, the solution did not 

improve.  It was also noted that the resulting geometry of the 3D coordinates did not 

closely match the geometry of the actual points.  Finally, upon attempting to add 

additional images using the DLT, the solution did not converge to a better result.  These 

results were nearly identical to the initial attempts for the previous six-image test. 

As was the case with the previous test, to obtain an accurate result, the essential 

matrix algorithm, 3D reconstruction, and bundle triangulation were performed on all 

possible image pairs (images 1 & 3, images 1 & 4, images 2 & 3, images 2 & 4, images 3 

& 4).  For each of these image pairs, the residuals, 1-sigma errors, and resulting 3D 

geometry of points were considered.  A couple of the image pairs did lead to low 

residuals (on the order of 1 pixel) and low 1-sigma errors (on the order of 0.03 ~m).  

However, upon inspection of the geometry of the resulting 3D points, it was determined 

that none of the image pairs led to an accurate 3D reconstruction of points.  Figure 2.7 

shows two resulting sets of 3D points (as viewed from above the target).  The black dots 
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are the results obtained from the six-image Haddock test—these points represent an 

accurate approximation of the true geometry of the points.  The red x’s are the results 

from the relative orientation.  The points on the left were obtained from images 1 & 2; the 

points on the right were obtained with images 1 & 4.  These two sets are typical of the 

results that were obtained using other image pairs.  In all cases, the resulting geometry 

and relative orientation were not close enough to the true geometry to cause the 

subsequent steps of the algorithm to converge.  When attempting to add additional 

images to a solution using the DLT and single image resection, the results did not 

improve. 

 

 

      Figure 2.7. Two sets of point geometries resulting from 

essential matrix relative orientation. 
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It should also be noted that in many cases when attempting to perform bundle 

triangulation, the matrix inversion routine returned a warning due to a near singular or 

rank deficient matrix.  This indicates a very high linear dependency between variables 

and an unstable solution. 

The second attempt to obtain an accurate model by standard photogrammetric 

methods involved beginning with the analytical relative orientation algorithm.  This 

requires an initial guess at the relative orientation of the first two images.  As before, it 

was assumed that the first two images were taken at equal distances from the target and a 

guess was made at the horizontal and vertical angular differences between the first two 

images.  After performing analytical relative orientation, a 3D reconstruction was 

performed from the first two images.  After some trial and error using different initial 

approximations, a partial convergence was obtained.  For this partial convergence, the 

residuals and 1-sigma errors were quite low (residuals about 0.5 pixel, 1-sigma errors 

about 0.03 ~m).  However, as with the previous attempts, the resulting 3D geometry of 

the points deviated noticeably from the actual geometry of the points.  The third image 

was added using the DLT and single image resection as detailed above.  After adding the 

third image, the residuals and 1-sigma errors were still rather good (residuals about 1.5 

pixel, 1-sigma errors about 0.15 ~m), but the geometry of points did not improve.  When 

attempting to add the fourth image the solution became unstable and the residuals and 1-

sigma errors increased dramatically. 

In an effort to reach a stable solution, it was attempted to add the fourth image 

first, and then add the third image.  Once again, the solution remained marginally stable 

when adding the fourth image, but became unstable when attempting to add the third 
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image.  Figure 2.8 shows the resulting 3D geometries from images 1 & 2, images 1, 2, 

& 3, and images 1, 2, & 4 along with the solution from the six-image Haddock tests. 

Analytical relative orientation was attempted using some of the other image pairs.  

However, similar results were obtained from these other image pairs.  In some cases it 

was possible to obtain a marginally stable solution with the first two images; in some 

cases it was possible to add one additional image to the solution and maintain a degree of 

accuracy, however an accurate result from all four images was not reached.  The point 

geometries represented in Figure 2.8 are characteristic of the results that were obtained. 

Thus, the standard photogrammetry techniques were unable to accurately solve 

for the 3D geometry of the target for these four images.  The primary complications come 

from the fact that the images have a narrow angular field of view, were captured from 

 

 

Figure 2.8.  Three sets of point geometries resulting from analytical relative orientation. 
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various and unknown aspects, and are images of a target for which no other 

information is available. 

 

2.5 Conclusions and Recommendations 

 

The above tests were instructive in pointing out some of the limitations of the 

standard photogrammetry methods when using surveillance images for 3D 

reconstruction. 

First, it was shown that the current methods used for obtaining initial 

approximations (the essential matrix algorithm and analytical relative orientation) can 

become unstable when using images that have a narrow angular field of view.  It was also 

shown that because these algorithms can only accommodate two images at a time, it was 

necessary to try different pairs of images until convergence was reached.  Further, 

analytical relative orientation requires an initial approximation of the relative orientation 

of the two images.  In the absence of ground control or sensor orientation information this 

initial approximation has to simply be a guess at the angular difference between the two 

images and the relative distance to the target for the two images. 

The acquisition of accurate initial approximations is crucial to the remainder of 

the 3D reconstruction process, specifically for bundle triangulation.  Hence, it is desired 

to develop an algorithm which is more reliable at calculating initial approximations when 

using images that may have a narrow angular field of view.  It is also desired that this 

algorithm has the capacity to utilize more than two images at a time, removing the 

necessity to perform calculations on several pairs of images.  It is also desired that this 
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algorithm, like the essential matrix algorithm, should rely on point correspondences 

only—not ground control or an initial approximation of the relative orientation.  

Second, it was shown that when trying to add another image to a given network 

(find an initial approximation of the EOP and IOP of a single image relative to a set of 

3D coordinates), the DLT was not consistent—especially when using images with a 

narrow angular field of view.  Thus, it is desired to develop a more robust algorithm to 

find an initial approximation of the EOP of a single image relative to a set of 3D 

coordinates. 

Third, the perspective projection in general has the tendency to become unstable 

as the angular field of view of an image decreases.  The standard bundle triangulation 

algorithm is based on the perspective projection, and hence loses stability as the angular 

field of view of the images decreases.  Because the bundle triangulation algorithm is such 

a powerful tool for 3D reconstruction in various circumstances, it is desired to develop a 

form of the bundle triangulation algorithm which is more dependable when using images 

with a narrow angular field of view. 
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CHAPTER 3 

PARALLEL PROJECTION AND PERSPECTIVE-CORRECTED 

 

PARALLEL PROJECTION 

 

 

This chapter gives an explanation of the parallel projection and perspective-

corrected parallel projection.  In particular, the parallel projection bundle triangulation 

algorithm is outlined and some important relationships between parallel projection and 

perspective projection will be derived.  Much of the material presented here will be 

referenced in Chapter 5 where the comprehensive algorithm is outlined. 

 

3.1 Parallel Projection 

 

Parallel projection, like the perspective projection, is a mathematical description 

of how a point in 3D space is projected onto a 2D image. Parallel projection is a simpler 

model than the perspective projection, involves fewer parameters, and is based on a 

different geometry.  Because of this, the parallel projection is able to overcome some of 

the problems that plague the perspective projection in situations where images have a 

narrow angular field of view.  The parallel projection is able to deliver high precision in 

such situations and is far more robust (Morgan, 2004; Fraser and Yamakawa, 2004). 

The parallel projection is a specific form of an affine projection.  The general 

affine projection represents a point in an image (x, y) as a linear combination of the 

coordinates of its corresponding point in 3D space (X, Y, Z): 

8765

4321

AZAYAXAy

AZAYAXAx

+++=

+++=
        (3.1) 
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The eight A terms ( )87654321 ,,,,,,, AAAAAAAA  are referred to as the affine 

projection parameters, or parallel projection parameters.  Throughout the remainder of 

this report, these A terms will be referred to as affine projection parameters.  They 

describe both the EOP and the IOP.  Generally these eight parameters are treated as eight 

independent parameters.  However, the parallel projection model outlined here will 

constrain the eight affine projection parameters so that they can be expressed as six 

parallel projection parameters. 

The parallel projection model that is developed herein will be based on the 

assumption that all light rays from the target travel parallel to the focal axis of the camera 

until they intersect the image plane.  It will also be assumed that the image plane is 

perpendicular to the focal axis.  It is possible to allow the image plane to deviate from 

being orthogonal to the focal axis, as is the case with the model developed in (Morgan, 

2004).  In this case, there are eight degrees of freedom and the full eight-parameter affine 

projection model is used.  However, herein the projection will be constrained to be 

parallel to the focal axis, resulting in a six-degree-of-freedom model.  The two degrees of 

freedom which are lost correspond to image skew, and non-uniform scaling in the x- and 

y-directions in the image.   

The 3D geometry of the parallel projection model is shown in Figure 3.1.  For 

comparison, it may be instructive also to recall Figure 1.3, which is a 3D representation 

of the perspective projection. 

 As with the perspective projection, the 3D coordinate system is denoted by XYZ, 

the image coordinate system is denoted by xyz, and image coordinates are measured in a 

2D coordinate system on the image plane.  As with the perspective projection, there is a 
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Figure 3.1.  3D depiction of the parallel projection. 

 

rotation of the image coordinate system with respect to the 3D coordinate system which 

can be described by a 3 x 3 rotation matrix.  Note that Figure 3.1 does not account for a 

scale change.  In the parallel projection there is a difference in scale between the object 

and the image.  Conceptually, this scale change can occur in 3D space before the target 

points are projected onto the image plane, or it can occur in the image after the target 

points are projected onto the image plane. 

When scaling is considered, the parallel projection can conceptually be 

accomplished by two steps—projection and rescaling.  First the points on the target 

object are projected parallel to the focal axis onto a plane (the ‘average plane’) which is 

parallel to the image plane and perpendicular to the focal axis.  Next, the image of the 

object on the average plane is rescaled to the size of the image.  Figure 3.2 shows this 

process and is based on the material presented by Ono and Hattori (2002).  This 

illustration will be helpful later to visualize the similarity between parallel projection and 

perspective projection. 

Mathematically parallel projection can be accomplished in four steps—rotation, 

projection, rescaling, and translation.  First, the 3D coordinates of the target are rotated  
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Figure 3.2.  Parallel projection and rescaling. 

 

from the XYZ-system to align with the image coordinate system xyz.  Then by 

disregarding the z-coordinate (i.e. by letting all points have a z-coordinate of 0), the 

object is projected parallel to the focal axis onto the xy-plane of the image coordinate 

system.  Then the coordinates are re-scaled to the size of the image.  Finally, the 

remaining x and y coordinates can be shifted to align with the 2D image coordinate 

system on the image plane. 

Therefore, given the assumption that the parallel projection is perpendicular to the 

focal axis, the parallel projection is defined by six parameters: three rotation 

angles ( )κϕω ,, , a scale s, and two shift terms ( )yx ∆∆ , .  These ( )yxs ∆∆ ,,,,, κϕω will be 

referred to as the parallel projection parameters. 

 

3.1.1 Parallel projection equations 

 

The following equation (3.2) expresses the image coordinates (x, y) of a point in 

3D space (X, Y, Z) as a function of the parallel projection parameters ( )yxs ∆∆ ,,,,, κϕω : 
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In this equation (3.2), the [m] matrix is a rotation matrix based on the three rotation 

angles.  The top two rows of this equation can be written as: 

yZsmYsmXsmy

xZsmYsmXsmx

∆+++=

∆+++=

232221

131211
       (3.3) 

These are the fundamental equations for the parallel projection, just as the 

collinearity equations are the fundamental equations for the perspective projection.  

These equations (3.3) can be made to match the general affine projection equation (3.1) 

with the following substitutions: 

yAsmAsmAsmA

xAsmAsmAsmA

∆====

∆====

8237226215

4133122111
    (3.4) 

Therefore, the parallel projection model outlined here is a specific form of an 

affine projection.  By constraining the image plane to be perpendicular to the focal axis, 

the eight affine projection parameters ( )87654321 ,,,,,,, AAAAAAAA  have been reduced to 

six parallel projection parameters ( )yxs ∆∆ ,,,,, κϕω , which describe the EOP and the IOP 

of the image.  The major motivation for this constraint is to maintain a high similarity to 

the perspective projection.  This constraint is further explained and other advantages of 

constraining the eight parameters to six parameters are discussed by Ono and Hattori 

(2002).  This results in a different form of the model outlined by Morgan (2004) which is 

an eight-parameter model.   

As with the perspective projection equations, there are several forms of the 

parallel projection equations which are helpful.  The forms expressed in (3.2) and (3.3) 
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will be used along with equation (3.5) which expresses the shifted and scaled image 

coordinates ( )yx
))

,  as the rotated 3D coordinates (X,Y,Z): 
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3.1.2 3D Reconstruction by 

parallel projection 

 

Because the parallel projection equations (3.2) can be written in a linear manner, 

3D reconstruction is a straightforward calculation.  Given a point in 3D space, a set of I 

images for which the parallel projection parameters are known, and the image 

coordinates of the point in each of the I images, a matrix equation can be written: 
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In equation (3.6) ( )II yx ,  represent the image coordinates in image I, and 

( ),...,,,, ,12,11 IIIII mmyxs ∆∆  represent the parallel projection parameters for image I; recall 

that the matrix terms m can be written in terms of the angles ( )III κϕω ,, .  This equation is 

of the form AXL = and the least-squares solution is ( ) ( )LAAAX TT 1−
= .  This gives the 

3D coordinates of a point by parallel projection. 
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Next, the back-projected image coordinates (x’, y’) can be calculated: 
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Where (X’, Y’, Z’) are the calculated 3D coordinates of the point.  The residuals 

can then be calculated for each point on each image by: 
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The magnitude of these residuals provides a metric for determining the precision 

of each calculation.  They may also be used to detect blunders in the image coordinates 

that were measured from the images.  It also may also be helpful to consider the total 

residual r for each point on each image: 

22

yx rrr +=           (3.9) 

While image residuals are very helpful, they do not directly provide a measure of 

precision in 3D space—they give the degree of accuracy in 2D image space.  Since the 

primary concern is an accurate model of the target in 3D space, 1-sigma errors are used to 

determine the precision of the calculations in 3D space.  The process for calculating the 

1-sigma errors begins by considering equation (3.6), which is of the form AXL = ; the 

least-squares solution of this equation is ( ) ( )LAAAX TT 1−
= .   

Note that the residuals for each point on each image (equivalent to equation 3.8) 

can be calculated as a vector by: 

 R = AX - L          (3.10)   
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This vector of residuals is then used to calculate the standard deviation of unit weight: 

n

RR
T

=0σ           (3.11) 

In equation (3.11) n represents the degrees of freedom and is given by: 

n = (the number of equations) – (the number of unknowns)    (3.12) 

The standard deviation of unit weight 0σ  is then used to calculate the 1-sigma errors: 

110 QX σσ =   220 QY σσ =   330 QZ σσ =     (3.13) 

In equation (3.13) xxQ represents the diagonal elements of the cofactor matrix: 

( ) 1−
= AAQ T           (3.14) 

A further explanation of this calculation of 1-sigma errors is given in (Mikhail, Bethel, 

and McGlone, 2001; Luhmann et al., 2001).  The total 1-sigma error of a single point 

may also be calculated by: 

222

ZyX σσσσ ++=          (3.15) 

The 1-simga errors derived above are based on the assumption that the errors in 

the calculations follow a standard normal distribution. The 1-sigma error values represent 

one standard deviation of the standard normal distribution.  This means that for a given 

point p, there is a 68% probability that the true value of pX lies in the interval 

( )
XpXp XX σσ +− ',' , and a 95% probability that the true value of pX lies in the interval 

( )
XpXp XX σσ 2',2' +− .  While the error may not actually follow a standard normal 

distribution, these 1-sigma errors still give a metric whereby the precision of the 

calculations in 3D space can be determined. 
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3.2 Parallel Projection Bundle Triangulation 

 

 

As noted above, it is desired to develop a form of the bundle triangulation which 

is more reliable when using images that may have a narrow angular field of view.  One of 

the contributions of this thesis is the outline of the parallel projection bundle triangulation 

algorithm.  It follows the pattern of the standard bundle triangulation algorithm, but is 

based on the parallel projection equations as opposed to the perspective projection 

equations.  The use of both algorithms will provide greater accuracy and consistency over 

a wider range of fields of view. 

 

3.2.1 Linearization of the 

parallel projection equations 

 

The parallel projection equations (3.2) which describe the specific six-term 

parallel projection model are non-linear in terms of the six unknowns ( )yxs ∆∆ ,,,,, κϕω .  

By taking partial derivatives of the parallel projection equations in the same manner as 

with the perspective projection equations, they can be linearized by a first order Taylor’s 

theorem approximation.  This will be for the parallel projection bundle triangulation 

algorithm.  Consider the partial derivatives (3.16 – 3.17) of x and y in equation (3.2) with 

respect to the unknowns ( )ZYXyxs ,,,,,,,, ∆∆κϕω :  
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Now, if initial approximations 000000000 ,,,,,,,, ZYXyxs ∆∆κϕω  are available for 

the variables, then the equations (3.2, 3.16, and 3.17) can be calculated at these initial 

approximations.  When this is done, by Taylor’s theorem the first-order approximations 

of the image coordinates (x, y) are: 
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           (3.18) 

Note that equations (3.18) are linear in terms of the set of nine unknowns 

( )dZdYdXydxddddds ,,,,,,,, ∆∆κϕω ; six for the exterior orientation of the image, and 

three for the 3D coordinate of the point.  Also note that ( )00 ',' yx are calculated by 

equation (3.7) using the initial approximations. 
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3.2.2 Parallel projection bundle 

triangulation algorithm 

 

The parallel projection bundle triangulation algorithm is patterned after the 

standard bundle triangulation.  A special case of the parallel projection bundle 

triangulation algorithm will be considered by assuming some constraints (as is the case 

with the standard bundle triangulation algorithm outlined in the appendix).  It is noted 

however, that the parallel projection triangulation could be extended to accommodate 

many different circumstances in the same manner that the standard bundle triangulation 

algorithm is used. 

First, it is assumed that there are I images (image A, image B,…, image I) with 

unknown orientations ( )AAAAAA yxs ∆∆ ,,,,, κϕω , ( )BBBBBB yxs ∆∆ ,,,,, κϕω , …, 

( )IIIIII yxs ∆∆ ,,,,, κϕω .  It is assumed further that there are n target object points with 

unknown coordinates ( ) ( ) ( )nnn ZYXZYXZYX ,,,...,,,,,, 222111  which appear in the I 

images.  It is also assumed that the set of image coordinates of the n points in the I 

images are known and are denoted as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )nInInBnBnAnA

IIBBAA
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yxyxyx

yxyxyx

yxyxyx

,,,,,,
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1,1,1,1,1,1,

,...,,

............

,...,,

,...,,

      (3.19) 

For this algorithm, all n points do not need to be visible in all I images—however, 

it is necessary for each point to be visible in at least two images. 

In the parallel projection, for each image there are six unknowns—an image scale, 

three rotation angles and two shift terms ( )yxs ∆∆ ,,,,, κϕω .  Also, for each 3D point there 

are three unknowns ( )ZYX ,, .  It will be assumed that there are initial approximations for 
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each of the unknowns.  Hence, the set of inputs will be: the set of image coordinates 

(point correspondences) and the initial approximations of the unknowns. 

As is the case with the perspective projection bundle triangulation algorithm, 

there is no initial absolute orientation of the 3D coordinate system because it has not been 

defined by the inputs.  So, defining an absolute orientation of the 3D coordinate system is 

the first step.  To do this, a rotation, an origin, and a scale for the 3D coordinate system 

must be defined.  There are several ways to define the orientation of 3D space, but here 

the rotation of 3D space will be defined by fixing the three rotation angles of image A at 

the values of the initial approximations.  Next, the scale of 3D space will be defined by 

fixing the scale of image A to be the initial approximation for the scale of image A.  To 

fix the origin of 3D space, the x- and y- shift terms for image A and the x- shift term for 

image B will be “fixed” at the initial approximations: 

( ) ( ) ( ) ( )
( ) ( ) ( )

000

0000

BBAAAA

AAAAAAAA

xxyyxx

ss

∆=∆∆=∆∆=∆

==== κκϕϕωω
   (3.20) 

By fixing the shift terms for image A, a ray in 3D space parallel to the z-axis of 

image A has been defined, and by fixing the x-shift term for image B, a plane in 3D space 

perpendicular to the image plane of image B and parallel to the z-axis of image B has 

been defined.  The intersection of this ray with this plane becomes the origin of 3D space. 

Now, for each image (except image A and image B) there are six unknowns 

( )yxs ∆∆ ,,,,, κϕω , which need to be solved for.  For image A there are no unknowns, and 

for image B there are five unknowns ( )ys ∆,,,, κϕω .  There are also three unknowns for 

each target point in 3D space. 
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Now, a system of linear equations is set up.  For a given point p on a given 

image K, the following two equations can be written: 
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(3.21) 

Like equations (3.18), these equations (3.21) are linear in the unknowns 

( )
pppKKKKKK dZdYdXydxddddds ,,,,,,,, ∆∆κϕω .  If these two equations are written for 

each of the points which appear in each of the images, then a linear system of equations 

with the following unknowns is obtained: 

( ) ( )
( )
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CCCCCCBBBBB
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   (3.22) 

Note that the above set of unknowns (3.22) does not include the following terms: 

000

0000

=∆=∆=∆

====

BAA

AAAA

xdydxd

dddds κϕω
     (3.23) 

These terms (3.23) correspond to variables that were fixed in order to define an absolute 

3D coordinate system.  Hence, these variables are not included in the set of unknowns. 

So, by considering the equations for each point in each image a linear system can 

be written in matrix-form L = AX with L, A, and X as follows: 
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The terms in equation (3.25) are: 
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In equation (3.25) ,, XYZXYZ CB …, XYZI follow the same format as XYZA  and represent the 

partial derivatives for image B, image C,…, image I. 
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        (3.32) 

In equations (3.24 – 3.32) note that the row index of L is equal to the row index of 

A (each row corresponds to the x- or y-coordinate of one point on one image) and the 

column index of A is equal to the row index of X (each column of A corresponds to one 

unknown in X). 

Now, by beginning with the initial approximations for the unknown EOP and 3D 

points, the matrix system (equations 3.24 – 3.32) is set up.  Then the least-squares 
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solution for the unknowns (3.22) is found by ( ) ( )LAAAX TT 1−
= .  Then the unknowns 

(X-vector) are added to the initial approximations to produce improved approximations.  

The improved approximations become the new initial approximations and this process is 

repeated until the magnitudes of the corrections X are below a desired threshold. 

Once the solution is found, residuals and 1-sigma errors can be obtained in the 

same manner as for the standard bundle triangulation algorithm (equations A.30 – A.37). 

 

3.3 Relationships Between Perspective Projection and Parallel Projection 

 

Often it will be desired to use both parallel and perspective projection.  The 

perspective projection is widely used and accurate for many circumstances, and the 

parallel projection provides a good alternative for images with a narrow angular field of 

view.  So that both projections can be utilized in one comprehensive method, a series of 

relationships between the perspective projection and the parallel projection will be 

derived here.  The primary reason for constraining the parallel projection to a six 

parameter ( )yxs ∆∆ ,,,,, κϕω  model, instead of the general eight parameter affine model 

is to define the following relationships.  

Figure 3.3 shows the difference between parallel projection and perspective 

projection.  At first it would appear that the parallel projection and perspective projection 

have very little in common, but Figures 3.4 and 3.5 show a stronger resemblance between 

the two models.  These two figures are based on the material presented in (Ono and 

Hattori, 2002).  In Figure 3.4, the solid lines represent the perspective projection where 

light rays travel in straight lines from the target through the image plane to the 

perspective center.  The dashed lines represent the parallel projection (similar to Figure 
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3.2).  Note that the dashed lines first project the target onto a plane (the “average 

plane” which is at an average distance from the camera) which is parallel to the image 

plane and perpendicular to the focal axis.  Then, the points are scaled down to the size of 

the image by using the ratio of the principal distance to the distance to the average plane. 

Figure 3.5 shows that as the distance to the target becomes large in comparison to 

the depth of the target and the principal distance, the two models become more similar. 

 

 

Figure 3.3.  Perspective projection vs. parallel projection. 

 

 

Figure 3.4.  Similarity of perspective projection and parallel projection.   
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      Figure 3.5. Similarity of perspective projection and 

parallel projection at a greater distance. 

 

Fraser and Yamakawa (2004, p. 277) remark, “[T]he affine model departs from a 

central-perspective model, though as the field of view of the imaging sensor becomes 

narrower, the similarity with a parallel projection becomes more apparent …” and  

“… with imaging systems … with narrow fields of view … the assumption that the 

projection is parallel has been shown to stand up quite well in practical tests.”  Thus, as 

the angular field of view of a sensor becomes narrower, the parallel projection model 

becomes more valid, even though the perspective projection model is a more rigorous 

model of the actual imaging geometry.  They also comment that the parallel projection 

model is generally more robust than the perspective projection model when working with 

images that have a narrow field-of-view.  Thus by defining some relations between the 

two projections both can be employed in a single algorithm.  The projection which 

provides the best result will depend on the field of view. 
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3.3.1 Equations relating parallel and 

perspective projections 

 

A series of equations which relate the two models will now be developed.  These 

are based on material presented by Ono and Hattori (2002) and Morgan (2004).  The 

perspective projection equations will be considered first.  From equation (1.1) the 

distance XYZd  in the z-direction in 3D space from (Xc, Yc, Zc) to a target point (X, Y, Z) is: 

( ) ( ) ( ) 333231 mZZcmYYcmXXcd XYZ −+−+−=      (3.33) 

This is the length of the vector from (X,Y,Z) to (Xc,Yc,Zc) projected onto the z-axis. Now, 

if there is a set of p points in 3D space ( ) ( ) ( )
ppp ZYXZYXZYX ,,,...,,,,,, 222111 , let 

( )ccc ZYX ,, denote the centroid of all of these p points:  

( ) 




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 +++++++++
=

p
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p

YYY

p

XXX
ZYX

ppp

ccc

...
,

...
,

...
,,

212121
  (3.34) 

Then the distance (denoted as avgd ) from (Xc, Yc, Zc) to the centroid of points ( )ccc ZYX ,,  

in the z-direction is:  

( ) ( ) ( ) 333231 mZZcmYYcmXXcd cccavg −+−+−=      (3.35) 

With some manipulation it can be shown that the distance in the z-direction to the 

centroid ( )
avgd is equal to the average of distances pddd ,...,, 21 in the z-direction to each 

point.  Now, an image scale s is defined by considering equation (A.39) for the 

centroid ( )ccc ZYX ,, ; a similar equation is used by Kyle (2004). 

( )
( ) ( ) ( )

( ) ( ) ( ) avgccc
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f
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f
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f
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=
−+−+−

=

=
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−
==
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333231

...

...,,λ

           (3.36) 
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Note that this image scale s is the ratio of the principal distance to the average 

distance to the target in the z-direction.  In Figures 3.2, 3.4, and 3.5 this was the factor 

used to rescale the parallel projection image on the “average plane” to the image plane.  

Now consider equations (3.2) and (A.40); these two equations begin to show the 

strong resemblance between the parallel projection and the perspective projection: 

( ) )eperspectiv(,,
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   (3.37) 

If the distance to the target in the z-direction is large with respect to the depth of 

the target it follows that ( ) ( ) sZYXZYX ccc =≈ ,,,, λλ  for all (X, Y, Z).  Then by 

substituting into the second equation of (3.37): 
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With some manipulation it can easily be shown from equation (3.38) that: 

( ) ( )
( ) ( ) yoZcmYcmXcmsZmYmXmsy

xoZcmYcmXcmsZmYmXmsx

+++−++≈

+++−++≈

232221232221

131211131211
   (3.39) 

From the above it follows that: 
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        (3.40) 

( )
( ) yoZcmYcmXcmsAsmAsmAsmA
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+++−====

+++−====
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 (3.41) 
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These equations (3.40 and 3.41) show the strong relation between the 

perspective projection and parallel projection models when the distance to the target is 

large in comparison to the depth of the target.  These equations also provide a means of 

solving for the parallel projection parameters ( )yxs ∆∆ ,,,,, κϕω in terms of the EOP and 

IOP ( )yoxofZcYcXc ,,,,,,,, κϕω .   

It is noted also that if the parallel projection parameters ( )yxs ∆∆ ,,,,, κϕω  have 

been solved for and the approximate IOP (f, xo, yo) are known, then the approximate 

coordinates of the perspective center (Xc, Yc, Zc) can be solved for.  Because there is no 

true perspective center in the parallel projection, the point which lies a distance f along 

the focal axis (z-axis) in the positive direction from (xo, yo) can be used as the 

perspective center.  In the image coordinate system, the coordinates of this point 

are ( )fyyoxxo ,, ∆−∆− .  Now, the coordinates of this point are converted into the 3D 

coordinate system to get the perspective center: 
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      (3.42) 

Thus, approximations of the perspective projection EOP can be found from the 

parallel projection parameters and approximate IOP. 

 

3.4 Perspective-Corrected Parallel Projection 

 

The perspective-corrected parallel projection model is based on both the parallel 

projection and the perspective projection and further bridges the gap between the two 

models.  The model developed here is very similar to the orthogonal projection model 
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developed by Ono and Hattori (2002).  The mathematical derivation of the perspective-

corrected parallel projection model which follows is based on the same set of 

assumptions made in the derivation of the orthogonal projection model.  While the set of 

assumptions underlying both models are essentially the same, some of the resulting 

equations and nomenclature are different.  Also, in the implementation of the perspective-

corrected parallel projection model, approximations of the EOP, the IOP, and 3D 

coordinates will be used to perspective-correct the image-coordinates.  In the orthogonal 

projection model it is assumed that ground control is available in order to make this 

correction.   

The perspective-corrected parallel projection model transforms the initial 

measured image coordinates (x, y) to perspective-corrected coordinates denoted 

by ( )ypxp, .  This adjustment for perspective transforms the image from a central 

perspective image to an orthogonal image.  Then the perspective-corrected image can be 

analyzed using the parallel projection model without losing any of the precision of the 

perspective model.  This hybrid model has the potential for accuracy at a large range of 

imaging distances and over a wide range of fields of view. 

 

3.4.1 Perspective-corrected parallel 

projection equations 

 

The fundamental equations for the perspective-corrected parallel projection are 

derived here.  Begin with the top two rows of equation (A.40): 
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Now, multiply both sides of equation (3.43) by
( )ZYX

s

,,λ
: 
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The perspective-corrected image coordinates ( )ypxp, are defined as follows: 
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Recall that: 
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=
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,,λ     (3.46) 

Now, by manipulating (3.45): 
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Which reduces to: 

8765

4321

AZAYAXAyp

AZAYAXAxp

+++=

+++=
        (3.48) 

where: 

( )
( ) yoZcmYcmXcmsAsmAsmAsmA
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These equations (3.45 – 3.49) constitute the perspective-corrected parallel 

projection model.  It follows the same form as the simple parallel projection model, but 
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the image coordinates (xp, yp) have been corrected from the original image coordinates 

(x, y) such that none of the precision of the perspective projection is lost. 

Thus, if the perspective projection EOP and IOP ( )yoxofZcYcXc ,,,,,,,, κϕω and 

the 3D coordinates of each point (X,Y,Z) are known (or adequate approximations), the 

image coordinates (x, y) can be transformed into perspective-corrected coordinates 

( )ypxp,  by equation (3.45) and the images can be analyzed with the perspective-

corrected equations (3.48 and 3.49).  The benefit of this is that the perspective-corrected 

parallel projection equations are simpler than the collinearity equations. 

In sections 5.6 and 5.7 this will be explored further.  In particular, the parallel 

projection will be used to generate initial approximations for the XYZ coordinates and 

EOP; then these initial approximations will be used to do a perspective-correction.  The 

perspective-corrected coordinates lead to improved approximations.  These can then 

serve as approximations to the standard perspective projection model. 

 

3.4.2 3D reconstruction by perspective- 

corrected parallel projection 

 

The perspective-corrected parallel projection 3D reconstruction is carried out in 

much the same manner as for the parallel projection.  For a point in 3D space, if the 

image coordinates of the point are collected in I images for which the perspective-

corrected parallel projection parameters are known, then the perspective-corrected image 

coordinates can be calculated with equation (3.45).  Next, equation (3.50) can be set up 

which is of the form AXL = and has the least-squares solution ( ) ( )LAAAX TT 1−
= .  This 

gives the 3D coordinates of a point by perspective-corrected parallel projection. 
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In order to determine the residuals and back-projected image coordinates, two 

steps have to be performed.  First, the back-projected perspective-corrected image 

coordinates (xp’, yp’) are found by: 










∆

∆
+

























=









y

x

Z

Y

X

mmm

mmm
s

yp

xp

'

'

'

'

'

232221

13121
      (3.51) 

Note that these coordinates are in the perspective-corrected image coordinate 

system.  In order to compute residuals in the original image coordinate system, the 

perspective-corrected back-projected image coordinates must be transformed into the 

original image coordinate system.  The back-projected image coordinates in the original 

image coordinate system (x’, y’) are calculated by the inverse of the perspective-

correction equation: 
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Where: 

( )
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 73 

Then the back-projected image coordinates (x’, y’) can be used to find the 

residuals in the same manner as for the parallel projection (equations 3.7).  The 1-sigma 

errors are also found in the same manner as for the parallel projection (equations 3.10 – 

3.15). 
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CHAPTER 4 

INITIAL APPROXIMATIONS BY PARALLEL PROJECTION 

 

 

This chapter contains the rigorous mathematical derivation of the equations used 

to obtain initial approximations for 3D reconstruction of a target object using surveillance 

images.  The first section of this chapter contains the derivation of equations for an 

algorithm which is an extension of the work of Huang and Lee (1989).  The resulting 

algorithm will solve for the initial approximations of the EOP based on point 

correspondences alone.  The second section contains the equations for an algorithm 

which is similar to the algorithm presented by Kyle (2004).  This algorithm will solve for 

an initial approximation of the orientation of a single image relative to a set of 3D 

coordinates.  Much of the material presented here will be referenced in Chapter 5 where 

the comprehensive algorithm is outlined. 

 

4.1 Equations for Initial Approximations by Parallel Projection 

 

In practice, the bundle triangulation algorithm will be the final step in the 3D 

reconstruction process.  However, initial approximations of the EOP and the 3D 

coordinates need to be obtained before the bundle triangulation algorithm can be carried 

out.  As noted above, the algorithms found in the literature (Ono and Hattori, 2002; Kyle, 

2004; Morgan, 2004) rely on ground control points to obtain initial approximations for 

the EOP.  Because it is desired to perform 3D reconstruction in the absence of ground 

control, algorithms which use only point correspondences will provide the initial 

approximations for the bundle triangulation algorithm. 
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The essential matrix algorithm outlined earlier is a method based on 

perspective geometry that has been used to obtain initial approximations from point 

correspondences alone.  However, as shown by the tests in Chapter 2, there are two 

primary drawbacks to this algorithm.  First, the perspective geometry can become 

unstable when working with images that have a narrow angular field of view.  Secondly, 

the essential matrix algorithm is only capable of utilizing point correspondences across 

two images—only the relative orientation of two images is solved for.    

The equations presented in this chapter are the fundamental equations used in an 

algorithm which will solve for initial approximations of I images simultaneously using 

parallel projection.  The resulting algorithm will provide a robust alternative to the 

essential matrix algorithm.  The equations (4.4 – 4.76) are an extension of the work by 

Huang and Lee (1989) developed for computer vision applications.  Many of the 

equations found there are repeated here though some of the notation has been altered.  

Also, several of the steps of the algorithm have been altered and extended.  The step for 

solving for relative shift of images has been modified (equations 4.4 – 4.9), a step to 

solve for the relative scales of each image has been added (equations 4.10 – 4.31), and 

the relative rotation step (equations 4.32 – 4.71) has been expanded to accommodate 

more than three images. 

 

4.1.1 Assumptions 

 

The algorithm presented below follows a set of assumptions.  It will be assumed 

that there are I images (image A, image B,…, image I) with unknown orientations.  The 

orientations are denoted by equation (4.1). 
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For each image, these six unknowns describe a scaled-shifted rotation.  In the 

development of the required equations which follows, each of these three steps (shift, 

scale, and rotation) will be considered individually.  It is necessary to have at least three 

images so it is assumed 3≥I .  

It is also assumed that there are n points with unknown 3D coordinates:  

( ) ( ) ( )nnn ZYXZYXZYX ,,,...,,,,,, 222111       (4.2) 

It is assumed further that the set of point correspondences of the n points in I 

images have been measured and are given as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
nInInBnBnAnA

IIBBAA

IIBBAA

yxyxyx

yxyxyx

yxyxyx

,,,,,,

2,2,2,2,2,2,

1,1,1,1,1,1,

,...,,

............

,...,,

,...,,

      (4.3) 

For this algorithm all n points do not need to be visible in all I images—however, 

it is necessary that each point is visible in at least two images.  For this algorithm it is 

also necessary that at least one point is visible in all images in order to calculate the 

relative shift of the images.  It is also necessary that when considering any two images, 

there are at least four common points on those two images.  While these constraints may 

seem limiting, it will be shown later that these constraints will only have to be satisfied 

for three of the images—subsequent images can be added to the solution after the initial 

approximations are obtained using the method outlined in section 4.2. 

It is not necessary to know or approximate the IOP. 
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It is necessary to input a scale.  If the approximate distance to one of the images 

is known, then this scale is equal to the approximate principal distance divided by the 

approximate distance (see equation 3.36).  If this information is not known, an arbitrary 

scale, such as 1 can be chosen. 

It is also necessary to choose a keypoint.  The keypoint is a point in the first 

image which is closer to the camera than the other points.  This is discussed in more 

detail later. 

As was the case in the bundle triangulation algorithm, there is no absolute 

orientation for 3D space to begin with, so the rotation, origin, and scale of the 3D 

coordinate system will have to be defined.  The origin of 3D space will be defined in the 

shift step of the algorithm by selecting a point and assigning it to be the origin of 3D 

space.  The scale of 3D space will be set by “fixing” the scale of one of the images 

(image A) during the scale step of the algorithm.  The rotation of 3D space will be 

defined by choosing the rotation angles of image A to be 0 (i.e. image A will have no 

rotation with respect to 3D space). 

 

4.1.2 Approximating the shift 

 

This portion of the algorithm is valid for the general affine projection model.  

Hence, the equations here are expressed in terms of the affine projection parameters 

( )821 ,...,, AAA .  First the centroid of the set of points which appear in all I images is 

defined as the origin of 3D space.  In the algorithm by Huang and Lee (1989) a single 

point which is visible in all images is chosen as the origin.  Some advantages of choosing 

the centroid of points are discussed in (Kyle, 2004).  
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Suppose that there are p points in 3D space ( )111 ,, ZYX , ( )222 ,, ZYX , … 

( )
ppp ZYX ,,  which appear in all I images.  This is possible due to the assumption there 

must be at least one point which is visible in all images.  The centroid of these p points in 

3D space will be denoted as ( )ccc ZYX ,, .  Note that ( )ccc ZYX ,,  is not the same as 

(Xc,Yc,Zc) which is used to denote the perspective center of an image.  Then define this 

point as the origin of 3D space: 

( ) ( )0,0,0
...

,
...

,
...

,,
212121 =







 +++++++++
=

p

ZZZ

p

YYY

p

XXX
ZYX

ppp

ccc   

           (4.4) 

 

Let ( )
cKcK yx ,, , denote the image coordinates of the centroid ( )ccc ZYX ,,  in image K.  

Now, the parallel projection equations for the centroid reduce to: 

KKKKKKcKcKcKcK

KKKKKKcKcKcKcK

yAAAAAZAYAXAy

xAAAAAZAYAXAx

∆=+++=+++=

∆=+++=+++=

8,7,6,5,8,7,6,5,,

4,3,2,1,4,3,2,1,,

000

000
 (4.5)  

Recall that the fourth and eighth affine projection parameters ( )8,4, , KK AA  are 

equal to the parallel projection shift terms ( )KK yx ∆∆ , .  Equations (4.5) show that the 

image coordinates of the centroid ( )
cKcK yx ,, ,  are equal to the shift terms that are sought.  

Note however that the centroid of 3D space is a mathematically calculated point and it 

cannot be directly observed in the images.  So these image coordinates must be 

calculated.  By substituting equation (4.4) into equations (4.5) the following is obtained: 

8,
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1
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1
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.........

.........
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A
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


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
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+






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+






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+





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+






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+







 ++
=

 (4.6) 
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By rearranging and gathering like terms the result is: 

( ) ( )( )

( ) ( )( )pKpKpKKKKcK

pKpKpKKKKcK

ZAYAXAZAYAXA
p

y

ZAYAXAZAYAXA
p

x

7,6,5,17,16,15,,

3,2,1,13,12,11,,

...
1

...
1

++++++=

++++++=

  (4.7) 

which reduces to: 

( )

( )
pKKKcK

pKKKcK

yyy
p

y

xxx
p

x

,2,1,,

,2,1,,

...
1

...
1

+++=

+++=

       (4.8) 

Note that this is the centroid of the p image coordinates. 

Equations (4.5 and 4.8) show that the shift terms ( )KK yx ∆∆ , can be found by 

taking the centroid of the image coordinates of the p points.  In other words, the centroid 

of the image coordinates is equal to the image coordinates of the centroid of the 3D 

coordinates.  Thus: 

( ) ( )
KK

pKKpKK

cKcK yx
p

yy

p

xx
yx ∆∆=







 ++++
= ,

...
,

...
,

,1,,1,

,,    (4.9) 

At this point, the origin of 3D space has been defined and an approximation of the 

shift of the images with respect to 3D space has been obtained. 

 

4.1.3 Approximating the scale 

 

Now that the shift of each image with respect to 3D space has been approximated, 

the next step is to determine the scale of each image.  The following equations (4.10 – 

4.20) are very similar to those outlined by derivations in Morgan (2004) and Huang and 

Lee (1989).  Because the shift has been accounted for, the remaining terms describe a 
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scaled rotation.  Because each image has a unique scale, an equation can be written in 

the form of equation (3.2) for each image.  Consider two images, image J and image K:  
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
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
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syy

xx

KKK

KK

JJJ
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333231

232221

131211

333231

232221

131211

*

*
      (4.10) 

Since an absolute orientation of 3D space has not been defined, 3D space can be defined 

to have any orientation.  If 3D space is temporarily defined to have no rotation with 

respect to image J (i.e. 0,0,0 === JJJ κϕω ) then the first equation of (4.10)  becomes: 
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
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       (4.11) 

Equation (4.11) can be rewritten as: 



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
=


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


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∆−
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         (4.12) 

And to have a compatible form, the bottom equation of (4.10) can be rewritten as: 
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If 








Y

X
is eliminated from these two equations (4.12 and 4.13): 
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Then if the top and bottom equation of (4.14) are combined and Z is eliminated: 

( )

( ) ( )( ) ( )( )
JJ

J

K

JJ

J

K

KK

KK

yykkkk
s

s
xxkkkk

s

s
xxk

yyk

∆−−+∆−−+∆−

=∆−

231213222311211323

13

...

...

 (4.15) 

Because the cross-product of any two rows (columns) of a rotation matrix is equal to the 

other row (column) (see equation A.3 in the appendix): 

( )
( ) 3123122213

3223112113

kkkkk

kkkkk

−=−

=−
        (4.16) 

If these (4.16) are substituted into equations (4.15): 

( ) ( ) ( ) ( )JJ

J

K

JJ

J

K

KKKK yyk
s

s
xxk

s

s
xxkyyk ∆−−∆−+∆−=∆− 31322313   (4.17) 

At this point four new variables ,,, 321 RRR and 4R  are defined: 

 314323232131 k
s

s
Rk

s

s
RkRkR

J

K

J

K ====     (4.18) 

and by substituting these (4.18) into equation (4.17): 

( ) ( ) ( ) ( )JJJJKKKK yyRxxRxxRyyR ∆−−∆−+∆−=∆− 4321    (4.19) 

Now if a set of p point correspondences over images J and K have been collected 

then the following set of equations can be formed: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
JpJJpJKpKKpK

JJJJKKKK

JJJJKKKK

yyRxxRxxRyyR

yyRxxRxxRyyR

yyRxxRxxRyyR

∆−−∆−+∆−=∆−

∆−−∆−+∆−=∆−

∆−−∆−+∆−=∆−

,4,3,2,1

2,42,32,22,1

1,41,31,21,1

...
   (4.20) 

Note that this set of equations (4.20) is a linear-homogeneous system in four 

unknowns ( )4321 ,,, RRRR .  While this system cannot be solved uniquely (because it is 
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homogeneous) it can be solved to within a scale factor as long as 4≥p .  (Recall from 

earlier that it was assumed that when considering any two images there are at least four 

points which appear in both images.)  If an arbitrary value is assigned to 1R (for this 

derivation 11 =R  is chosen), 32 , RR and 4R can be solved for in terms of 1R by using a 

linear least-squares approach.  So by taking 11 =R  equation (4.20) can be set up as a 

system of equations as follows: 

4
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
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  (4.21) 

This equation (4.21) is of the form AXL =  and the least squares solution is 

is ( ) ( )LAAAX TT 1−
= .  For each pair of images 32 , RR  and 4R can be solved for by least 

squares using the above approach.  So, for each pair of images there will be a 32 , RR and 

4R .  Next, note that in a rotation matrix the norms of rows and columns are equal to 1 

(equation A.1), so it follows that: 

( )2
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2

2
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J +



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
=+⇒+=+=−     (4.22) 

By rearranging the resulting equation (4.22) the relation between the scale of image J and 

image K is given by: 
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Now, by considering all pairs of two images, there are 








2

I
 two-image pairs.  If 

the above process (equations 4.21 – 4.23) is carried out for each of these two-image pairs, 

each pair results in one equation.  The result is the following system of equations: 
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        (4.24) 

This system (4.24) contains 








2

I
equations in I unknowns ( )IBA sss ,...,, .  This 

system is homogeneous and hence it does not have a unique solution.  However, a unique 

solution can be found by “fixing” one of the unknowns to a constant value.  Recall that 

the scale of 3D space has not been defined and in order to fully define 3D space, a scale 

must be defined.  The scale of 3D space is defined by fixing the value of one of the image 

scales—recall that this is one of the inputs of the algorithm.  Without loss of generality, 

let this scale be the scale of image A, As .   

By fixing the value of As , the number of unknowns in the system of equations 

(4.24) has been reduced to (I − 1) and the system is no longer homogeneous.  Thus all of 

the remaining scales can be solved for.  A solution to the system is found by linearizing 
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equations (4.24) by a first-order Taylor Series approximation and then solving by 

linear least-squares.  First, for ease of notation the following definition is made: 

AB

ABAB

ABAB R
RR

RR
=









+

+
2

2

2

1

2

4

2

3          (4.25) 

Implicit differentiation of one of these equations (4.24) which includes As  (remember 

that As is now a constant) yields: 

( ) ABABB RsdSs 22 =          (4.26) 

By implicitly differentiating an equation (4.24) which does not include As  (i.e. both 

scales in the equation are treated as unknowns): 

( ) ( ) BCBBCC Rdssdss 22 =         (4.27) 

For this solution, an initial guess must be made for each of the unknowns ( )IB ss ,..., .  The 

value of As will be used as an initial approximation for each of the unknown scales.  This 

assumption is generally a valid assumption as long as all of the image coordinates are in 

the same units and as long as each of the images were taken at similar distances.  If some 

of the images have coordinates which are in units that differ by several orders of 

magnitude from the others (i.e. some image coordinates in pixels, some image 

coordinates in normalized pixels), or if some images were taken at distances that are 

several orders of magnitude different from the others this assumption may not be valid.  

So, assuming the scale of image A as an initial approximation: 

( ) ( ) AIAB ssss ==
00

...         (4.28) 

The first-order Taylor series approximation of an equation (4.26) which contains As  is: 

( ) ( ) ABABBB Rsdsss
2

0

2

0
2 =+         (4.29) 
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And the first-order Taylor series approximation of an equation (4.27) which does not 

contain As   is: 

( ) ( ) ( ) ( ) BBCBBCBCCC dsRsRsdsss
0

2

00

2

0
22 +=+      (4.30) 

By considering these equations (4.29 and 4.30) for each of the equations in (4.24) a linear 

system of equations in matrix form can be set up: 
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 (4.31) 

This equation is of the form AXL = and has the least squares solution ( ) ( )LAAAX TT 1−
= .  

The values of X are added to the initial guesses to achieve improved approximations.  The 

improved approximations are then used to solve for the system again, resulting in even 

better approximations.  This process is repeated until the magnitudes of the correction 

terms X are below a desired level.  This gives the approximation of the image scales. 

 

4.1.4 Approximating the relative rotations 

 

Now that the shifts and scales of each of the images have been approximated, the 

rotation of the images with respect to each other will be approximated.  In a later step, the 



 86 

rotation of 3D space with respect to one of the images will be defined and the relative 

rotations of images will be used to find their rotation with respect to 3D space. 

The first step is to calculate the shifted-scaled image coordinates ( )yx
))

,  for each 

image.  For image J these are calculated by: 
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In equation (4.32) the parallel projection equations are written in terms of shifted-

scaled image coordinates following the form in equation (3.5).  As was the case when 

solving for approximations of the image scales, two images will be considered, image J 

and image K: 
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

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
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

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

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

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



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


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

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












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Y

X
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y

x

Z

Y

X
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y

x

K

K

J
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333231

232221
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*

*

)

)

)

)

        (4.33) 

By eliminating 

















Z

Y

X
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













































=

















** 332313
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J

J

K

K

y
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kkk

kkk

kkk

y
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)

)

)

)

     (4.34) 

Equation (4.34) describes the rotation of image J relative to image K.  Because the 

multiplication of two rotation matrices is itself a rotation matrix a new rotation matrix 

[ ]jk  is defined by equation (4.35).  The left side the equation (4.35) is the matrix [ ]jk  
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which describes the rotation from image J to image K.  This notation will be used for 

all two-image matrices, i.e. for any two images [ ] [ ][ ]Tjkjk = . 
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



















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







=

















332313

322212

312111

333231

232221

131211

333231

232221

131211

jjj

jjj

jjj

kkk

kkk

kkk

jkjkjk

jkjkjk

jkjkjk

    (4.35) 

At this point it is important to note that because the rotation of 3D space has not 

been defined the matrices [ ] [ ] [ ] [ ] [ ]( ),...,..,,,..., bibcaiacab  which describe the relative 

rotation of images will be solved for, and not the matrices [ ] [ ] [ ]( )iba ,...,,  which describe 

the rotation of images with respect to 3D space.  So by substituting (4.35) into (4.34): 

































=

















** 333231

232221

131211

J

J

K

K

y

x

jkjkjk

jkjkjk

jkjkjk

y

x
)

)

)

)

       (4.36) 

The top two equations of this matrix multiplication are combined by eliminating the third 

element (*) of the vector on the right side: 

( ) ( ) JJKK yjkjkjkjkxjkjkjkjkxjkyjk
))))

23122213231121132313 −+−+=    (4.37) 

Note that this derivation is entirely analogous to the derivation that was used to determine 

the image scales (equations 4.14 – 4.17).  By the properties of a rotation matrix this 

reduces to: 

( ) ( ) ( ) ( ) JJKK yjkxjkxjkyjk
))))

31322313 −+=       (4.38) 

If p point correspondences over these two images are considered then a system of 

equations is obtained: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) pJpJpKpK

JJKK

JJKK

yjkxjkxjkyjk

yjkxjkxjkyjk

yjkxjkxjkyjk

,31,32,23,13

2,312,322,232,13

1,311,321,231,13

...
))))

))))

))))

−+=

−+=

−+=

     (4.39) 

As before, this is a linear-homogeneous system which cannot be solved uniquely, but can 

be solved to within a scale factor given 4≥p .  (Recall that it was assumed that there are 

at least four point correspondences on each set of two images.)  An arbitrary value is 

assigned to 13jk  (denoted by '13jk ; for simplicity 1'13 =jk  is chosen) and then ,',' 3123 jkjk  

and '32jk  are solved for in terms of '13jk .  This linear least-squares solution is found in 

the same manner as equations (4.20 and 4.21).   

The actual values of ,,, 312313 jkjkjk and 32jk  are related to the arbitrary values 

,',',' 312313 jkjkjk and '32jk by the matrix scale factorξκ (recall that the arbitrary values 

were solved for assuming 1'13 =jk ).  Thus: 

( ) ( )',',',',,, 3231231332312313 jkjkjkjkjkjkjkjk ξκ=      (4.40) 

So ξκ must be determined in order to calculate the actual terms of the rotation matrix 

from the arbitrary terms. 

It has been proven by Huang and Lee (1989) that when using parallel projection, 

two images are insufficient to determine the relative orientation of images—three images 

are necessary.  It has also been shown that when a parallel projection is used, much 

higher precision is obtained when using more than two images (Ono and Hattori, 2002).  

Thus, a series of equations will be derived by considering three images at a time and then 

these equations will be applied to all three-image triplets from the set of I images. 
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Consider three images (say image A, image B, and image C).  By following the 

above, the relations between images are (like equation 4.36): 
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

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       (4.41) 

Note that the rotation from image A to image C is equal to the rotation from image 

A to image B multiplied by the rotation from image B to image C: 

































=

















333231

232221

131211

333231

232221

131211

333231

232221

131211

ababab

ababab

ababab

bcbcbc

bcbcbc

bcbcbc

acacac
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   (4.42) 

As before, consider two images at a time and use equations (4.39) to calculate 

( ) ( )',',',',',',',' 3231231332312313 acacacacabababab  and ( )',',',' 32312313 bcbcbcbc .  This 

requires three least-squares systems.  In doing so, three unknown matrix scale factors 

,,αγαβ and βγ  are introduced.  These are related by (like equation 4.40): 

( ) ( )
( ) ( )
( ) ( )',',',',,,

',',',',,,

',',',',,,

3231231332312313

3231231332312313

3231231332312313

bcbcbcbcbcbcbcbc

acacacacacacacac

abababababababab

βγ

αγ

αβ

=

=

=

     (4.43) 

To find the true values of the rotation matrix terms the unknown matrix scale factors 

,,αγαβ and βγ  must be found.  By considering the constraint equation (4.42) two 

relationships for the matrix scale factors can be developed.  First multiply out equation 
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(4.42) to yield four equations (one equation for the upper left 2 x 2 portion of the 

matrix, one equation for the top two terms in the third column, one equation for the first 

two terms in the third row, and one equation for the third term in the third column): 

[ ]3231

23

13

2221

1211

2221
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2221
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abab
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abab
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
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
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


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


   (4.44) 
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
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
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
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      (4.45) 

[ ] [ ] [ ]323133

2221

1211

32313231 ababbc
abab

abab
bcbcacac +




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


=     (4.46) 

[ ] 3333

23

13

323133 abbc
ab

ab
bcbcac +








=        (4.47) 

Premultiply both sides of (4.45) by [ ]1323 bcbc − : 

[ ] [ ] 







−−=


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−
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By the properties of a rotation matrix this reduces to: 

 [ ] [ ] 







−=
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
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−

23

13

3132

23

13
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ac
bcbc       (4.49) 

Now by substituting equations (4.43): 

( ) ( )'''''''' 1332233123131323 abbcabbcacbcacbc −=− αβαγ     (4.50) 

In a similar manner, postmultiply both sides of (4.48) by 








− 31

32

ab

ab
which, with some 

manipulation, gives: 

( ) ( )'''''''' 2331133231323231 abbcabbcabacabac −=− βγαγ     (4.51) 
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Now, rearrange equations (4.50) and (4.51) to give the relation of matrix scale factors: 

''''

''''

''''

''''

23311332

31323231

13322331

23131323
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−
=
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        (4.52) 

For simplification, define two new terms 1ABC  and 2ABC : 
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''''
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23321331

31323231
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13322331
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−

−
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−

−
==
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βγ
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αβ

       (4.53) 

(this notation will be used for all sets of three images, i.e.
ικ
ιξ

=1IJK ). 

Next premultiply both sides of (4.45) by [ ]2313 bcbc to get: 

[ ] [ ] [ ] 33

2
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2

13
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2223121321231113
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(4.54) 

By the properties of rotation matrices this reduces to: 

 [ ] [ ] [ ] 33

2
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bcbcbcbc
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
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
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  (4.55) 

Then by substituting (4.43) into (4.55): 

( ) ( ) ( ) 3323321331133

2

23

2

13223231313 '''''''''' bcabbcabbcABCabbcbcABCacbcacbc +−+=+  

           (4.56) 

 

Similar to equations (4.54 – 4.56), if both sides of (4.46) are post-multiplied by 








32

31

ab

ab
: 

( ) ( ) ( ) 33

2

32

2

3113313321331232323131 '''''''''' bcababABCababbcabbcABCabacabac +++−=+  

(4.57) 
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For simplification three additional terms are introduced: 

''''

''''

''''

323231315

233213314

232313133

abacabacABC

abbcabbcABC

acbcacbcABC

+=

+=

+=

       (4.58) 

(this notation is also used for all three-image sets, i.e. '''' 232313133 ikjkikjkIJK +=  etc…) 

Note that for a rotation matrix: 

2

33

2

32

2

31

2

23

2

13 1 ababababab −=+=+        (4.59) 

Hence the right side term and middle term of equation (4.59) can be used interchangeably 

in any expression.  Because of this fact it should follow that in the numerical calculations: 

2

32

2

31

2

23

2

13 '''' abababab +≈+                  (4.60) 

So, the right side and left side of equation (4.60) can also be used interchangeably.  Thus 

an additional term which is the average of the two terms in (4.60) is defined: 
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=    (4.61) 

In the calculations that follow the term ( )1AB  is used in place of the terms 2

23

2

13 '' abab +  

and 2

32

2

31 '' abab + .  As with other notations, this notation is used hereafter for all three-

image sets: 
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''''
2

''''

bcbcbcbc
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=

+≈+≈
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=
   (4.62)  

By substituting terms from equations (4.58, 4.61 and 4.62) into equations (4.56 and 4.57): 

( ) ( )
( ) ( ) 331133425

334133123

bcABABCabABCABCABC

bcABCABCabBCABCABC

+−=

−=
     (4.63) 
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Thus by considering the constraint equation (4.42) [ ] [ ][ ]abbcac =  two linear equations 

(4.63) in two unknowns ( )3333 ,bcab have been developed.   

Next consider the reordering of the constraint equation (4.42) as [ ] [ ][ ]Tabacbc =  

and [ ] [ ] [ ]acbcab
T= .  By considering these two reorderings, four additional linear 

equations are obtained in the same manner that (4.63) was obtained: 
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=

     (4.64) 

By putting these six equations (4.63) and (4.64) together there are six equations in three 

unknowns ,, 3333 acab and 33bc .  Such is the case with all three-image sets. 

Now, consider all three-image sets from the set of I images; there are 








3

I
three-

image sets.  Each of these sets produces 6 equations (like equation 4.63 and 4.64).  So, by 

considering the set of all equations, there are 6* 








3

I
linear equations in 









2

I
unknowns 

( ),...,,...,,,...,,, 3333333333333333 cdbibdbcaiadacab .  These unknowns will be referred to as 

the 33-terms of the matrices (their row and column index is 33).  These can be set up and 

solved for using a least squares approach.  This is set up as shown in equation (4.65).  
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Once again, the system (4.65) is of the form AXL = the solution to this system is 

( ) ( )LAAAX TT 1−
= .  The residual R for this calculation can be computed by R = AX – L. 
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           (4.65) 

Note that equation (4.65) has 








2

I
unknowns because the relative rotations 

between each of the images taken two-at-a-time were considered as unknown.  In 

deriving this equation (4.65), only the constraint equation (4.42) for images taken three-

at-a-time was considered.  However, the constraint from considering all I images 

simultaneously has not been fully enforced: 

[ ] [ ] [ ] [ ] [ ] [ ]abbccdghhiai ***...**=         (4.66) 

The constraint equation (4.66) is due to the fact that the rotation from image A to 

image I is just the composite of all of the rotations between images from image A to 
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image I.  In other words, there are really only I unknown rotations, not 








2

I
unknown 

rotations.  There are only I rotations that need to be solved for and the remaining 

rotations can be found from (4.66) and (4.42).  Hence, equation (4.65) has more degrees 

of freedom than necessary because all of the constraints have not been fully enforced.  

Because this algorithm will be used to produce initial approximations and not a rigorous 

final solution, the additional degrees of freedom can be overlooked in this calculation.      

Now that the 33-term for each matrix has been obtained, the remaining terms can 

be solved for.  Before proceeding however, note that because the least-squares solution 

(4.65) is not a fully constrained system it may result in rotation matrix terms which have 

an absolute value greater than 1.  If this occurs, the value of the terms should be replaced 

with a value near to, but less than, 1.  A value slightly less than one (i.e. 0.99) is chosen 

to avoid numerical problems with ambiguous rotation angles at singularities. 

So, recall that the 13, 23, 31, and 32 terms (matrix terms with row and column 

indices 13, 23, 31, and 32) are known to within the matrix scale factor (equation 4.43).  

Now, by using the properties of a rotation matrix and equation (4.43): 

( ) 1

22

23

2

13

22

23

2

13

2

33 *''1 ABababababab αβαβ =+=+=−     (4.67) 

Rearranging this equation (4.67) yields: 

1

2

331

AB

ab−
±=αβ          (4.68) 

This equation (4.68) gives the absolute value of the matrix scale factors, but it does not 

provide the sign.  If one matrix scale factor is arbitrarily assigned to be positive (or 

negative) the sign of the remaining matrix scale factors can be solved for by using 
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equations (4.52).  Two sets of matrix scale factors will be defined—the first will be 

denoted as the (+) set and will be based on the positive root ofαβ , the other set will be 

denoted as the (-) set and will be based on the negative root ofαβ .  Note that these two 

sets have equal absolute values and opposite signs.  The existence of two solutions is due 

to the nature of parallel projection.  This is discussed in detail in (Huang and Lee, 1989; 

Kyle, 2004).  One of the solutions is the true solution, while the other is a mirror-image.  

A keypoint will be used later to resolve this ambiguity.  For now, both the (+) set and the 

(-) set will be kept. 

Now that the matrix scale factors have been obtained, the 13, 23, 31, and 32 terms 

of the rotation matrices can be solved for using equation (4.43).  There will be two sets of  

13, 23, 31, and 32 terms, one corresponding to the (+) set and one corresponding to the   

(-) set.  Again, the (+) set and (-) set will have equal absolute values and opposite signs. 

It is important to note that the 13, 23, 31, 32, and 33 matrix terms were solved for 

using least-squares solutions that were not fully constrained.  Hence, the resulting terms 

are not exact rotation matrix terms and may not form true orthonormal matrices. 

Now that the 33-terms and the 13, 23, 31, and 32 terms of the rotation matrices 

have been found, the remaining terms can be calculated by using the properties of 

rotation matrices outlined in section A.1.  By using the cross-product property of rotation 

matrices, one equation for each of the 13, 23, 31, and 32 terms can be written: 

2311211332

2213231231

3211311223

3122322113

ababababab

ababababab

ababababab

ababababab

−=

−=

−=

−=

         (4.69) 
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Also, from the dot-product property of rotation matrices: 

0

0

0

0

333223221312

333123211311

332332223121

331332123111

=++

=++

=++

=++

abababababab

abababababab

abababababab

abababababab

       (4.70) 

These can be put in matrix-form to solve for the 11, 12, 21, 22 terms (matrix terms with 

row and column indices 11, 12, 21, and 22) as follows: 
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    (4.71) 

This represents an eight-equation four-unknown linear system AXL = which can 

be solved by least squares ( ) ( )LAAAX TT 1−
= .  This gives the remaining rotation matrix 

entries ,,, 211211 ababab and 22ab .  Note that the 11, 12, 21, and 22 terms for the (+) set are 

essentially the same as those for the (-) set, so the computation (4.71) does not have to be 

carried out for both sets.  If the calculations above resulted in exact rotation matrices then 

the 11, 12, 21, 22 terms from the (+) set and (-) set would be exactly equal.  But, because 

the 13, 23, 31, 32, 33 terms came from least-squares solutions that were not fully 

constrained they are not exact rotation matrix terms and there will be a minimal amount 

of difference in the 11, 12, 21, 22 terms from the (+) set and those from the (-) set. 
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4.1.5 Approximating the absolute rotations 

 

Now that the shift and scale of each image with respect to 3D space has been 

determined along with the rotation for each image relative to the other images, only the 

three rotation angles ( )κϕω ,,  of each image with respect to 3D space remain to be solved 

for.  Recall that each image is related to 3D space by the following (like equation 4.10): 
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      (4.72) 

This is an absolute orientation to 3D space.  However, the rotation of 3D space 

has not yet been defined.  So, to fully define 3D space and find the rotation angles, 3D 

space will be “fixed” to one of the images.  Then the orientation of each image relative to 

the “fixed” image will give the absolute orientation of that image.  Without loss of 

generality image A will be selected to have no rotation with respect to 3D space: 
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Which then gives: 
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Next, (from equation 4.44): 
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And likewise for the other images: 
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Thus by fixing the orientation of 3D space to image A the relative orientation has 

been converted into an absolute orientation and the values that were calculated 

[ ] [ ] [ ]( )aiacab ,...,,  give the approximate rotation matrices. 

Next, the three rotation angles can be derived from the approximate matrix with 

equations (A.7 – A.12).  Once the three rotation angles are obtained the calculation of the 

parallel projection parameters is finished.  It should be noted that there are two sets of 

parallel projection parameters, the (+) set and the (-) set.  Note also that the two sets are 

equal, except that ω  and ϕ  have opposite signs.  This concludes the initial 

approximation algorithm for parallel projection parameters. 
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4.2 Adding an Additional Image 

 

One additional algorithm that will be considered is an algorithm for adding an 

additional image to a previous solution by parallel projection.  This algorithm will solve 

for initial approximations of the parallel projection parameters for the additional image 

from a set of 3D coordinates and image coordinates.  Recall from Chapter 2 that the DLT 

can be used to add another image to a solution, but it loses stability as the angular field of 

view becomes narrower.  The method developed here is based on parallel projection in 

order to add images with a narrow field of view.  It is similar to the algorithm outlined by 

Kyle (2004).  Kyle (2004, p. 48) reported,  

It is possible to apply the simple mathematics of a parallel projection to 

conventionally imaged objects of known dimensions, in order to calculate 

approximate values for object position and angular orientation relative to the 

camera or vice versa.  The conditions are that the imaging bundle for the targets 

used in the calculation should be relatively narrow … it is further assumed that 

camera internal geometry is well known …  

 

Note however that in the development of the algorithm here, the dimensions of 

the target object do not need to be known precisely, only approximations.  Because 

approximations of the actual target geometry are used, more point correspondences than 

is necessary are collected resulting in an over-determined system with a least-squares 

solution. 

For this algorithm it is assumed that there n points ( ) ( )nnn ZYXZYX ,,,...,,, 111  for 

which the coordinates are known approximately.  It is assumed that there is an image J 

which it is desired to orient relative to these points.  Assume that a set of image 

coordinates of a subset of the set of the n points have been collected on image J: 

( ) ( )
pJpJJJ yxyx ,,1,1, ,,...,,         (4.77) 
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It is not necessary for all n points to be visible on image J, but there must be at 

least four points on image J (i.e. 4≥p ).   

Now, writing the affine projection equations (3.1) in matrix form: 
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 (4.78) 

Equations (4.78) are of the form L = AX and have the least squares solutions 

( ) ( )LAAAX TT 1−
= .  By solving these two equations initial approximations for the affine 

projection parameters for image J ( )8,1, ,..., JJ AA  are obtained. 

Now, consider equations (3.4 and A.6), which express the general affine 

projection parameters in terms of the six parallel projection parameters.  By the properties 

of a rotation matrix (discussed in the appendix): 
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And hence the image scale s can be solved from the affine projection parameters by: 
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Similarly, 2

7,

2

6,

2

5, JJJJ AAAs ++= .  Because least-squares numerical calculations were 

used to get the eight affine projection parameters ( )8,2,1, ,...,, JJJ AAA , the two expressions 

for Js  will not be equal.  Thus, in order to utilize all of the data, Js can be calculated as 

the average of the two terms: 
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Then the first six matrix terms are obtained by: 
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Then by the properties of rotation matrices the remaining matrix terms are found by: 

2112221133

2311211332
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mmmmm
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        (4.83) 

Note that the resulting rotation matrix will not be truly orthogonal because each of the 

terms were obtained using least-squares calculations and all of the constraints were not 

fully enforced.  In the algorithm presented by Kyle (2004), cross-products are used to 

construct an orthogonal rotation matrix from the approximate rotation matrix.  However, 

because it is desired to solve for the three rotation angles from the matrix, these can be 

found using equations (A.7 – A.12).  Then, an orthogonal matrix can be constructed from 

these angles using equations (A.6). 
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CHAPTER 5 

 

OUTLINE OF COMPREHENSIVE ALGORITHM 

 

 

To this point, several equations and models have been outlined.  This chapter 

explains how all of this can be streamlined into one comprehensive algorithm for the 3D 

reconstruction of a target from surveillance imagery.  The equations for this algorithm 

have been developed above (Chapters 3-4), or are given in the appendix, so in the outline 

that follows the equations will not be repeated, just referenced. 

 

5.1 Introduction 

 

 

The comprehensive algorithm utilizes three models: parallel projection, 

perspective-corrected parallel projection, and perspective projection.  By using all three 

projections, accuracy and stability across a wide range of angular fields of view is 

possible.  Also, because all three projections are used, there are essentially three sets of 

results that are produced.  Each of these results can be compared and the most accurate 

result can be used as the final output.  The comprehensive algorithm can be broken down 

into eight steps: 

Step 1: Collect Inputs 

Step 2: Parallel Projection Initial Approximation 

Step 3: Initial Parallel Projection 3D Reconstruction 

Step 4: Parallel Projection Bundle Triangulation 

Step 5: Perspective-Corrected Parallel Projection 3D Reconstruction 

Step 6: Perspective-Corrected Parallel Projection Bundle Triangulation 



 104 

Step 7: Perspective Projection 3D Reconstruction 

Step 8: Perspective Projection Bundle Triangulation 

From the above, it can be seen that parallel projection is used to obtain initial 

approximations.  These approximations are refined through bundle triangulation resulting 

in a final output from parallel projection.  Then perspective-correction is performed on 

this result and it serves as an initial approximation for the perspective-corrected parallel 

projection.  A bundle triangulation is performed to refine these approximations and a 

final result from perspective-corrected parallel projection is output.  Finally the 

perspective-corrected parallel projection results are used as an initial approximation for 

the standard perspective projection.  Bundle triangulation refines these results and an 

output is obtained from perspective projection. 

Each of the above steps is outlined in detail in this chapter, including references to 

the specific equations that are used.  A flow chart is also given in Figure 5.1 on the next 

page.  It may be helpful to follow the flow chart when considering each step. 

 

5.2 Step 1: Collect Inputs 

 

The first step is to collect the inputs for the algorithm.  The first input is a series 

of point correspondences on the images.  This is generally done manually.  It is assumed 

that there are n points with unknown 3D coordinates.  It is assumed further that there are I 

images (denoted by image A, image B,…, image I) with unknown EOP.  It is necessary 

that 3≥I .  (This is due to the fact that the parallel projection algorithm requires at least 

three images to solve for relative rotation of images.)  It is also assumed that the n points 

appear in the I images.  It not necessary that all n points are visible in all I images—some  
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Figure 5.1.  Flow chart of comprehensive algorithm. 
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of the coordinates may be missing.  It is necessary however that each point is visible 

in at least two images.  It is also necessary to find a subset of the I images which has at 

least three images and fulfills the following two requirements: 

(1) there is at least one point that appears on all of the images in the subset 

(2)  for any pair of images in the subset there must be at least four common points 

on the two images 

This subset of images will be used to find the initial approximations.  If it is 

possible to fulfill these two requirements with all of the images, then all of the images 

can be processed with the parallel projection initial approximation algorithm.  If these 

two requirements are not met by the full image set, then a smaller subset of images must 

be chosen to be used in the initial approximation step, and the remaining images can be 

added later using the algorithm to add another image (section 4.2). 

The second input for the algorithm is the approximate IOP ( )yoxof ,, .  The focal 

length of a particular lens is generally a good approximation of the principal distance (f).  

The center of an image is generally a good approximation of the principal point (xo, yo).   

There are cases where images may have been captured with an unknown sensor.  

In these cases it will generally not be possible to approximate the IOP.  If such images are 

used, the parallel projection steps of the procedure can still be used without the initial 

approximations, but the perspective projection steps may have to be ignored for these 

images.  Or, a standard method such as the DLT may supply the approximate IOP, 

depending on the angular field of view.   

The third input is the scale for one of the images.  This scale defines the scale of 

the final 3D coordinates.  This scale is approximately equal to the principal distance of 
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the image divided by the average distance from the image to the target (see equation 

3.36).  If the scale of the final model is not important or if the approximate distance to the 

target is unknown, this input can be set to an arbitrary value such as 1.  In this case, the 

units of the final model are arbitrary units.    

The final input is the keypoint.  As has been mentioned earlier, the parallel 

projection algorithm produces two solutions.  These two solutions are mirror images of 

each other.  In order to determine which solution is the correct solution, and which is the 

mirror image, one additional input is defined.  A point on the target which is visible in the 

first image (image A) and which is closer to the camera in the z-direction (the focal axis 

of the camera) than the centroid of the target is selected as the keypoint.  Because of the 

way that 3D space is defined
1
 the keypoint should have a positive Z-coordinate.  This will 

allow the correct solution from the parallel projection algorithm to be determined. 

 

5.3 Step 2: Parallel Projection Initial Approximation 

 

The parallel projection initial approximation algorithm is the first major step in 

the comprehensive algorithm.  It is used to get initial approximations of the EOP by 

parallel projection. 

 

5.3.1 Inputs, assumptions and outputs 

 

There are three inputs for the algorithm discussed above: image coordinates of 

point correspondences, the scale of one image, and a keypoint. 

                                                 
1
 The origin is the approximately the centroid of the target object, and the positive Z-direction points 

toward the camera. 
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There is one output of this algorithm: a set of initial parallel projection 

parameters.  This set of approximate camera orientations includes the three rotation 

angles ( )κϕω ,, , the image scale s, and the shift terms ( )yx ∆∆ ,  for each image. 

 

5.3.2 Step-by-step outline 

 

There are five major steps of the algorithm: 

(1) determine the shift of each image 

(2) select the points to be used to calculate the image scales and rotation matrices 

(3) calculate the image scales 

(4) calculate the rotation angles 

(5) 3D reconstruction of the keypoint.   

Each of these steps will be considered individually. 

The first step (1) is to find the approximate shift of each image.  This portion of 

the algorithm is outlined in section 4.1.2 and is based on the equations (4.4 – 4.9).  The 

origin of 3D space is defined as the centroid of the set of points which appear in all I 

images.  Then, the centroid of those image coordinates in each image becomes the shift 

for that image.  So, the steps for this portion of the algorithm are: a) find the set of points 

which appear in all images and get the image coordinates of these points for each image 

and b) take the centroid of those coordinates in each image (4.8). 

The x-coordinate of the centroid in each image is x∆  for that image, and the y-

coordinate of the centroid in each image is y∆ for that image (equation 4.5). 

The next step (2) is to select which points will be used to calculate image scales 

and rotations.  One failure mode of the parallel projection algorithm is when a set of 
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coplanar points is used as point correspondences when determining the relative 

rotations of images (Huang and Lee, 1989; Kyle, 2004).  It has been found by experiment 

that if a large number of points which are nearly coplanar are used to calculate the image 

scales and rotations the algorithm is subject to failure due to matrices which are nearly 

singular.  Hence, a smaller sub-set of points which are not coplanar should be used to 

determine the image scales and rotations.  Recall, however, that it is necessary that when 

any two images are considered, there must be at least four points which appear on both 

images.  

This portion of the algorithm is up to the discretion of the user, but from 

experiment it has been determined that favorable results are obtained when determining 

the rotations and image scales from a set of points which satisfies four conditions: 1) the 

points appear in all of the images, 2) the points are not nearly coplanar, 3) the points are 

spread over a large portion of the target, and 4) there are at least four such points.  

If point-correspondences are chosen such that the above four conditions are 

satisfied, then this step could be executed as: a) find the set of points which are on all 

images, b) save this smaller set of points for the calculation of rotations and image scales, 

and c) check to make sure that there are a sufficient number of points (i.e. ensure that 

there are at least four points which appear in all images). 

In the event that no such set of points exists, subsequent steps can be carried out 

with the full set of points, but as mentioned above, the parallel projection algorithm is 

subject to failure when the set of points are nearly coplanar.  For subsequent steps, it will 

be assumed that this step has been performed as described above. 
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The next step (3) is to solve for the scales of the images.  This portion of the 

algorithm is based on section 4.1.3 and the equations (4.10 – 4.31) outlined above.  This 

step proceeds as follows: 

a) Consider each set of two images and compute the four R terms for each set 

using equation (4.21).  Note that the points from the smaller set which appear in both 

images, and have been shifted are used for this calculation.  There will be 








2

I
two-image 

sets, and hence there will be 








2

I
 sets of R terms that have to be solved for.   

b) Compute a fifth R term for each two image set using equation (4.24).  Then 

perform the iterative least squares computation to solve for the image scales using 

equation (4.31).  Recall that the scale of image A, As  (which was input), is used as an 

initial approximation for each image scale.  This computation may require several 

iterations as each iteration improves the initial guesses.  The convergence criteria is up to 

the discretion of the user.  Generally the iteration is stopped when the magnitude of the 

corrections X is below a desired threshold. 

The next step (4) solves for the three rotation angles for each image.  This step 

follows sections 4.1.4 and 4.1.5 and equations (4.32 – 4.71 and 4.72 – 4.76) outlined 

above.  This step is carried out as follows:  

a) Begin with the set of points which are on all images.  Then consider each two-

image set and compute the four terms for each set using equation (4.39).  These are saved 

for each two-image set (recall that these equations can be set up and solved in the same 
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manner as 4.21.)  Note that the points used for this calculation have been shifted and 

scaled. 

b) Consider each three-image set and compute the eight coefficients defined in 

equations (4.53, 4.58, 4.61, and 4.62).  So, there will be 








3

I
sets of eight coefficients.  

These eight coefficients are based on the four terms computed in step a) from the two-

image sets.  For example, for the three-image set (image A, image B, image C) there are 

three sets of two-image terms (image A and image B), (image A and image C), and 

(image B and image C), which are used to solve for the eight coefficients.  By using the 

eight coefficients from each three-image set, solve for the 33-terms of the rotation 

matrices using a least squares computation.  This is outlined in equation (4.65). 

c) At this point, an error check on the 33-terms is also performed.  In the 

numerical calculations, it is possible to have a 33-term with an absolute value greater 

than 1.  If this happens, change the absolute value of the term to 0.99 since no term in a 

rotation matrix can have an absolute value greater than 1.   

d) Next, for each rotation matrix, calculate the matrix scale factor for the 13, 23, 

31, 32 matrix terms (equation 4.43) using equation (4.68).  Note that for each term, there 

is a (+/-) sign.  By default, choose the positive root ofαβ  and then solve for the signs of 

the remaining terms using equation (4.52) for each three-image set.  This will be denoted 

as the (+) set; the (-) set consists of the same terms with opposite signs.  It will be 

determined later which set is the correct set. 

e) Next, solve for the remaining terms of each rotation matrix.  The (13, 23, 31, 

32) terms are found by multiplying the (13’, 23’, 31’, 32’) coefficients by the matrix scale 
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factors.  The (13, 23, 31, 32) terms for the (+) set and (-) set will have equal absolute 

values, but opposite signs.  At this point error-correct the 31-terms—if the absolute value 

of these are greater that 1 then they are replaced with an absolute value of 0.99.  Then, 

the (11, 12, 21, 22) terms of each matrix are solved for using equation (4.71).  Note that 

this can be done for either the (+) set or the (-) set—these terms are equal for each set.   

f) Finally, solve for the three rotation angles for each matrix using equations (A.7 

– A.12).  By default, use the (+) set.  Then recalculate each matrix from the three rotation 

angles using equations (A.6).  This is done because the rotation matrices that result from 

steps a) – e) above are not necessarily orthogonal rotation matrices—they were found by 

least-squares and were not fully constrained.  Solve for rotation matrices directly from 

three rotation angles so that the matrices are exact. 

The final step (5) is the 3D reconstruction of the keypoint.  This step allows for 

the determination of which set of matrix terms, the (+) set or the (-) set, is the correct 

solution.  Set up an equation to solve for the 3D coordinates of the keypoint like equation 

(3.6).  Once the 3D coordinates of the keypoint have been solved for, check the sign of 

the Z-coordinate.  If the Z-coordinate is positive, then the correct set (the (+) set) was 

chosen and the rest of the algorithm can be carried out.  If the Z-coordinate is negative, 

the (-) set must be used.  This is equivalent to changing the signs on the 13, 23, 31, 32 

terms of the rotation matrices, and changing the signs of ω and ϕ . 

 

5.4 Step 3: Initial Parallel Projection 3D Reconstruction 

 

The parallel projection 3D reconstruction algorithm solves for the 3D coordinates 

of target-points.  There are two inputs for this algorithm: the set of image coordinates 
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collected in step 1 and the set of initial parallel projection parameters solved for in 

step 2.  There is one major output of this algorithm: the 3D coordinates of target points. 

The step-by-step procedure for this step is as follows: 3D reconstruction of each 

point is performed by setting up an equation like (3.6).  If it is desired, the vector of 

residuals, the total residuals, the covariance matrix, the 1-sigma errors, and the back-

projected image coordinates can also be calculated (3.7 – 3.15). 

 

5.5 Step 4: Parallel Projection Bundle Triangulation 

 

The parallel projection bundle triangulation algorithm is discussed in section 3.2 

and the outline here follows the discussion there very closely.  The bundle triangulation 

algorithm solves for the 3D coordinates of the target points and the EOP simultaneously.  

It also solves for residuals, 1-sigma errors, and back-projected image coordinates.  Note 

that the outline given here one particular implementation of the bundle triangulation 

algorithm and some constraints have been assumed that are not necessary in all 

implementations of the bundle triangulation algorithm. 

There are three inputs into the parallel projection bundle triangulation algorithm: 

1) the set of image coordinates collected in step 1, 2) the set of initial approximations for 

the 3D coordinates of the target points calculated in step 3, 3) the set of parallel 

projection parameters calculated in step 2.  All of these are input into the bundle 

triangulation algorithm. 

There are five outputs from the parallel projection bundle triangulation algorithm: 

1) a set of 3D coordinates, 2) residuals, 3) 1-sigma errors, 4) back-projected image 

coordinates, and 5) the final parallel projection parameters. 
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The step-by-step procedure for this step is as follows: First, the partial 

derivatives (3.21) are evaluated at the initial approximations.  These values are then put 

into matrix and vector form (3.24 – 3.31).  These are solved to get the X vector which is 

added to the initial approximations to get improved approximations.  For each iteration 

the residuals, 1-sigma errors, and back-projected image coordinates are also calculated.  

This process is repeated until the corrections X become negligible. 

 

5.6 Step 5: Perspective-Corrected Parallel Projection 3D Reconstruction 

 

The perspective-corrected parallel projection 3D reconstruction algorithm solves 

for the 3D coordinates of target-points. 

There are four inputs for this algorithm: 1) the set of image coordinates collected 

in step 1, 2) the approximate IOP collected in step 1, 3) the set of parallel projection 

parameters calculated in step 4, and 4) the set of 3D coordinates calculated in step 4.  

The output of this algorithm is a set of 3D coordinates.  The residuals, 1-sigma 

errors, and back-projected image coordinates can also be calculated if desired. 

The 3D reconstruction algorithm consists of two steps: 1) perspective-correction, 

2) perform 3D reconstruction. 

The first step is to perform perspective-correction.  The image coordinates are 

perspective-corrected using equation (3.45).  Note that (X,Y,Z), s, ( )yx ∆∆ , , and the m-

terms are from the parallel projection parameters, and f, xo, yo are the approximate IOP.  

Also, (Xc, Yc, Zc) can be calculated with equation (3.42). 

The second step is to perform 3D reconstruction of the perspective-corrected 

coordinates using equation (3.50).  Note that the parallel projection parameters are used 
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for this calculation with one exception: the two shift terms ( )yx ∆∆ ,  for each image 

should be perspective-corrected using equation (3.45), with (X, Y, Z) = (0, 0, 0). 

If it is desired, the back-projected image coordinates, residuals, and 1-sigma 

errors can also be calculated using equations (3.51 – 3.53 and 3.7 – 3.15). 

 

5.7 Step 6: Perspective-Corrected Parallel Projection Bundle Triangulation 

 

The perspective-corrected parallel projection bundle triangulation algorithm is 

very similar to the parallel projection bundle triangulation algorithm discussed in section 

3.2.   

There are five inputs into the perspective-corrected parallel projection bundle 

triangulation algorithm: 1) the set of image coordinates collected in step 1, 2) the 

approximate IOP collected in step 1, 3) the approximate 3D coordinates calculated in step 

5, 4) the parallel projection parameters from step 4, and 5) the 3D coordinates from 

parallel projection from step 4. 

There are five outputs of the perspective-corrected parallel projection bundle 

triangulation algorithm: 1) 3D coordinates, 2) the perspective-corrected parallel 

projection parameters, 3) residuals, 4) 1-sigma errors, and 5) back-projected image 

coordinates. 

The first step in the algorithm is to perform perspective-correction on the image 

coordinates.  This is performed using the 3D coordinates of the target points and the 

parallel projection parameters using (3.50) in the same manner that was done in the 

perspective-corrected parallel projection 3D reconstruction algorithm. 
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The remainder of the algorithm follows the same procedure as the parallel 

projection bundle triangulation algorithm with a few small changes.  The parallel 

projection parameters are used as initial approximations, with the shift terms perspective-

corrected in the same manner as for the perspective-corrected parallel projection 3D 

reconstruction algorithm.  Also, when calculating residuals, 1-sigma errors, and back-

projected image coordinates, the inverse-perspective correction must be performed 

(equations 3.51 – 3.53).  Note that perspective-correction and inverse perspective-

correction are always performed using the parallel projection 3D coordinates and the 

parallel projection parameters. 

 

5.8 Step 7: Perspective Projection 3D Reconstruction 

 

The perspective projection 3D reconstruction algorithm solves for the 3D 

coordinates of target-points. 

There are three inputs for this algorithm: 1) the set of image coordinates collected 

in step 1, 2) the approximate IOP collected in step 1, and 3) the perspective-corrected 

parallel projection parameters from step 6.  Note that the perspective center can be found 

from the perspective-corrected parallel projection parameters with equation 3.42. 

There is one output of the algorithm: 3D coordinates of target points.  If desired, 

the residuals, 1-sigma errors, and back-projected image coordinates can also be output. 

In this step, 3D reconstruction is performed for each point with (A.43 and A.44).  

If desired, the residuals, 1-sigma errors, and back-projected image coordinates can be 

found with equations (A.29 – A.37). 
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5.9 Step 8: Perspective Projection Bundle Triangulation 

 

The perspective projection bundle triangulation algorithm is discussed in the 

appendix and the outline here follows the discussion there very closely. 

There are four inputs into the perspective projection bundle triangulation 

algorithm: 1) the set of image coordinates collected in step 1, 2) the approximate IOP 

collected in step 1, 3) the set of initial approximations for the 3D coordinates of the target 

points calculated in step 7, 4) the perspective-corrected parallel projection parameters 

found in step 6. 

There are five outputs of the perspective projection bundle triangulation 

algorithm: 1) 3D coordinates, 2) residuals, 3) 1-sigma errors, 4) back-projected image 

coordinates, and 5) the perspective projection EOP. 

The step-by-step outline for this step is as follows: First, the partial derivatives 

(A.17) are evaluated at the initial approximations.  These values are then put into matrix 

and vector form (A.20 – A.28).  The X vector is calculated and added to the initial 

approximations to get improved approximations.  At each iteration the residuals, 1-sigma 

errors, and back-projected image coordinates are calculated with equations (A.29 – 

A.37).  This is repeated until the corrections X become negligible. 
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CHAPTER 6 

TESTS OF THE COMPREHENSIVE ALGORITHM USING 

 

ACTUAL SURVEILLANCE IMAGES 

 

 

This chapter discusses three tests of the comprehensive algorithm using actual 

surveillance images.  The same image sets that were used to test the standard algorithms 

were used. 

 

6.1 Haddock Images at Close Range with the CANON 5D 

 

The first set of images used to test the comprehensive algorithm was the series of 

eight images of the Coast Guard Vessel Haddock that was used to test the standard 

methods.  Recall that the images were taken with a 12.7 megapixel CANON 5D digital 

camera with a 400 mm lens at distances ranging from approximately 300 m – 450 m.  

The eight images that were used are shown in Figure 2.3 in Chapter 2. 

Recall that the test conducted on these images using standard techniques resulted 

in an accurate 3D model.  This was due to the fact that these images were captured at a 

modest range to the target, so complications due to narrow angular field of view were not 

manifest.   

Due to the modest angular field of view, for these tests it was expected that the 

parallel projection would not provide results as accurate as those for the perspective 

projection.  In fact, it was expected that using parallel projection as a means of obtaining 

initial approximations may lead to difficulty.  For this reason, this dataset represented a 

good test of the robustness of the parallel projection initial approximation algorithm.  It 
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also served as a good test of the algorithm’s workflow—using parallel projection as 

an initial step towards a solution for the perspective projection. 

The first input for the algorithm was the set of point correspondences that were 

collected across the eight images.  Recall from Chapter 2 that image coordinates for 65 

points were manually collected. 

The second input for the algorithm was the approximate IOP.  The same 

approximate values as were used for the first test were used (f = 48770 pixel, xo = 2184 

pixel, yo = 1456 pixel). 

The third input for the algorithm was the approximate scale for the first image.  

This scale was chosen by trial-and-error using the same two points on the target that were 

used for the first test. 

The final input was a keypoint.  Recall that the keypoint is used to resolve the 

mirror image ambiguity resulting from the parallel projection.  The keypoint is a point on 

the first image that is closer to the camera than the majority of the other points. 

The test was carried out following the procedure outlined in Chapter 5.  Initial 

approximations were obtained by using the parallel projection initial approximation 

algorithm.  Then, 3D reconstruction and bundle triangulation for the parallel projection 

were performed.  Next, the results from the parallel projection were used as initial 

approximations for the perspective-corrected parallel projection.  From these initial 

approximations, 3D reconstruction and bundle triangulation were performed for 

perspective-corrected parallel projection.  Finally, the results from perspective-corrected 

parallel projection were used as initial approximations for the perspective projection.  For 

the perspective projection, 3D reconstruction and bundle triangulation were performed. 
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The results of the test will now be discussed.  These outputs include three sets 

of 3D coordinates, 1-sigma errors, and residuals. 

First, the 3D coordinates are considered.  The results from the comprehensive 

algorithm were compared with the results from the tests using standard methods using a 

3D rigid transformation.  For each projection, the mean error between the sets was 

considered.  The mean error between the parallel projection and standard method was 

0.090 ~m (0.294 ft), the mean error between the perspective-corrected parallel projection 

and standard method was 0.003 ~m (0.011 ft), and the mean error between the 

perspective projection and standard method was 0.003 ~m (0.009 ft).  This shows that for 

the perspective-corrected parallel projection and perspective projection, the algorithm 

produced results that were equivalent to the results from the standard methods up to the 

order of precision.  Recall that the mean 1-sigma error for the results from the standard 

methods was 0.006 ~m (0.020 ft).  The results for the parallel projection were decidedly 

less accurate than the results from perspective-corrected parallel projection and 

perspective projection, as expected. 

The second output to consider is the sets of 1-sigma errors.  The average 1-sigma 

error for the parallel projection was 0.062 ~m (0.203 ft) with a maximum of 0.202 ~m 

(0.663 ft).  The average 1-sigma error for the perspective-corrected parallel projection 

was 0.006 ~m (0.020 ft) with a maximum of 0.016 ~m (0.052 ft).  The average 1-sigma 

error for the perspective projection was 0.006 ~m (0.021 ft) with a maximum of 0.014 

~m (0.045 ft).  Note that the values from the perspective-corrected parallel projection and 

perspective projection are nearly identical to the results in Chapter 2 obtained by using 

the standard methods (mean of 0.006 ~m and max of 0.015 ~m).  Note also that the 
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values from the parallel projection were the least accurate of the three, as expected.  

These values are given in Table 6.1. 

The third output to consider is the set of residuals.  The average total residual (as 

calculated with equations 3.9 and A.31) for the parallel projection was 9.45 pixels with a 

maximum of 56.47 pixels.  The average total residual for the perspective-correction was 

0.88 pixels with a maximum of 3.40 pixels.  The average total residual for the perspective 

projection was 0.93 pixels with a maximum of 3.34 pixels.  These total residuals give a 

measure of the overall precision of each point in each image.  Note that once again, the 

results from the perspective-corrected parallel projection and perspective projection are 

nearly identical to the results using standard methods (mean residual of 0.88 pixel, max 

residual of 3.27 pixel), and the parallel projection results were the least accurate.  This 

data is summarized in Table 6.1 along with the results of the test using standard methods. 

In addition to the total residuals, the set of x- and y- residuals were also 

considered (as calculated with equation 3.8 and A.30).  Because these residuals are not 

calculated by a square-root function, they are distributed about zero.  Figure 6.1 shows a 

histogram of the residuals, along with a normal distribution with the means and standard 

deviations given in Table 6.2. 

 

Table 6.1.  1-sigma errors and residuals from the eight-image test with the CANON 5D 

 

 

1-sigma 

mean 

1-sigma 

max 

total residual 

mean 

total residual 

max 

 (~m) (~m) (pixel) (pixel) 

Standard Methods 0.006 0.015 0.88 3.27 

Parallel Projection 0.062 0.202 9.45 56.47 

Perspective-Corrected 

Parallel Projection 0.006 0.016 0.88 3.40 

Perspective Projection 0.006 0.014 0.93 3.34 
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Figure 6.1.  Histograms of residuals for eight-image Haddock test. 

 

       Table 6.2. Mean and standard deviation of residuals from 

the eight-image test with the CANON 5D 

 

 Mean 

Standard 

Deviation 

 (pixel) (pixel) 

Standard Methods 0.01 0.74 

Parallel Projection 0.00 8.69 

Perspective-Corrected 

Parallel Projection 0.00 0.73 

Perspective Projection -0.04 0.78 
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Figure 6.1 reveals that the residuals for each projection follow a normal 

distribution very well.  Recall that in the calculation of the 1-sigma errors it was assumed 

that the residuals follow a normal distribution.  Figure 6.1 gives confidence in that 

assumption. 

Given the above, the comprehensive algorithm was able to produce a 3D model 

with comparable precision to the model created using standard methods. 

 

6.2 Haddock Images at Medium Range with the CANON 20D 

 

The second set of images used to test the comprehensive algorithm was the series 

of six images, also of the Coast Guard Vessel Haddock, used in the earlier tests.  Recall 

that the images were taken with an 8.2 megapixel CANON 20D digital camera with a 400 

mm lens at distances ranging from approximately 1100 m – 1700 m with an average of 

about 1475 m.  The six images that were used are shown in Figure 2.5 in Chapter 2. 

Recall that these images were taken at a greater range than the previous images 

resulting in a narrower angular field of view.  Recall also that when using the standard 

procedures on this image set, some complications were encountered.  There was some 

instability of the initial approximation algorithms depending on the pair of images that 

were used.  Also, the order in which subsequent images were added using the DLT 

affected the solution.  Despite the complications, an accurate solution was eventually 

obtained.  However, for this image set it was desired to increase the reliability of the 

initial approximations and the process for adding images to a previous solution. 

The inputs from this image set were as before; there was a set of 46 

correspondences collected manually across the six images, the IOP (f, xo, yo) were 
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approximated as before, the scale was chosen to match the size of the model obtained 

from the eight-image test, and a keypoint was selected.  The procedure of the algorithm 

was carried out in the same manner as for the eight-image test. 

The resulting 3D coordinates from each projection were compared by a 3D rigid 

transformation with the results from the standard methods.  The mean error for the 

parallel projection was 0.035 ~m (0.116 ft), the mean error for the perspective-corrected 

parallel projection was 0.020 ~m (0.065 ft), and the mean error for the perspective 

projection was 0.019 ~m (0.063 ft).  Thus, the resulting 3D models were similar up to the 

order of precision—recall that the 1-sigma error for the model from the standard test was 

0.036 ~m. 

Also, as mentioned above, there were 38 corresponding points between the six-

image model and the eight-image model.  For each projection, a 3D rigid coordinate 

transformation was used to compare the two models.  For the parallel projection the mean 

error was 0.100 ~m (0.328 ft), for the perspective-corrected parallel projection the mean 

error was 0.055 ~m (0.180 ft), and for the perspective projection the mean error was 

0.053 ~m (0.174 ft).  These show that for each projection the similarity of the two models 

is on the same order as the precision of the models. 

The 1-sigma errors and total residuals of the six-image test are summarized in 

Table 6.3 along with the results from the test using standard methods.  Note that the 

results from the all three projections are very similar to the results obtained with the 

standard methods.  Thus, the algorithm was able to match the precision of the standard 

methods without the hassle of trying different image pairs and without the instability of 

the DLT. 
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Table 6.3. 1-sigma errors and residuals from the six-image test with the CANON 20D 

 

1-sigma 

mean 

1-sigma 

max 

total residual 

mean 

total residual 

max 

 (~m) (~m) (pixel) (pixel) 

Standard Methods 0.036 0.172 1.16 3.41 

Parallel Projection 0.035 0.113 1.27 4.11 

Perspective-Corrected 

Parallel Projection 0.032 0.121 1.09 3.36 

Perspective Projection 0.033 0.123 1.11 3.42 

 

 

6.3 Petrel Images at Further Range with the CANON 1Ds 

 

The third set of images used to test the comprehensive algorithm was the series of 

four images, of the Coast Guard Vessel Petrel, used in the earlier tests.  Recall that the 

images were taken with a 16.7 megapixel CANON 1Ds digital camera with an 800 mm 

lens at distances ranging from approximately 3000 m – 4300 m with an average of about 

3550 m.  The four images that were used are shown in Figure 2.6 in Chapter 2. 

Recall that these images were taken at a greater range than the previous images 

resulting in a narrower angular field of view.  Recall also that when using the standard 

photogrammetry procedures on this image set an accurate 3D reconstruction was not 

achieved. 

The inputs from this image set were as before; there was a set of 46 

correspondences collected manually across the four images, the IOP (f, xo, yo) were 

approximated as before, the scale was chosen to match the size of the model obtained 

from the six-image test, and a keypoint was selected.  The procedure of the algorithm was 

carried out in the same manner as for the eight- and six-image tests. 
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The comprehensive algorithm was able to produce three sets of 3D 

coordinates.  As mentioned above, the 46 points on the six-image model matched the 

points for the four-image model.  For each projection, a 3D conformal coordinate 

transformation was used to compare the two models.  For the parallel projection the mean 

error was 0.110 ~m (0.361 ft), for the perspective-corrected parallel projection the mean 

error was 0.112 ~m (0.367 ft), and for the perspective projection the mean error was 

0.113 ~m (0.369 ft).  These show that for each projection the similarity of the six-image 

model and four-image model is on the same order as the precision of the individual 

models.  It is possible that there was some additional error due to the fact that the two 

targets were not the same vessel, just from the same class.  This gives confidence that the 

3D reconstruction was accurate. 

The 1-sigma errors and total residuals of the four-image test along with the results 

from the standard method tests are summarized in Table 6.4.  These values are very 

similar to those obtained for the six-image model.  Thus, the algorithm was able to 

perform an accurate 3D reconstruction on the four Petrel images, which was not achieved 

with the standard methods. 

 

Table 6.4.  1-sigma errors and residuals from the four-image test with the CANON 1Ds 

 

1-sigma 

mean 

1-sigma 

max 

total residual 

mean 

total residual 

max 

 (~m) (~m) (pixel) (pixel) 

Standard Methods * * * * 

Parallel Projection 0.034 0.109 0.67 3.80 

Perspective-Corrected 

Parallel Projection 0.031 0.111 0.62 3.84 

Perspective Projection 0.031 0.113 0.63 3.58 

* indicates that an accurate result was not achieved 



 127 

These tests indicate that the comprehensive algorithm performed equal to, or 

better than, the standard methods for these particular surveillance image sets.  Some 

further tests using synthetic images are discussed in the next chapter. 
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CHAPTER 7 

 

TESTS OF THE COMPREHENSIVE ALGOTIHM USING SYNTHETIC IMAGES 

 

 

Some tests using synthetic image sets will now be discussed.  The purpose of 

these synthetic tests is to enable a prediction of algorithm performances at a variety of 

distances, with a variety of camera resolutions, and with a variety of measurement errors. 

 

7.1 Test Set-up and Procedure 

 

 

The first set of synthetic images was designed to match the Haddock eight-image 

test.  Because of the rather small imaging distances it was anticipated that the parallel 

projection would provide the least accurate result, and that obtaining initial 

approximations through parallel projection may lead to complications. 

First, a set of synthetic 3D points was created.  A set of points which roughly 

form the outline of a boat were created.  Figure 7.1 shows these points.  The dimensions 

of the synthetic coordinates were chosen to roughly match the dimensions of the actual 

Coast Guard vessel Haddock.  For the synthetic coordinates the height of the hull (the 

portion visible above the water) was 1.8 ~m (5.9 ft), the length of hull was 30.6 ~m 

(100.4 ft), the width of the hull was 6.0 ~m (19.7 ft), the length of the cabin was 10.4 ~m 

(34.1 ft), the width of the cabin was 4.5 ~m (14.8 ft), the height of the cabin was 5.0 ~m 

(16.4 ft), and the height of the superstructure was 7.3 ~m (24.0 ft). 

Next, the EOP had to be created.  For creating these synthetic camera orientations, 

an alternate relation between the 3D coordinate system (XYZ) and image coordinate 

system (xyz) was created.  This alternate definition was created in order to more easily 
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Figure 7.1.  3D synthetic XYZ coordinates. 

 

 

visualize and create the camera orientations.  This alternate definition involves three 

rotation angles, denoted by ( )εψθ ,,  which are different from ( )κϕω ,,  used earlier, a 

distance d, and a point (Xo, Yo, Zo) in 3D space toward which the camera is pointed.  

Figures 7.2, 7.3, and 7.4 describe this alternate relation of 3D space to the image 

coordinate system.  The major motivation for this alternate definition between 3D space 

and the image coordinate system is that the seven parameters ( )εψθ ,,,,,, dZoYoXo are 

easily visualized and chosen, while the standard EOP ( )κϕω ,,,,, ZcYcXc  can be difficult 

to visualize—especially the three rotation angles.  The point (Xo, Yo, Zo) is a point on the 

target toward which the camera is pointing, d is the distance from the target to the 

camera, θ describes the horizontal angle to the camera, ψ  is the vertical angle to the 

camera, and ε  is the amount of rotation about the z-axis of the camera. 
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In Figure 7.2, XYZ denotes the 3D coordinate system, and X’Y’Z’ is a shifted 

coordinate system whose axes are parallel to XYZ but with its origin at (Xo, Yo, Zo) in 

the XYZ system.  The perspective center of the camera has 3D coordinates (Xc, Yc, Zc). 

The z-axis (focal axis of the camera) extends from (Xo, Yo, Zo) to (Xc, Yc, Zc).  The z’-

axis lies in the X’Y’-plane and extends from (Xo, Yo, Zo) to the point (Xc, Yc, Zo); i.e. it 

is the projection of the z-axis in the Z’ direction onto the X’Y’-plane.  The angleθ  is the 

horizontal angle in the X’Y’ plane from the Y’ axis to the z’-axis.  The angleθ  is positive 

when it is measured clockwise
2
 from the Y’ axis as viewed from the positive end of the 

Z’ axis.  The angleψ  is the vertical angle in the z’Z’ plane from the z’-axis to the z-axis.  

The angleψ  is positive when measured from the positive z’ axis in the positive Z’-

direction.  The distance between (Xo, Yo, Zo) and (Xc, Yc, Zc) is denoted by d. 

Now, the orientation of the x’y’z-axes are shown in Figure 7.3.  Figure 7.3 shows 

that the perspective center (Xc, Yc, Zc) is the origin of the x’y’z coordinate system.  The 

x’ axis is perpendicular to the z-axis and is parallel to the X’Y’ plane.  The y’ axis is 

mutually orthogonal to the x’ and z axes. 

Finally, the third rotation angle ε  describes the full orientation of the image 

coordinate system (xyz).  Figure 7.4 shows the x’y’ axes and the xy axes as viewed from 

the positive z-axis.  The xy-axes of the image coordinate system are rotated about the z-

axis with respect to the x’y’ axes.  The rotationε  is positive when it is clockwise as 

viewed from the positive z-direction.  Thus, the orientation of the image coordinate 

system (xyz) with respect to the XYZ coordinate system has been defined in terms of the 

seven parameters ( )εψθ ,,,,,, dZoYoXo . 

                                                 
2
 This is not a standard convention. 
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Figure 7.2.  Alternate definition of relation between coordinate systems. 

   

 

 

Figure 7.3.  The x’y’z-axes in 3D space. 
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Figure 7.4.  Third rotation angleε . 

 

The image plane is perpendicular to the z-axis and parallel to the xy plane and 

intersects the z-axis at the principal point.  The image plane is a distance of f (the 

principal distance) from the perspective center in the negative z-direction.  Finally, there 

is a coordinate system on the image plane which is parallel to the xy-plane of the image 

coordinate system, but has a shift such that the principal point has coordinates (xo, yo).   

Eight synthetic EOP were created.  The seven parameters ( )εψθ ,,,,,, dZoYoXo  

for each image are shown in Table 7.1.  The values of θ  are at fairly even intervals on a 

circle around the target, similar to the eight Haddock images.  The values of the angleψ  

simulate each of the synthetic images being taken from a slightly higher elevation than 

the origin of 3D space (the origin of 3D space lies on the deck of the ship near the center 

of the boat).  The small values of the angleε denote that the images were taken with a 

camera that was held quite level.  The values for Xo, Yo, and Zo show that each camera is 

pointed near the origin of 3D space (near the center of the boat).  Finally, the values of d 

match the imaging distances that were calculated from the set of eight Haddock images 

using the perspective projection EOP.  Figure 7.5 shows the synthetic boat and the 

positions of the perspective centers of the cameras. 
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Table 7.1.  Camera orientations for synthetic image test 

  θ ψ ε Xo Yo Zo d 

  (deg) (deg) (deg) (m) (m) (m) (m) 

image 1 23.0 3.2 -1.2 0.3 2.2 4.4 337.4 

image 2 76.0 2.4 1.4 2.1 -0.2 5.2 422.2 

image 3 112.0 3.1 0.8 -1.5 -1.8 3.4 448.4 

image 4 161.0 3.6 -0.7 0.7 -2.0 3.9 291.7 

image 5 212.0 1.9 1.1 1.4 0.9 3.5 304.9 

image 6 248.0 2.2 -1.3 -1.4 -1.8 4.1 379.7 

image 7 302.0 3.2 1.5 -0.6 -1.1 4.2 403.4 

image 8 331.0 1.8 -0.6 0.7 -3.9 3.8 300.2 

 

 

 

Figure 7.5.  3D representation of synthetic boat and camera positions. 

 

Once these seven parameters were chosen for each image, the coordinates of the 

perspective center of each camera (Xc, Yc, Zc) could be solved for: 

( ) ( )
( ) ( )
( )ψ

ψθ
ψθ

sin

coscos

cossin

dZoZc

dYoYc

dXoXc

+=

+=

+=

         (7.1) 

The rotation matrix terms were found from the three angles for each of the 

synthetic images with equations (A.13) in the appendix.  It was assumed that each of the 

synthetic images was created with the same IOP.  The IOP were chosen such that they 

approximated the CANON 5D digital camera which was used to capture the first set of 
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Haddock images.  The IOP were chosen as f = 48770 pixel, xo = 2184, and yo = 1456 

pixel.   

With all of the terms defined, synthetic image coordinates were calculated by the 

collinearity equations (1.1). 

The next step in creating the synthetic images was to add some random error to 

account for slight errors in selecting point correspondences and deviation from a true pin-

hole camera model.  A random error from a normal distribution with mean 0.00 pixel and 

standard deviation 0.75 pixel was added to each image coordinate.  The magnitude of this 

random error was chosen to match the residuals from the perspective projection results of 

the set of eight Haddock images.  This means that for each image coordinate, there was a 

68% probability that the measured coordinate was within 1.50 pixel of the true 

coordinate, and there was a 95% probability that the measured coordinate was within 

3.00 pixel of the true coordinate.   

The synthetic images that were created from the set of XYZ coordinates (Figure 

7.1) and the EOP (Table 7.1) are shown in Figure 7.6. 

Next, in order that the set of synthetic image-coordinates would more closely 

match the actual image-coordinates, certain image-coordinates were deleted from each 

image.  This is to account for points which are not visible in a given image.  Figure 7.7 

shows an image with points removed.  When deleting points, it was necessary to keep 

each point visible in at least two images, it was necessary also that when considering any 

two images there were at least four common points visible in both of the images, and it 

was necessary to have at least one point which was visible in all images.  All of these 

constraints were met after deleting points. 
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Figure 7.6.  Eight synthetic images. 
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Figure 7.7.  Synthetic image with points removed. 

 

Once the set of synthetic image coordinates were created it was desired to 

perform 3D reconstruction from the images using both standard methods and the 

comprehensive algorithm.  The set of image coordinates (point correspondences) was the 

first input to the algorithms. 

The second input for the algorithms is the approximate IOP.  It was assumed that 

these were known, and hence the values that were used to create the images were used as 

the approximate IOP: f = 48770 pixel, xo = 2184 pixel, and yo = 1456 pixel. 

The third input for the comprehensive algorithm is the scale of the first image.  

Again, this value determines the scale and units of the final 3D coordinates.  It was 

desired to have the final coordinates in units of (m), and the image coordinates in pixels.  

Hence, by equation (3.36), this value was chosen as the ratio of the principal distance to 

the imaging distance for image A (48770 pixel / 337.4 m).   
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Finally, a keypoint had to be selected.  A point which was closer to the camera 

on the first image than the centroid of the target was chosen. 

With all of the inputs defined, the standard photogrammetry methods were carried 

out as explained in Chapter 2, and the comprehensive algorithm was executed as 

explained in Chapter 5. 

 

7.2 Test Results 

 

First, a set of XYZ coordinates were calculated using each projection.  Because 

the actual XYZ coordinates are known, a 3D conformal coordinate transformation was 

used to convert the calculated coordinates into the same reference frame as the actual 

coordinates.  The actual coordinates are shown along with the calculated coordinates for 

each of the outputs in Figure 7.8. 

The root mean squared error (RMSE) between actual coordinates and calculated 

coordinates was calculated for each point by: 

( ) ( ) ( )222
'''RMSE ZZYYXX −+−+−=      (7.2) 

The RMSE for this test are given in Table 7.2 along with the 1-sigma errors.  

These RMSE reflect a high degree of precision.  They also show that the perspective-

corrected parallel projection and the perspective projection were more precise than the 

parallel projection for this image set. 

The second output is the set of 1-sigma errors.  Table 7.2 shows a comparison of 

the RMSE errors and the 1-sigma error estimates.  Note that the 1-sigma errors are on the 

same order as the true errors (RMSE).  This reveals that for this synthetic image test, the 



 138 

 

Figure 7.8.  3D plot of synthetic coordinates and calculated coordinates. 

 

calculated 1-sigma errors were indeed a good estimate of the precision of the calculated 

3D coordinates.  This adds confidence in using 1-sigma errors as a measure of precision 

of the algorithm.  It is noted that the maximum 1-sigma error is about half of the 

maximum RMSE for each projection.  This is because the 1-sigma error is a statistical 

measure of one standard deviation.  If the errors follow a normal distribution, then 68% 

of the data points should fall within one standard deviation, and 95% of the data should 
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fall within two standard deviations, etc.  Hence, the maximum RMSE (the RMSE for 

the “worst” point) corresponds roughly to 2 times the highest 1-sigma error estimate. 

The next output is the set of residuals and back-projected image coordinates.  The 

histograms of residuals are shown in Figure 7.8 along with the normal distribution.  

These histograms show that the residuals do follow a normal distribution quite well.  

Recall that the calculation of 1-sigma errors is based on the assumption that the residuals 

do follow a normal distribution.  The total residuals were also considered.  They are 

summarized in Table 7.3.  Recall that the image noise was chosen such that 95% of the 

measured image coordinates were within 3.00 pixel of the actual image coordinates.  The 

residuals from the parallel projection are higher than the level of noise reflecting the fact 

that parallel projection is not a valid model for this image set.  The residuals from the 

perspective-corrected parallel projection and perspective projection were less than this 

noise reflecting that they are very good models for this image set.  This also demonstrates 

the ability of the algorithm to produce a solution which is accurate up to the level of error 

introduced at the beginning of the test. 

 

       Table 7.2. Comparison of true error (RMSE) and 1-sigma error 

estimates for the synthetic image test 
 

    RMSE 1-sigma error 

    mean max mean max 

      (m) (m) (m) (m) 

Standard Methods 0.006 0.015 0.005 0.015 

Parallel Projection 0.080 0.255 0.054 0.127 

Perspective-Corrected 

Parallel Projection 0.006 0.014 0.005 0.014 

Perspective Projection 0.006 0.015 0.005 0.014 
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Figure 7.9.  Histograms of residuals for synthetic image test. 

 

Table 7.3.  Total residuals for the synthetic image test 

Total residuals 

 Mean Max 

 (pixel) (pixel) 

Standard Methods 0.73 2.06 

Parallel Projection 9.14 47.88 

Perspective-Corrected 

Parallel Projection 

0.72 1.95 

Perspective Projection 0.74 1.94 
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7.3 Comparison of Actual Eight-Image Test and Synthetic Image Test 

 

Some of the similarities and differences between the actual eight-image test and 

the synthetic image test are now discussed. 

First, the synthetic images were created by the collinearity equation which 

assumes an exact pin-hole camera model.  This assumes that the light rays travel in 

perfectly straight lines from the target, through the perspective center to the image.  The 

actual images were created from a camera which does not follow the pin-hole camera 

model.  In a camera, the light rays may not all travel through the same point; i.e., an 

actual camera may not have a true perspective center.  Actual images are also subject to 

distortions, such as lens distortion, distortion from heat radiation, etc... 

In order to try to compensate for the above, random error was added to the 

synthetic images.  This error followed a normal distribution, which may or may not 

accurately characterize the distortions in the actual images. 

Second, point correspondences (image-coordinates) were measured from the 

actual images by visually selecting points in the images.  This process adds additional 

error to the solution, as coordinates cannot be exactly measured from the images.  As 

mentioned before, coordinates were measured essentially to the nearest pixel.  

Conversely, the synthetic image coordinates were calculated as exact values.  Again, the 

added random error compensates somewhat, assuming that point correspondence errors 

follow a random normal distribution. 

Third, the IOP for the synthetic images were known exactly and exact values were 

used in the algorithm.  For the actual images, the IOP were not known exactly and 
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approximations were used.  The amount of error between the approximate IOP and 

true IOP for the actual images is not known. 

Fourth, the two sets of images were of different targets with different geometries.  

While the dimensions of the synthetic target were chosen to roughly match the Haddock, 

the target geometries were somewhat different.  This has an effect on the solution. 

Fifth, the EOP were not the same.  Both sets of EOP roughly formed a circle 

around the target, the elevations of the cameras were slightly higher than the deck of the 

target in both cases, and similar distances were chosen for each test.  However, the EOP 

can have a large effect on the precision of the algorithm. 

Considering all of these differences, Table 7.4 is presented which summarizes the 

results from each of the two sets.  Note that the values from both tests are very similar for 

each model.  This demonstrates that despite the differences, the synthetic image test can 

simulate actual images with a good degree of precision.  Based on this fact, several more 

synthetic image tests will be considered. 

 

 

       Table 7.4. 1-sigma errors and residuals from the actual eight-image test 

and synthetic eight-image test 
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7.4 Additional Synthetic Image Tests 

 

 

Based on the above test, 80 sets of synthetic images were generated, with eight 

images in each set.  Five sets of images were created at a series of 16 different base 

imaging distances d.  The 16 base distances were: 200 m, 300 m, 400 m, 500 m, 600 m, 

800 m, 1000 m, 1200 m, 1400 m, 1600 m, 1800 m, 2000 m, 2400 m, 2800 m, 3400 m, 

and 4000 m.  The major motivation for this series of tests was to show the trend as the 

distance to the target increases (angular field-of-view becomes narrower). 

For all of these image sets, the synthetic boat target outlined above was used.  For 

each image set at each base distance, there were eight images created using the seven 

camera parameters ( )dZoYoXo ,,,,,, εψθ .  The values of (Xo, Yo, Zo) were chosen from 

uniform random distributions which ranged across the dimensions of the target for all 

images—i.e. it was assumed that the camera was pointed at a random point on the target 

for each image.  The base values of the horizontal angleθ  for the eight images were 

chosen as 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315° (eight even intervals around a 

circle).  For each individual image set, a random perturbation was added to each θ  from 

a normal random distribution with mean 0° a standard deviation of 15°.  This simulates a 

series of eight images that are roughly in a circle around the target.  For each image the 

vertical angle ψ  was chosen from a uniform random distribution from 0° to 10°.  This 

simulates a series of images that are captured either at the same elevation or slightly 

higher than the target.  The third angleε  was chosen from a standard normal distribution 

with mean 0° and standard deviation 2°.  This simulates a situation where the camera is 

held fairly level for each image.  The seventh parameter d was chosen from a uniform 
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random distribution centered at the base distance with a range equal to 80% of the 

base distance.  For example, for the 200 m image sets, the eight imaging distances were 

chosen from a uniform random distribution with range 160 m centered at 200 m [120 m, 

280 m]; for the 300 m image sets, the eight imaging distances were chosen from a 

uniform random distribution with range 240 m centered at 300 m [180 m, 420 m]; etc… 

There were three sets of IOP used for the images.  For each eight-image set, three 

images were based on the approximate IOP of the CANON 5D with a 400 mm lens: f = 

48770 pixel, xo = 2184 pixel, and yo = 1456 pixel; three images were based on the 

approximate IOP of the CANON 20D with a 400 mm lens: f = 62293 pixel, xo = 1752 

pixel, yo = 1168 pixel; and two images were based on the approximate IOP of the 

CANON 1Ds with an 800 mm lens: f = 110934 pixel, xo = 2496 pixel, yo = 1664 pixel.  

These values were used as the approximate IOP which were input to the algorithms.  

However, when each image was generated, random perturbations were added to the IOP 

to simulate a situation where the IOP are not known precisely.  A normal random error 

with mean 0 and standard deviation equal to 2.5% of the principal distance was added to 

each principal distance.  A normal random error with mean 0 and a standard deviation of 

10 pixel was added to each principal point coordinate. 

For the images with the CANON 1Ds parameters (800 mm lens), the imaging 

distance was doubled to simulate images captured at greater distances with a longer lens. 

With these inputs defined, image coordinates were generated with the collinearity 

equations as before.  After the coordinates were generated, random noise was added to 

each of the image coordinates and points were removed from each image in the same 

manner as explained above.   



 145 

Each of the image sets were considered separately; for each image set, the 

parallel projection initial approximation algorithm was performed using 6-10 points on 

four of the images from the image set.  Next, the four remaining images were added one-

by-one using the algorithm for adding an additional image by parallel projection.  Then, 

once all 8 images had an initial approximation for the EOP, each of the remaining points 

were added one-by-one.  After adding each point the 3D reconstruction and bundle 

triangulation algorithms were used to continually update the EOP.  Also, for each image 

set, the standard methods were carried out using the essential matrix algorithm as 

explained in Chapter 2. 

For each image set, the following values were considered: the RMSE between the 

calculated 3D points and the true 3D points, the 1-sigma errors, and the residuals.  Figure 

7.10 shows a plot of the RMSE for each test plotted against the average imaging distance.  

In the cases where the standard methods failed to converge, a value of 0 is plotted. 

Note that at smaller distances (200 m – 2000 m), the perspective projection and 

perspective-corrected parallel projection provide more precise results than the parallel 

projection.  However, beyond 2000 m as the field-of-view becomes narrower the three 

projections produce comparable results.  Of greatest importance is the fact that for all 80 

image sets, the comprehensive algorithm converged to an accurate result.  This 

demonstrates the ability of the algorithm to solve for the 3D geometry of the target with 

high precision at a large range of distances, or fields-of-view.  It also demonstrates the 

ability of the algorithm to incorporate images from a variety of sensors. 

Note that as the imaging distance increases beyond 1000m the standard results 

generally did not converge to an accurate solution. 
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Figure 7.10.  RMSE from each projection for 80 synthetic image tests. 

 

Figure 7.11 shows a plot of the 1-sigma errors for each test plotted again the 

average imaging distance.  As before, in the cases where the standard methods failed to 

converge to a result, a value of 0 is plotted.  Note first that by comparing Figure 7.10 with 

Figure 7.11 the 1-sigma errors from the synthetic test are a good approximation of the 

actual errors.  The same trends that were seen in the RMSE are reflected by the 1-sigma 

errors.  This gives confidence in using the 1-sigma errors as a metric of accuracy for a 

given model.  Also note that the 1-sigma errors from the actual image tests fit this data 
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very well.  Table 7.5 gives the 1-sigma error for those tests.  This gives additional 

confidence in the validity of the synthetic tests. 

 

 

Figure 7.11.  1-sigma errors from each projection for 80 synthetic image tests.   

 

Table 7.5.  Mean 1-sigma errors for actual image tests 

Mean 1-sigma errors (~m) 

 Eight-image test Six-image test Four-image test 

 ~360 m ~1475 m ~3550 m 

Standard Methods 0.006 0.036 * 

Parallel Projection 0.062 0.035 0.034 

Perspective-Corrected 

Parallel Projection 

0.006 0.032 0.031 

Perspective Projection 0.006 0.033 0.031 
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CHAPTER 8 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

8.1 Conclusions 

 

 

This thesis has outlined a mathematical model which can perform 

photogrammetric 3D reconstruction of target objects from varying sets of surveillance 

imagery.  A comprehensive algorithm has been developed using principles of parallel 

projection and perspective projection.  The developed model has followed closely, and 

expanded upon, previous work in photogrammetry and computer vision. 

The key problems posed by surveillance imagery are: 1) narrow angular field of 

view, 2) lack of ground control or sensor orientation information, 3) camera calibration, 

and 4) images captured from various aspects.  These problems have been overcome in the 

following ways: 

1) The problems associated with a narrow angular field of view have been 

eliminated by adopting the parallel projection as opposed to the perspective 

projection.  The parallel projection is a more robust model for images with a 

narrow angular field of view (Morgan, 2004).  The perspective-corrected 

parallel projection has also been developed based on the orthogonal projection 

model by Ono and Hattori (2002).  This projection bridges the gap between 

the parallel projection and perspective projection and allows for a solution 

from the parallel projection and the standard perspective projection used 

commonly in photogrammetry.  
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2) Because most surveillance images lack any form of ground control or 

sensor orientation information, initial approximations have been obtained 

from point correspondences alone using a parallel projection algorithm based 

on previous work in computer vision.  The work of Huang and Lee (1989) has 

been expanded to solve for relative scales of images, and to orient more than 

three images at a time.  When considering single images, the work of Kyle 

(2004) has provided much insight. 

3) It has been shown that when reasonable approximations of the interior 

orientation parameters (IOP) of a camera are available, the developed 

algorithm is capable of producing an accurate result.  This eliminates the 

necessity of a rigorous camera calibration.  In the case where reasonable 

approximations are not available, the parallel projection can still be used, as it 

does not require approximations of the IOP. 

4) The irregular manner in which surveillance images are captured does not pose 

a problem for the algorithm; no assumptions based on a systematic image 

collection (such as topographic photogrammetry) have been included.  The 

bundle triangulation algorithm is the main tool for 3D reconstruction, and it is 

commonly used in close-range photogrammetry where random camera 

orientations are commonplace (Mikhail, Bethel, and McGlone, 2001). 

The comprehensive algorithm’s versatility has been demonstrated through tests 

with actual images and synthetic images.  For these tests, the results from the 

comprehensive algorithm have been equal to, or better than, the results obtained using 
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standard photogrammetry methods.  Thus, for the image sets that have been tested, 

the developed model meets the challenges posed by surveillance imagery. 

 

8.2 Recommendations 

 

 

There are some remaining questions and recommendations.  First, there are some 

potential improvements that could be made to the comprehensive algorithm to increase 

the quality of its results.  Also, it may be possible to simplify the comprehensive 

algorithm in several ways to make the computations more efficient.  Furthermore, there 

are some additional test cases that may be instructive at indicating possible weaknesses or 

shortcomings of the model. 

 

8.2.1 Increasing the quality of results 

 

The comprehensive algorithm has employed the standard bundle triangulation 

algorithm (based on perspective projection), as well as the parallel projection bundle 

triangulation algorithm.  However, in all of the above tests, these two versions of the 

bundle triangulation algorithm were used separately.  Because of the flexibility of the 

bundle triangulation algorithm, it is possible to use the parallel projection equations 

within the algorithm for some images, and the perspective projection equations for other 

images.  For instance, in the case where some images of a given target may have been 

captured at close range and have a wider angular field of view, and other images were 

captured at a further range and have a narrower angular field of view, it would likely be 

beneficial to use the perspective projection equations within the algorithm for the wide 

angle images and the parallel projection equations for the narrow angle images.  This 
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implementation would be rather straightforward; one could use the parallel projection 

equation partial derivatives (3.16 – 3.17) for some images, and the perspective projection 

equation partial derivatives for other images within the bundle triangulation algorithm.  

This would likely give the best results for image sets with images that have varying fields 

of view. 

The bundle triangulation algorithm has several other features that have not been 

fully investigated in the test above.  For example, the bundle triangulation algorithm 

allows one to assign weights to each of the input measurements.  Image coordinates 

collected from a higher resolution image (such as images captured with the CANON 

1Ds) could be assigned a higher weight than images collected from an image with lower 

resolution (such as images captured with the CANON 20D).  By applying appropriate 

weights to the measurements, the solution of the algorithm may be more accurate.  The 

distance to the target may also be used as a method of applying weights to each 

measurement. 

 

8.2.2 Simplifying the algorithm 

 

The equations for the parallel projection model have been developed in terms of a 

scale s, and three rotation angles ( )κϕω ,, .  These four unknowns could be replaced by a 

quaternion (qx, qy, qz, qw), which describes a scaled rotation.  There are several 

advantages to using a quaternion as opposed to rotation angles.  The equations for 

parallel projection in terms of rotation angles involve sine and cosine functions, which 

are expensive computationally.  The equations for parallel projection in terms of a 

quaternion are more simple and do not involve trigonometric functions.  Also, a 
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quaternion is more robust than rotation angles.  When using rotation angles, 

singularities exist when angles are equal to multiples of 90°.  These singularities can be 

problematic.  No such singularities exist for a quaternion. 

The parallel projection initial approximation algorithm as developed above solves 

for the scale and rotation of the images in two separate steps.  This requires essentially 

the same least-squares computation to be made for each pair of images twice (see 

equations 4.21 and 4.39).  It may be possible to solve for the scale and rotation of each 

image at the same time—especially if the equations are expressed in terms of a 

quaternion instead of a scale and three rotation angles.  This would eliminate the need to 

consider each pair of images twice, and only one least-squares calculation would have to 

be performed on each pair of images.  This would lead to faster computation time and 

perhaps improved accuracy. 

The parallel projection initial approximation algorithm leads to two possible 

solutions, referred to earlier as the (+) set and the (-) set, which are mirror images of each 

other.  There is one additional input to the algorithm, the keypoint, to resolve this 

ambiguity.  A more elegant way of resolving this uncertainty which does not require an 

additional input may be possible. 

 

8.2.3 Additional tests 

 

There are several additional tests that may reveal possible weaknesses of the 

algorithm.  In particular, the algorithm has been tested using images which were taken 

from widely varying aspects.  Some surveillance images sets may contain images which 

were taken from approximately the same aspect, with only a slight angular change 
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between images.  It is known that the parallel projection can be less stable and less 

precise when two images are captured from essentially the same aspect.  This is because 

the parallel projection assumes that all light rays for a given image are parallel, and 

uncertainty in the depth direction is large.  The perspective projection is more stable in 

these situations.  Hence, it would be instructive to test the algorithm against standard 

methods using images with very similar aspects. 

As noted above, if images are captured with a sensor for which the approximate 

IOP are unknown, it is still possible to analyze these images with the parallel projection.  

However, if these images do not have a narrow angular field of view, the parallel 

projection will not provide a very precise solution.  In these cases it may be better to 

analyze the images from an unknown sensor with the DLT, which would be capable of 

solving for the approximate IOP when the field of view is not too narrow.  Thus, further 

testing with images from an unknown sensor would be informative.  
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A.1 Rotation Matrices 

 

 

Rotation Matrices play an important role in photogrammetry.  Rotation matrices 

are a very convenient and simple way of expressing rotations in 3D space.  When a set of 

XYZ coordinates are multiplied by a 3 x 3 rotation matrix, the resulting XYZ coordinates 

are simply a rigid rotation of the original coordinates about the origin of 3D space.  Here 

the properties of rotation matrices are discussed, the equations for a rotation matrix in 

terms of three ordered rotation angles ( )κϕω ,,  about the X- Y- and Z- axes are presented 

(this is a standard convention in photogrammetry), the equations for a rotation matrix in 

terms of three ordered rotation angles ( )εψθ ,,  are presented (as discussed in Chapter 7) 

and a method to solve for the three rotation angles from a known rotation matrix is 

outlined.  A more comprehensive review of rotation matrices and the proofs of some of 

the equations given here are found in the appendix of (Morgan, 2004). 

 

A.1.1 Properties of rotation matrices 

 

A rotation matrix (as used in this thesis) is a 3 x 3 orthonormal matrix.  An 

orthonormal matrix is a matrix in which all rows (columns) have a norm of 1, and all 

rows (columns) are mutually orthogonal to the other two rows (columns).  The properties 

of rotation matrices will be very helpful in some of the derivations.  For convenience 

these properties will be outlined here.   

For the equations that follow, let 
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 be a rotation matrix; all rows 

(columns) have a norm of 1: 
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Also, each row (column) is orthogonal to the other rows (columns).  This means that the 

dot product of any two rows (columns) is zero: 
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    (A.2) 

Also due to orthogonality, the cross product of any two rows (columns) is equal to the 

remaining row (column) with a positive or negative sign: 
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  (A.3) 

The inverse of a rotation matrix is equal to the transpose of the rotation matrix: 
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   (A.4) 

Finally, the product of any two rotation matrices is a rotation matrix which 

describes both of the rotations performed in sequence. 
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A.1.2 Solving for a rotation matrix from 

three angles ( )κϕω ,,  

 

As mentioned earlier, a rotation matrix can be fully determined by three rotation 

angles (Wolf and DeWitt, 2000).  The angles that will be considered will be three ordered 

rotations about the X-axis, Y-axis, and Z-axis of 3D space respectively.  These three 

angles will be denoted by ( )κϕω ,, .  The angles will be considered to be positive when 

they are in the counter-clockwise direction when viewed from the positive end of their 

respective axes.  Using these three rotation angles, the rotation matrix becomes: 
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And the matrix terms are given by: 
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     (A.6) 

Thus, given the three rotation angles ( )κϕω ,, , the terms of the rotation matrix can 

be found.  Because trigonometric functions are periodic, some constraints can be placed 

on these angles.  All possible rotations can still be defined if ω is held in the 

interval [ ]ππ ,− , ϕ  is held in the interval 




−
2

,
2

ππ
, and κ is held in the interval [ ]ππ ,− . 
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A.1.3 Solving for the three angles ( )κϕω ,,  

from a rotation matrix 

 

It may also be necessary to determine the three rotation angles from a given 

matrix.  To do this, first consider the equation )sin(31 ϕ=m  from (A.6).  From this 

equationϕ  is solved for: 

( )31

1sin m
−=ϕ          (A.7) 

Because it was assumed that ϕ  is in the interval 


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,
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ππ
, this equation has only one 

solution.  Now, by considering equations (A.6) the following are derived: 
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Now, if ( ) 0cos ≠ϕ (i.e. 
2

,
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π
ϕ

π
ϕ

−
≠≠ ), then equations (A.8) reduce to: 
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Andω andκ can be found by: 

( ) ( )11213332 ,atan2,atan2 mmmm −=−= κω      (A.10) 

where “atan2” denotes the full circle inverse tangent function.  In the event that 

( ) 0cos =ϕ (i.e. 
2

,
2

π
ϕ

π
ϕ −== ) the rotations about the X- and Z- axes can be reduced to 

one rotation about the X-axis since the rotation of 
2

π
±  about the Y-axis rotates the X-

axis into the position of the Z-axis (positive or negative).  Hence, it can be assumed 

0=κ and the matrix terms reduce to: 
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And: 

( )2212 ,atan2 mm=ω          (A.12) 

This case is better handled using a quaternion, but will likely not be encountered in 

practice with the algorithm. 

 

A.1.4 Solving for the rotation matrix terms 

from three rotation angles ( )εψθ ,,  

 

The following formulas give the rotation matrix terms as functions of the three 

rotation angles ( )εψθ ,, discussed in Chapter 7.  Note that these are similar to equations 

(A.6) which define the rotation matrix terms from ( )κϕω ,, . 
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A.2 Bundle Triangulation Algorithm 

 

Two special cases of the bundle triangulation algorithm will be given here.  The 

first is a general form of the bundle triangulation algorithm used to solve for the EOP of 

several images along with the 3D coordinates of several target points, the second is a 
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simpler form used to solve for the EOP of a single image.  Both forms assume some 

limitations which are common in surveillance imagery and are not a complete 

representative of the many different structures that the bundle triangulation can follow.  

For a more comprehensive discussion of the bundle triangulation method, see (Luhmann, 

et al., 2006; Wolf and DeWitt, 2000; Mikhail, Bethel, and McGlone, 2001).   

 

A.2.1 General bundle triangulation algorithm 

 

The first case is a general form of the bundle triangulation algorithm used to solve 

for the EOP of several images and the 3D coordinates of several target points.  It will be 

assumed that there are I images (image A, image B,…, image I) with unknown EOP: 

( )AAAAAA ZcYcXc ,,,,, κϕω , ( )BBBBBB ZcYcXc ,,,,, κϕω ,… ( )IIIIII ZcYcXc ,,,,, κϕω  

 It will be assumed further that there are n target points with unknown 3D 

coordinates: ( ) ( ) ( )nnn ZYXZYXZYX ,,,...,,,,,, 222111  

It is assumed that these points appear in the I images.  It will also be assumed that 

the set of point correspondences of the n target points in the I images have been collected 

and are denoted as: 
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nInInBnBnAnA
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yxyxyx
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yxyxyx

,,,,,,
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,...,,

............

,...,,
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      (A.14) 

All n target points do not need to be visible in all I images—some of the above 

coordinates may be missing.  It is necessary for each point to be visible in at least two 

images.  It will be assumed that for each image the approximate principal distance f and 

the approximate coordinates of the principal point (xo, yo) are known, although with 
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some surveillance images this may not be the case.  It will be assumed further that no 

survey data in 3D space or information regarding the geometric properties of the target 

object is available.  For each image there are 6 unknowns ( )ZcYcXc ,,,,, κϕω and for each 

3D point there are three unknowns ( )ZYX ,, .   

For the bundle triangulation algorithm it is necessary to have initial 

approximations for each of the unknowns.  It will be assumed that initial approximations 

of the unknowns have been obtained. 

Hence, the set of inputs will be: the set of image coordinates (point 

correspondences), the approximate IOP f, xo, and yo for each image, and the initial 

approximations of the unknowns (the EOP and 3D coordinates).  

These assumptions are not necessary in all forms of the bundle triangulation 

method, but for the general form outlined here these assumptions will be made. 

Initially, there is no absolute orientation of 3D space because it has not been 

defined by the inputs.  So defining the absolute orientation of 3D space is the first step.  

To do this, a rotation, an origin, and a scale for the 3D coordinate system can arbitrarily 

be defined.  There are several ways to define the orientation; a standard procedure is to 

“fix” the 6 unknowns for one of the images.  By “fixing” the three rotation angles of one 

of the images the orientation of 3D space is defined, by “fixing” the perspective center of 

one of the images the location of the origin of 3D space is defined.  Without loss of 

generality, the EOP for image A will be fixed.  They can be set to the values of the initial 

approximations:  

( ) ( ) ( )
( ) ( ) ( )
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=== κκϕϕωω
     (A.15) 



 164 

By fixing the X-coordinate of the perspective center for one of the other 

images the scale of 3D space is defined.  Without loss of generality the X-coordinate of 

the perspective center of image B will be fixed at the value of the initial approximation: 

( )
0BB XcXc =            (A.16) 

By “fixing” these seven unknowns, the orientation of 3D space has been defined and the 

number of unknowns has been reduced to: zero for image A, five for image B, six for 

each of the remaining images, and three for each target point.  Alternate definitions of 3D 

space can be used, which will result in a slightly different set of unknowns. 

Next, a system of linear equations (A.17) is set up (Wolf and DeWitt, 2000).  

These linear equations are created by taking a first-order Taylor series approximation of 

the collinearity equations with respect to each of the unknowns.  This equation is for 

point p on image K (items with a 0 subscript are initial approximations): 
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These equations are linear in the unknowns ( )KKKKKK dZcdYcdXcddd ,,,,, κϕω  and 

( )
ppp dZdYdX ,, .  In equation (A.17), ( )

0,' pKx  denotes the back-projection of point p into 

image K based on the initial approximations; this is given in equation (A.29).  If these 
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two equations are written for each of the points which appear in each of the images, 

then a linear system of equations with the following unknowns is obtained: 

( ) ( )
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   (A.18) 

Note that missing from the unknowns (A.18) are: 
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dXcdZcdYcdXc

dddd κϕω
    (A.19) 

This is due to the fact that these variables were fixed in order to define an absolute 3D 

coordinate system.  Hence, these variables are not included in the set of unknowns.   

So, by considering the equations for each point in each image, a linear system can 

be written in matrix-form L = AX with L, A, and X as follows: 
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 ( XYZB , XYZC ,…, XYZI have the same format as XYZA  and correspond to image B, 

image C,…, image I.) 
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In equations (A.20 – A.28) note that the row index of L is equal to the row index 

of A (each row corresponds to the x- or y-coordinate of one point on one image) and the 

column index of A is equal to the row index of X (each column of A corresponds to one 

unknown in X).  Now, by beginning with the initial approximations for the unknown EOP 

of the images and 3D points, the matrix system above can be set up by evaluating at the 

initial approximations.  Then the least-squares solution for the unknowns (A.28) is found 
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by ( ) ( )LAAAX TT 1−
= .  Then the X-vector of unknowns is added to the initial 

approximations to produce improved approximations.  The improved approximations 

become the new initial approximations and this process is repeated until the magnitudes 

of the corrections X are below a desired threshold. 

The primary outputs of the bundle triangulation algorithm are the set of calculated 

3D coordinates and the set of calculated EOP.  These are given by the vector X of 

unknowns.  There are three other important outputs of the bundle triangulation algorithm: 

back-projected image coordinates, residuals, and 1-sigma errors. 

Let the measured image coordinates of point p be denoted by ( )
pp yx ,  and let the 

calculated 3D coordinates of the point p be denoted by ( )',',' ppp ZYX .  These coordinates 

which have been solved for are not exactly equal to the actual 3D coordinates of the point 

p denoted by ( )
ppp ZYX ,, .  The bundle triangulation algorithm also calculates values for 

the EOP denoted by ( )ZcYcXc ,,,,, κϕω  which are not exact. 

  To get the back-projected image coordinates, it is assumed that the calculated 3D 

points are exact, that the calculated EOP are exact, and that the perspective projection is 

an exact model.  Then the back-projected image coordinates ( )',' pp yx are calculated for 

the perspective projection using the collinearity equations (like equation 1.1): 
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Recall that the rotation matrix m terms in this equation are derived from the three 

rotation angles.  Recall also that it is assumed that the approximate principal distance f, 

and the principal point coordinates (xo, yo) are known. 

These back-projected image coordinates are just the calculated 3D coordinates 

back-projected onto the images according to the calculated EOP.  These back-projected 

image coordinates can be compared with the measured image coordinates as a measure of 

the precision of the solution.  The residuals ( )
yx rr ,  are defined as the difference of the 

back-projected image coordinates ( )',' pp yx and the measured image coordinates ( )
pp yx , : 





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−

−
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







pp

pp

y

x

yy

xx

r

r

'

'
         (A.30) 

The magnitude of these residuals provides a metric for determining the precision of each 

calculation.  They may also be used to detect blunders in the image coordinates that were 

measured from the images.   

It also may also be helpful to consider the total residual r for each point: 

22

yx rrr +=           (A.31) 

While residuals are very helpful, they do not directly provide a measure of 

precision in 3D space.  Since the primary concern is an accurate model of the target in 3D 

space, 1-sigma errors are used to determine the precision of the calculations in 3D space. 

The bundle triangulation equations (A.20 – A.28) are of the form AXL = and the 

least-squares solution is ( ) ( )LAAAX TT 1−
= .  The residuals are therefore given in vector 

form as: 

 R = AX - L          (A.32)   
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The standard deviation of unit weight, 0σ , is then calculated as: 

n

RR
T

=0σ           (A.33) 

Where n is the degrees of freedom and is given by: 

n = (the number of equations) – (the number of unknowns)    (A.34) 

Then, the 1-sigma error for each of the unknowns is given by: 

xxx Q0σσ =           (A.35) 

Where xxQ represents the diagonal elements of the matrix: 

( ) 1−
= AAQ T           (A.36) 

Note that the dimensions of Q will correspond to the number of unknowns.  So, the 1-

simga error for a given point will consist of three components ZYX σσσ ,, corresponding 

to the three unknowns (X, Y, Z) for each point.  The total 1-sigma error of a point may 

also be calculated by: 

222

ZyX σσσσ ++=          (A.37) 

The 1-simga errors derived above are based on the assumption that the residuals in the 

calculations follow a standard normal distribution. The 1-sigma error values represent 

one standard deviation of the standard normal distribution. 

 

A.2.2 Single image resection 

 

The second form of the bundle triangulation that will be considered is a method 

for determining the EOP of a single image with respect to a set of XYZ coordinates.  This 

is often referred to as resection.  This form of the algorithm is very similar to the more 
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general form, except that only the EOP ( )ZcYcXc ,,,,, κϕω  of the single image are 

treated as unknowns. 

As before, it is assumed that there are p points for which the 3D coordinates (X, Y, 

Z) are known (or approximately known).  It is also assumed that these p points have been 

located in the image and the image coordinates (x, y) have been recorded.  It is also 

necessary to have an initial approximation of the 6 unknown EOP. 

The procedure follows as outlined above.  The L vector contains image 

coordinates for the image, the A matrix has only 6 columns corresponding to the six 

unknowns, and the X vector has only the six unknowns.  The process is iterative; at each 

step updates to the initial approximations are calculated by ( ) ( )LAAAX TT 1−
= .  The 

iteration continues until the updates are negligible. 

The output of this algorithm is the EOP of the image with respect to the 3D 

points. 

 

A.3 Perspective Projection 3D Reconstruction 

 

A simple method for performing 3D reconstruction by the perspective projection 

is given here.  It is useful when the IOP and the EOP are known, so the full bundle 

triangulation algorithm is no necessary. 

 

A.3.1 Alternative forms of the 

collinearity equations 

 

Equation (1.1) is the standard form of the collinearity equations.  There are 

several other forms of the collinearity equations which are very helpful.  They are 

obtained by rearranging terms in (1.1).  One form of the collinearity equations which is 
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helpful is a matrix-form representation.  This form comes from adding a third 

equation to the two equations of (1.1) and rewriting them in matrix form: 
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 (A.38) 

Using this matrix-form representation, a scale term ( )ZYX ,,λ  is define: 

( )
( ) ( ) ( )ZcZmYcYmXcXm

f
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=
333231

,,λ     (A.39) 

And by substituting this scale term (A.39) into equation (A.38) the collinearity equations 

become (Ono and Hattori, 2002; Morgan, 2004): 
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This form represents the shifted image coordinates 

















−

−

−

f

yoy

xox

as a scaled rotation of the 

shifted 3D coordinates 
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 and the 

scale ( )ZYX ,,λ is a function of the 3D coordinates (X, Y, Z).  This form of the collinearity 

equations will be used to develop several relationships between the parallel projection 

and perspective projection in subsequent chapters. 

Another form (A.41) represents a linear combination of (X, Y, Z) as a linear 

combination of (Xc, Yc, Zc) (McGlone, 1989). 
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This notation can be simplified as: 
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A.3.2 3D reconstruction by perspective 

projection equations 

 

If there are I images for which the IOP and the EOP are known, then for any point 

which is visible in these image the 3D coordinates (X, Y, Z) can be found by the 

following linear equation (McGlone, 1989): 
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Where for (image A): 
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       (A.45) 

Equation (A.44) is of the form AXL = and the least-squares solution is 

( ) ( )LAAAX TT 1−
= .  The residuals can be calculated by: 

 R = AX - L          (A.46)   

The standard deviation of unit weight, 0σ , is then calculated as: 

r

RR
T

=0σ           (A.47) 

Where r is the degrees of freedom and is given by: 

r = (the number of equations) – (the number of unknowns)    (A.48) 

Then, the 1-sigma errors for the point are given by: 

110 QX σσ =   220 QY σσ =   330 QZ σσ =     (A.49) 

Where xxQ represents the diagonal elements of the matrix: 

( ) 1−
= AAQ T           (A.50) 

Note that the dimensions of Q will correspond to the number of unknowns.  So, the 1-

simga error for a given point will consist of three components ZYX σσσ ,, corresponding 
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to the three unknowns (X, Y, Z) for each point.  The total 1-sigma error of a point may 

also be calculated by: 

222

ZyX σσσσ ++=          (A.51) 

To get the back-projected image coordinates: 
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    (A.52) 

The residuals ( )
yx rr ,  are then defined as the difference of the back-projected image 

coordinates ( )',' pp yx and the measured image coordinates ( )
pp yx , : 
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The magnitude of these residuals provides a metric for determining the precision of each 

calculation.  They may also be used to detect blunders in the image coordinates that were 

measured from the images.   

It also may also be helpful to consider the total residual r for each point: 

22

yx rrr +=           (A.54) 

 


	Development of a Mathematical Model for 3D Reconstruction of Target Objects by Photogrammetry
	Recommended Citation

	Microsoft Word - 137721-1219958190-KeithBlonquistThesis.doc

