
23

CHAPTER IV

IMPLEMENTATION

 This chapter focuses on the most complex portions of the integration of the testing

center scheduling software into the iNetTest software. The discussion of the

implementation will be split into three sections. The first section is a comprehensive

description of how the iNetTest database is enhanced to store the information needed for

the testing center. The second section discusses the implementation of the interface.

Lastly, there is a section that includes a detailed report on the business logic and

algorithms implemented to link the front and back ends of the application.

Database

 Only minimal database changes to iNetTest were required to accommodate the

test scheduling software. In total, seven tables were added in order to provide for the

testing center scheduling functionality. The purpose of each table is described in this

section. Figure 3 contains an entity relationship (ER) diagram of the testing center

tables.
*

 The most complex table in the new functionality is the allotment table. This table

contains the time frame that the instructor allows for a test and records various options

for the test. The record in the table is related to a test in the system. While the test time

limit is stored in the test table, the reservation length is recorded here in the allotment

table. Normally it is good practice to avoid derived traits. The purpose of storing the

reservation length, derivable from the test time limit, is for computational

*
 Diagram was generated using DbVisualizer available at http://www.dbvis.com/

38

The complexity of the algorithm is polynomial. There are several cascaded loops

in the algorithm that account for the complexity. First the outermost loop in the

algorithm traverses the various labs that were selected by the instructor. The next loop

goes through all of the future allotments for that lab. Each allotment is distributed into

the open times of the lab during that allotment. The value for is determined by

examining the entire time that future allotments exist. There are a couple of scenarios

that can occur next in the calculation. Either the number of students is greater than the

number of open time slots, or the number of open time slots is greater than the number of

students. First consider the situation where . For this case, the number of students

must be distributed into the times slots evenly at ⌊

⌋ per time slot. Then to distribute a

test into a time slot we must cycle through the number of time slots that the test covers.

Then, overflow can be distributed which in worst case would be on the order of .

This yields the complexity to be ((⌊

⌋)). Assuming that

 ⌊

⌋ and the fact that the complexity can be reduced to ().

Based on this second scenario, it is evident that it is only necessary to distribute tests

randomly at a uniform distribution and therefore resulting in the same expression. In

practice the number of labs in a region and the number of time slots for a test are likely to

both be small, thus the complexity is more accurately to be represented as ().

This calculation for both methods makes logical sense because in the end, the algorithm

is simply distributing tests in a restricted timespan within time periods. Thus, the

39

proposed algorithm can be executed in polynomial time with a complexity similar to a

second order polynomial.

Results

 In order to verify the functionality of the allotment calculations, the example

given in Table 3 was used as a test case. The reservations that would yield the available

times given in column 1 were setup. Two tests were then scheduled, one class with 5

students and another with 7. The class with 5 students scheduled without any problems,

as was expected. When attempting to schedule the second class of 7, the test was

rejected. As expected, the 16 of the 21 projected reservations could not be scheduled.

Figure 12 shows the output when attempting to schedule the test.

Figure 12: Scenario Output

40

CHAPTER V

FURTHER WORK

 As previously mentioned, with empirical data, improvements can likely be made

to the algorithm. Unfortunately, there is currently no such empirical data to show the

applicability of the proposed method. There are also adjustments that might be made to

more accurately determine if an instructor may schedule an exam. This section describes

how future data can be used, possible adjustments to the algorithm, and the design for

future testing of the system.

Data Use

 Once the scheduling algorithm is placed in use, a careful analysis of the resulting

data could assist in several ways. The data might reveal that the evenly distributed

assumptions are not appropriate in practice. In such a case, it might be advantageous to

distribute the students in a polynomial or exponential distribution over the allowed time

frame. With this data one could certainly determine the distribution which best fits.

Unfortunately, it might also be the case that tests given at different times in the semester

invoke a different distribution of student test scheduling. The data could also be used to

determine how many tests are being extended. A survey of student test takers could also

be used to determine how well the system is meeting student needs. These data might

also assist in refining the uncertainty constant and reveal that a constant is not sufficient.

41

Some heuristic that considers the class size and the size of the time frame might be

developed to better handle the uncertainty.

Adjustments

 There might be several small adjustments to the algorithm that could improve its

performance. One adjustment might be that students will prefer a particular lab. If a

popular lab is absolutely full and an unknown lab empty then the algorithm will deny an

allotment including both labs, though it may be the case that the empty lab can house the

entire class. Also, an adjustment might be made to take the overflow of one lab and place

it in another.

 Another adjustment that could be made is to consider the time of day. It is

reasonable that a student is more likely to reserve an exam time in the late afternoon than

in the early morning hours when the testing center first opens. This factor is neglected in

the current procedure. It is reasonable to assume that if the peak hours are booked, a

student is likely to make an early morning sacrifice in order to prevent failure in a course.

 The algorithm always uses all of the future tests. This isn’t necessary because not

all tests will have overlapping time frames. Considering only those tests that overlap

with new tests to schedule might result in better performance; however, calculating which

tests overlap might add unnecessary complexity to the algorithm.

Future Testing

 After data is collected, there must be a way to test the effectiveness of the

algorithm. Here we discuss two tests that can be performed to assist in refining the

42

scheduling procedures. The first test is designed to determine how many scheduled tests

can be handled by the system. The second test is designed to refine the uncertainty value.

 As the number of scheduled tests for a testing center rises, so does the

computation time. It is vital to know how many scheduled tests the system can handle to

ensure that the software can be used at a large scale. The procedure for this test is as

follows:

1. Create a testing center that is always open for several years

2. Run a script that will randomly schedule tests of various lengths during the

time frame.

3. Run the script until the response time reaches a threshold or until several

requests in a row are returned that deny the scheduled time.

The parameters of the test that can be adjusted include the number of years the testing

center is open, the number of seats in the testing center, the number of students in the

class, the length of the test, the response time out threshold, and the scheduled test failure

threshold.

 The next test will be used to refine the uncertainty value. As proven previously

the value 3 will guarantee that the students will have an available time to schedule the

test. This guarantee comes at the cost of lower utilization of the computer resources at

the testing center. It is desirable to experiment with other values or even replace the

value with a function in order to better utilize the testing center resources. The test will

be a simulation that will model two behaviors of the students. The first being the rates at

43

which the students reserve a time after the instructor has scheduled the test. The second

is the distribution of the students over the time frame of the scheduled tests. Using the

data, we can simulate the behavior of the students and experiment with various

uncertainty constants and functions. The simulation can record how many students do

not have an available time for a reservation. The results will be used to define a better

policy for dealing with the uncertainty.

44

CHAPTER VI

CONCLUSION

 The iNetTest system with its various features makes it easy to integrate a new

feature for managing the scheduling of a computer based testing center. The testing

center management software can be used to help coordinate the opening, reserving, and

administration of tests between instructors, students, and test proctors. The scheduling

algorithm presents some uncertainty in terms of its accuracy. Much of this uncertainty

could be reduced with empirical data; however, in order to collect such data, the lab must

go into use with a relatively large number of users. The proposed scheduling algorithm

presents a first step solution that can provide a starting point until further data can be

gathered. The algorithm itself has been written so that significant changes to its logic and

parameterization are relatively easy to make. The scheduling software also provides for a

seamless integration with the iNetTest system and a useful, easy to use tool for students,

proctors, instructors, and administrators.

45

REFERENCES

[1] Brigham Young University, "BYU Testing Center," [Online]. Available:

testing.byu.edu. [Accessed 27 February 2012].

[2] D. P. Jarmolowicz, Y. Hayashi and C. S. P. Pipkin, "Temporal Patterns of Behavior

From The Scheduling of Psychology Quizzes," Journal of Applied Behavior Analysis,

vol. 43, no. 2, pp. 297-301, 2010.

