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ABSTRACT 

 
Agricultural operations produce a variety of particulates and gases that influence ambient air quality. Lidar (LIght 
Detection And Ranging) technology provides a means to derive quantitative information of particulate spatial 
distribution and optical/physical properties over remote distances. A three-wavelength scanning lidar system built at the 
Space Dynamic Laboratory (SDL) is used to extract optical parameters of particulate matter and to convert these optical 
properties to physical parameters of particles. This particulate emission includes background aerosols, emissions from 
the agricultural feeding operations, and fugitive dust from the road. Aerosol optical parameters are retrieved using the 
widely accepted solution proposed by Klett. The inversion algorithm takes advantage of measurements taken 
simultaneously at three lidar wavelengths (355, 532, and 1064 nm) and allows us to estimate the particle size 
distribution. A bimodal lognormal particle size distribution is assumed and mode radius, width of the distribution, and 
total number density are estimated, minimizing the difference between calculated and measured extinction coefficients at 
the three lidar wavelengths. The results of these retrievals are then compared with simultaneous point measurements at 
the feeding operation site, taken with standard equipment including optical particle counters, portable PM10 and PM2.5 
ambient air samplers, multistage impactors, and an aerosol mass spectrometer.   

Keywords: Remote sensing, lidar, aerosols, pollution, air quality   

 
I. INTRODUCTION 

The lidar technique has been successfully applied to qualitatively characterize particulate emissions from 
agricultural sources1, 2. Typical lidar systems employed for agricultural applications, however, are based on single 
wavelength lasers and have limited abilities to characterize particulate emission quantitatively. The Space Dynamics 
Laboratory (SDL) at Utah State University has teamed with ARS researchers to build a three-wavelength lidar system 
for remote sensing of pollution from agriculture activities. The aerosol backscatter cross section is uniquely determined 
by the physical and chemical properties of the aerosols (size, shape, and complex refractive index) and the laser 
wavelength. The wavelength dependence of the backscatter coefficient is mainly determined by the aerosol size 
distribution and refractive index. Using backscatter coefficients measured at several laser wavelengths, the physical 
properties of aerosols can be retrieved using the inverse solution of the Mie integral equations3. Thus a multiwavelength 
lidar system can provide not only information on the 3D distribution of particulate matter, but also information on the 
particulate size distribution in a 3D space with the ability to convert this information to the standard EPA 
(Environmental Protection Agency) mass concentration units like PM10, PM2.5, PM1 and PM10-PM2.5.  

Aerosol sounding techniques for the retrieval of physical aerosol parameters from multi-wavelength lidar 
measurements have been developed since the 1980s and have made major progress in the past five years3-6. 
Unambiguous and stable retrieval of the physical parameters of aerosols requires measurements of backscatter 
coefficients for at least three laser wavelengths and the aerosol extinction coefficient for at least two wavelengths using 
additional Raman channels3, 5, 6. From the instrumental point of view, multi-wavelength lidar systems with additional 
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Raman channels are still very expensive and complicated to operate. A three-wavelength lidar system appears to be a 
reasonable tradeoff between accurate and stable retrievals, and the ability to operate under different environmental 
conditions with minimal measurement time. To date, a significant data base of atmospheric aerosol characteristics has 
been obtained by the combination of satellite and ground based observations4, 7. Using this database, research has shown 
that the physical properties of assumed aerosols can be successfully retrieved based on measurements of backscatter 
coefficients of only three wavelengths 4, 8. 

In this paper, we describe the retrieval algorithm and present initial results of the particulate emission 
characterization obtained by simultaneous remote measurements with a 3-wavelength lidar and in situ point particulate 
measurements, performed with standard EPA approved equipment. Particulate chemical and physical properties 
measured in situ are used to make assumptions of the complex refractive index and the type/shape of the particle size 
distribution of particulate emissions present at the experiment site. They are used also to constrain the inverse solution to 
minimize overall errors and uncertainties in the lidar measurements. In situ measurements are used to calibrate and 
verify the results of the lidar retrievals as well. The experiment was conducted at a deep-pit swine production facility 
situated near Ames, in central Iowa, for approximately three weeks in August and September of 2005.  

 
2. EMPLOYED INSTRUMENTATION AND EXPERIMENT SETUP 

The AGLITE lidar instrument used in this study is a three-wavelength lidar system, designed and constructed at 
SDL under contract from the ARS. A single diode-pumped Nd:YAG laser, operating simultaneously at three 
wavelengths (1.064 µm, 0.532 µm, and 0.355 µm) with the high repetition rate of 10 kHz , is used as a transmitter of 
short impulses of radiation. The backscattered radiation is collected by a 28-cm Newtonian telescope with a full field of 
view (FOV) of 0.46 mrad. A beam-separation unit is used to split up the return backscattered light at three different 
channels. A photon counting system detects low return signals simultaneously for each channel. Interference filters are 
placed in front of each detector to suppress background daylight radiation from the atmosphere and optical cross talk 
between channels. The data from the photon counting unit are read out by the digital processing unit, averaged across a 
predetermined set of laser pulses, displayed in a real time, and stored /transmitted for further processing. The lidar 
system was optimized for eye safe operation at all three wavelengths at ranges from 0.5 to 15 km, with a minimum range 
resolution of 4.8 m. Technical details of the lidar design and construction are described by Wilkerson9.  

 
Fig. 1. Experimental site layout. 

 

A schematic diagram of the deep-pit swine production facility and instrumentation employed on this site is shown in 
Fig. 1. The facility consisted of three separate parallel barns, each barn housing around 1250 pigs. A number of MetOne 
Optical Particle counters (OPC) 9722 were employed around this hog facility to provide information on particle size 
distribution from 0.3 to 10 µm in diameter in a real time. To measure chemical composition, the Aerodyne Aerosol Mass 
spectrometer (AMS) was deployed at the trailer. Portable PM10/PM2.5 (AirMetrics MiniVol) samplers were arrayed 
vertically and horizontally, and data were collected on a daily-averaged basis. A monitoring Davis weather station was 
established approximately 40 m to the north of the nearest barn to record the typical suite of meteorological parameters.  
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3. INVERSION OF THE LIDAR SIGNAL 
 3.1 Theoretical development 

The logarithmic range normalized lidar return power S=S(R, λ)=ln[ ),( λRP ·R2] for two distinct classes of 
scatterers may be written in the form10:  

  0
0

ln( ) ln( ) 2 ( )
R

b a b aS C P dRβ β α α ′= ⋅ + + − +∫       (1)  

Where P (R, λ) is the lidar return power from the range R.  C=F·ξ·A0·∆R is the lidar calibration constant. The term F 
represents the losses in the transmitting and receiving optics, ξ= ξ (R,λ) represents the lidar overlap geometrical form 
factor, A0 represents the effective telescope area, and the range increment R∆ of the lidar is defined as τ·c/2, the product 
of the effective laser pulse duration τ and speed of light c. The term P0=P0(λ) is the laser pulse power transmitted at 
wavelength λ.  The terms βb= βb (R,λ) and βa= βa (R,λ) represent the backscatter coefficients of air molecules and aerosol 
particles respectively. The terms αa=αa (R, λ ) and αb=αb (R, λ ) are extinction coefficients of aerosols and air molecules 
correspondingly.  

Typically, the molecular part of Eq. (1) can be calculated using standard atmosphere conditions at different 
altitudes5. Aerosol backscatter and extinction coefficients are two unknowns in a single lidar equation. The standard 
solution of this equation involves two a priori assumptions or constraints. The first assumption is the relationship 
between aerosol extinction and backscatter coefficients L (lidar ratio):  

    L α
β

=          (2) 

The second assumption is that boundary conditions must be defined for Eq. (1). This is done by determining a 
reference value of either the extinction coefficient ( , ) ( , )D a D b DR Rα α λ α λ= + , or the backscatter coefficient. This 
value is independently measured at the reference range RD, either using a separate retrieval technique on the lidar data, 
or using a completely separate in situ instrument. With these constraints, Eq. (1) can be solved analytically. Following 
Klett’s standard solution for two distinct scatters10, the aerosol backscatter coefficient can be solved for from Eq. (1) at 
each laser wavelength λ separately:  

  
( )

( )1

2
D

D

a R
DaD bD

a
a b R

S R S

S R S
L R

L L

e
e

β
α α

−

′ ′⎡ ⎤−⎣ ⎦
=

′ ′ ′⎡ ⎤−⎛ ⎞ ⎣ ⎦ ′+ + ∂⎜ ⎟
⎝ ⎠

∫
     (3)  

 

Where the term SD is defined as SD= S (λ,RD) and variables S’ and S’D are defined in terms of the S function as following: 

  2 2
D DR R

D D b b a b
R R

S S S S L R L Rβ β′ ′ ′ ′− = − − ∂ + ∂∫ ∫       (4)  

The subscript “D” refers to a variable value measured at the reference range RD. Note that signs before the third and 
fourth terms in Eq.(4) are mistakenly inverted in the Klett’s original paper and are correct in the Eq.(5). The original 
solution (3) was derived for typical atmospheric applications when a lidar system is looking straight up, so that the 
molecular contribution is significant for altitudes above the aerosol boundary layer. For agricultural applications, 
measurements are conducted close to ground level and the main contribution to atmospheric scattering is from aerosols, 
while the molecular contribution is negligibly small. In this case we are still dealing with two distinct types of scatterers 
such as background aerosols and a pollutant. For this application, Eqs.(1-4) are still valid and we attribute the subscript 
“b” to the atmospheric background aerosols while the subscript “a” will refer to the particulate emission, the properties 
of which we seek to retrieve.  
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For an optically thin pollutant cloud, the backscatter coefficient of the pollutant can be estimated directly from the 
lidar return signal, avoiding Klett’s solution (3) and the assumptions that it requires. A schematic diagram of this method 
is presented in Fig. 2b. If the reference range is located beyond the pollutant, subtracting the signal SD at the reference 
range RD from signal Sa at the pollutant measurement point Ra, we can write: 

 ln 2 ( ) ln 2a a

D D

R Ra b a b
a D b a bR R

b b

S S R Rβ β β βα α α
β β

⎛ ⎞ ⎛ ⎞+ +′ ′− = − + ∂ ≈ − ∂⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫    (5) 

For the case of an optically thin pollutant cloud, the integral of the extinction term σa has a negligible effect on the 
signal and can be ignored. Rearranging this equation results in 

  ( )exp 2 'a

D

R

a b a D b bR
S S Rβ β α β≈ − + ∂ −∫      (6) 

Agricultural pollutant clouds are typically spatially localized around an emission source and particulate 
concentrations only slightly exceed the background aerosol loading so that backscatter values estimated by this 
approximation method agree well with Klett’s retrievals. In our retrieval algorithm, we use this approach as a first guess 
to estimate the lidar ratio (2) for pollutant.  

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 2. Retrieval algorithm flow chart (a) and schematic diagram of estimation of the backscatter coefficient in the pollutant cloud (b).  

 

To retrieve the parameters of the particle size distributions for background and particulate aerosols, the inverse Mie 
solution has been developed. Based on the OPC data measured in situ, we approximate the particle size distribution as a 
bimodal lognormal distribution for both accumulation and coarse particle modes (j=1, 2): 

   ( )
2

2
mod ,

1

ln ln1exp
2 ln2 ln

j N j

j jj

N r r
n r

r σπ σ=

⎡ ⎤⎛ ⎞−⎢ ⎥= ⋅ ⎜ ⎟⎜ ⎟⎢ ⎥⋅ ⋅ ⎝ ⎠⎣ ⎦
∑     (7) 

For any mode j of the distribution, Nj  is the total number of particles in the given mode, rmod N,j is the mode radius, and σj 
measures the width of the given mode. To estimate the mode radius and particle number densities Nj, we are using a 
modified version of the minimization technique described by Del Guasta8. 

In general, the inverse Mie algorithm works by estimating the optical parameters associated with a set of aerosol 
particle size distribution parameters and by minimizing the difference between the estimated and the measured optical 
parameters. First, appropriate ranges are selected for the parameters of the particle size distribution. This defines a space 
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of possible particle size distributions. Then, a vector of optical parameters is calculated for each point in the particle size 
distribution space, forming a space of estimated possible optical parameters. Finally, the estimated optical parameter 
vector that is closest to the measured optical parameter vector is selected, and the algorithm returns the corresponding 
particle size distribution. 

The relationship between the particle size distribution and the optical parameters of an aerosol are defined by Mie 
scattering theory. The Mie equations3 for extinction and backscatter are as follows: 

( ) ( )

( ) ( )

2

2

( , ) , ,

1( , ) , ,
4

extr r Q r m n r r

r r Q r m n r rπ

α λ π λ

β λ λ

= ∂

= ∂

∫

∫
     (8) 

Where extQ  and Qπ  are Mie extinction and backscatter efficiencies respectively. A bimodal lognormal distribution is 
described by a total of six parameters (six-dimensional solution space). Since the inversion of a vector of extinction 
values requires estimating the corresponding extinction values for each possible particle size distribution, this makes the 
problem potentially intractable. The bimodal lognormal distribution can be written as a linear combination of two 
particle normalized distributions by bringing the particle number count coefficient Nj outside of the equation. Let the 
term ( )jn r%  represent the jth mode of the particle size distribution, normalized for a single particle. 

   ( ) ( )
2

1
j j

j
n r N n r

=

= ∑ %       (9) 

Considering the case for extinction and substituting Eq. (9) into Eq. (8), particle normalized extinction values can be 
calculated for each particle normalized mode of the particle size distribution. If a vector is formed of extinction values at 
each wavelength, this vector can be expressed as a linear combination of particle normalized extinction values.  

( ) ( )2 , ,j ext jr Q r m n r rλα π λ= ∂∫% %  

   
1, 2,

1
1, 2,

2
1, 2,

UV UV

V V

IR IR

N
A

N

α α
α α
α α

= =α n       (10) 

Let a weighted norm be defined for the space of optical parameter vectors. 

    
3

2 2

1

T
j j

j
W w α

=

= = ∑α α α       (11) 

The signal to noise ratio is used to form a weighting matrix W in order to account for different noise levels at each 
wavelength. It is possible to analytically determine the values of the particle number count coefficients that minimize the 
error between the measured and estimated extinction vectors. This is done by taking the gradient of the error with respect 
to n and setting it equal to the zero vector. Let the vector of measured extinction values be denoted by α and the vector 
of estimated extinction values be denoted by α̂ . 

( ) ( )2ˆ ˆ ˆTA W A− = − −α α α n α n      (12) 

    
2ˆ ˆT TA W A WA∂

− = = − +
∂

α α 0 α n
n

 

    ( ) 1
ˆ T TA WA A W

−
=n α  
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We recognize this solution as being the Moore-Penrose pseudo-inverse15 for a weighted inner product. This solution 
allows us to analytically determine the particle number count coefficients, given the remaining aerosol parameters. This 
procedure can also be applied to a distribution with an arbitrary number of modes. 

Each particle normalized extinction value jλα%  is a function of µmodj and σj for the jth mode of the particle size 
distribution. The matrix A is therefore a function of these parameters of each of the modes of the particle size 
distribution. Let the set of possible aerosol parameters [µ1,µ2,σ1,σ2] be denoted by s. The estimate of the particle number 
count vector corresponding to that set can be written as 

    ( ) 1
ˆ T T

s s sA WA A W
−

=n α      (13) 

The set ŝ  that is closest to the parameters of the true particle size distribution can be determined by varying the aerosol 
parameters and computing the value of the minimization function for each set of values. External constraints can be 
imposed on the solution by fixing the value of some of the elements of s. The error function is now defined as: 

    
2ˆAε = − sα n        (14) 

3.2 Retrieval algorithm 

The retrieval of aerosol physical parameters from a raw lidar signal involves several major steps. The flow chart of 
the retrieval algorithm is shown in Fig. 2a. At the first preprocessing step, the geometrical form factor of the telescope 
receiving optics and scattered sunlight background radiation are estimated. The geometrical form factor in Eq. (1) takes 
into account the overlap between the transmitted laser beam and the FOV of the telescope receiving optics with a central 
obstruction. To calculate the geometrical form factor, the polynomial regression method for an inhomogeneous 
atmosphere proposed by Dho11 is used. During daylight observations, the background radiation of sunlight scattered by 
the atmosphere dominates the lidar return signal at long distances. For each lidar measurement, this background 
radiation is approximated by least squares fitting to a constant value at distances of 5-15 km. The estimated background 
is then subtracted from the total lidar return signal.  

The second step determines the backscatter at the background reference point R=RD, as well as the lidar ratios of the 
background and the pollutant aerosols. The slope method is used to estimate background extinction coefficient at the far 
end of the particulate cloud. In close proximity to the emission source, the background aerosol loading is typically 
homogeneous and a standard slope method can be applied (see Fig. 2b). For each wavelength, the slope of a line that has 
been fit in a least-squares sense to the curve S(R) is used as an estimate of ),( Rb λα : 

     2b
dS
dR

α = −        (15)  

This value is then used in Klett’s solution (3) as a reference value aD bDα α=  at the far end of pollutant cloud R=RD.  

In order to estimate the lidar ratio of the pollutant we are using the approximation method described above by Eqs. 
(5) and (6) to estimate the backscatter coefficient inside of the cloud. After the background extinction and pollutant 
backscatter coefficients have been estimated, the lidar ratios for both pollutant and background aerosols are calculated 
using the inverse and forward Mie solutions. At this retrieval step, the inverse Mie solution is used as an estimate of the 
parameters of a bimodal lognormal particle size distribution (7) for both background aerosols and particulate emission at 
a point in the middle of the pollutant cloud. Knowing the particle size distribution, the backscatter and extinction values 
for background and particulate aerosols are estimated using forward Mie calculations, Eqs. (8), which are in turn used to 
determine the lidar ratios (2).  

The third step is to retrieve backscatter values for the entire data set. Lidar ratios and the backscatter coefficient βD 
at the reference point are then substituted into Klett’s solution (3), and range dependent backscatter coefficients are 
calculated over the entire range of the pollutant cloud for all three wavelengths. Using this approach, all optical 
parameters (backscatter and extinction coefficients and thus the lidar ratio) of the background and particulate aerosols 
are calculated in a few retrieval steps at all three lidar wavelengths.  
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The final step is to convert the backscatter values of the entire data set into microphysical parameters of background 
and pollutant aerosols. The inverse Mie solution described previously is used to calculate the parameters of a bimodal 
particle size distribution (7) for particulate cloud at each range bin. External constrains can be imposed on the 
minimization solution by fixing parameters of the particle size distribution at specific values. These parameters can be 
estimated from particle size distributions measured in situ with OPC and AMS sensors. Once the parameters of particle 
size distribution and total number densities are estimated, the mass concentration of particles with different size range 
can be easily calculated using in situ measurements of particulate chemical composition and density. This final step is 
denoted as integration in Fig. 2a.  

3.3 Particle size distribution 

Proper conversion of lidar data involves the construction of a model of the particulate composition and size 
distribution based on in-situ measurements. The chemical composition of background aerosols and particulate emission 
from hog barns was estimated using in situ data from the AMS and chemical analysis of particulate mass sampled with 
AirMetric ambient air samplers. Chemical analysis12 has shown that both background and pollutant aerosols are 
composed mostly of sulfate, nitrate, ammonium, and organic carbon. These compounds are consistent with the makeup 
of typical atmospheric water-soluble aerosols detailed in OPAC13 and the Air Force14 atmospheric aerosols databases. 
We approximated the optical properties of both background and pollutant aerosols by those of water–soluble 
atmospheric aerosols. Following the OPAC database we also assumed that fugitive dust is composed of a mixture of 
quartz and clay materials. Values of the complex refractive index m for water-soluble and dust-like aerosols were 
selected from the Handbook of Geophysics and the Space Environment 14.  

 

 

 

 

 

 

 

 

 

 
Fig. 3. Particle size distribution for particulate emission (a) and fugitive dust cloud (b) retrieved from the 3-λ lidar data with 

no constraints.  

 

The bimodal particle size distribution (7) is described by six independent parameters. In addition, the Mie equations 
(8) require an additional three complex variables for the index of refraction, leaving a total of nine independent 
parameters to describe the aerosol, while only three lidar measurements are available for inversion. To reduce the 
number of the variables involved, we assumed the refractive index of aerosol to be constant, and additionally applied 
various constraints on the parameters of particle size distribution. In Figs. 3-4 we demonstrate particle size distributions 
retrieved for particulate and fugitive dust clouds (graphs a and b, respectively) under different constraints. Fig. 3 
demonstrates the unconstrained inverse Mie solution (six retrieved parameters). In Fig. 4 the mode radius µ and width of 
the distribution σ are fixed for both modes, and only two quantities (total number densities in fine and coarse modes) are 
retrieved. To constrain the parameters of particle size distribution, the combined OPC and AMS data measured in situ 
were used. The particle size distribution retrieved from the three-wavelength lidar data is compared to the combined 
OPC-AMS distribution for particulate emission in Fig. 4a and fugitive dust events in Fig. 4b.  
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Fig. 4. Comparison of particle size distribution measured by OPC sensor and retrieved from the lidar data with µ- and σ 
constraints for particulate emission (a) and fugitive dust (b).  

 

It has been found that the µ-constrain (or σ-constrain) distribution tends to decrease the width and contribution of 
the coarse particle mode. The unconstrained solution tends to converge to a single mode distribution (see Fig. 3). When 
both mode radius and width of the distribution are fixed, the lidar retrievals are in a good agreement with particle size 
distribution measured in situ with OPC-AMS sensors for both particulate emission and dust events (see Fig. 4).   

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
An extended series of lidar observations were conducted during three weeks of field campaign at the deep-pit swine 

production facility. Typical lidar scan patterns include vertical scans between barns and on any side of the barns and 
sensor trailer, horizontal scans above the barns, stationary time series scans of particulate emission in close proximity to 
the in situ instrumentation, and any combination of vertical and horizontal scans. Two dirt roads bordered the swine 
production facility. Occasional traffic along both roads caused extensive fugitive dust traveling from the roads over the 
swine facility. These events were captured during lidar operations as well.  

 

 

 
 

 

 

 

 

 

 

 

Fig. 5. 2D images of particulate mass concentrations PM10 (a) and PM2.5 (b) retrieved from the lidar time series at the middle 
of the tower.  
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Fig. 6. a) Fugitive dust mass concentration PM10 retrieved from the lidar data under different constraints. b) Comparison of 
mass concentration PM10 measured by the OPC in the middle of the tower and by the lidar in the middle of pollutant 
cloud collocated with the OPC (see image in Fig. 5a).  

 

The ability of the lidar system and algorithm to retrieve particulate concentration at a level comparable with the 
natural variability of background aerosols is demonstrated in Fig. 5 and Fig.6b. Particulate mass concentrations PM10 
and PM2.5 are retrieved from the lidar time series measurements taken in the middle of the central tower. Mass 
concentration PM10 estimated from the lidar signal is compared with in situ measurements by the OPC in Fig. 6b. Both 
measurements represent a time series of particulate emission measured simultaneously at the middle of the central tower. 
It is seen that particulates were being emitted from barns at 5-10 second intervals. The lidar accumulation time was set to 
1 second while the accumulation time of the OPC sensors was 20 seconds so that the OPC counts represent a time 
average of periodic events. According to the lidar measurements, the peak concentration of particulate emission is only 
~30% higher than the background aerosol mass concentration while the mean particulate emission exceeded the 
background by only ~14%.  

The results of the retrievals during fugitive dust events are shown in Fig. 6a. The dust mass concentration for PM10 
has been calculated from particle size distributions estimated with different constraints. It is seen that different 
distributions give mass concentration PM10 varying up to two times. To choose the right distribution (constraint), this 
data have to be validated against in situ measurements with the OPC and PM-sampler instrumentation.  

For absolute calibration and validation of any retrieval quantity, reliable truth data must be acquired under the same 
measurement conditions. For truth data in this experiment we are using AirMetric portable PM10 and PM2.5 samplers 
placed at different locations around the hog farm. The background, non-barn influenced PM10 and PM2.5 concentrations 
were found to average around 37.4 ± 5.4 µg/m3 and 11 ± 5.4 µg/m3, respectively. In plume values measured at the 
central tower and sensor trailer varied within wide ranges, 40-70 µg/m3 and 11-18 µg/m3 respectively.  

Three lidar time series measurements were averaged. The background aerosol mass concentration averaged around 
61.9 µg/m3 PM10 with an RMS uncertainty of ± 3.6 µg/m3 and 34.2 ± 2.5 µg/m3 of PM2.5 The mean concentration of 
pollutant in the pollution plume was estimated in the middle of the plume cloud (as in Fig.6b) and averaged around 
76.8 ± 5.6 µg/m3 (PM10) and 38.8 ± 3.5µg/m3 (PM2.5). These mass concentrations are about 40-70% higher than 
corresponding AirMetrics sampler data for both background and pollution aerosols.  

Systematic analysis of the lidar retrieval process has shown that the biases are mostly induced by the reference value 
of background extinction coefficient estimated by slope method for Klett’s inversion (3). The slope method gives 
excellent results for homogeneous atmosphere when background aerosol loading is uniform along the large portion of 
the lidar range. In real life, however, most of the measurements are made with elevation angles 10 -60 so that atmospheric 
homogeneity extends for only 50-250 m beyond the pollutant cloud due to height dependent aerosol loading.  
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There are several ways to overcome this problem. First, additional reference lidar measurements at different 
elevations can be taken in relatively homogeneous atmosphere away from the particulate cloud to measure reference 
values for background aerosols using the slope method. Second, the reference values for background extinction 
coefficients can be estimated from in situ OPC data and used in retrievals as the direct reference value in Eq.(3) or as a 
constraint value for the slope method. Third, a simple scaling factor can be applied to the retrieved quantities as a 
calibration parameter. A bias in the background backscatter coefficient determined with the slope method gives a relative 
bias in the backscatter value for the pollutant cloud, which in turn leads to the relative bias in number concentration Nj of 
the particle size distribution (7), and thus in the estimated mass concentration. This calibration factor can be easily 
determined through time averaging of the lidar data and then relating them to AirMetrics sampler data.  

 

6. CONCLUSION 
A three-wavelength portable scanning lidar system has been developed at SDL to derive information of particulate 

spatial distribution and optical/physical properties of aerosols over remote distances. Preliminary results discussed in this 
paper have shown the great potential of remote lidar measurements taken at three wavelengths to characterize particulate 
emission quantitatively and represent spatial and temporal variations of the emitted plume as 3D/2D- mass concentration 
fields. To the best of our knowledge, this is the first attempt to characterize the agricultural emission sources as 
concentration fields of particulate masses such as PM10, PM2.5, PM10-PM2.5, and PM1 applicable to the EPA regulation 
practices. The use of optical parameters derived from lidar measurements at three laser wavelengths, followed by a 
minimization solution was found to be a promising method for retrievals of the size distribution of any particulate 
emission present in the field. The strength of lidar returns from different particulate emissions varied by an order of 
magnitude, and the inversion algorithm developed to process three-wavelength lidar data gives meaningful results for all 
sources of particulate emissions.  

The retrievals of mass concentration of background aerosols and particulate emission from the feeding operations 
agree within an order of magnitude with in situ measurements performed with PM10 and PM2.5 ambient samplers. The 
main uncertainties involved are due to the incomplete knowledge of the parameters of particle size distribution used to 
constrain the iterative minimization technique. It has been shown that unconstrained solutions tend to converge into a 
single lognormal distribution. When mode radius and width of the distribution are used to constrain the inverse solution 
in both fine and coarse particulate modes, good agreement between lidar retrievals and OPC/ambient sampler data is 
achieved.  

It is shown that biases in absolute mass concentrations retrieved from the lidar data are induced mainly by error in 
the reference value of background extinction coefficient extracted from the lidar signal itself. The slope method used in 
this work does not give a reliable and consistent reference value in real field conditions due to heterogeneity of 
atmospheric conditions surrounding the agricultural facility. Several methods are proposed to overcome this problem 
that need to be carefully investigated and tested under field conditions. In the meantime, a simple correction procedure is 
proposed to find a calibration factor for the lidar mass concentration retrievals. Future experiments are planned to test the 
proposed hypotheses and to develop an optimal strategy and protocols to verify, calibrate, and validate the results of 
three-wavelength lidar measurements.  
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