Utah State University DigitalCommons@USU

Memorandum

US/IBP Desert Biome Digital Collection

1974

Demographic and Individual Growth Studies for Dipodomys Ordii, Peromyscus Maniculatus and Reithrodnotomys Megalotis

H. Duane Smith

Clive D. Jorgensen

Gary H. Richins

Nils C. Stenseth

Follow this and additional works at: https://digitalcommons.usu.edu/dbiome_memo

Part of the Earth Sciences Commons, Environmental Sciences Commons, and the Life Sciences Commons

Recommended Citation

Smith, H. Duane, Jorgensen, Clive D., Richins, Gary H., Stenseth, Nils C. 1974. Demographic and Individual Growth Studies for Dipodomys Ordii, Peromyscus, Maniculatus and Reithrodontomys Megalotis. U.S. International Biological Program, Desert Biome, Utah State University, Logan, Utah, Reports of 1973 Progress, Volume 3: Process Studies, RM 74-21.

This Article is brought to you for free and open access by the US/IBP Desert Biome Digital Collection at DigitalCommons@USU. It has been accepted for inclusion in Memorandum by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

1973 PROGRESS REPORT [FINAL]

DEMOGRAPHIC AND INDIVIDUAL GROWTH STUDIES FOR DIPODOMYS ORDII, PEROMYSCUS MANICULATUS AND REITHRODONTOMYS MEGALOTIS

H. Duane Smith Clive D. Jorgensen, Project Leader Gary H. Richins and Nils C. Stenseth Brigham Young University

US/IBP DESERT BIOME RESEARCH MEMORANDUM 74-21

Reprint from Reports of 1973 Progress, Volume 3: Process Studies Vertebrate Section, pp 11-65

1973 Proposal No. 2.3.2.5.

MAY, 1974

The material contained herein does not constitute publication. It is subject to revision and reinterpretation. The author(s) requests that it not be cited without expressed permission.

Citation format: Author(s). 1974. Title. US/IBP Desert Biome Res. Memo. 74-21. 55 pp.

Ecology Center, Utah State University, Logan, Utah 84322

ABSTRACT

This study provides intensive laboratory examinations of growth and birth rates of Dipodomys ordii, Peromyscus maniculatus and Reithrodontomys megalotis and less intensive field studies of birth and death rates of D. ordii and P. maniculatus. Growth rates for control groups of D. ordii, P. maniculatus and R. megalotis, using the standard small mammal body measurements, and eye lens weights for P. maniculatus and R. megalotis, were determined and the distributions of the antilogs of lnW and the means with respective standard errors plotted on a logarithmic scale. Most of the distributions have significant (.95) R2 values, but dried eye lens weights seem to have the strongest correlations with age. Manipulation of three independent variables (photoperiod, temperature and food) for P. maniculatus caused k to shift enough to suggest that independent variables can affect growth, and require additional study. Two 8.35 mm mesh hardware cloth enclosures were constructed during 1971-72 to facilitate birth and death rate field studies for D. ordii and P. maniculatus. The D. ordii enclosure is 6.07 ha; whereas, the P. maniculatus enclosure is 2.02 ha. Natality and mortality data were recorded from the enclosures but inclement weather and questionable trapping results have hampered this part of the study. The life table data require more time to complete. In the interim, birth rates were determined for the three species on the basis of litter sizes born in the laboratory. A demographic model for the small rodent population in the desert ecosystem was developed, basically in mathematical form, that expresses the component relationships with the use of difference equations. Flow diagrams were prepared to demonstrate the strategy. Although the model was developed for the species involved it can easily be modified for all mammal species.

INTRODUCTION

The ecosystem is currently considered the basic functional unit of ecology with which one must deal, since it includes both the living and non-living components of the environment, both in continuous interaction. Only when the ecosystem is understood can the contribution of its component parts be clearly managed for the benefit of man. The basic structural components are: (1) non-living components; (2) producers, consumers and decomposers; and (3) some abstracts (energy, cybernetics, etc.) which represent various interactions of the first two. One may be tempted to conclude that the whole is simply the sum of all its components. Although the application of this additive principle to biology has repeatedly been questioned successfully, its inappropriateness is probably best shown in studies of functional ecology. Since these components are not strictly additive and we must extend our understandings to include functional relationships of organisms and their components, established techniques are not always useful and new ones must be developed. Many of these techniques are, at present, not well established, but must continually be developed if systems management is to become a reality.

The most important primary consumers in the desert ecosystems of North America have not yet been completely determined in all cases, but they must include the small mammals, among which are included several species of Dipodomys and Peromyscus and Reithrodontomys megalotis. Clearly, Dipodomys spp., Peromyscus spp. and Reithrodontomys megalotis occupy vital positions in the energetics of North American deserts and their interacting relationships with the totipotential ecosystem is unquestionable. The complexities of these interacting relationships requires systems analysis, a comprehensive analysis of the relationships between structure and function. According to Miller (1965), a natural system consists of a non-random accumulation of matter-energy in space and the organization provides the previously mentioned interactions among the components. Living systems are always open, requiring a continuous supply of matter-energy: and those are the systems of concern in systems analysis and the Desert Biome studies.

Although there are several species of Dipodomys and Peromyscus among the different desert types; Dipodomys merriami, D. microps, D. ordii, and Peromyscus maniculatus occupy perhaps the largest total space (Hall and Kelson, 1959), and may have a greater impact on the energetics of North American deserts than other small mammal species. For this reason it would be good if all four species were studied; however, funding levels did not permit this. A systems analysis must include, among its components, the production of Dipodomys spp., P. maniculatus, and R. megalotis whose population numbers are logically separated into different sizes (which relates directly with age structure) and numbers of individuals. Both of these are inseparably tied to the matter-energy which, of course, interacts within its organization.

This study provides intensive laboratory examinations of birth, death and growth rates of *D. ordii*, *P. maniculatus*, and *R. megalotis*. When these parameters are determined along with the interactions of some of their primary independent variables, the biomass production of the three species can be determined, modelled and predicted.

OBJECTIVES

Objectives of this study were:

- 1. To determine individual growth rates for *D. ordii* and *P. maniculatus*, and how these rates respond to independent variables. *Reithrodontomys megalotis* was added to the study later as the advisability seemed evident and data became available.
- 2. To determine the birth rates and litter sizes for *D. ordii*, *P. maniculatus* and *R. megalotis* in the laboratory. Field studies were also conducted for *D. ordii* and *P. maniculatus*.
- 3. To determine death rates for D. ordii and P. manic-

ulatus, and how they respond to independent variables in natural conditions.

4. To develop a model that will use the data of the first three objectives to describe the demography of the three species and also provide predictive capabilities.

METHODS

GROWTH RATES

Dipodomys ordii

Specimens used in this portion of the work came from several sources. The initial colony, 45 females and 15 males, were live-trapped at the Desert Range Experiment Station (Pine Valley), 81 km west of Milford, Utah, in Millard County. Ten additional pregnant, lab-reared females were purchased from Ecodynamics Inc. of Salt Lake City, Utah. These animals had been previously bred and housed at Dugway Proving Grounds in Tooele County, Utah. An additional 350 females and 50 males were trapped at various times throughout the study near Pahvant Butte, Millard County. Utah, and Ecodynamics collected an additional 400 females from Dugway Proving Grounds. About 100 females were used as replacements in the laboratory studies, and the remainder were observed for field pregnancy. The laboratory colony was maintained at 85 females and 15-20 males. Later an additional 25 females and 8 males were obtained from Ecodynamics after they discontinued operation.

The main breeding colony, which provided the normal growth data, was housed in the small mammal research laboratory at Brigham Young University, whereas the experimental animals were kept in controlled environment chambers. One half of the animals were caged in individual Metaframe aquaria (51.5 cm long, 26.5 cm wide and 31.0 cm deep) with perforated aluminum reptile covers. The other half were caged in galvanized metal boxes (45.5 cm long, 38.0 cm wide and 25 cm deep) with covers of 8.35 mm wire mesh. Sand (about 6.08 cm deep) was used as the substrate in each cage and nest cans with cotton were provided. Water and a standard food mixture of sunflower seeds, rolled oats and pigeon mix (Ecodynamics) were supplied continuously. Purina mouse breeder chow was also provided. Nine rats were also fed fresh green feed for a period of five months to possibly aid reproductive success. The temperature was held constant at 22 C and the photoperiod artificially maintained at 12 hr light and 12 hr dark with graduated intensities to simulate dawn and dusk.

The sexes were kept separate except when mating was attempted and the females were checked daily for estrus. External changes in the morphology of the vulva as described by Pfeiffer (1960) were used as indicators of estrus. When the full-flowered vulvar condition was achieved, it was presumed to indicate estrus and a male was introduced into the female's cage. Usually vigorous fighting ensued, but if the male survived the first few minutes he was left with the female for 3-4 days, then returned to his cage. The females were checked for vaginal plugs as an indication of successful coitus.

When a litter was born it was not disturbed until the following day, at which time the young were toe clipped and measured. Body weight, total length, tail length, ear length, and hind foot length measurements were taken daily from days 1-29 and then weekly up to 10 weeks. Body weight was determined to the nearest 0.05 g on an Ohaus triple beam balance; total and tail lengths were measured to the nearest 0.5 mm with a clear plastic metric rule, and ear and hind foot lengths were measured to the nearest 0.01 mm with a Mitutoyo dial caliper. After eyes of the young had opened and the individuals became more active, they were anesthetized with Penthrane (Abbott Laboratories, North Chicago, Illinois) to facilitate handling and obtaining accurate measurements. Daily observations were recorded for each litter to determine behavioral changes during development.

A separate mixed group of eight females and four males was housed in a large metal arena 2.5 m square and 1.5 m tall with 10 cm of sand on the floor. This arena was divided into three interconnected compartments. The compartments on each side contained water dishes, nesting cans, and nesting material, while the center compartment was used primarily for feeding. Reproduction was limited to a single litter (which was abandoned) under these conditions. Skull or lens data were not obtained for *D. ordii* due to the insufficient numbers of laboratory reared animals, since ten animals must be sacrificed each day to obtain the necessary data.

Peromyscus maniculatus

All of the animals used in this portion of the study were the progeny of 50 pairs of *Peromyscus maniculatus sonoriensis* collected approximately 19.32 km SE of Benmore Guard Station (Benmore Experimental Range), Tooele County, Utah, on July 16, 1971.

The colony was housed in the same laboratory and physical conditions as the *Dipodomys*, with the exception that wood shavings were used for the substrate, Purina mouse breeder chow was provided as the food, and only Metaframe aquaria were used for caging.

When the animals were brought into the laboratory, they were sexed and paired, one pair to a cage. Each cage was checked daily for food and water and inspected for the presence of a litter. When a litter was found, each member was marked by toe clipping. The same daily and weekly measurements and observations were made for *Peromyscus* as for *Dipodomys*, except that measurements were taken daily from 1-22 days and then weekly to 10 weeks. Over 100 animals were included in each daily age interval to reduce the variance and refine the confidence in relating age with the growth parameters.

Linear, quadratic, cubic, combined linear-quadratic, and linear-quadratic-cubic distributions were used to characterize the growth of *Peromyscus* (Smith and Jorgensen, 1972), but the instantaneous relative growth rate (IGR) of Brody (1945) is used in this report to express growth as a function of the rate between times of measurements and percentage of maximum size. This rate is expressed as (dW/dt)/W, where W is the parameter measured at the instant the rate of change dW/dt is measured. Since it is not entirely possible to develop the "instantaneous" rate of growth, it was necessary to integrate the infinite number of growth rates to derive $W = Ae^{kt}$. This is conveniently rewritten as:

$$\ln W = \ln A + kt$$

where: $\ln W$ is the natural logarithm of the variable (W) at time *t*-1, $\ln A$ is the natural logarithm of the variable (W) at t = O, and k represents the instantaneous relative growth rate (when multiplied by 100, k = percentage growth rate). For comparative purposes, the instantaneous relative growth rate (k) is determined with:

$$k_n = \frac{\ln W_n - \ln W_{n-1}}{t_n - t_{n-1}}$$

thus, k is definitive and can be used to compare differences in rates of growth.

Additional studies on skull measurements and eye lens weights were also made to correlate age with the previously mentioned growth measurements. Ten individuals were sacrificed each day from 1-22 days for these data. On the day that an animal was to be sacrificed, it was removed from the nest and killed with an overdose of Penthrane. The standard daily measurements were taken, after which the entire animal was placed into a 10% formalin solution to fix the lenses. After a minimum of four days the animal was removed from the formalin solution; the head removed, skinned and the lenses extracted by making a slit in the cornea with a hooked insect pin and applying pressure to the side of the eyeball with curved forceps. The lenses were stored in a vial of 10% formalin, placed on spotting plates, and dried at 100 C for one week. After drying, they were removed from the oven and weighed individually to the nearest 0.0001 g on a Mettler laboratory balance.

After the lenses had been extracted, the skulls were placed in individually labeled paper cups, frozen and later stained and measured. The staining followed basically the methods described by Humason (1967), except that the amount of Alizarine stock solution used was increased 10 times. The skulls were thawed, placed into a compartmentalized tray, and covered with a 2% KOH solution. After two days this solution was replaced for two days with a solution containing 31 of the 2% KOH and 30 ml of Alizarine stock solution. The skulls were then rinsed with water and again covered with 2% KOH for two days, after which they were rinsed with water and allowed to dry for measuring. Total length, zygomatic breadth, foramen magnum height, mastoidal breadth, nasal length, and cranium width were taken with dial calipers to the nearest 0.01 mm on each skull.

Controlled laboratory experiments were conducted to test the effects of different environmental parameters on the growth of P. maniculatus. Five pairs of previously unbred mice were placed in each of two environmental chambers where temperature was held constant at 22 C and photoperiod was set at 9 hr of artificial light and 15 hr of darkness in one chamber and 15 hr of light and 9 hr of dark in the other. Caging was the same in both chambers. In another experiment, five pairs of previously unbred mice were placed into each of two environmental chambers where the photoperiod was held constant at 12 hr light and 12 hr dark. All other variables were held constant except temperature, which was 15 C in the cold chamber and 30 C in the hot chamber. In another experiment, 20 pairs of previously unbred mice were placed into four sets of five cages each and held under standard laboratory conditions. All animals were fed ad libitum until a litter was born; then the males were removed and the females rearing litters were placed under four different feeding regimes. One group was fed 3.5 g/day. the second group 4 g/day, the third 5 g/day and the fourth 8 g/day. Data were obtained only for the 3.5 g/day and the 8 g/day experiments due to cannibalism of litters in the 4 and 5 g/day groups. When litters were born they were marked, weighed, measured, and observed using the standard procedure described earlier.

Reithrodontomys megalotis

All of the animals used in this portion of the study were the progeny of 20 pairs of *Reithrodontomys megalotis megalotis* captured live approximately 19 km SE of Benmore Guard Station, Tooele County, Utah, from September 1-8, 1971.

The colony was housed in the same laboratory as the *Dipodomys* and *Peromyscus* but the type of caging differed. The animals were caged in galvanized metal cages 25.5 cm long, 18 cm wide and 16.5 cm tall with covers of 8.35 mm wire mesh. The same type of substrate, nesting material, feed, and watering was used as was used for *Peromyscus*.

When the animals were brought into the laboratory they were treated the same as *Peromyscus*. The same standard growth data were calculated for R. *megalotis* but no experimental data were taken.

BIRTH RATES AND DEATH RATES

Two hardware cloth enclosures were built during 1971-72 to facilitate studies of birth and death rates of both *D. ordii* and *P. maniculatus* in the field. The *Dipodomys* enclosure (6.07 ha) is located 11.27 km NE of the headquarters at the Desert Range Experiment Station in Pine Valley, Millard County, Utah. The installation site was selected after 10 days of trapping revealed a relatively high localized population of *D. ordii*.

The Dipodomys enclosure was constructed of 8.35 mm mesh hardware cloth, 120 cm wide, buried about 20 cm deep, so it projected about 90 cm above ground. The hardware cloth was secured on the inside of steel posts placed 3 m apart. Two Young live traps were placed at each stake in a 12 x 12 grid, 20 m apart, within the enclosure. The grid was first trapped for ten consecutive days in August, 1971. The animals caught were sexed, aged, marked by toe clipping, and released after the grid location where they were caught was recorded. Trapping was repeated in May, 1972, August, 1972, May, 1973, and August, 1973.

Simultaneously with the trapping inside the enclosure, animals were collected with Museum Special snap traps from similar habitats outside of the enclosure. These specimens were returned to the laboratory for studies on age structure, birth rates (by counting placental scars) and growth correlation with the laboratory-reared animals. Skull measurements and dried lens weights were taken for this correlation, but kill trapping and combined freezing deteriorated the specimens so that the measurements were unable to be correlated with the laboratory data. Future measurements should be taken on fresh killed animals or if preservation is necessary the animals to be preserved must be live caught and preserved immediately upon death as was done in the laboratory.

The *P. maniculatus* enclosure was constructed in April, 1972, and is located 0.4 km N of Benmore Guard Station (Benmore Experimental Range), Tooele County, Utah. Its construction and trap design were similar to the *D. ordii* enclosure, except: (1) the fence is topped with a galvanized metal flashing which projects away from the fence on the inside to prevent animals from climbing out, (2) it encompasses only 2.02 ha which seems sufficient for the smaller home range requirements of *P. maniculatus*, (3) Sherman traps were used instead of Young traps, and (4) the traps included on the 12 x 12 grid were spaced 12 m apart.

Although the area was selected as typical habitat for *P. maniculatus* and because of the presence of *P. maniculatus* in the fall, 1971, in the initial May, 1972, sampling period only *Perognathus parvus* were caught. Consequently, 15 pairs of *P. maniculatus* were introduced into the enclosure at that time, and the area trapped again in September, 1972. The May, 1973 trapping again revealed no *P. maniculatus*, so an additional six wild-caught pair and ten laboratory pair were introduced into the enclosure in June, 1973. Unfavorable trapping weather caused the September, 1973, trapping period to be abandoned so that trap death would not destroy the population.

Concurrent with the trapping periods inside the grid, about 100 female *P. maniculatus* were collected each time in comparable habitat outside of the grid. These were examined for placental scars, while skull measurements and lens data were taken to compare with the laboratory data. The natality and mortality collection studies were closely coordinated with the growth studies since both often used the same specimens and of necessity rely on a reasonable assessment of the age structures. The same preservation problems as encountered with *Dipodomys* curtailed this part of the study.

Mortality rates were to be determined from life tables which were to be generated from the enclosure data, and were to include mortality rate (q_x) life expectancy (e_x) and probability of death (Q_x) ; however the problems encountered in the enclosure studies precluded the possibility of generating any meaningful life table data. The *P. maniculatus* population would not sustain itself and *D. ordii* captured and marked inside the enclosure were subsequently caught outside the enclosure.

MODEL

A demographic model for the small rodent population in the desert ecosystem was developed, basically in mathematical form, that expresses the component relationships with the use of difference equations. Flow diagrams were also prepared to demonstrate the strategy. The model is intended to be representative for *D. ordii*, *P. maniculatus* and *R. megalotis* although it can easily be modified for all small mammal species. There has been no attempt to prepare or implement a computer model, thus, the dynamics are not elaborated -- only presented.

RESULTS

GROWTH RATES

Since one of the primary objectives of this work is rates of growth and how they respond to independent variables, it was necessary to compute methods for comparing these rates; thus, instantaneous relative growth rates (k) as defined by Brody (1945) were used. The figures and tables contained in Appendices 1-3 (Tables 1-31, Figures 1-64) present the (k) values and statistical analyses for different growth periods at various time intervals. When the variables are plotted on a log scale it illustrates the comparative nature of (k) for the growth periods as from days 1-70.

Dipodomys ordii

(Appendix 1; Tables 1-6, Figures 1-11). Rates of growth along with the instantaneous relative growth rates k were determined and statistically analyzed for D. ordii and are presented for body weight, total length, tail length, ear length, and hind foot length. Figures 1-5 and Tables 1-2 depict growth and its analyses for animals reared under standard laboratory conditions and analyzed for "time interval one" which consists of age divided into growth periods of 1-3, 4-12, 13-22, 23-29, and 30-70 days. Figures 6-10 and Tables 3-4 depict growth for the same animals analyzed for the "demographic model interval" which has age divided into growth periods of 1-21 (suckling), 22-28 (juvenile I), 29-63 (juvenile II), and 64-70 (sub-adult) days. Growth intervals 1 and 2 (which consist of age divided into growth periods of 1-3, 4-15, 16-29, and 30-70 days) were used in an attempt to assess the most accurate depiction of the growth of D. ordii. The demographic model interval which is basically concerned with body weight was used in an effort to correlate observable growth periods such as weaning with biomass in order to get predictive capabilities relating age and biomass.

The \mathbb{R}^2 values indicate how much variation is accounted for in the analyses, and when converted to r values they can be used to determine statistical significance (a=.05). A significant r suggests a significant correlation between the appropriate lnW (log of the variable) and the age of the growing animals when time is partitioned into growth periods in one of the three growth intervals.

All five parameters provided significant correlations of growth with age, since r was significant during all growth periods in intervals one and two (Tables 1 and 3) and during all growth periods of the demographic model interval with the exception of total length, tail length and ear length, during the 64-70 day growth period (Table 5). Since no individual parameter or interval consistently provided data with the highest significance throughout all growth periods and since the significance levels of all parameters are similar for any given growth period, it is possible to use any of the parameters as an indicator of growth.

There was a question of how closely the antilogs of lnW followed the actual data means, since this understanding is important in an interpretation of k. The means and standard errors of the body parameters are compared to the k value curves in Figures 1-11 and also in tabular form in Tables 2, 4 and 6. The two curves are almost identical for all of the body parameters but the confidence intervals of the means for total length and tail length are wider during all growth periods of the time intervals.

Since the correlations of growth parameters with age are always significant, one might consider using these parameters to predict age. This procedure is important to an evaluation of the population age structure. Although the process seems evident at first, since it would simply involve reading the predicted age from a graph, the results are not meaningful because of the lack of variation among days. It is possible that some non-parametric procedure could be utilized to provide predictive capabilities (Dapson and Irland, 1972).

Peromyscus maniculatus

(Appendix 2; Tables 7-24, Figures 12-59). Rates of growth along with instantaneous relative growth rates k were determined and statistically analyzed for *P. maniculatus* and are presented for body weight, total length, tail length, ear length, and hind foot length. Figures 12-16 and Tables 7-8 depict growth and its analyses for animals reared under standard laboratory conditions and analyzed for "time interval one" which consists of age divided into growth periods of 1-3, 4-12, 13-22, 23-29, and 30-70 days. Analyses of the dried eye lens weight data are provided in Figure 17 and Tables 9-10. Although most of the \mathbb{R}^2 values for the skull measurements were not significant at the .95 level (Table 9) the skull and nasal lengths were and also provided a good accounting (high \mathbb{R}^2 values) of the variation (Figures 18-19).

Since "interval one" was previously determined to provide the best fit for *P. maniculatus* (Smith and Jorgensen, 1972), "interval two" is not reported; however, the "demography model interval" is included. Figure 20 and Tables 11-12 (Appendix 2) depict growth and its analyses for this interval.

All five body parameters provided significant correlations of growth with age, since r was significant during all growth periods of both "interval one" and the "demography model interval" (Tables 7, 11). The eye lens weights, however, provide the best correlation of growth with age (Table 9), but the data are provided only through 'day 22.

Although the curves for the antilogs of $\ln W$ closely approximate those of the means for the five body parameters plus that of dried eye lens weights (Figures 12-17), this is not the case for total skull length and nasal length (Figures 18-19). The skull measurement k values are negative for the growth period 1-3 days of age; likely due to elongation of the skull and nasal areas as the young pass through the birth canal with a subsequent shortening (producing a negative growth rate) as the skull assumes its normal shape. All of the means have narrow confidence intervals, but as in *D. ordii*, total length and tail length exhibit the greatest variation.

Growth data for animals retained in a photoperiod of 15 hr light and 9 hr dark are reported in Figures 21-25 and Tables 13-14 for the five body parameters. Similar data for animals retained at 9 hr light and 15 hr dark are presented in Figures 26-30 and Tables 15-16. Comparisons of the two photoperiods are made in Figures 31-35. Like the \mathbb{R}^2 values for the standard laboratory procedures, these were also significant at the .95 level. Of more interest are the k values since they can be used to compare the rates of growth under the experimental conditions. In all cases the antilogs of lnW approximate the means and the confidence intervals about the means are similar to those of animals reared under standard laboratory conditions even though the sample size was smaller in the experimental conditions.

Growth data for animals retained at a temperature of 15 C are reported in Figures 36-40 and Tables 17-18 for the five body parameters. Similar data for animals kept at 30 C are presented in Figures 41-45 and Tables 19-20. Comparisons of the two experimental temperatures, 15 C and 30 C, with the standard laboratory temperature 22 C are made in Figures 46-49. There is no comparative figure for total length since there was no significant difference. Unlike the \mathbb{R}^2 values for the standard laboratory conditions, not all parameters were significant during all growth periods of the interval. At 15 C all are significant except total length which is not significant at all growth periods. The other four parameters are not significant during growth period 1-3 days but are significant thereafter.

Growth data for animals retained at standard laboratory conditions but where the mother was fed 3.5 g of food per day are reported in Tables 21-22. The means and standard errors are only calculated through day 14 due to a sample size reduction thereafter, but the r value is presented in Figures 50-54 and Tables 22-23. Comparisons of feeding levels 3.5 g, 8.0 g and *ad libitum* food per day are made in Figures 55-59. Unlike the \mathbb{R}^2 values for the standard laboratory feeding level (ad libitum) not all parameters were significant during all growth periods of the interval during the experimental feeding levels. In the 3.5 g experiment all parameters except body weight were significant during the first two growth periods but body weight was significant only during the 4-12 day growth period. None of the parameters were significant beyond 12 days; however, this may be due to small sample size. In the 8.0 g experiment ear length and hind foot length were significant through 22 days but the other three parameters were significant only through 12 days. In all cases comparative growth rates beyond 3 days for ad libitum food exceeded growth rates for 8.0 g feeding which exceeded growth for 3.5 g feeding. The antilogs of lnW for all parameters closely approximate the means with narrow confidence limits about the means except for total length and tail length.

Reithrodontomys megalotis

(Appendix 3; Tables 25-31, Figures 60-64). Rates of growth along with the instantaneous relative growth rates k were determined and statistically analyzed for R. megalotis and are presented for body weight, total length, ear length, and hind foot length. Figures 60-62 and Tables 25-26 depict growth and its analyses for animals reared under standard laboratory conditions and analyzed for "time interval one". Only the body parameters that were significant with both a sample size of 100 and a sub-sample size of 10 are illustrated but all body parameters are tabled both on the basis of 100 and 10. Analyses of dried eye lens weights are provided in Figure 63, and along with the skull parameters are tabled in Tables 27-28, depict growth for the same animals analyzed for the "demographic model interval".

Only two body parameters (tail length, and ear length) provided significant correlations of growth with age during all growth periods in "interval one". Body weight was significant from 4 to 22 days and was included for comparative purposes. Total length and hind foot length had a significant r from 1-22 days, but showed no significant correlation of growth with age from days 23-70. Dried eye lens weight was the only skull parameter with a significant r from 1-22 days, other skull parameters analyzed for the "demography model interval" were significant only from days 1-41.

In all cases there was a close correlation of the means with the antilogs of lnW and the confidence limits about the means were narrow and provided good correlations.

BIRTH AND DEATH RATES

Birth rates have been determined for D. ordii. P. maniculatus and R. megalotis reared under standard laboratory conditions and are presented in Tables 32-34. The mean litter size of D. ordii (Table 32) was similar whether laboratory reared and bred or field reared and laboratory bred, but the male-female ratio of field-reared stock had a proportionately greater number of females to males than the laboratory stock; however, both showed a significantly greater number of females than males. The mean litter size of P. maniculatus (Table 33) appears to increase initially and then decrease as the number of successive litters increases with no significant overall difference in the male-female ratio. Similar results were detected in litter size of successive R. megalotis litters (Table 34), but R. megalotis seem to have more males born per litter than females. Field data on litter size were abandoned and not reported due to inability to age the field-caught animals for consideration in the modelling effort.

Enclosure data reported in Tables 35-36 are relatively brief due to the rather short time span over which the data have been collected. In addition the D. ordii data are suspect since an animal marked inside the enclosure was subsequently captured outside during the verification trapping. From 1971-1973 the plant production in the D. ordii enclosure was minimal due to a drought, and consequently field mortality of D. ordii was high. In the fall of 1972, however, considerable moisture fell causing the winter and spring annuals to produce. A subsequent increase in natality is evidenced in May and August, 1973, with an expected field mortality from May to August. No meaningful data are presented for P. maniculatus. The enclosure has failed to maintain a population of P. maniculatus even though it was originally established that a substantial population was there prior to installation.

Table 32. Mean number of young Dipodomys ordii born in the laboratory

Lab Reared and Bred	Field Reared and Lab Bred	Total
11	9	20
1.27	1.00	1.15
1,81	2.44	2.10
3.36	3.33	3.35
	Lab Reared and Bred 11 1.27 1.81 3.36	Lab Reared and Bred Field Reared and Lab Bred 11 9 1.27 1.00 1.81 2.44 3.36 3.33

Table 33. Mean number of young *Peromyscus maniculatus* born in the laboratory per successive litter

		· Litter Number											
	1	2	3	4	5	6	7	8	9	10	11	12	Total
*Litters Sexed	34	25	11	8	4	2	2	2	2	1	1	1	93
Mean Number Males	2,29	2.96	2.36	1.88	3.00	3.00	2.50	3.00	2.00	3.00	2.00	3.00	2.25
Mean Number Females	1.94	2.80	2.91	2.63	2.75	2.50	2.00	1.50	2.50	2.00	2.00	1.00	2.39
Total Litters	41	32	18	10	5	2	2	2	2	1	1	1	117.
Mean Litter Size	4.22	5.00	4.78	4.20	5.60	5.50	4.50	4.50	4.50	5.00	4.00	4.00	4.62

*All litters born were not sexed.

DEMOGRAPHIC MODEL

The history of mathematical modelling of animal and plant populations started in the 1920's with the works of Lotka (1923) and Volterra (1928). These types of models, which are still being developed, are based on an *a priori* understanding of the system. Consequently, there is no guarantee that these models bear any relation to the real world (Watt, 1962).

Table 34. Mean number of young *Reithrodontomys* megalotis megalotis born in the laboratory per successive litter

Successive	Number		Average		Percent		
Number	or Litters	Litter Size	Males	Females	Males	Females	
1	69	3.29	1.90	1.39	52.7	42.3	
2	37	3.86	2.24	1.62	58.0	42.0	
3	30	4.23	1.90	2.33	44.9	55.1	
4	17	4.71	2.76	1.94	58.8	41.2	
5	12	4.25	2.17	2.08	50.9	49.1	
6	10	4.10	1.80	2.30	43.9	56.1	
7	9	4.00	2.00	2.00	50.0	50.0	
8	8	3.88	2,00	1.88	51.6	48.4	
9	5	3.60	1.60	2.00	44.4	55.6	
10	1	5.00	2.00	3.00	40.0	60.0	
1-10	198	3.83	2.05	1.78	53.49	46.51	

Table 35.	Enclosure	data	for	Dipod	lomys	ordii
-----------	-----------	------	-----	-------	-------	-------

		Population										
	Introd	uced	Recapt	ures	Fi Mort	eld ality	Nata	lity		Tot Pres	al	L nt
Date	ර්ර්	çç	ර්ර්	? ?	ර්ත්	\$ 9	ර්ර්	<u></u>	ර්ර්	ç ç	2	
August 1971	28	21	28	21	0	0	0	0	28	21	-	49
May 1972	6	3	7*	4	21	17	0	0	11	5		16
August 1972	0	4	4**	4	7	1	0	1	3	9		12
May 1973	0	0	1**	* 2	2	2	27	8	28	10		10
August 1973	0	0	9	5	19	5	8	12	17	8	=	25

*Four animals (two of each sex) died in traps May 1972.

One male died in trap August 1972. *One male died in trap May 1973.

Table 36. Enclosure data for Peromyscus maniculatus

	Population										
	Intro	oduc ed	Recap	tures	Fi Mort	eld ality	Nata	lity		Total Present	
Date	ර්ර්	99	ර්ථ	çç	රර	99	රර	የየ	66	' ♀♀	
May 1972	15	15	15	15	0	0	0	0	15	15 = 30	
Sept. 1972	0	0	4*	1	11	14	4	7	7	8 = 15	
May 1973	0	0	0	0	7	8	0	0	0	0 = 0	
June 1973	8	8	0	0	0	0	0	0	8	8 = 16	
Sept. 1973	Tı	apping	postpo	ned due	to in	clement	weath	ner.			

*One male died in trap.

Lately, several far more complex models have been developed for different plant and animal populations. All try to incorporate knowledge gained from field-experiments in connection with the species or groups of species. Several of these models are published in Patten (1971), whereas most of them are still being developed. This is especially true for the different IBP Biome modelling efforts. For a review of the "state-of-the-art", see the reports prepared by the different biomes in the USA (Patten, 1973; Holling, 1972).

Small mammal models have been developed by Bunnell (1972) and are being developed by Collier, Osborn and Stenseth (1973). The model reported here is still another being prepared for desert small mammals. The objectives are to develop a demographic model for the small rodent population in the desert ecosystem. The model is intended to be representative for Peromyscus maniculatus, Dipodomys ordii, and Reithrodontomys megalotis, which are important in the North American deserts. The model reported here is basically in mathematical form, expressing the component relationships with use of difference equations, although flow diagrams are also prepared to demonstrate the strategy. There has been no attempt to prepare or implement a computer model, since this will be done by the modelling groups in the US/IBP Desert Biome; thus, the dynamics are not elaborated -- only presented.

Generally the time interval between t and t+1, in difference equations, may be of any length. The generalized form of the difference equations is:

State variable at next time interval (t + 1) =State variable at present time interval (t) +The absolute change in the state variable between t and t+ 1

expressed mathematically as:

$$N_{i}(t+1) = N_{i}(t) + C_{i}(t)$$
 (1)

where: $N_i(t+1) =$ number of animals in category i at time t + 1;

- $\begin{array}{ll} N_i(t) & = & number \mbox{ of animals in category i at time} \\ & t; \mbox{ and } \end{array}$

The tth interval is defined in this paper as the interval from t - 1 to t (i.e. the first time interval is from t = 0 to t = 1).

When specific functional equations are given with values for all the parameters, a specific time interval is designated. Remembering that this submodel may be incorporated into a total ecosystem model for the desert, such time intervals should be long enough to include the discrete nature of certain population processes, and short enough to approximate the continuous nature of phenomena such as decomposition (Bunnell, 1973). The time interval for this model has been designated at seven days.

Definition of the Categories (i.e. the State Variables)

Fetuses (N_I) —"Animals" from fertilization of an egg to parturition. A non-implanted embryo is assumed to be equivalent to an implanted one.

Sucklings (N_2) —Animals from birth to weaning. These are assumed to obtain all their energy from their mother. For the species the model represents, this assumption is not entirely acceptable, since sucklings may forage before weaning; the error, however, is assumed to be negligible.

Juveniles I $(N_{3,1})$ —Animals from weaking to one week later.

Juveniles II $(N_{3,2})$ —Animals from Juveniles I and lasting until they are assumed to be physiologically capable of reproducing.

Subadult Male (N_4) —Males in the period when they are increasing their reproductive activity.

Subadult Female (N_5) —Females in the period when they are increasing their reproductive activity. This category is further subdivided as: Pregnant $(N_{5,1})$, females that are pregnant but not lactating; Lactating $(N_{5,2})$, females that are lactating but not pregnant; Pregnant and Lactating $(N_{5,3})$, females that are both lactating and pregnant; Non-reproducing $(N_{5,4})$, females that are not reproducing; thus:

$$N_5 = {}^4_{j=1}N_{5,j}.$$

Adult Male (N_6) —Males in maximum reproductive activity to death.

Adult Females (N_7) —Females in maximum reproductive activity to death. This category is further subdivided as: Pregnant $(N_{7,1})$, females that are pregnant, but not lactating; Lactating $(N_{7,2})$, females that are lactating, but not pregnant; Pregnant and Lactating $(N_{7,3})$, females that are not reproducing.

Thus:

$$N_7 = \frac{4}{i=1}N_{7,j}$$

Description of the Model -- Demographic Part

The demographic model is presented as a flow diagram in Figure 65. Here is shown how the animals move from one category to the next as time advances. As seen from the figure, females and males are not separated before the subadult age-class. This is because, to our knowledge, the processes for aging and dying are the same, independent of the sex, for the young animals up to the subadults. Furthermore, the energy requirement of these animals can probably be predicted without knowing the sex.

Females moving from one sub-category to another in the subadult and adult age classes are shown in Figure 66. Notice, however, that when a female gives birth, there is no arrow showing flow to the box called FETUS in Figure 65. These flows (i.e. carbon flows) can be implemented best in the physiological part of the model, which is not given in this report.

Figure 65. Flow diagram for aging in the demographic model.

Figure 66. Flow diagram for subadult and adult females that are capable of reproducing.

Aging as a process is a common feature for all categories considered in the model, thus, the mathematical form describing this process is similar in all categories. Therefore, the function for the recruitment rate from category i - 1 to iis developed at the beginning of this section. Since all other processes are described by quite different mathematical functions, these are developed in the appropriate sections.

An optimal (or maximal) rate is identified and developed first in each section for all processes, but then followed by the different functions that adjust it when the environment is suboptimal.

The definitions and units, if any, for all of the mathematical symbols used are in Appendices 4, 5 and 6. Appendix 4 gives the definitions for the state variables while definitions for the intermediate algebraic variables are included in Appendix 5. Appendix 6 includes definitions for the parameters used and a preliminary list of proposed numeric values for these parameters. Since there is a general lack of field or laboratory data, several of these parameters are based solely on general biological knowledge. Therefore, one of the objectives of the simulation is to assess whether or not the system is sensitive to these parameters. If the system is sensitive to one or more of the parameters, field or laboratory studies should be proposed to estimate the missing parameters.

Aging—The instantaneous recruitment rate (Timin et al., 1973), $\partial R_i/\partial t$, into the *i*th category from the *i* - 1th category is given as:

$$\partial R_{i}/\partial t = .5 \left[N_{i-1}(t)/\tau_{i-1} + N_{i}(t)/\tau_{i} \right]$$
(2)

where: τ_{i-1} and τ_i is the length, in days, of the $i - t^{th}$ and the i^{th} category respectively. $N_{i-1}(t)$ and $N_i(t)$ is the number of animals in the $i - t^{th}$ and i^{th} category in the previous time interval.

Assuming that the numbers of animals in the different categories are constant in a given time interval, $t - 1^{th}$, transfer from the $i - 1^{th}$ category to the i^{th} category is defined with:

$$R_{i}(t+) = \int_{0}^{7} (\partial R_{i}/\partial t) \cdot dt = 3.5[v_{i-1}(t)/\tau_{i-1} + v_{i}(t)/\tau_{i}]$$
(3)

Number of Fetuses (N_1)

 $N_{1}(t+1) = N_{1}(t) = B - R_{2} - D_{1}$

(4)

where: \dot{x} = number of eggs that have been fertilized in the $t + 3^{Uh}$ interval;

 v_n = number of animals born in the $t + 1^{th}$ interval; and

 \hat{z}_{j} = number of fetuses aborted or resorbed in the $t + i^{th}$ interval.

Calculation of B—the rate of female pregnancy (b_1) as a function of age (Fig. 67), given that all other factors are optimum is:

$$I = \begin{cases} \overline{b} & \text{for suckling and juvenal females} \\ b_{i,1} & \text{for subadult females} \\ 1 & \text{for adult females} \end{cases}$$
(5)

The average prenancy rate for the subadult females is $b_{I,I}$. Equation 5 then means that if everything is optimum during the time interval in question, $b_{I} \cdot N_{I,4}$ of females will be pregnant.

When "the other factors" are suboptimum, this rate is decreased by multiplicative correction terms. The factors are identified in the model as: (I) density of subadult and adult males, (II) quantity and (III) quality of the food consumed by the females, and (IV) the time of the year.

Density of Mature Males (I)—The suboptimal mature male density (Fig. 68) which modified b_1 is given as:

Ь

$$2 = \begin{cases} \alpha_1 \cdot (1 - exp[-\gamma_1 \cdot (N_d + N_b)]) & \text{for } N_d + N_b \leq N_{opt} \\ \frac{1}{N_{opt} - N_{m_smax}} \cdot [-N_{m_smax} + (N_d + N_b)] & \text{for } N_d + N_b > N_{opt} \end{cases}$$
(6)
here: N_{opt} = that density of mature males for which there is no limitation in females becoming pregnant,
 N_{m_smax} = that density of mature males for which the rate of females becoming pregnant is zero,
 α_1 = the asymptote of the function (b_2) , and
 γ_1 = control parameter for the rate at which the asymptote

Thus, α_I and γ_I are found by solving the following system of equations:

is approached

$$\begin{array}{l} \alpha_{2} & \cdot & [1 - exp(-\gamma_{1} \cdot N_{opt})] = 1.0 \\ \alpha_{3} & \cdot & [1 - exp(-\gamma_{1} \cdot 0.1N_{opt})] = 0.5 \end{array}$$

$$(7)$$

A measure of the quantity of the food actually consumed (II) relative to what the animal needs is indicated with the index I_{f} , defined with:

Figure 67. The optimal rate of being pregnant (b_1) for a female, as a function of age.

Figure 68. Correction terms (b_2) of the rate at which females become pregnant, as a function of mature male density.

$$I_{f} = I_{act}/I_{max}$$

(8)

where: I_{max} is the maximum amount an animal can ingest during a time interval (Holling, 1959 and 1966).

This value is assumed to be equal to the animal's food requirement. The actual amount of food ingested (I_{act}) in a time interval is a function of the plant food production as illustrated in Figure 69. Then I_{max} is equal to the assymptote of the functional response curve (Fig. 69), whereas I_{act} is equal to the numerical value of the function given by the plant production. It seems reasonable to assume that a minimum value of I_f can be obtained, below which the animal will not survive, i.e.:

$$I_{f,min} \stackrel{\leq I}{=} I \tag{9}$$

This value would be found most easily in a laboratory study although an early approximation might be obtained from data already existing.

When the animal cannot get enough food to satisfy its maximum requirement (I_{max}) , the subsequent pregnancy rate is corrected with b_3 (Fig. 70), given as:

$$l_{\vec{\beta}} = \begin{cases} \vec{\theta} & \text{for } I_{f} \leq \frac{I_{f} m i n + 1}{2} \\ \frac{2}{1 - \frac{I_{f}}{f_{f}} m i_{h}} \leq \left(I_{f}^{2} - \frac{I_{f} f_{f} m i_{h} + 1}{2}\right) & \text{for } \frac{I_{f} m i_{h} + 1}{2} \leq I_{f} \leq 1 \end{cases}$$
(10)
$$I & \text{for } I_{f} \geq 1 \end{cases}$$

Figure 70. Correction term (b_3) for the pregnancy rate as a function of the food quantity consumed.

The phosphorus content in that part of the vegetation that serves as food for the small mammal species in question was used as a measure of food quality (III) using the procedures proposed by Schultz (1964, 1969) and Bunnel (1972). Now there is a factor (b_4) (Fig. 71) for the quality of the food consumed given by:

$$B_{d} = \begin{cases} 0 & \text{for } Nu \leq \frac{Nu_{min} + Nu_{max}}{2} \\ \frac{2}{Nu_{max} - Nu_{min}} + (Nu - Nu_{min}) & \text{for } \frac{Nu_{min} + Nu_{max}}{2} < Nu \leq Nu_{max} \end{cases}$$
(11)

Some of the species considered in this model have cessation of breeding for some periods in the year (IV) $(T_{stop}$ to $T_{start})$. It is assumed that this cessation is not caused by any of the factors previously discussed. Thus, it is an observed phenomenon that cannot be explained, but a correction term (b_5) (Fig. 72) is computed and given by:

$$\dot{v}_{s} = \begin{cases} 1 & \text{for } T \leq T_{stop} \\ 0 & \text{for } T_{stop} \leq T \leq T_{start} \\ 1 & \text{for } T \leq T_{start} \end{cases}$$
(12)

Combining all these functions as done by Lassiter and Hayne (1971), the number of fertilized eggs per time interval may be defined with: 22

Figure 71. Correction term (b_4) for pregnancy rate as a function of the nutrient content in the consumed food.

Figure 72. Correction term (b_5) for the breeding stop at certain times of the year.

$$B = [N_{\xi,4} \cdot b_{1,1} + N_{7,4} \cdot 1] \cdot b_2 \cdot b_3 \cdot b_4 \cdot b_5 \cdot u(T)$$
(13)

where: $\mu\left(\mathcal{T}\right)$ is the mean number of fetuses, as a function of the time in the year.

One might argue that there is also genetic variation in the population, but by considering the mean and assuming that the number of fetuses follow a normal distribution (or any kind of symmetrical distribution) this is taken into consideration in an implicit way be using the mean. The function $\mu(T)$ (Fig. 73) is given by:

Thus, B (Equation 13) provides the total number of eggs being fertilized in a time interval of seven days.

Calculation of R_2 —By using the general equation given in (3), R_2 is determined with:

$$R_2 = 3.5[N_1(t)/\tau_1 + N_2(t)/\tau_2]$$
(15)

Figure 73. The mean number of young per litter $\mu(T)$ as a function of the time of the year.

Mean Weight During the Period of Lactation

Figure 74. Correction term $(s_{3,1,1})$ of juvenile I as a function of their weight as sucklings.

Calculation of D_1 —The survival rate rather than the death rate was used to simplify the description of the entire model. Due to the age of the female, there is an optimal fraction of the fertilized eggs that will survive. This optimal fraction $s_{1,1}$ is given by:

$$s_{I,I} = \begin{cases} 0.75 & \text{for subadult females} \\ \\ i & \text{for adult females} \end{cases}$$
(16)

Then due to the quantity and quality of food consumed by females, this optimal survival rate is reduced by similar terms as those given in equations 10 and 11. The decreased survival, as a function of decreased food consumption, is $s_{1,2}$ given by:

$$s_{I_{f}2} = \begin{cases} 0 & \text{for } If \leq \frac{I_{f,min} + 1}{2} \\ \frac{2}{1 - I_{f,min}} \cdot \left(I_{f} - \frac{I_{f,min} + 1}{2}\right) & \text{for } \frac{I_{f,min} + 1}{2} < I_{f} \leq 1 \end{cases}$$
(17)¹

¹Note that $s_{1,2}$ is the same function as b_3 in equation 10.

The function used for simulating decreased survival due to lack of nutrients, is:

$$B_{1,8} = \begin{cases} 0 & \text{for } N_{4} \leq \frac{I_{f,min+1}}{2} \\ \frac{2}{Nu_{max} - Nu_{min}} \cdot (N_{4} - Nu_{min}) & \text{for } \frac{Nu_{min+1} + Nu_{max}}{2} < N_{4} \leq Nu_{max} \\ 1 & \text{for } Nu > Nu_{max} \end{cases}$$

 ${}^{2}\mathrm{Note}$ that $s_{1,3}$ is the same function as b_{4} in equation 11.

Then the total mortality of the fetuses in the interval may be found according to Lassiter and Hayne (1971) with:

$$D_{1} = N_{1}(t) \cdot (1 - v_{1,1} \cdot v_{1,2} \cdot v_{1,3}) - [(D_{5,2} + D_{5,4} + D_{7,2} + D_{7,4}) \cdot u(T)]$$
(19)

The reason for $[(D_{5,2} + D_{5,4} + D_{7,2} + D_{7,4}) \cdot \mu(T)]$ is that if the mother dies, then all the fetuses will die. The complete definition of these terms will be provided while discussing N_5 and N_7 for subadult and adult females, respectively.

Number of Suckling (N_2) —

$$N_2(t+1) = N_2(t) + R_2 - R_3 - D_2 - F_2$$
⁽²⁰⁾

- where: $R_2 =$ number of animals born in the $t + 2^{th}$ interval, defined in equation 15,
 - R_3 = number of sucklings weaned in the $t + j^{th}$ interval, found by substituting the correct terms in equation 3,
 - \mathbf{D}_2 = number of sucklings that died from non-predatory death in the t + 1^{th} interval, and
 - P_2 = number of sucklings that were killed by predators in the $t\,+\,1^{th}$ interval.

Calculation of D_2 —It is assumed that 10 to 15% of the sucklings will be injured by the mother or die due to some genetic diseases; thus, the maximum survival rate of sucklings, represented by $s_{2,1}$ will be .090 to .085. The quality and quantity of the mothers food will reduce this survival fraction by:

$$s_{2,2} = s_{1,2}$$
 (21)

which is defined in equation 17, and

$$s_{2,3} = s_{1,3}$$
 (22)

which is defined in equation 18. Furthermore, if the mother dies, then all the sucklings will die as well, where the death rate of the mother is $D_{5,3}$ and $D_{5,4}$ and $D_{7,3}$ and $D_{7,4}$ for subadults and adults, respectively; thus:

$$D_2 = N_2(t) \cdot (1 - s_{2,1} \cdot s_{2,2} \cdot s_{2,3}) - (D_{5,3} + D_{5,4} + D_{7,3} + D_{7,4}) \cdot u(T)$$
(23)

Calculation of P_2 —The predation rate on sucklings is assumed to be constant and equal to 1%, thus:

$$F_2 = .01 \cdot N_2(t)$$
 (24)

Number of Juveniles I $(N_{3,1})$ -

$$N_{3,1}(t+1) = N_{3,1}(t) + R_3 - R_{4,1} - D_{3,1} - P_{3,1}$$
(25)

- where: $R_3 = number of sucklings that were weaned in the <math>t + 1^{th}$ interval, found by substituting the correct terms in equation 3,
 - $E_{d_{j},l}$ = number of juvenile I that advanced into the next category in the t + l^{th} interval, found by substituting the correct terms in equation 3,
 - $\mathbb{D}_{\delta,1}$ = number of animals in the category that died from non-predatory death in the t + 1^{th} interval, and
 - $F_{\beta_{2},1}$ = number of animals in the category that were killed by predators in the $t+1^{th}$ interval.

Calculation of $D_{3,1}$ —The survival rate in the juvenile I category is assumed to be a function of the animal weights in the suckling stage. This weight reflects the health status of these animals. The mean of the weight at t - 1 and t - 2 is arbitratily used to represent this weight. The animals weight at t - 2 is multiplied (weighted) with .33, while the animals weight at t - 1 is multiplied (weighted) with .67, thus:

$$\overline{Wt} = .33 \ \overline{Wt}(t-2) + .67 \ \overline{Wt}(t-1)$$
 (26)

The survival rate as a function of the animals weight during the period of lactation (Fig. 74) is:

where: $\overline{wt}_{min} =$ that value of \overline{wt} given in equation 26, which is the minimum value that the juveniles are still able to survive at, $\alpha_2 =$ maximum value of $s_{3,1,1}$ when $\overline{wt} \to \infty$, and

$$\gamma_2$$
 = parameter controlling the rate at which $s_{3,1,1}$
approaches α_2 .

The numerical values of these parameters are found by solving the following system of equations:

$$a_{2}\left[1 - exp\left(-\gamma_{2}, \frac{1}{Wt}_{max}\right)\right] = 1$$

$$a_{2}\left[1 - exp\left(-\gamma_{2}, \frac{1}{Wt}_{max} + \frac{1}{Wt}_{min}\right] = .67$$
where: \overline{Wt}_{max} is that value of \overline{Wt} given in equation 26 when the maximum values for $Wt(t-2)$ and $Wt(t-1)$ are used.
(28)

The density of the species, i.e. all weaned animals, is assumed to determine the fraction of juveniles that will be able to establish their own home ranges (Fig. 75). During high density juveniles will have difficulties in establishing their own home ranges, since they may have to go longer distances, which means that these animals will be more vulnerable to adverse environmental factors such as predation, in addition to that type of predation ($P_{3,1}$) described later, and inclement weather. The following represents (Fig. 75) this mortality factor:

$$s_{3,1,2} = \begin{cases} 1 - \left[\sum_{i \leq 3} N_i(t) / N_{t,max}\right]^2 & \text{for } \sum_{i \leq 3} N_i \leq N_{t,max} \\ 0 & \text{for } \sum_{i \leq 3} N_i > N_{t,max} \end{cases}$$
(29)

where: $N_{\vec{t},m2x}$ = maximum value of $\sum_{\vec{t},\vec{s},\vec{\eta}}N_{\vec{t}}(t)$, for which the animals still can establish a home range.

The quality (equation 30) and quantity (equation 31) of the food consumed by the juveniles will affect the survival rate according to:

$$s_{3,1,3} = \begin{cases} 0 & \text{for } I_f \leq \frac{I_{f,min} + 1}{2} \\ \frac{2}{1 - I_{f,min}} \cdot \left(I_f - \frac{I_{f,min} + 1}{2}\right) & \text{for } \frac{I_{f,min} + 1}{2} < I_f \leq 1 \quad (30) \\ I & \text{for } I_f > 1 \end{cases}$$

Note that I_f and $I_{f,min}$ refer to the animal itself, not as in equation 17 where it refers to the mother.

Also, the variable Nu and the parameters Nu_{min} and Nu_{max} refer to the animal itself and not to the mother as in equation 18.

Soil moisture will affect the survival rate in the following manner:

$$s_{\vec{z},1,5} = \begin{cases} 0 & \text{for } Wa \leq Wa_{min} \\ \alpha_3 & [1 - exp(-\gamma_3, Wa)] & \text{for } Wa_{min} < Wa \leq Wa_{max} \\ 1 & \text{for } Wa > Wa_{max} \end{cases}$$
(32)

where: Wa = soil moisture (% water of wet weight soil),

 ka_{min} = minimum soil moisture in which the animal can survive,

Ma_{max} = maximum soil moisture, above which survival of the animal does not improve; although extremely high soil is considered detrimental, it is rare, local and does not persist long,

- α_5 = maximum value of $s_{3,1,5}$ when $k\alpha \to \infty$, and γ_3 = parameter controlling the rate at which $s_{3,1,5}$ approaches α_5 .

The numerical values for these parameters are found by solving the following system of equations:

$$\begin{aligned} \alpha_{\mathcal{J}} & \left[1 - exp(-\gamma \cdot Wa_{max}) \right] = 1 \\ \alpha_{\mathcal{J}} & \left[1 - exp\left(-\gamma \cdot \frac{Wa_{max} + Wa_{min}}{2} \right) \right] = .67 \end{aligned}$$
(33)

This function is of the same form as equation 27. By combining all these factors, the total number of animals in the category that died during the t + 1th interval is:

$$b_{\vec{s},1} = N_{\vec{s},1}(t) \cdot (1 - s_{\vec{s},1,1} \cdot s_{\vec{s},1,2} \cdot s_{\vec{s},1,3} \cdot s_{\vec{s},1,4} \cdot s_{\vec{s},1,5}) \quad (34)$$

Figure 75. Correction term $(s_{3,1,2})$ for the survival rate, as a function of the weaned animal density.

Figure 76. Figure showing the differently pronounced effect of the animal density on the survival of the two juvenile categories, I and II; $s_{3,1,2}$ is given by (i) and $s_{3,2,2,2}$ is given by (ii).

Calculation of $P_{3,1}$ —The correction factor $s_{3,1,2}$ given in equation 29 accommodates the high mortality in the juvenile categories while they are establishing their own home ranges. The predation rate on sucklings independent of the small mammal density is assumed to be equal to 7% for both juvenile categories I and II. Therefore the first weeks fraction of the total juvenile categories I and II may be multiplied by .07; thus:

$$P_{3,1} = .07 \cdot N_{3,1} (t) \cdot [\tau_{3,1} / (\tau_{3,1} + \tau_{3,2})]$$
(35)

Number of Juveniles II (N3,2)-

$$N_{3,2}(t+1) = N_{3,2}(t) + R_{4,1} - R_{4,2} - D_{3,2} - P_{3,2}$$
(36)

- where: $\dot{x}_{4,1}$ = number of animals that leave the juvenile I category during the $t + 1^{th}$ interval, found by substituting the correct terms in equation 3,
 - $B_{4,2}$ = number of juvenal males and females that mature during the $t + 1^{th}$ interval, found by substituting the correct terms in equation 3,
 - $D_{\vec{J}_1,\vec{L}}$ = number of animals in the category that died from non-predatory death in the t + 1^{th} interval, and
 - $P_{3,2}$ = number of animals in the category that were killed by predators in the $t + 1^{th}$ interval.

Calculation of $D_{3,2}$ —After animals survive the juvenile I category and if all environmental factors are optimal, it is assumed that they will have a probability of survival $s_{3,2,1} = 1$. If some of the environmental factors that have been identified as important are suboptimal, then this rate of survival will be reduced. There is an assumption that the higher the density of weaned animals, the higher the death rate due to the lack of good home range sites. Although the assumption is the same as for juvenile I animals, the effect is not as pronounced, thus it is defined:

$$s_{3,\tilde{s},\tilde{s}} = \begin{cases} 1 - \left[\sum_{j \leq \tilde{s}} u_j(t) / 2^{s} u_{t_j} m_{ax} \right]^2 & \text{for } \sum_{j \leq \tilde{s}} \leq 2^{s} u_{t_j} m_{ax} \\ 0 & \text{for } \sum_{j \leq \tilde{s}} u_j > 2^{s} u_{t_j} m_{ax} \end{cases}$$
(37)

where: $N_{z_1,m_{22}}$ is the same as that used in equation 29, but the factor 2 is an arbitrary choice. The use of 2 gives $s_{z_1, 2_2} = 0.75$ for $\sum_{i \leq 2} N_i(t) = N_{z_1,m_{22}}$, whereas $s_{z_1, 1_2} = 0$ for the same density.

This essentially provides a reasonable estimate of surviving in the natural environment after the animals have passed from juvenile I category to juvenile II category (Fig. 76).

The correction terms of food quantity and quality for the survival rate are the same as equations 30 and 31, respectively, i.e.:

$$s_{3,2,3} - s_{3,1,3}$$
 for quantity (38)
 $s_{3,2,4} = s_{3,1,4}$ for quality (39)

Similarly, the correction term for the effects on the survival rate of soil moisture is the same as equation 32, i.e.:

(1.0)

P

The combining of all these functions provides the total number of animals $(D_{3,2})$ in juvenile II category that died during the t + 1th interval:

$$D_{3,2} = N_{3,2}(t) \cdot (1 - s_{3,2,1} \cdot s_{3,2,3} \cdot s_{3,2,4} \cdot s_{3,2,5})$$
(41)

Calculation of $P_{3,2}$ —Using the same reasoning described for equation 35, the total number of animals from the juvenile II category that are killed by predators is:

$$P_{3,2} = .07 \cdot N_{3,2}(t) \cdot [\tau_{3,2} \quad (\tau_{3,1} + \tau_{3,2})]$$
(42)

Number of Subadult Males (N_4) —

$$N_{3}(t+1) = N_{3}(t) + (1-q) \cdot R_{4,2} - R_{6} - D_{4} - P_{4}$$
(43)

where: $E_{d_j,2}$ = number of juveniles that mature during the $t + 1^{th}$ interval,

 \mathbf{R}_{ij} = number of animals that advance into the adult male category in the t + $j^{\pm h}$ interval,

- \mathcal{D}_{ij} = number of animals that died from non-predatory death during the t + $l^{t\bar{h}}$ interval,
 - \hat{z}_{ij} = number of animals that are killed by predators in the $t\,+\,1^{th}$ interval, and
 - z = fraction of the animals that mature during the $t + i^{th}$ interval that are females.

The functional relationships are explained above, therefore only the equations for how the terms used in equation 43 are determined here. These are:

$$D_{d} = N_{d}(t) + (1 - s_{4,\vec{d}} + s_{4,\vec{d}} + s_{4,\vec{5}})$$
(44)

where:
$$s_{d,\gamma} = s_{\gamma,\gamma,\gamma}$$
 (45)

$$s_{4,4} = s_{3,1,4}$$
 (46)

$$P_4 = .05 \cdot N_4(t) \tag{48}$$

Number of Subadult Females (N_5) —

$$N_{c}(t+1) = N_{c}(t) + q \cdot P_{d-2} - P_{2} - P_{5} - P_{5}$$
⁽⁴⁹⁾

The symbols used here should be clear since they are similar to those defined in equation 43 for subadult males:

$$B_{E} = N_{5}(t) + (1 - B_{5,3} + B_{5,4} + B_{5,5})$$
(50)

here:
$$s_{5,\vec{\delta}} = s_{\vec{\delta},\vec{1},\vec{\delta}}$$
 (51)

$$\delta_{5,4} = \delta_{3,1,4}$$
 (52)

$$P_{\tilde{S}} = .05 \cdot N_{\tilde{S}}(t) \tag{54}$$

Number of Adult Males (N_6) and Adult Females (N_7)—

$$N_{\mathcal{E}}(t+1) = N_{\mathcal{E}}(t) + R_{\mathcal{E}} - D_{\mathcal{E}} - P_{\mathcal{E}}$$
, and (55)

$$N_{2}(t+1) = N_{2}(t) + R_{2} - D_{2} - P_{2}$$
(56)

The symbols used here should be clear since they are similar to those defined in equation 43 for subadult males:

$$D_i = N_i(t) \cdot (1 - s_{i,3} - s_{i,4} - s_{i,5})$$
(57)

where: $s_{i,3} = s_{3,1,3}$ (58)

$$s_{i,4} = s_{3,1,4}$$
 (59)

$$s_{i,5} = s_{3,1,5}$$
 (60)

$$i = .025 \cdot N_i(t)$$
 (61)

Transfer within the Subadult and Adult Female Categories—Because the mathematical expressions for the processes shown in Figure 2 are similar for both subadult and adult females, they will be treated together. The index indicating the specific category will be given so that i = 5 is for the subadult female category, and i = 7 is for the adult female category.

Pregnant but Non-leatating Females (Ni,1)-

$$N_{i_{s},1}(t+1) = \sum_{m=1}^{n_{p}} N_{i_{s},1_{s},m}(t+1)$$
(62)

where: n_p is the number of time intervals (t, t+1) in the gestation period.

Terms in the summation are defined as:

$$S_{i_{j},i_{j},m}(t+i) = \begin{cases} \varphi_{i_{j},i_{j}} + \varphi_{i_{j},i_{j}} & \text{for } m = 1 \\ \\ N_{i_{j},i_{j},m-1}(t) - \varphi_{i_{j},i_{j}} - D_{i_{j},i_{j},m-1} & \text{for } m > 1 \end{cases}$$
(63)

- where: $\phi_{i,1}$ = number of non-reproducing females that become pregnant during the $t + 1^{th}$ interval,
 - $\hat{u}_{i,d}$ = number of females that are both pregnant and lactating, and have their entire litter either weaned or killed during the $t + 1^{th}$ interval,
 - $\mathcal{Q}_{\vec{k}_{g}, \vec{r}}$ = number of pregnant females that abort their entire litter during the t + t^{th} interval,
 - $E_{\psi_1, Z_2, m-1}$ = number of the $m I^{th}$ sub-category that died from non-predatory death during the $t + I^{th}$ interval, and $P_{\psi_1, Z_2, m-1}$ = number of the $m - I^{th}$ sub-category that are killed by
 - z, z, m-1predators during the $t \neq I^{th}$ interval.

These terms are then calculated with:

$$\begin{split} \hat{a}_{\vec{k},1} &= B/\mu(T) \end{split} \tag{64}$$
where: B and $\mu(T)$ are defined in equations 13 and 14, respectively.
$$\hat{q}_{\vec{k},4} &= R_3 \neq \mu(T) + N_2(t) \cdot [1 - \sigma_{\vec{k},1} + \sigma_{\vec{k},2} + \sigma_{\vec{k},3}] \neq \mu(T) \tag{65}$$
where: R_3 can be found by referring to equation 3.

The assumption is that a female will first kill her sucklings, thus move to the pregnant category, then she may abort her fetuses.

It is assumed that when a female aborts or kills her litter, she will do it in an all-or-none way. This is supported by observing that the species in question will, in most cases, kill one suckling at a time, but she will kill the entire litter within a few days. Since the model considers time intervals of one week, the process will be observed as an all-or-none process; consequently:

$$Q_{i,7} = N_1(t) \cdot [1 - s_{1,1} \cdot s_{1,2} \cdot s_{1,3}] / \mu(T)$$
(66)

where:
$$s_{1,1}$$
 is given in equation 16, $s_{1,2}$ in 17 and $s_{1,3}$ in 18.

$$D_{i,2,m-1} = N_{i,1,m-1}(t) \{1 - s_{i,3} \cdot s_{i,4} \cdot s_{i,5}\}$$
(67)
$$(.05 \cdot N_{r_{i,5}}(t) \text{ for } i = 5$$

$$P_{i,2,m-1} = \begin{cases} \cdots & b, 1, m-1 \\ \cdots & b, 1, m-1 \end{cases}$$
(68)
$$(025 \cdot N_{7,1,m-1}(t) \quad \text{for } i = 7 \end{cases}$$

The total number of pregnant but non-lactating females that dies in the time interval is therefore given as:

$$D_{i,2} = \sum_{m} (D_{i,2,m} + P_{i,2,m})$$
(69)

Lactating but Non-pregnant Females (Ni,2)-

$$N_{\tilde{z},p}(t+1) = \sum_{m=1}^{n_{\tilde{z}}} N_{\tilde{z},2,m}(t+1)$$
 (70)

where: u_2 is the number of time intervals (*t*,*t+2*) in the lactation period.

Terms in the summation are defined as:

$$\begin{split} N_{i_{s}2,m}(t+1) &= \begin{cases} N_{i_{s}1,n_{D}}(t) - Q_{i_{s}7} - D_{i_{s}2} - P_{i_{s}2} & \text{for } m=1\\ \\ N_{i_{s}1,m-1}(t) + Q_{i_{s}6} - Q_{i_{s}5} - D_{i_{s}3,m-1} - P_{i_{s}3,m-1} & \text{for } m>1 \end{cases} \end{split}$$

- where: $\hat{q}_{i,0} =$ number of both pregnant and lactating females that abort their fetuses but do not kill their sucklings during the $b + 1^{bh}$ interval.
 - $\mathbf{x}_{i,b}$ = number of lactating females that kill or wean their sucklings during the $t + i^{th}$ interval,

$$D_{\frac{1}{2},\frac{3}{2},m-1}$$
 = number of the $m - T^{\frac{1}{2}n}$ sub-category that died from
non-predatory death during the $t + T^{\frac{1}{2}h}$ interval, and
 $P_{\frac{1}{2},\frac{3}{2},m-1}$ = number of the $m - T^{\frac{1}{2}h}$ sub-category that are killed
by predators during the $t + T^{\frac{1}{2}h}$ interval.

These terms are then calculated using the same reasoning as in equation 66:

$$\mathbf{w}_{i,\theta} = \mathbf{w}_{i,2} \tag{72}$$

where: $\vec{a}_{i,7}$ are given in equation 66.

$$\widehat{u}_{i,j,\bar{v}} = \left(\mathbb{M}_{2}(t) \cdot \left[1 - \mathbb{M}_{2,j} \right] + \mathbb{M}_{2,j\bar{v}} \right) \times \mathbb{M}_{2,j\bar{v}} \left[1 - \mathbb{M}_{2,j\bar{v}} \right] + \mathbb{M}_{2,j\bar{v}} \right) \times \mathbb{M}(T)$$
(73)

$$s_{i,3,m-1} = s_{i,2,m-1}(t) \cdot [1 - s_{i,3} \cdot s_{i,4} \cdot s_{i,5}]$$
(74)

$$\tilde{F}_{\vec{z}_{j},\vec{3}_{j},m-1} = \begin{cases} .05 \cdot N_{\vec{b}_{j},\vec{z}_{j},m-1}(t) & \text{for } \vec{z} = 5 \\ .025 \cdot N_{\vec{r}_{j},\vec{z}_{j},m-1}(t) & \text{for } \vec{z} = 7 \end{cases}$$
(75)

The total number of lactating but non-pregnant females that died in the time interval is therefore given as:

$$D_{i_{j},j} = \sum_{m} (D_{i_{j},j_{m}} + P_{i_{j},j_{m}})$$
(76)

Pregnant and Lactating Females $(N_{i,3})$

$$N_{i_{j},3}(t+1) = \sum_{k=1}^{n_{j}} \sum_{m=2}^{n_{p}} N_{i_{j},3_{j},k_{j}m}(t+1)$$
(77)

Terms in the summation are defined as:

$$N_{i,3,k,m}(t+1) = \begin{cases} [N_{i,2,m-1}(t) + Q_{i,6} - Q_{i,4} - D_{i,3,m-1} - P_{i,3,m-1}] + B/\mu(T) \\ & \text{for } k = 1 \\ N_{i,3,k-1,m-1}(t) - Q_{i,6} - Q_{i,4} - D_{i,4,k-1,m-1} - P_{i,4,k-1,m-1} - P_{i,4,k-1,m-1} \\ & P_{i,4,k-1,m-1} \text{ for } k > 1 \end{cases}$$

where:

$$P_{i_{j}, d_{j}, k_{j}m} = \begin{cases} .05 \cdot N_{5_{j}, 3_{j}, k_{j}m}(t) & \text{for } i = 5 \\ .025 \cdot N_{7_{j}, 3_{j}, k_{j}m}(t) & \text{for } i = 7 \end{cases}$$
(79)

$$D_{i_{j}, j_{k}, k_{m}} = N_{i_{j}, j_{k}, k_{m}}(t) + [1 - s_{i_{j}, j} + s_{i_{j}, j} + s_{i_{j}, j}]$$
(80)

The total number of females that are both pregnant and lactating, that died in the time interval is therefore given as:

$$\mathcal{D}_{i_{j}, j} = \sum_{m} \sum_{m} \left(\mathcal{D}_{i_{j}, j_{j}, k_{j}m} + \mathcal{P}_{i_{j}, j_{j}, k_{j}m} \right)$$
(81)

Non-reproducing females $(N_{i,4})$ —The number of non-reproducing females $(N_{i,4})$ is found by subtracting the number of reproducing females from the total number of females known to be in the subadult or adult female categories, thus:

 $N_{i,j}(t+1) = N_{i}(t+1) - \sum_{j=1}^{3} N_{i,j}(t+1)$ (82)

DISCUSSION

Most of the growth data that have been analyzed for D. ordii, P. maniculatus, and R. megalotis concern the results of animals grown under standard laboratory conditions. Although most of the R² values were determined to be significant (when converted to r) at the .95 level, one must consider two items in their interpretations: (1) the size of n, which when too large reduces the usefulness of r and (2) what percentage of the variation must be accounted for before the correlation is considered to be biologically sound so that k can be accepted as a reliable estimate of the instantaneous relative growth rate. When the growth curves in Appendices 1-3 are examined, the correlations seem rather precise within the prescribed growth periods for the time intervals; thus, one is inclined to be rather liberal in setting lower limits on R². It was determined that $R^2 \ge .25$ should provide enough accountability to accept a significant correlation and k as realistically representing growth rates. This does not mean the k values for those analyses with \mathbb{R}^2 < .25 are in error, it simply means the confidence is not as strong.

Total body weight is perhaps the most interesting of all parameters measured, because of its implications for biomass as it related to secondary production. The antilogs of lnW, means and k values for body weight of the three species (Appendices 1-3) should accurately represent the instantaneous relative growth rates for the growth periods and time intervals involved up to 70 days of age, since there is such a close relationship between the antilogs of lnW and the means and since there are narrow confidence limits about the means. It is possible that beyond 70 days the close correlation of antilogs of lnW and the means for body weight would become less reliable, but since D. ordii, P. maniculatus and R. megalotis have reached reproductive age by this time one can be safe in estimating biomass up to adulthood in these species. Beyond that a close correlation likely is not necessary since k shows very little increase as evidenced by the flatness of the body weight curves (Figures 1, 12, 60, Appendix 2). Admittedly, the growth rates provided for these three species were obtained under standard laboratory conditions, but they can be considered representative for the time intervals prescribed, which generally includes the time when the animals are actually growing. Following this time period, variations in weight might be more a matter of responses to environmental stresses and changes rather than actual growth phenomena.

Independent environmental variables that may affect growth, when altered for P. maniculatus, seem to be reflected by shifts in k (Figures 21-59, Appendix 2).

Generally, it might be concluded that longer photoperiods will accelerate growth (Figures 21-25, 31-35, Appendix 2), but animals retained in less light will soon catch up after foraging begins (Figs. 26-35, Appendix 2). The precise reason for this is not clear, although it might be as simple as the amount of time the female stays in the nest each day; thus, availing herself to the suckling young. If this reasoning is correct, growth would probably be slower in the field where foraging time is increased. Increased foraging time could be related to a quantity and/or quality of food as well as to photoperiod and/or temperature. When a lactating female receives varying quantities of food at suboptimal levels the growth of the young is curtailed in accordance with the feeding level (Figures 55-59, Appendix 2). This growth curtailment, best exemplified by body weight (Figure 55, Appendix 2) is likely due to the compound effect of foraging time and nutritional condition of the mother. Whatever, it appears that the genetic limitations of the young are met shortly after their foraging begins if sufficient food is available (Figures 12-16, Appendix 2) and they reach trappable age. If adequate food is not available, however, growth rates may never reach their genetic potential and young reared under these conditions may be permanently impaired (Figures 55-59, Appendix 2). Although manipulation of environmental variables affected all parameters, the growth differences were usually greatest for body weight.

One possible weakness of these analyses is an inability to assess k under field conditions. Originally, it was assumed that shifts in k under field conditions would not differ significantly from those established in the laboratory, but analyses of data obtained while experimenting with independent variables (photoperiod, temperature, and food) would suggest that the assumption may not be valid. It is possible, not likely, that variations in k may compensate for each other sufficiently to result in animals all being about the same size shortly after they become trappable. If so, estimates of biomass could be made by correlating body weight with age.

There have been several attempts to correlate weight with age as reviewed by Brody (1945), or other parameters with age as in Dapson and Irland (1972), but since many of them were interested in predicting age, the results were not particularly satisfying. This study was concerned more with the characterization of growth as far as weight was concerned. Attempts to age organisms should be done with parameters other than body weight such as dried eye lens weights, which consistently had the highest r value (Appendices 2-3), or with tyrosine content of lenses (Dapson and Irland, 1972). After an animal has reached three days of age there is a close correlation of dried eye lens weights and age up to 23 days of age, and curves beyond that age generated by Ecodynamics (1970) show good regression analyses correlation well into adulthood.

Data collected from the field enclosures are rather incomplete since time and weather have not yet allowed sufficient sampling replications for adequate analyses and the kill-trapped animals were unable to be aged due to specimen preparation technique. A drought in the summer of 1972, which virtually stopped seed production, followed by the most severe winter in 60 years was likely the cause of death in the enclosures. When a seed-eating and caching mammal has no winter feed it cannot be expected to survive. The enclosures will be monitored on the same biannual schedule in the future, with the data being provided to the Biome when it is available.

Demographic models must, of necessity, include the influence of all environmental factors, if they are to be entirely realistic. Since a model of this extent would likely require more data, the model presented here is designed to key on some essential factors without total committment to all independent variables. In this regard, the densitydependent factors regarding predation are not included even though they undoubtedly operate. Predation is simply accounted for as discrete rates, regardless of causes for rate changes.

Figures 65 and 66 provide the maximum detail considered necessary, but may be simplified if some components are "black-boxed" further. The most reasonable condensations seem to be in "black-boxing" N1 of Figure 65 with all components in Figure 66. This simply provides for sucklings directly from reproducing females. Another reduction might reasonably be the consolidation of subadults with adults to form reproducing males and females, although this seems to include greater risk since (D) may vary appreciably between subadult males and adult males. If these adjustments were made, Figures 65 and 66 would be modified accordingly (Figure 77). Obviously, some rather crude assumptions are made, the most questionable being that all reproducing adults and subadults die and/or are preyed upon at the same rate. The mathematical definitions of the states and rate changes are not prepared since Figure 77 is only intended to demonstrate how the model can be simplified and require less data input.

States included in Figures 65 and 66 may require an exposure of their respective reasons for being included. Generally, all available eggs are assumed to be fertilized (B), the limitations being primarily a matter of how many are available at the time of copulation. No limitations are placed on the males or viability of sperm. After implantation, there is a recognized mortality among the fetuses. Some are resorbed and assumed to be part of those that die, even though they are recycled directly back to the female. Fetuses that are aborted are often recycled directly also, but occasionally they are left dead and enter the decomposer level.

One might also question partitioning the juvenile stages. This was basically a matter of trying to accommodate early vulnerability to predation and exposure when young first leave the nest to begin foraging. Also, there is invariably a change in growth rates (Appendices 1-3) at about this same time. Subadults and adult males and females were partitioned because of the varying social positions apparently occupied by the four classes.

It seems that all of the states can vary as far as input into predation and litter and the model partitioning is based on the best logic available. Although it is possible to reduce the number of states and difference relationships, and is often necessary, further reduction will certainly reduce its realism; thus, decreasing the confidence one might have in the results. Probably the best method for reducing it would be to first implement this model to determine where change has little impact on the results. Develop it as a simulator.

Figure 77. Modified flow diagram for aging in the demographic model.

LITERATURE CITED

- BRODY, S. 1945. Time relations of growth of individuals and populations. *in* Bioenergetics and Growth. Reinhold. N.Y. 1023 pp.
- BUNNELL, F. L. 1972. Lemmings models and the real world. 1972 Summer Computer Simulation Conference. 1183-1197.
- COLLIER, B. D., R. OSBORN, and N. C. STENSETH. 1973. Population dynamic model for *Lemmus trimucronatus* at Barrow. (MS. in preperation).
- DAPSON, R. W., and J. M. IRLAND. 1972. An accurate method of determining age in small mammals. J. Mammal. 53(1):100-106.
- ECODYNAMICS. 1970. Ecology studies in western Utah. Annual Report. Ecodynamics, Inc. Salt Lake City, Utah. 116 pp.
- HALL, E. R., and K. R. KELSON. 1959. The mammals of North America. Ronald Press, N. Y. 2 vol. 1083 pp.
- HOLLING, C. S. 1959. The components of predation as revealed by a study of small-mammal predation of European Pine Saw fly. Can. Entomol., 91:293-320.
- HOLLING, C. S. 1966. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can., 48:1-85.
- HOLLING, C. S. 1972. Ecological models: A status report, pp. 3-20 in A. K. Biswas (ed.), International symposium on modelling techniques in water resources systems. Envir. Canada, Ottawa.
- HUMASON, G. L. 1967. Animal tissue techniques, 2 ed. W. H. Freeman and Co., San Francisco. pp. 179-181.
- LOTKA, A. F. 1923. Contribution to quantitative parasitology. Wash. Acad. Sci., 13:152-158.

- MILLER, J. G. 1965. Living systems: basic concepts. Behav. Sci. 10:193-237.
- PATTEN, B. C. (ed.) 1971. System analyses and simulation in ecology. Vol. I. Academic Press, N. Y.
- PATTEN, B. C. (ed.) 1973. System analyses and simulation in ecology. Vol. III. Academic Press, N. Y. (In press).
- PFEIFFER, E. W. 1960. Cyclic changes in the morphology of the vulva and clitoris of *Dipodomys*. J. Mammal. 41(1):43-48.
- SCHULTZ, A. M. 1964. The nutrient recovery hypothesis for arctic microtine cycles II. Ecosystem variables in relation to arctic microtine cycles. pp. 57-68 in D. J. Crisp (ed.) Grazing in terrestrial and marine environments. Blackwell, Oxford.
- SCHULTZ, A. M. 1969. A study of an ecosystem: The arctic tundra. pp. 77-93 in G. E. Van Dyne (ed.), The ecosystem concept in natural resource management. Academic Press, N. Y.
- SMITH, H. D., and C. D. JORGENSEN. 1972. Demographic and individual growth studies for *Dipodomys microps*, *Dipodomys ordii*, and *Peromyscus maniculatus*. US/IBP Desert Biome Res. Memo. RM 72-26. 7 pp.
- SMITH, H. D., and C. D. JORGENSEN. 1973. Demographic and individual growth studies for *Dipodomys ordii* and *Peromyscus maniculatus*. US/IBP Desert Biome Res. Memo. RM 73-23. 38 pp.
- TIMIN, M. E., B. D. COLLIER, J. ZICH, and D. Walters. 1973. A computer simulation of the arctic tundra ecosystem near Barrow, Alaska. US/IBP Tundra Biome Report 73-1. 82 pp.
- VOLTERRA, V. 1928. Variations and fluctuations of number of individuals in animal species living together. Conser. Intern. Explor. 3:3-5.
- WATT, K. E. F. 1962. Use of mathematics in population ecology. Amer. Rev. Entomol. 243-260.

APPENDIX 1

40

Figure 1. Means, standard errors (p=.95) and growth rates for body weight of *Dipodomys ordii* reared under standard laboratory conditions: interval 1.

Figure 2. Means, standard errors (p=.95) and growth rates for total length of *Dipodomys ordii* reared under standard laboratory conditions: interval 1.

Figure 3. Means, standard errors (p=.95) and growth rates for tail length of *Dipodomys ordii* reared under standard laboratory conditions: interval 1.

Figure 4. Means standard errors (p=.95) and growth rates for ear length of *Dipodomys ordii* reared under standard laboratory conditions: interval 1.

Appendix 1 (continued)

60

50

Figure 5. Means, standard errors (p=.95) and growth rates for hind foot length of *Dipodomys ordii* reared under standard laboratory conditions: interval 1.

Figure 6. Means, standard errors (p=.95) and growth rates for body weight of *Dipodomys ordii* reared under standard laboratory conditions: interval 2.

Figure 7. Means, standard errors (p=.95) and growth rates for total length of *Dipodomys ordii* reared standard laboratory conditions: interval 2.

Figure 8. Means, standard errors (p=.95) and growth rates for tail length of *Dipodomys ordii* reared under standard laboratory conditions; interval 2.

Figure 9. Means, standard errors (p=.95) and growth rates for ear length of *Dipodomys ordii* reared under standard laboratory conditions: interval 2.

Figure 10. Means, standard errors (p=.95) and growth rates for hind foot length of *Dipodomys ordii* reared under standard laboratory conditions: interval 2.

Figure 11. Means, standard errors (p=.95) and growth rates for body weight of *Dipodomys ordii* reared under standard laboratory conditions: model intervals.

Table 1. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *Dipodomys ordii* reared under standard conditions: interval 1

		Instantaneous Relative Growth Rate	Age in Davs	c.	Correlation
Parameter	lnA	(k)	(t=t-1)	R ²	(r)
Body Weight	1.47177	0.15987	1-3	0.25465	0.50462*
	1.74349	0.08622	4-12	0.59965	0.77437*
	1,92078	0.06481	13-22	0.46044	0.67855*
	2.54620	0.03264	23-29	0.21210	0.46054*
	3.29270	0.01022	30-70	0.60571	0.77827*
Total Length	4.09464	0.07158	1-3	0.29843	0.54628*
	4.13370	0.06080	4-12	0.74742	0.86453*
	4.36437	0.04083	13-22	0.53373	0.73056*
	4.74284	0.02065	23-29	0.25874	0.50866*
	5.27545	0.00285	30-70	0.28872	0.53732*
Tail Length	2.92560	0.11471	1-3	0.21841	0.46734*
	2.98840	0.09366	4-12	0.72368	0.85069*
	3.39927	0.05793	13-22	0.46939	0.68512*
	3.99989	0.02590	23-29	0.19206	0.43824*
	4.68195	0.00303	30-70	0.12449	0.35283*
Ear Length	0.45680	0.17631	1-3	0.23211	0.48177*
	0.67850	0.10561	4-12	0.75856	0.87095*
	1.26036	0.05786	13-22	0.63869	0.79918*
	2.87125	0.02443	23-29	0.39716	0.63020*
	2.48377	0.00189	30-70	0.20396	0.45161*
Hind Foot	2.40433	0.11518	1-3	0.33954	0.58270*
Length	2.54254	0.07779	4-12	0.78880	0.88814*
ov prist - Exclusion	3.14313	0.02287	13-22	0.45231	0.67253*
	3.42327	0.00783	23-29	0.23258	0.48226*
	3.59137	0.00118	30-70	0.16730	0.40902*

Table 2. Data analyses. Means and standard errors (p=.95) for growth of *Dipodomys ordii* reared under standard laboratory conditions: interval 1

		Sample	Mean	Standard	Antilog
Parameter	Age in Days	Size (N)	x	Error (SE)	of lnW
ody Weight	1				
	2	56	5.1500	0.1682	
	3	57	6.0666	0.2457	7.03
	4	61	7.0770	0.3015	8.08
	5	57	8.0131	0.3429	2122
	6	62	9.1540	0.4084	
	7	62	10.2346	0.4628	
	8	56	10.8339	0.4595	
	9	62	12.0661	0.5507	
	10	62	12.8354	0.6160	
	11	59	13.3804	0.6113	
	12	62	14.3620	0.7054	16.12
	13	60	15.2258	0.7978	15.64
	14	60	16.0208	0.8262	1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
	15	60	16.9891	0.9213	
	16	58	18.1534	1.0490	
	17	53	20.2178	1.0572	
	18	52	21.6201	1.0529	
	19	52	22.7211	1.1551	
	20	48	24.0426	1.1245	
	21	42	24.9678	1.2778	
	22	48	26.0895	1.1287	27.94
	23	50	26.5329	1.3522	26.58
	24	41	27.7060	1.2515	
	25	46	28.7434	1.2595	
	26	42	29.1023	1.5062	
	27	43	30.4964	1.3308	
	28	38	30.6341	1.3890	
	29	19	29.1526	1.6334	32.14
	35	38	37.5052	1.5754	
	42	33	43.7596	1.5976	
	49	33	46.9423	1.7777	
	56	34	48.0146	1.9282	
	63	34	51.9470	1.5389	
	70	25	52.4299	2.5628	55.15
tal Length	1	56	64 5695	0 9330	
	2	50	60 369/	1 0597	74 44
	2	57	7/ 2115	1.0377	79.44
	4 5	57	79.5000	1.4427	79.04
	6	62	84.9435	1,6953	
	7	62	91,2097	1.9486	
	1	52	,112071	2.1.100	

Parameter	Age in Dave	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
a.umeter	8 9	56	96.2679 102.8226	2.4078	
	10	62 59	108.6935	2.8283	
	12	62 60	121.7016	3.2976	127.74
	14 15	60 60	133.5000 139.1917	4.007 4.2200	
	16 17	58 53	145.4655	4.5796	
	18 19	52 52	162.2115	3.9890	
	20	48	173.0541	4.0075	
	21 22	42 48	176.9524 180.1042	4.7612 4.1725	188.67
	23 24 25	50 41 46	181.5200 186.8537 191.1848	5.4214 4.9669 4.8028	181.27
	26	42	192.7738	5.5506	
	27 28	43 38	197.2325 197.8816	4.9699 5.1878	
	29 35	19 38	197.1579 212.2763	6.6640 5.2249	204.38
	42	33	223.3182	4.7654	-
	56	34 34	232.0441 234.9412	4.7776	
	70	25	236.8400	6.7990	237.46
ail Length	2	56 57	21.0179 23.6140	0.5766	26.31
	4	61 57	25.8197 29.0789	0.7625 0.9119	28.79
	6	62	32.1048	0.9968	
	/ 8	56 62	36.3036	1.5005	
	10	62	46.7581	1.9168	
	11 12	59 62	50.9407 55.8952	2.2366 2.4571	60.34
	13 14	60 60	59.9917 63.9667	2.7131 2.9376	62.80
	15	60 58	68.0083 72.4569	3.1047	
	17	53 52	79.2547 84.7211	3.2713	
	19 20	52 48	87.9038 91.9583	3.2883 3.1514	
	21	42	94.5833	3.6880	10/ 5
	22 23 24	48 50 41	97.4400 100.9878	4.0638	96.5
	25	46	104.0000	3.8046	
	26 27	42 43	104.6786	4.2054	
	28 29	38 19 28	108.6447	4.4389 5.5094 4.3064	112.1
	42	33	124.8636	4.1876	
	49 56	33 34	127.2424 131.2647	4.9671 6.2342	
	63 70	34 25	132.4412 133.9200	6.2934 8.3100	132.9
Ear Length	1 2	56	. 1.9080	0.846	
	3	57 61	2.2756 2.6903	0.9760 0.1012	2.6
	5	57	3.0307	0.1263	
	7	62 56	3.8298	0.1644 0.1648	
	9 10	62 62	4.6706 5.2142	0.1768 0.1788	
	11	59	5.6679	0.2012	
	12	62 60	6.8704 7 5091	0.2702	7.3
	14	60	7.9708	0.3066	
	16 17	58 53	8.5589 9.3454	0.3071 0.2487	
	18 19	52 52	9.8938 10.3238	0.2230	
	20	48	10.7410	0.2145	
	21 22 23	42 48 50	11.2764	0.1925	12.
	24	41	11.6861	0.3564	

Appendix 1 (continued)

Table 2 (continued)

		Sample	Mean	Standard	Antilog
Parameter	Age in Days	Size (N)	X	Error (SE)	of lnW
	26	42	11.8440	0.3255	
	27	43	12.2667	0.2208	
	28	38	12.3676	0.2538	
	29	19	11.9916	0.3057	13.0
	35	38	12.8021	0.2247	
	42	33	12.9902	0.2358	
	49	33	13.2612	0.2404	
	56	34	13.4105	0.2617	
	62	34	13.5385	0.2927	
	70	25	13.6444	0.3781	13.74
Hind Foot Length	1			0200208200	
	2	56	12.4585	0.2593	1052 001
	3	57	13.9899	0.3230	15.64
	4	61	15.5947	0.3860	17.29
	5	57	17.2369	0.4457	
	6	62	19.0288	0.5003	
	7	62	20.8773	0.5289	
	8	56	22.5412	0.6383	
	9	62	24.3454	0.6215	
	10	62	25.9919	0.6557	
	11	59	27.5569	0.7198	
	12	62	29.0654	0.6828	32.14
	13	60	30.0532	0.7274	30.88
	14	60	31.1656	0.6892	
	15	60	32.0184	0.6716	
	16	58	33.0058	0.6810	
	17	53	34.1152	0.5955	
	18	52	34.9978	0.5492	
	19	52	35.4180	0.422	
	20	48	35.9403	0.3395	
	21	42	36.1235	0.3665	
	22	48	36.5803	0.3333	37.7
	23	50	36.5971	0.4666	35.8
	24	41	37.1377	0.3995	
	25	46	37.1277	0.3577	
	26	42	37.3106	0.4782	
	27	43	37.5345	0.3637	
	28	38	37.6870	0.4027	
	29	19	37.2031	0.6046	37.7
	35	38	37.9357	0.3826	
	42	33	38.1863	0.4390	
	49	33	38.4466	0.4448	
	56	34	38,6617	0.4402	
	63	34	38.7896	0.4500	
	70	25	29 0019	0 5046	30 2

Table 3. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of Dipodomys ordii reared under standard laboratory conditions: interval 2

		Instantaneous Relative Growth	Ace in Dave		Correlation
Parameter	lnA	(k)	(t=t-1)	R ²	(r)
Body Weight	1.47177	0.15987	1-3	0.25465	0.50462*
body nergine	1.80782	0.07545	4-15	0.64611	0.80380*
	2.33647	0.04149	16-29	0.44996	0.67079*
	3.29270	0.01022	30-70	0.60571	0.77827*
Total Length	4.09464	0.07158	1-3	0.29843	0.54628*
rotar nongon	4.15655	0.05703	4-15	0.791/0	0.88977*
	4,65890	0.02431	16-29	0.49748	0.70532*
	5.27545	0.00285	30-70	0.28872	0.53732*
Tail Length	2,92560	0.11471	1-3	0.21841	0.46734*
Turr beingen	3.02929	0.08688	4-15	0.76737	0.87597*
	3.87084	0.03152	16-29	0.40309	0.63489*
	4.68195	0.00303	30-70	0.12449	0.35283*
Far length	0.45680	0.17631	1-3	0.23211	0.48177*
but bright	0.71373	0.09980	4-15	0.82902	0.91050*
	1.79442	0.02799	16-29	0.58465	0.76461*
	2.48377	0.00189	30-70	0.20396	0.45161*
Hind Foot	2.40433	0.11518	1-3	0.33954	0.58270*
Length	2.61515	0.06569	4-15	0.81333	0.90184*
	3.37601	0.00991	16-29	0.39367	0.62743*
	3.59137	0.00118	30-70	0.16730	0.40902*

*significant at a=.05

Table 4.	Data	a anal	yses.	Means	and	standard	errors
(p = .95)	for g	growth	of .	Dipodom	ys ord	lii reared	under
standard	labor	atory c	ond	itions: int	erval	2	

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
Body Weight	1 2 3 4	56 57 61	5.1500 6.0666 7.0770	0.1682 0.2457 0.3015	7.03 8.25
	5 6 7 8 9	62 62 56 62 62	9.1540 10.2346 10.8339 12.0661 12.8354	0.3429 0.4084 0.4628 0.4595 0.5507 0.6160	
	11 12 13 14 15	59 62 60 60 60	13.3804 14.3620 15.2258 16.0208 16.9891	0.6113 0.7054 0.7978 0.8262 0.9213	18.73
	16 17 18 19 20	58 53 52 52 48	18.1534 20.2178 21.6201 22.7211 24.0426	1.0490 1.0572 1.0529 1.1551 1.1245	19.89
	21 22 23 24 25	42 48 50 41 46	24.9678 26.0895 26.5329 27.7060 28.7434	1.2778 1.1287 1.3522 1.2515 1.2595	
	26 27 28 29 35	42 43 38 19 38	29.1023 30.4964 30.6341 29.1526 37.5052	1.5062 1.3308 1.3890 1.6334 1.5754	34.12
	42 49 56 63 70	33 33 34 34 25	43.7596 46.9423 48.0146 51.9470 52.4299	1.5976 1.7777 1.9282 1.5389 2.5628	55.15
Total Length	1 2 3 4 5	56 57 61 57	64.5625 69.3684 74.3115 79.5000	0.9330 1.0597 1.1455 1.4427	74.44 79.83
	6 7 8 9 10	62 62 56 62 62	84.9435 91.2097 96.2679 102.8226 108.6935	1.6953 1.9486 2.4078 2.4997 2.8283	
	11 12 13 14 15	59 62 60 60 60	114.5424 121.7016 128.1333 133.5000 139.1917	3.1003 3.2976 3.7032 4.007 4.2200	149.90
	16 17 18 19 20	58 53 52 52 48	145.4655 154.7358 162.2115 167.1923 173.0541	4.5796 4.1553 3.9890 4.1653 4.0075	154.47
	21 22 23 24 25	42 48 50 41 46	176.9524 180.1042 181.5200 186.8537 191.1848	4.7612 4.1725 5.4214 4.9669 4.8028	
	26 27 28 29 35	42 43 38 19 38	192,7738 197,2325 197,8816 197,1579 212,2763	5.5506 4.9699 5.1878 6.6640 5.2249	210.61
÷	42 49 56 63 70	33 33 34 34 25	223.3182 227.6212 232.0441 234.9412 236.8400	4.7654 4.8573 4.7776 5.0328 6.7990	237.46
Tail Length	1 2 3 4 5	56 57 61 57	21.0179 23.6140 25.8197 29.0789	0.5766 0.7475 0.7625 0.9119	23.31 29.08
	6 7 8 9 10	62 62 56 62 62	32.1048 35.7339 36.3036 42.8145 46.7581	0.9968 1.1426 1.5005 1.6356 1.9168	
	11 12 13 14	59 62 60 60 60	50.9407 55.8952 59.9917 63.9667 68.0083	2.2366 2.4571 2.7131 2.9376 3.1047	75.18

Appendix 1 (continued)

Table 4 (continued)

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
	16 17 18 19	58 53 52 52	72.4569 79.2547 84.7211 87.9038	3.5354 3.2713 3.0484 3.2883	79.04
	20	48	91.9583	3.1514	
	22	48	96.8333	3.4175	
	23 24 25	41 46	100.9878	3.9715 3.8046	
	26	42	104.6786	4.2054	
	28	38	108.6447	4.4389	117 02
	35	38	117.7500	4.3064	117.72
	42 49	33 33	124.8636 127.2424	4.1876 4.9671	
	56 63	34 34	131.2647 132.4412	6.2342 6.2934	
	70	25	133.9200	8.3100	132.95
Ear Length	1 2	56	1.9080	0.846	2.11
	3	57	2.2756	0.1012	3.03
	5	57	3.0307	0.1263	
	7	62	3.8298	0.1493	
	8 9	62	4.1841 4.6706	0.1768	
	10	62	5.6679	0.2012	
	12	62	6.2766	0.2276	
	13	60 60	7.5091	0.2902	9.03
	15	58	8,5589	0.3071	9.30
	17	53	9.3454	0.2487	
	19	57	10.3238	0.2577	
	21	42	10.9064	0.2376	
	22	48 50	11.2764	0.1925	
	24 25	41 46	11.6861 11.8649	0.3564 0.2163	
	26	42	11.8440	0.3256	
	27 28	43 38	12.2667 12.3676	0.2208	1775 - Jacks
	29 35	19 38	11.9916 12.8021	0.3057 0.2247	13.20
	42	33	12.9902	0.2358	
	49 56	33	13.4105	0.2617	
	63 70	25	13.6444	0.3781	13.73
Hind Foot Length	1	56	12,4585	0.2593	
	3 4	57	13.9899	0.3230	16.64
	5	57	17.2369	0.4457	123,6454
	6 7	62 62	19.0288 20.8773	0.5003 0.5289	
	8 9	50 62	22.5412 24.3454	0.6383 0.6215	
	10	62	25.9919	0.6557	
	11 12	59 62	27.5569 29.0654	0.7198	
	13	60	31.1656	0.6892	26.0
	15	60	32.0184	0.6716	36.2
	16	53	34.1152	0.5955	33.4
	19	52	35.4180	0.422	
	20	40	36,1235	0.3665	
	22	48	36.5803	0.3333	
	24 25	41 46	37.1377 37.1277	0.3995 0.3577	
	26	42	37.3106	0.4782	
	27 28	43 38	37.5345	0.3637 0.4027	
	29 35	19 38	37.2031 37.9357	0.6046	38.8
	42	33	38.1863	0.4390	
	49 56	33 34	38.4466	0.4448	
	63 70	34 25	38.7896	0.4500	39.2

Table 5. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *Dipodomys ordii* reared under standard laboratory conditions: model intervals

		Instantaneous			Correlation
		Rate	Age in Davs		Coefficient
Parameter	lnA	(k)	(t=t-1)	R ²	(r)
Rody Weight	1.75239	0.07725	1-21	0.82394	0.90771*
body weight	2.48434	0.03561	22-28	0.23709	0.48691*
	3.08276	0.01478	29-63	0.65483	0.80921*
	3.40514	0.00796	64-70	0.14477	0.38048*
Total Length	4,16814	0.05383	1-21	0.89860	0.94794*
9 - 1	4.72811	0.02146	22-28	0.27076	0.52034*
	5.20556	0.00435	29-63	0.36751	0.60622*
	5.36766	0.00138	64-70	0.01398	0.11823
Tail Length	3.05487	0.08071	1-21	0.88008	0.93812*
	3.99497	0.02635	22-28	0.19289	0.43919*
	4.59668	0.00488	29-63	0.19396	0.44040*
	4.85215	0.00044	64-70	0.00042	0.02049
Ear Length	0.72929	0.09263	1-21	0.90898	0.95392*
	1.86481	0.02513	22-28	0.42248	0.64998*
	2.43829	0.00285	29-63	0.26038	0.51027*
	2.56189	0.00072	64-70	0.00629	0.07930
Hind Foot	2.64816	0.05570	1-21	0.85808	0.92632
Length	3.41655	0.00826	22-28	0.25864	0.50856*
122	3.59649	0.00104	29-63	0.12620	0.35524'
	3.34265	0.00460	64-70	0.18084	0.42525*

Table 6. Data analyses. Means and standard errors (p=.95) for growth in body weight of *Dipodomys ordii* reared under standard laboratory conditions: model intervals

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
Rody Weight	1				6.22
body weight	2	56	5 1500	0 1682	1002000
	3	57	6.0666	0.2457	
	5	61	7 0770	0 3015	
	5	57	8.0131	0.3429	
	6	62	9.1540	0.4084	
	7	62	10.2346	0.4628	
	8	56	10.8339	0.4595	
	9	62	12.0661	0.5507	
	10	62	12.8354	0.6160	
	11	59	13.3804	0.6113	
	12	62	14.3620	0.7054	
	13	60	15.2258	0.7978	
	14	60	16.0208	0.8262	
	15	60	16.9891	0.9213	
	16	58	18.1534	1.0490	
	17	53	20.2178	1.0572	
	18	52	21.6201	1.0529	
	19	52	22.7211	1.1551	
	20	48	24.0426	1.1245	
	21	42	24.9678	1.2778	29.19
	22	48	26.0895	1.1287	26.23
	23	50	26.5329	1.3522	
	24	41	27.7060	1.2515	
	25	46	28.7434	1.2595	
	26	42	29.1023	1,5062	
	27	43	30.4964	1.3308	
	28	38	30.6341	1.3890	32.49
	29	19	29.1526	1.6334	33.49
	35	38	37.5052	1.5754	
	42	33	43.7596	1.5976	
	49	33	46.9423	1.7777	
	56	34	48.0146	1.9282	
	63	34	51.9470	1.5389	55.31
	70	25	52.4299	2.5628	52.56

GROWTH DATA ANALYSES FOR Peromyscus maniculatus

Figure 12. Means, standard errors (p=.95) and growth rates for body weight of *Peromyscus maniculatus* reared under standard laboratory conditions.

Figure 14. Means, standard errors (p=.95) and growth rates for tail length of *Peromyscus maniculatus* reared under standard laboratory conditions.

Figure 13. Means, standard errors (p=.95) and growth rates for total length of *Peromyscus maniculatus* reared under standard laboratory conditions.

Figure 15. Means, standard errors (p=.95) and growth rates for ear length of *Peromyscus maniculatus* reared under standard laboratory conditions.

Figure 16. Means, standard errors (p = .95) and growth rates for hind foot length of *Peromyscus maniculatus* reared under standard laboratory conditions.

Figure 17. Means, standard errors (p=.95) and growth rates for dried eye lens weight of *Peromyscus maniculatus* reared under standard laboratory conditions.

Figure 18. Means, standard errors (p=.95) and growth rates for skull length of *Peromyscus maniculatus* reared under standard laboratory conditions.

Figure 19. Means, standard errors (p=.95) and growth rates for nasal length of *Peromyscus maniculatus* reared under standard laboratory conditions.

Figure 20. Means, standard errors (p=.95) and growth rates for body weight of *Peromyscus maniculatus* reared under standard laboratory conditions: model intervals.

Figure 22. Means, standard errors (p=.95) and growth rates for total length of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 hr light and 9 hr dark.

Figure 21. Means, standard errors (p=.95) and growth rates for body weight of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 hr light and 9 hr dark.

Figure 23. Means, standard errors (p=.95) and growth rates for tail length of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 hr light and 9 hr dark.

Vertebrate

Figure 24. Means, standard errors (p=.95) and growth rates for ear length of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 hr light and 9 hr dark.

Figure 25. Means, standard errors (p=.95) and growth rates for hind foot length of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 hr light and 9 hr dark.

Figure 26. Means, standard errors (p=.95) and growth rates for body weight of *Peromyscus maniculatus* reared under standard laboratory conditions: 9 hr light and 15 hr dark.

Figure 27. Means, standard errors (p=.95) and growth rates for total length of *Peromyscus maniculatus* reared under standard laboratory conditions: 9 hr light and 15 hr dark.

Figure 28. Means, standard errors (p=.95) and growth rates for tail length of *Peromyscus maniculatus* reared under standard laboratory conditions: 9 hr light and 15 hr dark.

Figure 30. Means, standard errors (p=.95) and growth rates for hind foot length of *Peromyscus maniculatus* reared under standard laboratory conditions: 9 hr light and 15 hr dark.

Figure 29. Means, standard errors (p=.95) and growth rates for ear length of *Peromyscus maniculatus* reared under standard laboratory conditions: 9 hr light and 15 hr dark.

Figure 31. Comparison of growth rates for body weight of *Peromyscus maniculatus* reared under photoperiods of 15 hr light, 9 hr dark and 9 hr light, 15 hr dark.

Vertebrate

Appendix 2 (continued)

Figure 32. Comparisons of growth rates for total length of *Peromyscus maniculatus* reared under photoperiods of 15 hr light, 9 hr dark and 9 hr light, 15 hr dark.

Figure 33. Comparison of growth rates for tail length of *Peromyscus maniculatus* reared under photoperiods of 15 hr light, 9 hr dark and 9 hr light, 15 hr dark.

Figure 34. Comparison of growth rates for ear length of *Peromyscus maniculatus* reared under photoperiods of 15 hr light, 9 hr dark and 9 hr light, 15 hr dark.

Figure 35. Comparison of growth rates for hind foot length of *Peromyscus maniculatus* reared under photoperiods of 15 hr light, 9 hr dark and 9 hr light, 15 hr dark.

Figure 36. Means, standard errors (p=.95) and growth rates for body weight of *Peromyscus maniculatus* reared under standard laboratory conditions, 15 C.

Figure 38. Means, standard errors (p=.95) and growth rates for tail length of *Peromyscus maniculatus* reared under standard laboratory conditions, 15 C.

Figure 37. Means, standard errors (p=.95) and growth rates for total length of *Peromyscus maniculatus* reared under standard laboratory conditions, 15 C.

Figure 39. Means, standard errors (p=.95) and growth rates for ear length of *Peromyscus maniculatus* reared under standard laboratory conditions, 15 C.

22

Appendix 2 (continued)

43

Figure 40. Means, standard errors (p=.95) and growth rates for hind foot length of Peromyscus maniculatus reared under standard laboratory conditions, 15 C.

Age (days)

Figure 42. Means, standard errors (p=.95) and growth rates for total length of Peromyscus maniculatus' reared under standard laboratory conditions, 30 C

Figure 43. Means, standard errors (p=.95) and growth rates for tail length of Peromyscus maniculatus reared under standard laboratory conditions, 30 C.

Figure 44. Means, standard errors (p=.95) and growth rates for ear length of *Peromyscus maniculatus* reared under standard laboratory conditions, 30 C.

Figure 45. Means, standard errors (p=.95) and growth rates for hind foot of *Peromyscus maniculatus* reared under standard laboratory conditions, 30 C.

Figure 46. Comparison of growth rates for body weight of *Peromyscus maniculatus* reared at 15, 22 and 30 C.

Figure 47. Comparison of growth rates for tail length of Peromyscus maniculatus reared at 15, 22 and 30 C.

Figure 48. Comparison of growth rates for ear length of Peromyscus maniculatus reared at 15, 22 and 30 C.

Figure 49. Comparison of growth rates for hind foot length of *Peromyscus maniculatus* reared at 15, 22 and 30 C.

Figure 50. Means, standard errors (p=.95) and growth rates for body weight of *Peromyscus maniculatus* reared under standard laboratory conditions, fed 8 g/day.

Figure 51. Means, standard errors (p=.95) and growth rates for total length of *Peromyscus maniculatus* reared under standard laboratory conditions, fed 8 g/day.

Figure 52. Means, standard errors (p=.95) and growth rates for tail length of *Peromyscus maniculatus* reared under standard laboratory conditions, fed 8 g/day.

Figure 54. Means, standard errors (p=.95) and growth rates for hind foot length of *Peromyscus maniculatus* reared under standard laboratory conditions, fed 8 g/day.

Figure 53. Means, standard errors (p=.95) and growth rates for ear length of *Peromyscus maniculatus* reared under standard laboratory conditions, fed 8 g/day.

Figure 55. Comparison of growth rates for body weight of *Peromyscus maniculatus* fed *ad libitum*, 8 g/day and 3.5 g/day.

Appendix 2 (continued)

Figure 56. Comparison of growth rates for total length of *Peromyscus maniculatus* fed *ad libitum*, 8 g/day and 3.5 g/day.

Figure 58. Comparison of growth rates for ear length of *Peromyscus maniculatus* fed *ad libitum*, 8 g/day and 3.5 g/day.

Figure 57. Comparison of growth rates for tail length of *Peromyscus maniculatus* fed *ad libitum*, 8 g/day and 3.5 g/day.

Figure 59. Comparison of growth rates for hind foot length of *Peromyscus maniculatus* fed *ad libitum*, 8 g/day and 3.5 g/day.

Table 7. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *Peromyscus maniculatus* reared under standard laboratory conditions

		Instantaneous Relative Growth	Ace in Dave		Correlation
Parameter	lnA	(k)	(t=t-1)	R ²	(r)
Body Weight	0,66102	0.15828	1-3	0.37966	0.61616*
body weight	0.92566	0.09159	4-12	0.63025	0.79388*
	1.41083	0.04137	13-22	0.42262	0.65009*
	2,66652	0.00160	23-70	0.11384	0.33740*
Total Length	3,87527	0.06472	1-3	0.35569	0.59639*
10000 000810	3.91997	0.05626	4-12	0.78728	0.88726*
	4.23351	0.02939	13-22	0.46072	0.67876*
	4.98719	0.00068	23-70	0.23789	0.48773*
Tail Length	2.45307	0.08341	1-3	0.11878	0.34464*
2004 00000	2.47548	0.09832	4-12	0.81635	0.90352*
	3.18183	0.03792	13-22	0.55723	0.74647*
	4.16125	0.00057	23-70	0.12132	0.34818*
Far Length	0,53995	0.30138	1-3	0.47287	0.68765*
nor nungen	1.21799	0.08630	4-12	0.75276	0.86761*
	1.65607	0.05458	13-22	0.69317	0.83256*
	2.84218	0.00052	23-70	0.19165	0.43777*
Hind Foot	1,94262	0.08049	1-3	0.34692	0.58899*
Length	2.02402	0.06860	4-12	0.78758	0.88745*
All Contractions	2.58473	0.01862	13-22	0.54394	0.73752*
	3.00802	0.00021	23-70	0.07552	0.27480*

Table 8. Data analyses. Means and standard errors (p=.95) for growth of *Peromyscus maniculatus* reared under standard laboratory conditions

Parameter	Age in Dave	Sample Size (N)	Mean	Standard Error (SE)	Antilog of lnW
arameter	inge in bays				
ody Weight	1	142	1.9778	0.0503	2.27
	.2	149	2.3030	0.0639	
	3	148	2.6804	0.0777	3.11
	4	144	3.1173	0.0967	3.63
	5	138	3.6496	0.1158	
	6	133	4.1240	0.1205	
	7	122	4.6028	0.1432	
	8	122	4.0389	0.1559	
	9	120	5.5066	0.1561	
	10	118	5.9203	0.1708	
	11	118	6.2766	0.1768	
	12	117	6.6452	0.1843	7.54
	13	115	6.8613	0.1750	7.01
	14	116	7.1245	0.1829	
	15	116	7.3538	0.1882	
	16	113	7.6548	0.2037	
	17	116	7.9508	0.2172	
	18	112	8.3441	0.2323	
	19	115	8.6885	0.2284	
	20	110	9.1153	0.2342	
	21	113	9.5300	0.2267	
	22	104	9.8491	0.2350	10.18
	28	110	12.7872	0.3154	
	35	107	14.7967	0.3566	
	42	107	16.1107	0.4733	
	49	102	16.5813	0.5735	
	56	99	16.7689	0.5962	
	63	99	17.0408	0.6416	
	70	97	16.9978	0.6427	16.08
otal Length	1	142	48.1725	1.6513	51.37
	2	149	51.3133	0.6360	
	3	148	54.8277	0.7093	58.50
	4	144	58.6736	0.7148	63.12
	5	138	62,7898	0.8232	
	6	133	67.1165	0.8012	
	7	122	71.1762	0.8886	
	9	122	75.3689	0.9997	
	9	120	79.7750	1.0451	
	10	118	83.7669	1.1006	
	11	119	88 22/6	1 1605	
	11	110	00.2240	1.1005	09 50
	12	115	07 23/0	1.2440	100.99
	13	115	100 864/	1.2470	100.99
	14	116	100.8004	1.3207	
	15	110	104.2241	1.3303	

		and the second			
Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
	16 17 18 19 20	113 116 112 115	108.0044 111.0905 115.1295 117.9609	1.3205 1.3895 1.4028 1.3619	1 American
	21 22 28 35 42	113 104 110 107 107	123.1460 125.1442 139.5000 147.7850 151.2056	1.2382 1.3056 1.2732 1.1961 1.3111	131.63
	49 56 63 70	102 99 99 99	153.3068 154.8586 156.0303 156.6804	1.4205 1.4827 1.519 1.527	153.55
Tail Length	1 2 3 4 5	142 149 148 144 138	12.6232 12.4832 13.9723 15.6250 17.5072	1.6513 0.2337 0.2446 0.2821 0.3369	12.63 14.92 17.60
	6 7 8 9 10	133 122 122 120 118	19.8120 21.8451 24.1229 26.6625 29.1102	0.3735 0.4598 0.5475 0.5172 0.5701	
	11 12 13 14 15	118 117 115 116 116	31.7881 34.5342 37.1087 39.4008 41.4784	0.6536 0.6822 0.7347 0.7680 0.7230	38.67 39.41
	16 17 18 19 20	113 116 112 115 110	43.3805 45.0388 46.9955 48.3739 49.6727	0.7298 0.7625 0.8067 0.8050 0.8269	
	21 22 28 35 42	113 104 110 107	51.3274 52.2019 60.3227 64.4906 66.0701	0.8805 0.7986 0.7395 0.7350 0.7829	55.48
	49 56 63 70	102 99 99 97	67.0784 67.5606 67.9596 68.2938	0.8517 0.8678 0.8654 0.9106	66.75
Ear Length	1 2 3 4 5	142 149 148 144 138	1.7943 2.2959 3.3387 4.2357 4.7888	0.0499 0.1270 0.1560 0.1222 0.1048	2.32 4.24 4.77
	6 7 8 9 10	133 122 122 120 118	5.3266 5.8022 6.2457 6.7322 7.3075	0.0919 0.1047 0.1179 0.1253 0.1476	
	11 12 13 14 15	118 117 115 116 116	8.0515 8.8031 9.5939 10.5655 11.4211	0.1778 0.2091 0.2081 0.2293 0.2470	9.52 10.64
	16 17 18 19 20	113 116 112 115 110	12.2974 13.0276 13.8805 14.4737 14.9111	0.2431 0.2448 0.2148 0.2017 0.1940	
	21 22 28 35 42	113 104 110 107 107	15.2613 15.6050 16.6859 17.1857 17.5307	0.1787 0.1854 0.1603 0.1650 0.1573	17.39
ais.	49 56 63 70	102 99 99 97	17.7119 17.8555 17.9347 17.9829	0.1682 0.1788 0.1852 0.1817	17.78
Hind Foot Length	1 2 3 4 5	142 149 148 144 138	7.0293 7.5625 8.2352 9.0428 9.8536	0.0962 0.1171 0.1269 0.1491 0.1689	7.59 8.88 9.95
	6 7 8 9 10	133 122 122 120 118	10.7640 11.6977 12.5351 13.4116 14.1479	0.1887 0.1935 0.2044 0.1976 0.2023	:1:
	11 12 13 14	118 117 115 116	14.9343 15.7101 16.2960 16.8666	0.1911 0.1952 0.1931 0.1789	17.24 16.88

Table 8 (continued)

Appendix 2 (continued)

Table 10 (continued)

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
No contraction of	15	116	17.3013	0.1709	
	16	113	17.7238	0.1566	
	17	116	18.0828	0.1474	
	18	112	18.4252	0.1415	
	19	115	18.6638	0.1385	
	20	110	18.9185	0.1290	
	21	113	19.1223	0.1323	
	22	104	19.3284	0.1528	19.97
	28	110	19.9457	0.1289	
	35	107	20.2929	0.1205	
	42	107	20.4224	0.1133	
	49	102	20.5096	0.1186	
	56	99	20.6716	0.1942	
	63	99	20.6291	0.1266	
	70	97	20.6576	0.1267	20.53

Table 9. 1	Data a	nalyses. Ir	stantaneous	relative g	growth
rates	and c	orrelation	coefficients	for grov	wth of
skulls	of Pe	eromyscus	maniculatus	reared	under
stand	ard lab	poratory c	onditions		

		Instantaneous Relative Growth			Correlation
		Rate	Age in Days	2	Coefficient
Parameter	lnA	(k)	(<i>t</i> = <i>t</i> -1)	R ²	<i>(r)</i>
Lens Weight	-8.18573	0.36342	1-3	0.44550	0.66745*
1	-7.57469	0.12618	4-12	0.91954	0.94892*
	-6.89356	0.05818	13-22	0.92452	0.96151*
Skull Total	2.57337	-0.04973	1-3	0.04:44	0.20357
Length	2.53206	0.03613	4-12	0.56910	0.75439*
	2.92890	0.00728	13-22	0.29546	0.54356*
Zygomatic	1.87072	-0.06665	1-3	0.06776	0.26031
Breadth	1.90635	0.02457	4-12	0.30443	0.55175
	2.09949	0.01026	13-22	0.12450	0.35285
Foramen	0.87440	0.02547	1-3	0.01227	0.11077
Magnum	0.94833	0.03230	4-12	0.37512	0.61247*
Height	1.24585	0.00381	13-22	0.00505	0.07106
Mastoidal	1.78600	0.01240	1-3	0.00239	0.04889
Breadth	1.87614	0.02825	4-12	0.24868	0.50861
	2.20901	0.00121	13-22	0.00400	0.06325
Nasal Length	1,50519	-0.05042	1-3	0.01942	0.13938
100-100 a - 2010 (30 000)	1.31158	0.04636	4-12	0.57022	0.75513*
	1.81674	0.01473	13-22	0.35931	0.59942*
Cranium	2.03463	-0.03940	1-3	0.04096	0.20239
Width	2.02471	0.02910	4-12	0.62524	0.79072*
	2.58174	-0.01490	13-22	0.01624	0.12744

*significant at a=.05

Table 10. Data analases. Means and standard errors (p=.95) for growth of skulls of *Peromyscus maniculatus* reared under standard laboratory conditions

Parameter	Age in Days	Sample Síze (N)	Mean X	Standard Error (SE)	Antilog of lnk
Lens Weight	1	6	0.0003	0.0001	0.00040
Sectores account	2	8	0.0005	0.0000	
	3	7	0.0006	0.0000	0.00057
	4	6	0.0007	0.0001	0.00074
	5	9	0.0008	0.0000	
	6	7	0.0010	0.0000	
	7	8	0.0011	0.0001	
	8	10	0.0013	0.0001	
	9	8	0.0014	0.0001	
	10	10	0.0017	0.0002	
	11	6	0.0018	0.0001	
	12	5	0.0019	0.0000	0.00205
	13	7	0.0020	0.0001	0.00203
	14	10	0.0022	0.0001	
	15	9	0.0023	0.0000	

Parameter	Age in Days	Sample Size (N)	$\frac{Mean}{X}$	Standard Error (SE)	Antilog of lnW
	16 17 18 19 20	9 7 10 8 9	0.0023 0.0025 0.0029 0.0030 0.0031	0.0001 0.0001 0.0001 0.0000 0.0000	
	21 22	6 10	0.0033 0.0033	0.0000 0.0001	0.00344
Skull Length	1 2 3 4 5	6 8 7 6 9	11.2883 11.7337 12.8151 12.9083 14.6300	0.8886 0.2966 0.6000 1.0390 0.5668	12.47 11.29 14.53
	6 7 8 9 10	7 8 10 8 10	15.5014 15.6375 17.5800 17.0350 17.3500	1.1443 1.6874 0.3409 0.3943 0.4772	
	11 12 13 14 15	6 5 7 10 9	17.2983 18.1080 19.7543 20.7590 20.8544	1.4467 0.3029 0.4530 0.3569 0.5572	19.39 20.55
	16 17 18 19 20	9 7 10 8 9	21.3200 20.9571 21.0860 21.1750 21.5155	0.5227 0.3735 0.3810 0.4345 0.7783	
	21 22	6 10	21.3567 21.8880	0.6997 0.4499	21.96
Zygomatic Breadth	1 2 3 4 5	6 8 7 6 9	5.6283 5.7075 6.1129 6.5250 7.4222	0.4062 0.3815 0.2637 0.7281 0.4681	6.07 5.31 7.41
	6 7 8 9 10	7 8 10 8 10	7.8928 7.9400 8.8660 8.6000 8.2180	0.6084 0.5098 0.5709 0.6123 0.5115	
	11 12 13 14 15	6 5 7 10 9	8.2150 8.1760 9.3657 8.9870 9.9333	0.5601 0.3056 0.4646 0.2651 0.8298	9.02 9.29
	16 17 18 19 20	9 7 10 8 9	9.1589 9.3271 10.1060 9.7575 9.4522	0.2983 0.4457 0.5985 0.6042 0.4976	
	21 22	6 10	10.3000 10.1900	0.7557 0.4108	10.17
Foramen Magnum Height	1 2 3 4 5	6 8 7 6 9	2,1667 2,3137 2,6229 2,8400 2,9256	0.3551 0.1734 0.1541 0.3203 0.2753	2.45 2.58 2.93
	6 7 8 9 10	7 8 10 8 10	2.9743 3.0762 3.3080 3.4587 3.3990	0.3627 0.2559 0.1971 0.1200 0.2327	1
	11 12 13 14 15	6 5 7 10 9	3.8217 3.5340 3.5471 3.9360 3.8078	0.2985 0.3079 0.2810 0.2307 0.3246	3.79 3.65
	16 17 18 19 20	9 7 10 8 9	3.6956 3.6800 4.1650 3.6512 3.7756	0.0865 0.1941 0.1652 0.1126 0.2359	
	21 22	6 10	3.5850 3.6750	0.5127 0.2549	3.77
Mastoidal Breadt	h 1 2 3 4 5	6 8 7 6 9	5.3933 5.5100 6.5029 6.8833 7.2555	0.4567 0.7180 0.4668 0.6280 0.2395	6.03 6.11 7.30
	6 7 8 9 10	7 8 10 8 10	7.7771 7.6487 8.4750 8.7525 7.9980	0.4681 0.4382 0.2699 0.2195 0.1804	

Appendix 2 (continued)

Table 10 (continued)

arameter	Age in Days	Sample Size (N)	Me <u>a</u> n X	Standard Error (SE)	Antilog of lnW
	11	6	8 7117	0.6311	
	12	5	8,9020	0.2533	9.11
	13	7	9 0871	0.2010	9.24
	16	10	9.4440	0.2282	
	15	9	9.4167	0.5209	
	16	0	0 2422	0 2526	
	10	9	9.3422	0.2093	
	10	10	9 5630	0 1527	
	10	8	9,2950	0.2228	
	20	9	9.3178	0.1309	
	21	6	8 8433	0.6273	
	22	10	9.4920	0.2359	9.34
Nasal Length	1	6	3.0450	0 1993	4.28
Area de la companya d	2	8	3.0662	0.2432	
	3	7	3.6786	0.1770	3.87
	4	6	3.9100	0.4062	4.47
	5	9	4.3833	0.1834	
	6	7	4.7528	0.6217	
	7	8	5.2037	0.2698	
	8	10	5.8740	0.1944	
	9	8	5.4862	0.2364	
	10	10	5,5910	0.0320	
	11	6	5.4833	0.4563	
	12	5	5.9600	0.4620	6.48
	13	7	7.0686	0.5371	7.45
	14	10	7.4710	0.2472	
	13	.,	7.0722		
	16	9	7,9989	0,2072	
	17	7	7.8914	0.3309	
	18	10	7.7420	0.3219	
	20	9	8.0411	0.4024	
		2	0.0717		
	21 22	10	8.2717 8.4130	0.3633	8.50
120 15 10045 B		61			
Cranium Width	1	6	6.8217	0.3735	7.35
	3	7	7 5143	0.3340	6 70
	4	6	7 6883	0.5540	0.79
	5	9	8.6044	0.2397	
	6	7	9 0128	0 5111	
	7	8	9.2625	0.2032	
	8	10	9.6190	0,2324	
	9	8	10.0300	0.4036	
	10	10	10.0140	0.2631	
	11	6	9,6267	0,6430	
	12	5	9.9660	0.1939	8.49
	13	7	10.3314	0.3528	10.89
	14	10	10.9710	0.1542	
		1	10.3011	0.3233	
	16	9	10.9589	0.1464	
	17	10	10.96/1	0.228/	
	18	10	10.7867	0.1152	
	20	8	10.7533	0.2958	
		242		0. 5000	
	21	6	11.1067	0.5221	9 51
	22	10	10.1230	2,2341	9.01

Table 11. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *Peromyscus maniculatus* reared under standard laboratory conditions: model intervals

		Instantaneous Relative Growth			Correlation
Parameter	lnA	Rate (k)	Age in Days (t=t-1)	R^2	Coefficient (r)
Body Weight	0.82183	0.09551	1-15	0.81434	0.90240*
aca) nessus	1.36713	0.04371	16-22	0.28569	0.53449*
	2.11231	0.01625	23-42	0.32544	0.57047*
	2.75128	0.00092	43-70	0.30905	0.55592*
Total Length	3.89968	0.05657	1-15	0.91070	0.95430*
total newser	4.29901	0.02588	16-22	0.21665	0.46545*
	4.78663	0.00577	23-42	0.34030	0.58335*
	5.02705	0.00036	43-70	0.73694	0.85845*
Tail Length	2.47043	0.09522	1-15	0.90279	0.95015*
turi congen	3.30358	0.03137	16-22	0.32185	0.56731*
	3.92830	0.00653	23-42	0.26103	0.51091*
	4.20555	0.00022	43-70	0.17568	0.41914*
Far length	0.88454	0,12028	1-15	0.83816	0.91551*
but hengen	1,92170	0.04031	15-22	0.45754	0.67641*
	2,71912	0.00354	23-42	0.14627	0.38245*
	2.87139	0.00029	43-70	0.61716	0.78559*
Hind Foot	1,99640	0.06754	1-15	0.90271	0.95011*
length	2.66462	0.01432	16-22	0.32043	0.56606*
	2.94824	0.00170	23-42	0.88669	0.94164*
	3.02104	0.00010	43-70	0.16531	0.40658*

Table 12. Data analyses. Means and standard errors $(p =$
.95) for growth in body weight of Peromyscus manic-
ulatus reared under standard laboratory conditions:
model intervals.

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
Body Weight	1	142	1,9778	0.0503	2.50
bod) nevBite	2	149	2.3030	0.0639	
	3	148	2.6804	0.0777	
	4	144	3.1173	0.0967	
	5	138	3.6496	0.1158	
	6	133	4.1240	0.1205	
	7	122	4.6028	0.1432	
	8	122	5.0389	0.1559	
	9	120	5.5066	0.1561	
	10	118	5.9203	0.1708	
	11	118	6.2766	0.1768	
	12	117	6.6452	0.1843	
	13	115	6.8613	0.1750	
	14	116	7.1245	0.1829	
	15	116	7.3538	0.1882	9.52
	16	113	7.6548	0.2037	7.89
	17	116	7.9508	0.2172	
	18	112	8.3441	0.2323	
	19	115	8.6885	0.2284	
	20	110	9.1153	0.2342	
	21	113	9.5300	0.2267	
	22	104	9.8491	0.2350	10.25
	28	110	12.7872	0.3154	
	35	107	14.7967	0.3566	
	42	107	16.1107	0.4733	16.34
	49	102	16,5813	0.5735	
	56	99	16.7689	0.5962	
	63	99	17.0408	0.6416	
	70	99	16.9978	0.6427	16.69

Table 13. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 hr light and 9 hr dark

		Instantaneous			Correlation
		Rate	Age in Days		Coefficient
Parameter	lnA	(k) ⁻	(t=t-1)	R ²	(r)
Body Weight	. 79116	. 17204	1-3	. 51828	.71991*
beel, weeking	1.07092	.09751	4-12	.69919	.83617*
	1.76158	.03007	13-22	.37941	.61596*
Total Length	3,92484	.07296	1-3	.58088	.76215*
Total pengen	3,97970	,05852	4-12	.88460	.94053*
	4.35586	.02601	13-22	.83171	.91198*
Tail Length	2.42176	.11599	1-3	.54679	.73945*
Difference of the second second	2.52457	. 10799	4-12	.91428	.95617*
	3.31886	.03442	13-22	.80311	,89616*
Ear Length	.43355	.41756	1-3	.81495	.90274*
aut nongen	1.25414	.08943	4-12	.88073	.93847*
	1.76315	.05323	13-22	.82671	.90923*
Hind Foot	1.95739	.09537	1-3	.61440	.78383*
	2.07711	.07137	4-12	.85993	.92732*
	2.65722	.01663	13-22	.70858	.84177*

Table 14. Data analyses. Means and standard errors (p=.95) for growth of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 hr light, 9 hr dark

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
Body Weight	1	16	2.0937	0.1200	2.17
	2	16	2.4225	0.1509	
	3	16	2.7969	0.193	3.20
	4	16	3.2375	0.2364	3.64
	5	16	3.6187	0.2647	
	6	16	4.0625	0.3207	
	7	16	4.5687	0.3618	
	8	16	5.0406	0.3829	
	9	16	5.5219	0.4071	
	10	16	5.8062	0.4655	
	11	16	6.0937	0.5298	
	12	16	6.4719	0.6276	7.64
	13	16	6.8812	0.6469	7.05
	14	16	7.2969	0.6939	
	15	16	7.5531	0.7404	

Appendix 2 (continued)

Table 14 (continued)

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE	Antilog of lnk
	16	16	18.1106	0.2361	
	17	16	18.2437	0.2271	
	18	16	18.6156	0.3213	
	19	16	18.8031	0.2898	
	20	15	19.1113	0.2003	
	21	15	19.3200	0 2035	
	22	15	19.6087	0.4178	20.

Table 15. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *Peromyscus maniculatus* reared under standard laboratory conditions: 9 hr light and 15 hr dark

		Instantaneous Relative Growth				
Parameter	: lnA	Rate (k)	Age in Days (t=t-1)	R ²	Coefficient (r)	
Body Weight	.73397	.14338	1-3	.50162	.70825*	
	.92246	.09257	4-12	.67777	.82326*	
	1.33191	.04780	13-22	.37953	.61606*	
Total Length	3.91619	.05433	1-3	.51005	.71417*	
	3.93399	.05769	4-12	.89747	.94734*	
	4.20928	.03283	13-22	.74258	.86329*	
Tail Length	2.41956	.11841	1-3	.69674	.83470*	
	2.50177	.10348	4-12	.93614	.96754*	
	3.14159	.04345	13-22	.81389	.90215*	
Ear Length	.57139	.30618	1-3	. 55644	.74594*	
and an and a second	1.21550	.08794	4-12	.90370	.95063*	
	1.53046	.06424	13-22	.83862	.91576*	
Hind Foot	1.94881	.07875	1-3	.57418	.75774*	
	2.01063	.07252	4-12	.91445	.95626*	
	2.56372	.02049	13-22	.80236	.89574*	

Table 16. Data analyses. Means and standard errors (p=.95) for growth of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 hr light, 9 hr dark

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnk
Body Weight	1	15	2.2233	0.1921	2.62
	2	15	2.6600	0.2026	
	3	15	3.1267	0.2278	3.70
	4	15	3.7567	0.2943	4.3
	5	15	4.3233	0.3845	
	6	15	4.9000	0.4174	
	7	15	5.4800	0.4653	
	8	15	6.0667	0.4672	
	9	15	6.5833	0.5119	
	10	15	7.0200	0.5854	
	11	15	7.4333	0.6309	
	12	15	7.9033	0.6351	9.4
	13	15	8.3167	0.6142	8.6
	14	15	8.7300	0.6014	
	15	15	9.0633	0.6267	
	16	15	9.4333	0.6230	
	17	15	9.7267	0.6431	
	18	14	9.8000	0.5651	
	19	14	10.0964	0.5185	
	20	14	10.3464	0.6648	
	21	14	10.5786	0.8121	
	22	14	10.8107	0.9509	11.2
Total Length	1	15	50.6667	1.4403	54.4
Total Dengen	2	15	54 6333	1.5734	
	3	15	58,6333	1.72221	62.9
	4	15	63, 3333	1.5913	67.5
	5	15	67.7333	1.7202	2000
	6	15	71.8333	2.1272	
	7	15	76.6000	2.2013	
	8	15	81.1000	2.1538	
	9	15	85.7000	2.4485	
	10	15	90.7667	2.4599	
	11	15	95.4000	2.7468	
	12	15	100.5333	2.5200	107.8
	13	15	104.8667	2.4388	
	14	15	109.7333	2.1930	
	15	15	114.0000	2.0336	

Table 14 (continued)

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
NOV PERMIT	16 17 18 19 20	16 16 16 16	7.8437 8.2062 8.7031 8.9187 9.7300	0.7779 0.8588 0.8605 0.9339 0.6973	
	21 22	15 15	10.0633 10.4167	0.7477 0.8197	10.8
Total Length	1	16 16	50.3438	1.2147	52.9
	3 4 5	16 16 16	56.1250 60.4063 64.1875	1.3775 1.2321 1.2905	59.0 64.3
	6 7 8 9 10	16 16 16 16	68.0000 73.3750 76.8562 82.1250 85.7500	1.4458 1.6961 2.0108 1.9516 1.9673	
	11 12 13 14 15	16 16 16 16	89.8750 94.6250 98.6875 103.4688 109.1875	2.1359 2.3680 2.9718 3.3057 3.3571	102.1 103.1
	16 17 18 19 20	16 16 16 15	112.2813 115.5313 122.9688 120.6250 126.0000	3.4960 3.6236 8.974 3.9483 2.2689	
	21 22	15 15	128.1333 130.4000	2.4029 2.4869	138.51
fail Length	1 2 3 4 5	16 16 16 16 16	11.3125 12.5625 14.3438 16.3750 18.3438	0.3615 0.4434 0.529 0.5446 0.5799	12.64 16.02 18.05
	6 7 8 9 10	16 16 16 16	20.5938 23.2813 25.4375 28.5313 30.9063	0.4675 0.8623 0.8169 0.9331 1.0461	
	11 12 13 14 15	16 16 16 16	33.5625 36.4063 38.5313 40.8750 43.5625	1.2076 1.266 1.5691 1.3181 1.5123	42.22 40.69
	16 17 18 19 20	16 16 16 15	45.0000 47.5625 49.0938 50.1250 54.1000	1.4393 1.7678 1.9509 2.0528 0.8678	
	21 22	15 15	54.6667 55.9333	0.9878 1.1564	60.16
ar Length	1 2 3 4 5	16 16 16 16	1.8662 2.3187 3.4481 4.3219 4.7337	0.1654 0.3759 0.3158 0.1614 0.2332	2.40 4.43 4.79
	6 7 8 9 10	16 16 16 16 16	5.3075 5.9019 6.3231 6.9056 7.3256	0.1789 0.1515 0.2187 0.1834 0.219	
	11 12 13 14 15	16 16 16 16	8.0206 8.6494 9.6644 10.6725 12.0250	0.2848 0.3804 0.4558 0.4526 0.6035	9.68 10.64
	16 17 18 19 20	16 16 16 16 15	12.8262 13.7162 14.3950 14.9325 15.7433	0.6094 0.6355 0.5925 0.5293 0.4518	
	21 22	15 15	16.1553 16.5080	0.4053 0.3923	18.97
Hind Foot Length	1 2 3 4 5	16 16 16 16	7.0675 7.5300 8.2712 8.9350 10.0244	0.2004 0.2632 0.2152 0.2809 0.3203	7.59 8.89 9.97
	6 7 8 9 10	16 16 16 16 16	10.8037 11.8556 12.8650 13.5725 14.2094	0.2807 0.248 0.2516 0.2768 0.3073	
	11 12 13 14 15	16 16 16 16	14.8744 15.7081 16.3750 17.2000 17.6169	0.2664 0.2830 0.2634 0.2236 0.2111	17.81 16.95

Appendix 2 (continued)

Table 16 (continued)

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnk
	16 17 18 19 20	15 15 14 14 14	117.6333 121.5667 123.4286 125.2143 127.5714	2.0081 2.1633 1.5988 1.5900 1.8700	
	21 22	14 14	129.1786 130.9286	1.9527 2.0013	138.10
Tail Length	1 2 3 4 5	15 15 15 15 15	11.4667 12.3333 14.4667 16.8000 19.2667	0.4945 0.6054 0.6956 0.7581 0.8072	54.43 62.99 67.56
	6 7 8 9 10	15 15 15 15 15	21.8000 24.2867 27.2333 30.1333 33.0333	1.037 1.2145 1.0661 1.1825 1.1259	
	11 12 13 14 15	15 15 15 15	35.6667 38.5000 41.1333 43.3667 45.9333	1.1220 1.0690 1.1639 1.4014 1.0581	107.88 109.18
	16 17 18 19 20	15 15 14 14 14	47.9000 49.6000 50.6071 51.7500 53.2500	1.2614 1.3080 1.2209 1.2748 1.2394	
	21 22	14 14	53.8214 55.0000	1.4989 1.599	138.10
Ear Length	1 2 3 4 5	15 15 15 15	1.6640 2.0700 3.8293 4.4173 5.1173	0.0852 0.2613 0.1529 0.1473 0.2532	12.64 15.94 19.22
	6 7 8 9 10	15 15 15 15	5.6307 6.0553 6.5453 7.2160 7.8787	0.1671 0.2994 0.1966 0.2485 0.3557	
	11 12 13 14 15	15 15 15 15 15	8.4607 9.6753 10.5660 11.7967 12.8227	0.5020 0.4460 0.5395 0.4687 0.4682	45.60 43.2
	16 17 18 19 20	15 15 14 14 14	13.7220 14.5107 15.3386 15.6571 15.8736	0.4123 0.3289 0.3651 0.3470 0.3867	
	21 22	14 14	16.3157 16.4386	0.3211 0.3145	58.9
Hind Foot Length	1 2 3 4 5	15 15 15 15	7.0987 7.7900 8.5953 9.6053 10.5540	0.2154 1.0188 0.314 0.3510 0.3841	7.78 9.42 10.54
	6 7 8 9 10	15 15 15 15 15	11.5893 12.6387 13.4807 14.2713 15.1207	0.4375 0.4607 0.5309 0.5328 0.5019	
	11 12 13 14 15	15 15 15 15	15.8380 16.5860 17.1680 17.8966 18.3146	0.4440 0.4439 0.3246 0.2621 0.3193	18.78 17.69
	16 17 18 19 20	15 15 14 14 14	18.6140 19.0366 19.1678 19.2521 19.4428	0.3095 0.3449 0.2516 0.2677 0.2697	
	21 22	14 14	19.7085 19.7907	0.2625 0.2637	20.5

Table 17. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 C

		Instantaneous Relative Growth			Correlation
Parameter	lnA	Rate (k)	Age in Days (t=t-1)	R ²	Coefficient (r)
Body Weight	0.61571	.13492	1-3	.51695	.71899*
5 R	0.76059	.11118	4-12	.85099	.92249*
	1.50549	.03706	13-22	.29673	.54472*
Total Length	3.85961	.05265	1-3	. 50238	.70878*
and a second sec	3.85272	.06068	4-12	.91363	.95583*
	4.35053	.02157	13-22	.13416	.36627
Tail Length	2.37777	.09031	1-3	. 59363	.77047*
	2.40866	.09985	4-12	.87765	.93682*
	3.15188	.03861	13-22	.63403	.79626*
Ear Length	0.33645	.29113	1-3	.52077	.72164*
	1.06515	.09540	4-12	.84674	.92018*
	1.51571	.05666	13-22	.84536	.91943*
Hind Foot	1.89180	.06576	1-3	.43577	.66012*
Length	1.93391	.07332	4-12	.92818	.96342*
Dengen	2.50884	.02202	13-22	.77388	.87970*

Table 18. Data analyses. Means and standard errors (p= .95) for growth of *Peromyscus maniculatus* reared under standard laboratory conditions: 15 C

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
		24	1 9750	0.0720	2.11
body weight	2	24	2 0917	0.0720	2.11
	à	24	2.4646	0 1291	2 77
	4	24	2,8583	0.1400	3.34
	5	24	3.3333	0.1340	51.54
	6	24	3.7917	0,1871	23
	7	24	4.2875	0.2054	
	8	24	4.8812	0.2122	
	9	24	5.4062	0.2584	
	10	24	5.9583	0.5740	
	11	24	6.5104	0.3006	
	12	24	6.9083	0.3083	8.11
	13	24	7.1062	0.3935	7.29
	14	24	7.3292	0.4534	
	15	24	7.6042	0.4705	
	16	22	7.9977	0.5378	
	17	22	8.1886	0.6466	
	18	22	8.6568	0.6437	
	19	22	9.0409	0.6860	
	20	22	9.2932	0.7326	
	21	22	9.6204	0.7898	
	22	22	9.8591	0.8157	10.17
Total Length	1	24	47.5417	0.0979	49.99
Iotal Length	2	24	49.9583	0.9059	
	3	24	52.8125	0.9269	55.53
	4	24	56.3125	0.9999	
	5	24	59.9583	1.0206	
	6	24	63.7917	0.0849	
	7	24	68.2500	1.2273	
	8	24	72.8750	1.2324	
	9	24	77.1042	1.4406	
	10	24	80.6042	2.3157	
	11	24	86.6042	1.9108	1000 C
	12	24	91.8125	2.0496	97.51
	13	24	Void*	Void*	102.51
	14	24	99.3125	1.8821	
	15	24	102.7500	2.0722	124.58
	16	22	105.9773	1.9913	
24	17	22	109.2500	2.1927	
	18	22	112.1136	2.2424	
	19 20	22	115.3409	2.4164 2.4776	
			120 1120	2.4412	
	21	22	122.2727	2.4613	124.58
Tail Length	1	24	10.7917	0.2559	11.79
	2	24	11.8333	0.3828	11. 12
	3	24	12.9375	0.3698	14.12
	4	24	14.7083	0.5735 0.6831	16.57
			19 5000	0 7210	
	0	24	20,7500	0.7310	
	/	24	20.7500	0.7022	
	0	24	24. 0702	0.0113	
	10	24	27 1459	1 1200	
	10	24	27.1438	1.1209	

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
	11	24	29 8958	1.0991	
	12	24	22.0900	1,0991	26.9
	12	24	33.4373	1.4300	30.0
	13	24	30.0833	1.3629	38.5
	14	24	38.7708	1.4882	
	15			1.4777	
	16	22	42.8409	1.5474	
	1/	22	44.3409	1.0023	
	18	22	45.9318	1.6239	
	19	22	47.5000	1.6856	
	20		40.7510	1.0///	
	21	22	50.2500	1.6602	54 6
For Longth		22	51.4545	1.0511	54.0.
car Length	1	24	1.5192	0.0584	1.87
	2	24	1.6142	0.0833	Q 2000
	3	24	2.8362	0.3450	3.35
	4	24	3.7062	0.2373	4.24
	5	24	4.2046	0.2351	
	6	24	4.8637	0.1930	
	7	24	5.3879	0.1639	
	8	24	5.9092	0.1671	
	9	24	6.2575	0.2013	
	10	24	6.7825	0.2153	
	11	24	7.4925	0.2272	9,10
	12	24	8.0796	0.2953	9.50
	13	24	8.5792	0.2834	2.20
	14	24	9.5242	0.3618	
	15	24	10.2242	0.4328	
	16	22	10 9586	0.2514	
	17	22	11 5482	0.2506	
	18	22	12 2704	0.2020	
	10	22	12 9/12	0.2317	
	20	22	13.3986	0.2630	
			12 0205	0 3450	
	21	22	13.9395	0.3453	15.83
Hind Foot Length	1	24	6 6862	0 1561	7 07
ning toot pengen	2	24	7.0012	0.1893	
	3	24	7.6292	0.1998	8.07
	4	24	8.3679	0.9368	9 27
	5	24	9.2242	0.2231	3.27
	6	24	10 2129	0 21 73	
	7	24	10.8562	0.2173	
	8	24	11 6891	0.2520	
	0	24	12 6308	0.2556	
	10	24	13.6320	0.2758	
		24	14 1070	0.0101	
	12	24	14.40/5	0.2121	16.65
	13	24	15 4629	0.2078	16 26
	15	24	15 0120	0.2078	10.30
	14	24	16 2701	0.2320	
	15	24	10.2/91	0.2304	
	16	22	16.9009	0.1990	
	17	22	17.2449	0.2397	
	18	22	17.5463	0.2275	
	19	22	17.8390	0,2217	
	20	44	1010033	0.2123	
	21	22	18.2759	0.2427	
	22	22	18.5699	1.3678	19.94

Table 18 (continued)

Table 20. Data analyses. Means and standard errors (p= .95) for growth of P. maniculatus reared under standard laboratory conditions: 30 C

Parameter	Age in Days	Sample Size (N)	Me <u>an</u> X	Standard Error (SE)	Antilog of lnW
Body Weight	1	26	2.1269	0.2772	2.27
	2 3	25	2.3220	0.2276	2.83
	4 5	19 19	2.7684 3.1184	0.1282 0.1469	3.17
	6	19	3.5195	0.1980	
	7	15	3.9433	0.2532	
	9	19	4.5342	0.3394	
	10	19	4.8347	0.3611	
	11	18	5.1972	0.4245	5.97
	13	15	5.8867	0.5080	6.00
	14 15	19 19	6.0105 6.3289	0.4188 0.4330	
	16	15	6.7600	0.4923	
	17	18	7.0333	0.4599	
	18	18	7.6472	0.4797	
	20	14	8,4107	0.5372	
	21 22	18	8.9250	0.4929	9.31
Total Length	1	26	49.3077	1.5140	52.50
	2	25	52.5600	1.3361	60.03
	4	19 19	59.2895 63.3947	1.2693	63.68
	6	19	68.2105	1.4201	
	7	15	70.9667	1.7126	
	8	15	75.5333	2.0116	
	10	19	83.2632	2.1694	
	11	18 20	87.8055	2.8737	96.44
	13	15	96.1667	3.8284	100.18
	14 15	19 19	99.7368 103.3421	2.8648 3.0642	
	16	15	108.1000	3.5119	
	17	18	111.0555	3.0863	
	19	18	117.2222	3.0008	
	20	14	122.0357	3.4300	
	22	18	125.8611	3.0483	131.49
fail Length	1	26	12.4231	1.1286	13.49
	2	25	13.6600	0.9996	16.62
	4	19 19	16.2895 18.2632	0.5218	
	6	19	20.9474	0.8673	
	7	15	22.4000	0.8552	
	8	15	25.3000	0.9550	
	10	19	30.0000	1.2556	
	11	18	32.8055	1.6882	38.62
	13	15	37.8000	2.1903	40.36
	14 15	19 19	40.0789 42.9474	1.6736	
	16	15	45.0000	2.1046	
*	17	18	46.9167	1.5044	
	19	18	50.5833	1.8658	
	20	14	53.1429	2.2849	
	22	18	56.2500	1.9382	59.73
Ear Length	1	26	2.2273	0.3943	2.35
	2	25	2.4140	0.3583	3.10
	4	19	3.4374	0.3033	4.00
	6	19	4 6447	0.1950	
	7	15	4.9433	0.2259	
	8	15	5.3987	0.1553	
	10	19	6.2000	0.2520	

* Data unavailable due to computer manipulation.

Table 19. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of Peromyscus maniculatus reared under standard laboratory conditions: 30 C

		Instantaneous			Correlation
Parameter	lnA	Rate (k)	Age in Days (t=t-1)	R ²	Coefficient (r)
Body Weight	0.71194	0.10985	1-3	0.15198	0.38984
and the second of the second	0.83722	0.07926	4-12	0.64164	0.80102*
	1.15950	0.04879	13-22	0.52699	0.72594*
Total Length	3.89476	0.06676	1-3	0.45213	0.67240*
	3.94764	0.05183	4-12	0.79678	0.89262*
	4.21378	0.03025	13-22	0.69834	0.83566*
Tail Length	2.49772	0.10443	1-3	0.21376	0.46234
	2.55324	0.09178	4-12	0.80130	0.89515*
	3.13247	0.04355	13-22	0.70705	0.84086*
Ear Length	0.71761	0.13817	1-3	0.11556	0.33994
	1.04860	0.08482	4-12	0.69777	0.83532*
	1.32198	0.06713	13-22	0.81759	0.90420*
Hind Foot	1.90920	0.09033	1-3	0.24695	0.49694
Length	1.97293	0.06965	4-12	0.82528	0.90844*
	2,55719	0.01906	13-22	0.78058	0.88350*

Appendix 2 (continued)

	Table 20 (continued)						
Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW		
	11	18	6.7467	0.3435			
	12	20	6,9950	0.6224	7.89		
	13	15	7.8667	0.5397	8.97		
	14	19	8.7658	0.4619			
	15	19	9.7684	0.4836			
	16	15	10.6433	0.6025			
	17	18	11.5055	0.3654			
	18	18	12.4694	0.3894			
	19	18	13.0722	0.3637			
	20	14	13.4679	0.3690			
	21	18	14.0055	0.3052			
	22	18	14.4278	0.3414	16.41		
Hind Foot	1	26	6.8388	0.4837	7.38		
	2	25	7.4436	0.4269			
	3	25	8.1228	0.3264	8.85		
	4	19	8.5221	0.3040	9.50		
	5	19	9.3989	0.3473			
	6	19	10.4263	0.3214			
	7	15	10.9987	0.2930			
	8	15	12.0620	0.2135			
	9	19	13.1500	0.2519			
	10	19	13.8368	0.2788			
	11	18	14.4100	0.2665			
	12	20	14.7400	0.8786	16.57		
	13	15	15.7367	0.3017	16.64		
	14	19	16.5131	0.2378			
	15	19	16.9815	0.1924			
	16	15	17.2533	0.2765			
	17	19	17.8138	0.2276			
	18	18	18.0305	0.2098			
	19	18	18.3472	0.2416			
	20	14	18.6464	0.2282			
	21	18	18,7627	0.2019			
	22	18	18.8694	0.211	19.60		

Table 21. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *P. maniculatus* reared under standard laboratory conditions: fed 3.5g/day

		Instantaneous Relative Growth			Correlation
Parameter	lnA	Rate (k)	Age in Days (t=t-1)	R ²	Coefficient (r)
Body Weight	0.62989	0.06175	1-3	0.15802	0.39751
	0.65040	0.06277	4-12	0.72473	0.85131*
	1.28558	0.01067	13-22	0.20499	0.45275
Total Length	3.82758	0.04672	1-3	0.64866	0.80539*
	3.86229	0.04653	4-12	0.93111	0.96494*
	4.23224	0.01531	13-22	0.77010	0.87755
Tail Length	2,31408	0.10043	1-3	0.89016	0.94348*
	2,38633	0.09210	4-12	0.95268	0.97605*
	3.15714	0.02550	13-22	0.87799	0.93701
Ear Length	0.62111	0.15349	1-3	0.58306	0.76358*
and period	0,90057	0.07865	4-12	0.76212	0.87299*
	1.25282	0.05271	13-22	0.91570	0.95692
Hind Foot	1.83207	0.07780	1-3	0.70337	0.83867*
Length	1.85126	0.06384	4-12	0.95075	0.97506*
	2.36156	0.01913	13-22	0.83355	0.91298

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
Body Weight	1	10	1.8500	0.0501	1.99
	2	10	2.0450	0.1253	2 25
	4	6	2.2500	0.5184	2.46
	5	7	2.6500	0.1816	
	6 7	6 6	2.6417 2.8250	0.0975 0.1339	
	8	5	3.0200	0.1332	
	9 10	5	3.0800	0.1716 0.1142	
	11	4	3.5250	0.1760	1011000
	12	3	3.8000	0.3218	4.05
	14	3	4.1167	0.5899	4.12
Total Length	1	10	45.7500	0.8546	48.13
	2	10	48.6000	0.7423	
	3	7	50.1429	1.6144	52.82
	5	7	57.6429	2.1033	37.20
	6	6	61.5000	1.3854	
	8	5	67,6000	2.0625	
	9	5	68.9000	1.6061	
	10	4	71.2500	0.6995	
	11	4	75.2500	1.7604	00.00
	12	3	81,0000	1.4198	83.09
	14	3	83.3333	2.8384	
Tail Length	1	10	10,1500	0.1710	11.17
1.007-0.009-0.0	2	10	11.2000	0.2984	
	3	7	12.4286	0.4043	13.66
	5	7	15.5714	0.5460	13.70
	6	6	18.0833	0.6680	
	8	5	21.5000	1.5311	4
	9 10	5	22.9000 24.6250	1.6571 1.0492	
	11	4	26.8750	1.1946	
	12	3	28.6667	1.0727	32.81
	13 14	3	31.0000	1.8579 3.9112	32.72
or Logoth	1	10	1 8950	0.0300	2.16
ar Length	2	10	2.1250	0.0673	2.10
	3	7	2.6143	0.4588	2.94
	4	6	3.0417 3.5386	0.7389 0.2954	3.37
	6	6	3.6833	0.1611	
	7	6	4.0583	0.1893	
	9	5	4.6700	0.3079	
	10	4	4.8875	0.4439	
	11	4	5.1875	0.6911	NESTWORK.
	12	3	5.6167	0.5117	6.32
	14	3	7.1500	1.0551	0.94
ind Foot Length	1	10	6.2320	0.1555	6.74
	2	10	6.7950	0.2488	
	3	7	7.2714	0.2122	7.88
	5	6	8.0143	0.2324	8.21
	6	6	8.7083	0.2572	
	7	6	9.2917	0.1946	
	9	5	10.7900	0.0867	
	10	4	11.3750	0.5553	
	11 12	4	12.0500 12.4000	0.3703	13.69
(*)	13	3	13.1333	0.5682	13.59
	14	3	13.5000	0.4922	

Table 22. Data analyses. Means and standard errors (p=.95) for growth of *P. maniculatus* reared under standard laboratory conditions: fed 3.5 g/day

Appendix 2 (continued)

Parameter	lnA	Instantaneous Relative Growth Rate (%)	Age in Days (t=t-1)	R ²	Correlation Coefficient (r)
Body Weight	0.74003	0.12598	1-3	0.28573	0.53453*
body neight	0.87993	0.09326	4-12	0.59466	0.77114*
	1.62113	0.02039	13-22	0.11064	0.33262
Total Length	3,88215	0.07474	1-3	0.53088	0.72861*
	3.96428	0.04708	4-12	0.73206	0.85560*
	4.32663	0.01788	13-22	0.15616	0.39517
Tail Length	2.35408	0.14119	1-3	0.46301	0.68044*
	2.53725	0.08461	4-12	0.57734	0.75982*
	3.33956	0.02030	13-22	0.03343	0.18283
Ear Length	0.65855	0.30105	1-3	0.61816	0.78623*
	1.27730	0.07569	4-12	0.82484	0.90820*
	1.58844	0.05464	13-22	0.63316	0.81434*
Hind Foot	1.90543	0.11561	1-3	0.28335	0.53249*
Length	2.03278	0.06721	4-12	0.83055	0.91134*
100	2.56576	0.01766	13-22	0.56265	0.75009*

Table 23. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of *P. maniculatus* reared under standard laboratory conditions: fed 8 g/day

Table 24. Data analyses. Means and standard errors (p=.95) for growth of *P. maniculatus* reared under standard laboratory conditions: fed 8 g/day

Parameter	Age in Days	Sample Size (N)	Me <u>an</u> X	Standard Error (SE)	Antilog of lnW
	,	27	2 12/2	0.0005	2.07
Body Weight	1	37	2.1243	0.0905	2.3/
	2	43	2.3907	0.1360	2.05
	3	30	2.1542	0.1729	3.05
	4	. 36	3.1694	0.2239	3.49
	,	30	5. 5204	0.2475	
	6	34	3.8147	0.2983	
	7	27	4.5704	0.4280	
	8	32	4.8406	0.3230	
	9	28	5.3929	0.3052	
	10	17	6.2823	0.5429	
	11	2/	5 8/17	0 4406	
	12	24	6 4250	0.5250	7 79
	13	28	6 5661	0.5200	6 59
	14	20	6 6220	0.320	0.39
	14	24	6 9111	0.4329	
	13	21	0.9111	0.4050	
	16	24	7,0917	0.4806	
	17	16	7,1250	0.4375	
	18	20	7.0725	0.4683	
	19	8	6.8500	0.2873	
	20	10	7.3800	0.3830	
	21	10	7.6250	0.4395	
	22	4	8.5250	0.4/62	7.91
Total Length	1	37	48,7297	0,7835	52,24
	2	43	52,1279	1.0377	
	3	36	56.6111	1.0429	60.70
	4	36	60.4167	1,1583	63.56
	5	36	63.5139	1.3518	
		1201			
	6	34	66.7059	1.5/21	
	/	27	70.8999	2.1100	
	8	32	73.2188	1.8/54	
	9	28	78.1786	2.3570	
	10	17	82.5882	3.9330	
	11	24	83,2500	2.8522	
	12	24	87.9375	3.5345	92.66
	13	28	94,4643	6.3896	95.48
	14	24	94.4167	3.5155	
	15	27	98.8148	3.6159	
	16	24	100 8750	3 8020	
	17	16	101 3750	5.0753	
	19	20	103 5000	4.0570	
	10	8	100.5625	7.7794	
	20	10	107.5500	7.5867	
	2.40	0.9422		1214222024	
	21	10	109.0500	7.7750	
	22	4	109.5000	23.2560	112.05

		Sample	Maan	Standard	Antilog
Parameter	Age in Days	Size (N)	X	Error (SE)	of lnk
Tail Length	1	37	10.5811	0.3880	12.12
	2	43	12.2558	0.5355	
	3	36	14.0417	0.5278	16.07
	5	36	17.9583	0.6245	17.72
	6	34	19.6912	1.0449	
	7	27	21.8999	1.4962	
	9	28	25.9643	1.9217	
	10	17	28.4118	3.3501	
	11	24	29.2500	2.4774	2/ 00
	13	24	35.6786	2.9534	34.88
	14	24	36.8750	3.1566	30.70
	15	27	39.4259	3.1422	
	16	24	41.1250	3.2822	
	18	20	42.0000	3.6747	
	19	8	38.5000	8.8917	
	20	10	43.8500	7.2635	
	21	10	43.9000	7.2131	
	22	4	42,5000	22.0004	44.07
Ear Length	1	37	1.9959	0.0966	2.60
	2	43	2.5686	0.1816	
	3	36	3.6797	0.2384	4.76
	5	36	4.9347	0.1627	4.05
	6	34	5.2868	0.1759	
	7	27	5.8074	0.1888	
	9	32	6.5304	0.1564	
	10	17	7.2618	0.3851	
	11	24	7.5771	0.3284	v 90
	13	28	9,1678	0.4477	9,95
	14	24	9.9875	0.5484	
	15	27	10.8518	0.4967	
	16 17	24	11.4375	0.4611	
	18	20	12.7675	0.4786	
	19	8	13.0000	0.7419	
	20	10	13.7600	0.7338	
	21 22	10 4	14.0150 14.7625	0.7516 0.8984	16.28
Hind Foot Length	1	37	6.8216	0.5480	7.54
	2	43	7.6616	0.4807	9.50
	4	36	9.3055	0.5576	9.98
	5	36	9.8194	0.2017	
	6	34	10.6897	0.2179	
	8	32	12.5062	0.3175	
	9	28	13.6357	0.3120	
	10	17	14.3147	0.4645	
	11	24	14.7041	0.2664	17 00
	13	28	15.9071	0.3281	16.36
	14	24	16.2979	0.2601	
	15	27	10.00/0	0.2771	
	16 17	24 16	17.2374	0.3002	
	18	20	17.5025	0.2682	
	19 20	8	17.4937	0.2259	
		10 M		20010200	
	21	10	10 / 250	0 3390	

APPENDIX 3

Figure 60. Means, standard errors (p=.95) and growth rates for body weight of *Reithrodontomys megalotis* reared under standard laboratory conditions.

Figure 61. Means, standard errors (p=.95) and growth rates for tail length of *Reithrodontomys megalotis* reared under standard laboratory conditions.

Figure 62. Means, standard errors (p=.95) and growth rates for ear length of *Reithrodontomys megalotis* reared under standard laboratory conditions.

Figure 63. Means, standard errors (p=.95) and growth rates for dried eye lens weight of *Reithrodontomys* megalotis reared under standard laboratory conditions.

GROWTH DATA ANALYSES FOR Reithrodontomys megalotis

Appendix 3 (continued)

		Instantaneous Relative Crowth			Corrolation
		Rate	Ace in Dave		Confficient
Parameter	lnA	(k)	(t=t-1)	R ²	(r)
Body Weight	0.4087	.1300	1-3	. 3195	.5563
	0.6668	.0848	4-12	.6079	.7796*
	0.9555	.0487	13-22	.4854	. 6967*
	1.9007	.0084	23-70	.2799	. 5290
Total Length	3.7444	.0862	1-3	.6732	.8204*
184	3.8684	.0614	4-12	.8251	.9083*
	4.1701	.0329	13-22	.7061	.8402*
	4.8253	.0020	23-70	.2392	.4890
Tail Length	2.3621	.1329	1-3	.5156	.7180*
	2.5983	.1051	4-12	.8171	.9048*
	3.2106	.0467	13-22	.7109	.8431*
	4.1493	.0015	23-70	.6780	.8234*
Ear Length	0.3022	.3401	1-3	. 5496	.7413*
_	1.1064	.0888	4-12	.8458	.9196*
	1.5477	.0539	13-22	.7394	.8598*
	2.6303	.0010	23-70	.9162	.9571*
Hind Foot	1.8138	.0929	1-3	. 5784	.7605*
Length	2.0453	.0577	4-12	.7914	.8896*
	2.4590	.0194	13-22	.6268	.7917*
	2.8773	.0004	23-70	.1776	. 4214

*significant at a=.05

Figure 64. Means, standard errors (p=.95) and growth rates for body weight of *Reithrodontomys megalotis* reared under standard laboratory conditions, model intervals.

Table 27. Data	analyses Me	eans and	standard	errors
(p=.95) for	growth of H	R. megalo	tis reared	under
standard lab	oratory cond	itions		

Table 25.	Data ar	alyses. I	nstanta	neous	rela	tive grov	vth
rates	and co	rrelation	coeffic	eients	for	growth	of
R. n	negalotis	reared	under	stand	lard	laborate	ory
condi	itions: n=	=100					

		Instantaneous Relative Growth			Correlation
		Rate	Age in Days	2	Coefficient
Parameter	lnA	(k)	(<i>t</i> = <i>t</i> -1)	R ²	(r)
Body Weight	0.2482	0.1271	1-3	0.2813	0.5303*
	0.4029	0.0845	4-12	0.4963	0.7044*
	0.8676	0.0411	13-22	0.2555	0.5055*
	1.8053	0.0157	23-70	0.2092	0.4573*
Total Length	3.7609	0.0647	1-3	0.3550	0.5958*
2	3.7895	0.0537	4-12	0.6862	0.8283*
	4.0837	0.0303	13-22	0.5089	0.7133*
	4.7579	0.0044	23-70	0.2299	0.4794*
Tail Length	2.3960	0.1055	1-3	0.4327	0.6577*
	2.4496	0.0945	4-12	0.7285	0.8535*
	3.0958	0.0414	13-22	0.5220	0.7224*
	4.0245	0.0038	23-70	0.1931	0.4394*
Ear Length	0.3730	0.2835	1-3	0.4612	0.6791*
	1.0368	0.0837	4-12	0.7426	0.8617*
	1.4669	0.0530	13-22	0.6001	0.7746*
	2.5732	0.0030	23-70	0.1970	0.4438*
Hind Foot	1.8136	0.0887	1-3	0.4904	0.7002*
Length	1.9031	0.0638	4-12	0.7205	0.8488*
	2.4023	0.0194	13-22	0.4368	0.6609*
	2.8252	0.0009	23-70	0.0453	0.2128*

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
Body Weight	1	151	1.3030	0.0307	1.45
	2	140	1.4568	0.0397	
	3	134	1.6925	0.0539	1.87
	4	125	1.9166	0.0656	2.09
	5	125	2.1234	0.0730	
	6	125	2.3464	0.0825	
	7	125	2.5864	0.0925	
	8	122	2.8160	0.1130	
	9	118	3.0339	0.1147	
	10	107	3.3602	0.1444	
	11	111	3.5441	0.1428	
	12	104	3.7581	0.1495	4.12
	13	108	3.9671	0.1575	4.05
	14	106	4.1985	0.1682	
	15	105	4.3557	0.1758	
	16	105	4.4742	0.1762	
	17	104	4.6500	0.1832	
	18	104	4.8365	0.1906	
	19	103	5.0732	0.2009	
	20	103	5.3223	0.2018	
	21	102	5.5647	0.2159	
	22	102	5.7441	0.2050	5.87
	28	102	11.6867	8.5544	
	35	100	8.6969	0.2048	
	42	98	9.8078	1.5285	
	49	91	10.4633	1.6535	
	56	86	10.0023	0.3228	
	63	84	11.3810	2.0046	
	70	82	10.8686	0.3644	10.24
stal Longth	1	151	12 0/6/	0 5009	15 (0
ocur bengen	2	140	45.0404	0.5008	43.60
	ź	126	40.1214	0.5102	63.10
	5	134	40.9090	0.5817	52.19
	5	125	54.9240	0.6995	54.81
	6	125	57 0920	0 9081	
	7	125	61 2020	1 0132	
	8	122	64 5770	1.0132	
	0	119	69 2242	1.11/2	
	10	107	72 7150	1.1400	
	10	107	12.1100	1.3910	

Table 26.	Data analyses. Instantaneous relative growth
rates	and correlation coefficients for growth of R.
mega	lotis reared under standard laboratory condi-
tions:	n=10

Appendix 3 (continued)

Table 27 (continued)

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
Total Length	11 12 13	111 104 108	76.1081 80.1154 84.0741	1.4302 1.5264 1.5290	84.18 87.97
	14	106	87.9811 91.6762	1.5449 1.5477	
	16	105	94.9238	1.6067	
	17	104	97.7163	1.5576	
	19	103	103.5825	1.6272	
	21	102	108.4265	1.6456	
	22	102	111.4755	2.1697	115.58
	35	102	127.8250	1.1017	
	42	98	131.4031	1.0021	
	56	86	133.8139	1.1243	
	63 70	84 82	136.3095	1.2316	158.38
m./1 1	1	151	11 0232	0 1810	12.10
Tail Length	2	140	12.2750	0.1965	12.19
	3	134 125	13.6157	0.2309	15.05
	5	125	17.6840	1.5885	
	6 7	125 125	18.7800 20.5720	0.4266 0.4802	
	8	122	22.7213	0.5685	
	10	107	27.8364	0.7960	
	11	111	30.1532	0.8305	35.87
	13	108	35.3704	0.8836	37.86
	14	105	40.0286	0.9111	
	16	105	42.3381	0.9300	
	18	104	45.6779	0.9376	
	19 20	103 103	47.4563 48.8155	0.9561 0.9771	
	21	102	50.2647	0.9793	54.92
	28	102	58.2304	0.8019	21022
	35 42	100 98	62.2449	0.7074	
	49	91	62.9890	0.7515	
	63	84	64.0000	0.7821	70.04
	70	82	64.2012	0.7822	72.96
ar Length	1	151	1.4967	0.0377	1.92
	23	140	2.7455	0.1311	3.39
	4 5	125 125	3.5589 3.9943	0.0766 0.0772	3.94
	6	125	4.4016	0.0882	
	8	125	4.7386	0.0947	
	9 10	118 107	5.5048 6.0610	0.1137 0.1580	
	11	111	6.5345	0.1742	0.008
	12 13	104 108	7.1701 7.8156	0.2083 0.2171	7.69 8.62
	14 15	106 105	8.5845 9.2731	0.2389	
	16	105	9.9854	0.2606	
	17	104	10.5938	0.2342	
	19	103	11.6317	0.2208	
	21	102	12.2671	0.2178	
	22	102	12.5317	0.1919	13.90
	35	102	13.9717	0.1337	
	42	98	14.25/1	0.1400	
	56	86	14.4575	0.1374	
	63 70	84	14.5630	0.1387	16.17

•

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
Hind Foot	1	151	6.1571	0.0751	6.69
Length	2	140	6.7026	0.0862	
	3	134	7.3515	0.0893	7.99
	4	125	8.0070	0.1135	8.65
	5	125	8.6095	0.1636	
	6	125	9.3322	0.1464	
	7	125	10.0076	0.1559	
	8	122	10.6774	0.1782	
	9	118	11.3757	0.1787	
	10	107	12.1133	0.2193	
	11	111	12,6730	0.2242	
	12	104	13.2587	0.2020	14.41
	13	108	13.7754	0.2914	14.21
	14	106	14.1524	0.1807	
	15	105	14.6079	0.1788	
	16	105	14.9792	0.1856	
	17	104	15.2671	0.1879	
	18	104	15.5409	0.1877	
	19	103	15.8078	0.1754	
	20	103	16.0339	0.1714	
	21	102	16.2087	0.1747	
	22	102	16.4135	0.1642	16.92
	28	102	17.0510	0.1273	
	35	100	17.2401	0.1192	
	42	98	17.3083	0.1168	
	49	91	17.3536	0.1237	
	56	86	17.3926	0.1230	
	63	84	17.4435	0.1205	
	70	82	17.4705	0.1257	17.81

Table 27 (continued)

Table 28. Data analyses. Instantaneous relative growth rates and correlation coefficients for growth of skulls of *R. megalotis* reared under standard laboratory conditions

Parameter	lnA	Instantaneous Relative Growth Rate (k)	Age in Days (t=t-1)	R ²	Correlation Coefficient (r)
Dried Eye	-9.6263	0.4867	1-3	0.4323	0.6574*
Lens	-8.6014	0.1820	4-12	0.9322	0.9655*
	-6.9336	0.0337	13-22	0.6200	0.7874*
	-6.7643	0.0159	23-70	0.9804	0.9901*
Skull Total	2.2411	0.0683	1-3	0.2656	0.5153
Longth	2 3662	0.0371	4-12	0.6839	0.8269*
Lengen	2.6658	0.0113	13-22	0.1985	0.4455
	2.8731	0.0017	23-70	0.2810	0.5300
7	1 60.90	0.0/96	1-3	0.1116	0.3340
Lygomatic	1 9500	0.0366	4-12	0.5816	0.7626*
breadth	2.0333	0.0200	13-22	0.1004	0.3168
	2.2512	0.0006	23-70	0.0293	0.1711
Ference	0 7337	0.0570	1-3	0.0517	0.2273
Foramen	0.9292	0.0297	4-12	0.4024	0.6343*
Magnum	1 0644	0.0090	13-22	0.0835	0.2889
neight	1.2950	0.0008	23-70	0.0136	0.1166
Manhaddal	1 5122	0.0362	1-3	0.0457	0.2138
Mastoldal	1.7109	0.0346	4-12	0.5563	0.7458*
breadth	2.0562	0.0033	13-22	0.0454	0.2130
	2.1200	0.0002	23-70	0.0040	0.0632
	0.0500	0.0994	1-3	0.4501	0.6708*
Nasai Lengen	1.0450	0.0572	4-12	0.7338	0.8566*
	1.0450	0.0216	13-22	0.6049	0.8005*
	1.8263	0.0033	23-70	0.1613	0.4016
Country	1 7797	0.0461	1-3	0.2434	0.4933
Cranium	1.0201	0.0268	4-12	0.6096	0.7807*
width	2.19201	0.0044	13-22	0.1397	0.3737
1.80	2.2845	0,0001	23-70	0.0014	0.0374

Appendix 3 (continued)

(p=.95) under s) for grow tandard l	/th of sku aboratory	condit	. <i>megaloti</i> ions	s reared	Parameter	Age in Days	Sample Size (N)	$\frac{\text{Mean}}{X}$	Standard Error (SE)	Antilog of lnW
Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW	Zygomatic Breadth	21 22 28 35	10 10 10 10	9.3090 9.2178 9.7610 9.7410	7.2145 C 3261 0.3328 0.2063	9.64
Lens Weight	1 2 3 4 5	10 10 10 10 10	0.0000 0.0001 0.0001 0.0002 0.0004	0.0000 0.0000 0.0001 0.0001 0.0000	0.00010 0.00028 0.00038		42 49 56 63 70	10 10 10 10 9	9.6050 9.3360 10.3390 10.1050 9.6711	0.2818 0.1303 0.3856 0.3586 0.1978	9.90
	6 7 8 9 10	10 10 10 10	0.0004 0.0005 0.0006 0.0008 0.0009	0.0000 0.0000 0.0000 0.0001 0.0001		Foramen Magnum Height	1 2 3 4	10 10 10	2.2560 1.9970 2.4920 2.7230	0.3172 0.2866 0.1939 0.1977	0.85
	11 12 13 14 15	10 10 10 10	0.0010 0.0012 0.0013 0.0014 0.0015	0.0001 0.0001 0.0001 0.0000 0.0000	0.00163 0.00151		5 6 7 8 9	10 10 10 10	2.4820 2.6550 2.6100 2.9000 3.1270	0.1759 0.1711 0.1626 0.1221 0.1947	
	16 17 18 19 20	10 10 10 10	0.0018 0.0017 0.0017 0.0018 0.0018	0.0000 0.0001 0.0001 0.0000 0.0000			10 11 12 13 14	10 10 10 10	2.9480 3.0750 3.2810 2.9820 3.2580	0.1625 0.2272 0.1751 0.2289 0.1059	3.2
	21 22 28 35 42	10 10 10 10	0.0018 0.0018 0.0018 0.0020 0.0020	0.0000 0.0001 0.0000 0.0000 0.0000	0.00204		15 16 17 18 19	10 10 10 10	3.5090 3.4720 3.2830 3.6270 3.4200	0.1349 0.1503 0.1753 0.2477 0.0582	
	49 56 63 70	10 10 10 10	0,0024 Void* Void* Void*	0.0001 Void* Void* Void*			20 21 22 28 35	10 10 10 10	3.2150 3.4280 3.5778 3.5560 3.5600	0.2212 0.1424 0.1714 0.2599 0.2406	3.5
Skull Total Lengt	h 1 2 3 4 5	10 10 10 10	9.5650 9.8600 10.9520 11.7250 12.1490	0.6574 0.6334 0.6799 0.7814 0.3571	10.06 11.18 12.35		49 56 63 70	10 10 10 9	3.3310 3.6760 3.6210 3.3244	0.2457 0.2940 0.1544 0.2988	3.8
	6 7 8 9 10	10 10 10 10	12.7910 13.9290 14.5760 14.6230 15.0610	0.2390 1.4013 0.2612 0.3538 0.7228		Mastoidal Breadth	1 2 3 4 5	10 10 10 10 10	4.7670 4.3440 5.0730 5.9340 6.3170	0.4408 0.2829 0.3833 0.6280 0.4189	4.5 5.0 6.4
	11 12 13 14 15	10 10 10 10	15.0360 15.7220 15.5880 17.1500 16.6790	0.8252 0.2916 0.7350 0.3583 0.2853	16.62 16.65		6 7 8 9 10	10 10 10 10 10	6.8050 6.8410 7.7810 7.5360 7.6650	0.1668 0.3154 0.1288 0.1775 0.3110	
	16 17 18 19 20	10 10 10 10	18.4700 16.9690 17.7120 17.5570 17.9750	2.5292 0.3366 0.4257 0.3724 0.2891			11 12 13 14 15	10 10 10 10 10	7.7480 7.7970 7.8020 8.4310 8.2300	0.3975 0.2286 0.4403 0.1364 0.1942	8.4 8.1
	21 22 28 35 42	10 10 10 10	18.2750 17.6255 18.4010 19.1890 18.6740	0.2170 0.2289 0.4443 0.3340 0.5681	18.43		16 17 18 19 20	10 10 10 10	8.5860 8.0000 8.3310 8.4100 8.2790	0.1868 0.1545 0.2164 0.1732 0.1447	
	49 56 63 70	10 10 10 9	18.7220 20.1720 19.8600 19.5311	0.1804 0.2705 0.5967 0.5236	19.92		21 22 28 35 42	10 10 10 10 10	8.4640 8.2411 8.4290 8.4400 8.3120	0.1487 0.1669 0.2079 0.0864 0.2813	8.3
Zygomatic Breadth	1 2 3 4 5	10 10 10 10	5.6400 5.4880 6.2190 6.8680 7.0540	0.4694 0.4035 0.4657 0.3869 0.3718	5.73 6.33 7.14		49 56 63 70	10 10 10 9	8.0870 8.7350 8.5980 8.2933	0.0597 0.3327 0.1707 0.2827	8.
	6 7 8 9 10	10 10 10 10	7.2480 7.5690 8.2180 8.0980 8.1860	0.1338 0.3784 0.1840 0.2124 0.2293		Nasal Length	1 2 3 4 5	10 10 10 10	2.4050 2.5360 2.9390 3.3770 3.4460	0.1617 0.1101 0.2339 0.3387 0.1053	2.1 3. 3.
	11 12 13 14 15	10 10 10 10	8.1220 8.5070 8.4660 8.6960 9.0450	0.3726 0.2726 0.5107 1.1542 0.1968	8.83 8.76		6 7 8 9 10	10 10 10 10	3.8750 3.9080 4.5010 4.5290 5.0300	0.1568 0.3758 0.0719 0.2153 0.2869	
	16 17 18 19 20	10 10 10 10	9.4430 8.9330 9.2580 9.4310 9.6470	0.3095 0.2734 0.3174 0.2261 0.2008			11 12 13 14	10 10 10 10	4.8450 5.1940 5.4010 5.7790 5.7760	0.2265 0.2732 0.1968 0.1348 0.1431	5. 5.

Table 29. Data analyses. Means and standard errors (p=.95) for growth of skulls of *R. megalotis* reared

Vertebrate

3.53

3.86 4.54 5.00 6.41

8.45 8.15

8.39

8.44 2.60 3.18 3.57

Table 29 (continued)

5.64 5.64

Appendix 3 (continued)

Table 29 (continued)

Parameter	Age in Days	Sample Size (N)	Mean X	Standard Error (SE)	Antilog of lnW
			-		
Nasal Length	16	10	6.0550	0.1751	
aller men former all a rest of the second	17	10	5.9120	0.2249	
	18	10	6.3230	0.2554	
	19	10	6.2070	0.2331	
	20	10	6.6350	0.2108	
	21	10	6.6560	0,1630	
	22	10	6.4567	0.1509	6.84
	28	10	6.8250	0.2389	
	25	10	7 3130	0 1420	
	42	10	6.5550	0.9156	
	10	10	7 / 790	0 2328	
	49	10	7.4700	0.2550	
	56	10	7.8/40	0.3343	
	63	10	7.7650	0.2844	7 00
	70	9	7.6344	0.2324	7.82
			6 0 700	0.2018	6 10
Cranium Width	1	10	5.9720	0.3010	0.19
	2	10	6.1330	0.1936	1 00
	3	10	6.5540	0.3870	6.80
	4	10	7.3580	0.4551	1.05
	5	10	7.4340	0.3044	
	6	10	7.9680	0.1461	
	7	10	8.0370	0.2995	
	8	10	8.8880	0.1330	
	9	10	8.5920	0.2874	
	10	10	8.8910	0.3085	
	11	10	8.6920	0.2869	
	12	10	9.0890	0.1603	13.07
	13	10	9.0940	0.3371	9.43
	14	10	9.7160	0.1790	
	15	10	9.5020	0.1439	
	16	10	9.7450	0.2027	
	17	10	9.4350	0.2004	
	18	10	9,7080	0.1183	
	19	10	9.7430	0.1467	
	20	10	9.6350	0.1517	
	21	10	9.7180	0.1664	
	22	10	9.8100	0.1331	9.81
	28	10	9.7530	0.2141	
	35	10	9.9440	0.1902	
	42	10	9.9280	0.4005	
	49	10	9.6780	0.1117	
	56	10	10.0990	0.2916	
	63	10	9.8760	0.3245	
	70	10	9 8433	0.2423	9 81
	70	3	2.0433	0.2423	2.00

Table 30.	Data an	alyses. I	nstanta	neous	rela	tive grov	/th
rates	and con	relation	coeffic	cients	for	growth	of
<i>R. m</i>	negalotis	reared	under	stand	lard	laborate	ory
condi	tions: mo	odel inte	rvals				

		Instantaneous Relative Crowth			Correlation
		Rate	Age in Days		Coefficient
Parameter	lnA	(k)	(t=t-1)	R ²	(<i>r</i>)
Rody Maight	0 33029	0.09023	1-14	0.74916	0.86554*
body nergic	0.85098	0.04199	15-21	0.14733	0.38383*
	1.08858	0.03232	22-41	0.26808	0.51776*
	1.98889	0.00571	42-70	0.55358	0.74402*
Total Length	3,77750	0.05474	1-14	0.86087	0.92783*
totat nengen	4.12594	0.02813	15-21	0.31243	0.55895*
	4.49742	0.01066	22-41	0.41304	0.64268*
	4.82693	0.00127	42-70	0.50785	0.71263*
Tail Length	2,42409	0.09616	1-14	0.88997	0.94338*
Tatt bengen	3,16993	0.03761	15-21	0.31927	0.56503*
	3.68036	0.01300	22-41	0.43059	0.65619*
	4.08278	0.00117	42-70	0.40939	0.63983*
Far length	0.67954	0.12323	1-14	0.82769	0.90977*
Lat bengen	1.57607	0.04763	15-21	0.40071	0.63301*
	2.35961	0.00840	22-41	0.33423	0.57812*
	2.61659	0.00097	42-70	0.44107	0.66413*
Hind Foot	1.86536	0.06594	1-14	0.88057	0.93838*
Length	2.44274	0.01736	15-21	0.24662	0.49660*
	2.72306	0.00377	22-41	0.18046	0.42480*
	2.83609	0.00035	42-70	0.01134	0.10648

*significant at a=.05

Table 31. Data analyses. Means and standard errors (p=.95) for growth of skulls of *R. megalotis* reared under standard laboratory conditions: model intervals

* Data unavailable due to computer manipulation.

Parameter	Age in Days	Sample Size (N)	Me <u>a</u> n X	Standard Error (SE)	Antilog of lnW
Body Veight		151	1,3030	0.0307	1.52
body weight	2	140	1.4568	0.0397	10000000
	3	134	1,6925	0.0539	
	4	125	1,9166	0.0656	
	5	125	2.1234	0.0730	
	6	125	2.3464	0.0825	
	7	125	2.5864	0.0925	
	8	122	2.8160	0.1130	
	9	118	3.0339	0.1147	
	10	107	3.3602	0.1444	
	11	111	3.5441	0.1428	
	12	104	3.7581	0.1495	
	13	108	3.9671	0.1575	
	14	106	4.1985	0.1682	4.91
	15	105	4.3557	0.1758	4.39
	16	105	4.4742	0.1762	
	17	104	4.6500	0.1832	
	18	104	4.8365	0.1906	
	19	103	5.0732	0.2009	
	1 20	103	5.3223	0.2018	
S2	21	102	5.5647	0.2159	5.65
	22	102	5.7441	0.2050	6.04
	28	102	11.6867	8.5544	
	35	100	8.6969	0.2048	
	42	98	9.8078	1.5285	9.28
	49	91	10.4633	1.6535	
	56	86	10.0023	0.3228	
	63	84	11.3810	2.0046	
	70	82	10.8686	0.3644	10.81

Vertebrate

APPENDIX 4

Definition of State Variables in the Demographic Model

Mathematical symbol	Definition	Units		
N ₁ (t)	Number of fetuses at time t.	number/ha		
$N_2(t)$	Number of sucklings at time t.	number/ha		
N _{3,1} (t)	Number of juveniles in their first week at time t .	number/ha		
$N_{3,2}(t)$	Number of juveniles in their second category at time $t.$	number/ha		
$N_4(t)$	Number of subadult males at time t .	number/ha		
$N_5(t)$	Number of subadult females at time t .	number/ha		
$N_{5,1}(t)$	Number of subadult females that are pregnant but not lactating at time t .	number/ha		
N _{5,2} (t)	Number of subadult females that are lac- tating but not pregnant at time t .	number/ha		
N _{5,3} (t)	Number of subadult females that are both pregnant and lactating at time t .	number/ha		
$N_{5,4}(t)$	Number of non-reproducing subadult females at time t .	number/ha		
$N_{6}(t)$	Number of adult males at time t .	number/ha		
$N_7(t)$	Number of adult females at time t .	number/ha		
N _{7,1} (t)	Number of adult females that are pregnant but not lactating at time t .	number/ha		
$N_{7,2}(t)$	Number of adult females that are lactating but not pregnant at time t .	number/ha		
$N_{7,3}(t)$	Number of adult females that are both pregnant and lactating at time t .	number/ha		
$N_{7,4}(t)$	Number of non-reproducing adult females at time t .	number/ha		
$N_{5,1,m}(t)$	Number of pregnant subadult females at time t in the m^{th} week of gestation.	number/ha		
$N_{7,1,m}(t)$	Same as $N_{5,1,m}(t)$, but for adult females.	number/ha		
$N_{5,2,m}(t)$	Number of lactating subadult females at time t in the m^{th} week of lactation.	number/ha		
$N_{7,2,m}(t)$	Same as $N_{5,2,m}(t)$, but for adult females.	number/ha		
$N_{5,3,k,m}(t)$	Number of subadult females that are both lactating and pregnant at time t in the k^{th} week of lactation and the m^{th} week of gestation.	number/ha		
$N_{7,3,k,m}(t)$	Same as $N_{5,3,k,m_s}(t)$ but for adult females	number/ha		

APPENDIX 5 Definition of Intermediate Algebraic Variables in the Demographic Model

Mathematical symbol	Definition	Units	Mathematical symbol	Definition	Units	
В	Number of eggs fertilized during a time interval.	number/ha/week	D _{7,4}	Same as $D_{5,4}$ and $D_{5,4,k,m}$, but for adult females.	number/ha/week	
R ₂	Number of animals born in a time interval.	number/ha/week	^D 7,4,k,m			
R ₃	Number of sucklings weaned in a time interval.	number/ha/week	P2	Number of sucklings killed by preda- tors in a time interval.	number/ha/week	
^R 4,1	Number of juvenile I animals that advance to the next age category.	number/ha/week	P _{3,1}	Number of juvenile I animals killed by predators in a time interval.	number/ha/week	
R _{4,2}	Number of animals that leave the juvenile II category in a time	number/ha/week	P3,2	Number of juvenile II animals killed by predators in a time interval.	number/ha/week	
<i>R</i> ₆	Number of subadult males that advance	number/ha/week	P_{4}	Number of subadult males killed by predators in a time interval.	number/ha/week	
R ₇	Number of subadult females that advance into the next age category.	number/ha/week	P 5	Number of subadult females killed by predators in a time interval.	number/ha/week	
D ₁	Number of aborted fetuses in a time	number/ha/week	P ₆	Number of adult males killed by predators in a time interval.	number/ha/week	
D ₂	Number of sucklings that died of non- predatory causes in a time interval.	number/ha/week	P ₇	Number of adult females killed by predators in a time interval.	number/ha/week	
D _{3,1}	Number of juvenile I animals that died of non-predatory causes in a time interval.	number/ha/week	P5,2,m	Number of pregnant subadult females in the m^{th} week of gestation that are killed by predators in a time interval.	number/ha/week	
D _{3,2}	Number of juvenile II animals that died of non-predatory causes in a time interval.	number/ha/week	P5,3,m	Number of lactating subadult females in the m^{th} week of lactation that are killed by predators in a time inter- val.	number/ha/week	
D4	Number of subadult males that died of non-predatory causes in a time interval.	number/ha/week	P5,4,k,m	Number of subadult females that are both lactating and pregnant in the	number/ha/week	
D5	Number of subadult females that died of non-predatory causes in a time interval.	number/ha/week		k^{th} week of lactation and the m^{th} week of gestation that are killed by predators in a time interval.		
D ₆	Number of adult males that died of non-predatory causes in a time inter- val	number/ha/week	^P 7,2,m ^P 7,3,m	Same as $P_{5,2,m}$; $P_{5,3,m}$, and $P_{5,4,k,m}$; but for adult females.	number/ha/week	
D ₇	Number of adult females that died of non-predatory causes in a time inter- val.	number/ha/week	P7,4,k,m) Q5,1	Number of non-reproducing subadult females that become pregnant in a	number/ha/week	
^D 5,2	Number of pregnant subadult females that died in a time interval.	number/ha/week	Q5,4	Number of subadult females that	number/ha/week	
D5,2,m	Number of pregnant subadult females in the $m^{t/h}$ week of gestation that died of non-predatory causes in a	number/ha/week	2	with sucklings either weaned or killed during a time interval.	d	
D _{5,3}	time interval. Number of the lactating subadult	number/ha/week	^Q 5,5	Number of lactating subadult females with sucklings either weamed or killed during a time interval.	number/ha/week	
D5,3,m	Number of lactating subadult females in the m^{th} week of lactation that did of a property for the matrix of t	number/ha/week	Q _{5,6}	Number of subadult females that are both lactating and pregnant, that abort their fetuses in a time interval.	number/ha/week	
D _{5.4}	time interval. Number of subadult females that are	number/ha/week	Q5,7	Number of pregnant subadult females that abort their fetuses in a time interval.	number/ha/week	
~, .	both lactating and pregnant, that died in a time interval.		Q7,1	Same as $Q_{5,1}$ to $Q_{5,7}$, respectively;	number/ha/week	
D _{5,4,m}	Number of subadult females that are both lactating and pregnant in the k^{th} week of lactation and in the m^{th} week of gestation that died of non- predatory causes in a time interval.	number/ha/week	$v_{2,2}$	but for adult females. Per female pregnancy rate, as a function of the individual animals	week ⁻¹	
$\begin{bmatrix} D_{7,2} \\ D_{7,2,m} \end{bmatrix}$	Same as D _{5,2} ; D _{5,2,m} ; D _{5,3} ; D _{5,3,m} ;		b ₂	age. Correction factor of the pregnancy	none	
D _{7,3}	but for adult females.	number/ha/week		rate (b_1) as a function the density of mature males.		
^D 7,3,m			^b 3	Correction factor of the pregnancy rate (b_1) as a function of the females consumption rate.	none	

Appendix 5 (continued)

Mathematical symbol	Definition	Units	Mathematical symbol	Definition	Units
b ₄	Correction factor of the pregnancy rate (b_{η}) as a function of the	none	α ₁	Assymptote of b_2 .	none
<i>b</i> ₅	nutrient content in the food consumed. Correction factor of the pregnancy	none	Υ1	Parameter controlling the rate at which the assymptote x_{1} , is approached.	a
	rate (b_1) as a function of the time of year.	1	α ₂ Υ ₂	Assymptote of $8_{3,1,1}$. Parameter controlling the rate at	a
81,1	fetus, as a function of the mothers age.	week		approached.	
⁸ 1,2	Correction factor of the optimum survival rate $(s_{1,1})$ for the fetuses, as a function of mother's consumption rate.	none	ч <u>з</u> ^ү з	Parameter controlling the rate at which the assymptote α_3 is approached.	a
^s 1,3	Correction factor of the optimum survival rate $(s_{1,j})$ for the fetuses, as a function of the nutrient content	none	I_{f}	Index measuring the actual consump- tion rate, relative to the maximum consumption rate of an animal.	none
	in the mother's food.	1	I _{act}	Actual consumption rate of an animal.	cal/week
⁸ 2,1	Suckling. (actually a parameter)	week	Imax	Assymptote of the functional response curve, i.e. the maximum consumption	cal/week
82,2	survival rate for the sucklings, as a function of the mother's consump- tion rate.	none	Nu	Nutrient content of the animals food measured by the P-content.	% P of dry wt
82.3	Correction factor of the optimum	none	T	Time of the year. (1-360)	days
	survival rate for the sucklings, as a function of the nutritional content		μ(T)	Mean number of young in the litter.	number
	in the mother's food.		Wt	Mean weight of the sucklings.	grams
⁸ 3,1,1	Optimum per animal survival rate of the juvenile I category, as a function of their weight as sucklings.	week ⁻¹	$\overline{Wt}(t-1)$	The individual weight of the sucklings at the end of the last week before weaping.	grams
83,1,2	Correction factor for the survival rate of the juvenile I category, as a function of the number of weaned animals in the area.	none	Wt(t-2)	The individual weight of the suck- lings at the end of the pentultimate week before weaning.	grams
⁸ 3,1,3	Correction factor for the survival	none	Wa	Soil moisture.	% water
	a function of the animal's consump- tion rate.		n_p	Number of time intervals in the gestation period.	weeks
83,1,4	Correction factor for the survival rate of the juvenile I category, as a function of the nutrient content in their food.	none	n ₁	Number of time intervals in the lactation period.	weeks
^{\$} 3,1,5	Correction factor for the survival rate of the juvenile I category, as a function of soil moisture.	none	-ine units, a.	ithough available, are not useful to the	model.
⁸ 3,2,1	Optimum per animal survival rate of the juvenile II category. (actually a parameter)	week ⁻¹			
⁸ 3,2,2 to ⁸ 3,2,5	Same as $a_{3,1,2}$ to $a_{3,1,5}$, respectively but for the juvenile. II category.	none			
⁸ 4,3 to	Same as $s_{3,1,3}$ to $s_{3,1,5}$, respectively but for the subadult male category.	none			
⁸ 5,3 to	Same as $s_{3,1,3}$ to $s_{3,1,5}$, respectively but for the subadult female category.	none			
$\left. \begin{array}{c} {}^{8}5,5 \\ {}^{8}6,3 \\ to \\ {}^{8}e,c \end{array} \right\}$	Same as $s_{3,1,3}$ to $s_{3,1,5}$, respectively but for the subadult male category.	none			
⁸ 7,3 to ⁸ 7,5	Same as $\theta_{3,1,3}$ to $\theta_{3,1,5}$, respectively but for the adult female category.	none			

Vertebrate

APPENDIX 6

Definition of Parameter Used with Values Proposed to be Used for the Different Species

Mathematical Symbol	Definition	Unit	Proposed Value to be Used a			
			Peromyscus maniculatus	Dipodomys ordii	Reithrodontomys megalotis	
b _{1,1}	The average optimum value of b_1 for subadult females.	week ⁻¹	.5	. 5	.5	
N _{opt}	Number of mature males at which the value of b_2 is 1.	number/ha	7	2	7	
N _m ,max	Number of mature males at which the value of b_2 is 0, and for densities above which b_2 will continue to be 0.	number/ha	300	12-13	300	
N _t ,max	The maximum number of weaned animals that can be in the area.	number/ha	700	30	700	
^I f,min	The minimum value of I_{f} at which the animal can still be alive		.625	.571	. 600	
Numin	The minimum phosphorus content in the food at which level the animal can still be alive.	%P of dry wt.	b	b	b	
Nu _{max}	That phosphorus content at which an increase will not result in any increase of the survival rate.	%P of dry wt.	b	b	b	
T_{stop}	Time of the year at which the breeding stops	days	none	240	none	
T_{start}	Time of the year at which the breeding starts.	days	none	30	none	
µ _{min}	Minimum mean number of young per litter.	number/ litter	4	3	4	
^µ max	Maximum mean number of young per litter.	number/ litter	5	4	5	
⁸ 2,1	Maximum survival rate for sucklings.	week ⁻¹	.08509	.08509	.08509	
⁸ 3,2,1	Maximal survival rate for the juvenile II category.	week ⁻¹	1	1	1	
Wtmin	That value of \overline{kt} which is so that a decrease of \overline{kt} will result in immediate death of the juvenile I animals.	grams				
Wtmax	That \overline{Wt} which will result in $s_{3,1,1} = 1$.	grams			1	
^{Wa} min	The minimum soil moisture in which animals can survive.	% water		, a	c	
Wa _{max}	That soil moisture at which an increase will not result in further increase in the survival rate.	% water	<i>o</i>			

Appendix 6 (continued)

Mathematical symbol	Definition	Unit	Proposed Value to be Used			
			Peromyscus maniculatus	Dipodomys ordii	Reithrodontomys megalotis	
τ ₁	Length of the gestation period.	days	21-22	25-28	21-22	
τ2	Length of the lactation period.	days	14-16	21-22	13-15	
τ3,1	Length of the juvenile I category.	days	7	7	7	
^T 3,2	Length of the juvenile II category.	days	19-21	32-37	15-20	
τ4	Length of the subadult male category.	days	25-30	30-40	25-30	
τ ₅	Length of the subadult female category.	days	25-30	30-40	25-30	
τ ₆	Length of the adult male category.	days	400	700	400	
τ ₇	Length of the adult female category.	days	400	700	400	

 $a_{\rm These}$ values are tentative and may change as available data are analysed more completely.

^bSCHULTZ (1969) used 0.06% as the lower limit and .6% as the upper limit for Lemmus trimucronatus in Barrow, Alaska. These values have not yet been estimated for desert small mammals.

 c These data are not yet available and may have to refer to the burrow humidity.