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ABSTRACT 

Sedimentology, Stratigraphy, and Organic Geochemistry of the Red Pine Shale,  

Uinta Mountains, Utah: A Prograding Deltaic System  

in a Mid-Neoproterozoic Interior Seaway 

by 

Caroline A. Myer, Master of Science 

Utah State University, 2008 

Major Professor: Dr. Carol M. Dehler 

Department: Geology 

The Red Pine Shale (RPS; ~1120m thick), uppermost formation of the 

Neoproterozoic Uinta Mountain Group, Utah, is an organic-rich sedimentary succession 

interpreted as a marine deltaic system that delivered immature sediment from the north 

that mixed with mature sediment from the east.  Multiple data sets suggest regional 

climate and sea-level changes associated with changing organic-carbon burial rates.   

Six facies were identified and represent wave-, tidal-, and river-influenced parts of 

the distal prodelta to delta front in a marine system.  These include the shale facies and 

associated concretion facies (distal prodelta), the shale-sandstone facies (proximal 

prodelta to delta front), the slump fold facies (proximal prodelta to delta front), and the 

sandstone facies and associated pebbly sandstone facies (delta front).  
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 C-isotope values from organic-rich shale range from -29.46‰ to -16.91‰ PDB 

and TOC values range from 0.04% to 5.91%.  The composite C-isotope curve for the RPS 

shows less negative values near the base, followed by a long decline to a thick interval of 

lower values.  Combined H/C, TOC, and local-regional isotopic correlations suggest that 

these values represent C-isotope composition of Neoproterozoic seawater.   

Provenance data sets show two distinct detrital zircon signatures.  An arkosic 

sample shows an Archean population, most likely from the Wyoming Craton to the north.  

Data from two quartz arenite samples show a mixed Proterozoic/Archean population 

from the east-southeast.  Correlation of measured sections show north to south delta 

progradation with a proximal source to the north and a mature source to the east.  The 

composite section comprises one low-order regressive cycle and ~11 high-order cycles. 

There is a relationship between C-isotope values, shale geochemistry, and 

lithostratigraphy.  Relatively positive C-isotope values correspond with increased 

kaolinite abundance and more distal depofacies indicating an increase in organic-carbon 

burial and chemical weathering rates, and a rise in sea level.  Relatively negative C-

isotope values correspond with lower kaolinite abundances and more proximal depofacies 

indicating a decrease in organic-carbon burial and chemical weathering rates, and sea-

level fall.  Similar relationships are seen in the correlative Chuar Group, Arizona, 

suggesting a regional or possibly global control on these related processes. 

This paper meets the requirements to revise the RPS as a formalized unit in 

accordance with the Stratigraphic Code guidelines.  

 (203 pages) 



iv 

ACKNOWLEDGMENTS 

First of all I would like to thank my parents.  My mom, Amelia Myer, has been a 

constant role model for me.  Not only has she supported and loved me throughout my 

life, but she has also taught me how to support and love myself.  From her I learned self-

confidence.  I would like to thank her for always encouraging me to be a strong and 

clever woman, like her.  My dad, William Myer, has been my inspiration.  Not only has 

he inspired me to be a science lover, but he has also inspired me to become a scientist.  

He taught me how to be happy in what I do, and, when there are hurdles to jump, he has 

taught me that family and a strong will can take me anywhere.  I also want to thank Walt 

and Lil Gillette, my Georgetown family.  They took care of me and gave me direction in 

so many ways.  You were a comfort to me when I needed it the most.  And thank you to 

Tanner.  He has been an amazing companion and a good friend over the last few months. 

Secondly, I would like to thank my advisor, Carol Dehler.  Thank you for being so 

understanding of my bizarre schedule and of my distance from Utah.  She has been a 

wonderful teacher and an inspiring woman scientist.  Not only did I learn sedimentology 

from her, but I also learned how to live a cleaner, less wasteful, and healthier life.  Thanks 

to Carol, I now reuse plastic bags until they fall apart.  I would also like to thank Carol 

for the chance to come to Utah and work for her; otherwise I would never have met my 

husband.  I am truly thankful for the opportunities you have given me, not only in my 

career, but in many other aspects of my life.  Thank you to my committee members, Dave 

Liddell and Pete Kolesar, for taking the time to help me with me research and for 

working with my schedule.   Thank you for your different points of view and input; my 



v 

thesis is a better and more interesting project because of your help. 

Thirdly, I would like to thank my field assistants, Andy Brehm, Stephanie Davi, and 

Dan Rybczynski.  Thank you, Andy, for taking time out from your own thesis writing to 

help me collect many, many bags of shale.  Dan, you hiked over so many shaley slopes 

and under so many trees to help me in the field.  Thank you for your hard work ethic and 

company.  I would finally like to thank, Stephanie, for helping me carry sandstone 

samples and cooking amazing food for me.  Thank you all for your assistance and 

friendship. 

Finally, I would like to thank my best friends, Emily Myer and Andy Brehm.  Emily 

has been a wonderful sister and friend and I know I could not have survived these last 

few years without her help.  Thank you for your shoulder and your ear.  I can always rely 

on you, comrade!  Andy, my husband, I cannot thank enough for everything he has done 

for me.  Thank you for being so patient with me and thank you for encouraging me to 

finish this work.  You have supported me through many difficult times in our short time 

together, and I hope you know how that has helped me.  I am a happier person because of 

you and I owe the completion of this thesis mostly to you.   

Financial aid for this research was provided by the Geological Society of America, 

the Association of Women Geoscientists (Salt Lake City chapter), the Wyoming 

Geological Association, and the J. Stewart Williams Fellowship of the Utah State 

University Geology Department.  Thank you also to the Department of Earth and 

Planetary Sciences at the University of New Mexico for use of their facilities. 

Callie Myer



vi 

CONTENTS 

Page 

ABSTRACT…………………………………………………………………...………….ii 

ACKNOWLEDGMENTS………………………………………………………………..iv 

LIST OF TABLES………………………………………………………………………..ix 

LIST OF FIGURES……………………………………………………………………….x 

CHAPTER 

1. INTRODUCTION AND GEOLOGIC BACKGROUND ................................ 1 

1.1 - Introduction and Significance ....................................................... 1 
1.2 - Geologic Background - The Uinta Mountain Group .................... 4 
1.3 - Geologic Background - Eastern Uinta Mountain Group .............. 5 
1.4 - Western Uinta Mountain Group ................................................... 7 

2. PREVIOUS WORK ON THE RED PINE SHALE ....................................... 10 

2.1 - Stratigraphy and Mapping .......................................................... 10 
2.2 - Facies Analysis ........................................................................... 11 
2.3 - Depositional Environment .......................................................... 12 
2.4 – Age ............................................................................................. 13 
2.5 – Correlations ................................................................................ 14 
2.6 – Geochemistry ............................................................................. 15 
2.7 – Paleontology .............................................................................. 16 

3. METHODS ..................................................................................................... 18 

3.1 - Field Methods ............................................................................. 18 
3.2 - Lab Methods ............................................................................... 19 



vii 

4. FACIES ANALYSIS ...................................................................................... 21 

4.1 - Introduction and Subdivision...................................................... 21 
4.2 - Facies 1: Shale ............................................................................ 21 

4.2.1 – Description ............................................................ 21 
4.2.2 – Interpretation ......................................................... 27 

4.3 - Facies 2: Concretion ................................................................... 29 
4.3.1 – Description ............................................................ 29 
4.3.2 – Interpretation ......................................................... 30 

4.4 - Facies 3: Shale-and-Sandstone ................................................... 32 
4.4.1 – Description ............................................................ 32 
4.4.2 – Interpretation ......................................................... 34 

4.5 - Facies 4: Slump fold ................................................................... 35 
4.5.1 – Description ............................................................ 35 
4.5.2 – Interpretation ......................................................... 37 

4.6 - Facies 5: Sandstone .................................................................... 37 
4.6.1 – Description ............................................................ 37 
4.6.2 – Interpretation ......................................................... 41 

4.7 - Facies 6: Pebbly sandstone ......................................................... 42 
4.7.1 – Description ............................................................ 42 
4.7.2 – Interpretation ......................................................... 42 

5. GEOCHEMISTRY AND PETROGRAPHY RESULTS ............................... 46 

5.1 - Trends in C-isotope and TOC Curves ........................................ 46 
5.2 - Petrographic Analysis and Sandstone Textures .......................... 54 
5.3 - Sandstone Composition and Petrographic Data ......................... 55 
5.4 - Detrital Zircon Data .................................................................... 57 

6. STRATIGRAPHIC RESULTS ....................................................................... 59 

6.1 - Introduction and Study Sites ....................................................... 59 
6.2 - Physical and Chemical Stratigraphy ........................................... 63 
6.3 - Sequence Stratigraphy ................................................................ 67 



viii 

7. DISCUSSION ................................................................................................. 70 

7.1 - Paleogeography of the Red Pine Basin....................................... 70 
7.2 - Controls on Cycles...................................................................... 74 
7.3 - Controls on C-Isotope Composition and Stratigraphy ............... 75 

8. CONCLUSIONS............................................................................................. 80 

REFERENCES ........................................................................................................... 82 

APPENDICES ............................................................................................................ 89 

Appendix A:  Geologic Maps of Measured Sections.......................... 90 
Appendix B:  C-Isotope Data Tables .................................................. 97 
Appendix C:  Raw Point Count Data Tables .................................... 106 
Appendix D:  Other Point Count Data Table .................................... 119 
Appendix E:  Detailed Stratigraphic Columns .................................. 123 
Appendix F:  Measured Section Localities and Descriptions ........... 199 

 

 

 



ix 

LIST OF TABLES 

Table                 Page 

1 Paleontology of Red Pine Shale………………………………………………….17 

2 Facies descriptions…………………………………………………....………….22 

3 Ranges of C-isotope and TOC values……………………………….…………...46 



x 

LIST OF FIGURES 

Figure                 Page 

1 Geologic map of the Uinta Mountains………………………………………..…...2 

2 Stratigraphic columns of the eastern and western Uinta Mountain Groups ….…...3 

3a Ternary diagrams with normalized point count data from sandstone samples......24 

3b Ternary diagrams with normalized point count data from sandstone samples......25 

3c Ternary diagrams with normalized point count data from sandstone samples......25 

4 Illustration showing facies positions in a deltaic setting……………….……..….26 

5 Photograph of shale facies…………………………………………….……...….28 

6 Photograph of Photograph of Bavlinella faviolata in concretion facies…………31 

7 Photograph of shale-and-sandstone facies………………………………….……33 

8 Photograph of slump fold facies…………………………………………………36 

9 Photograph showing planar-tabular foresets in the sandstone facies …………....38 

10 Photomicrographs of sandstone facies…………………………………………...39 

11 Photograph of accreted and amalgamated trough crossbeds in sandstone facies..40 

12 Photograph of pebbly sandstone facies…………………………………………..43 

13 Stratigraphy, facies, C-isotope, TOC, and petrographic data for the type 
section……………………………………………………….…………………...47 

 
14 Stratigraphy, facies, C-isotope, TOC, and petrographic data for the Hades Creek 

composite section………………………………...………………………………48 
   
15 Stratigraphy, facies, C-isotope, and petrographic data for the Ashley Creek 

section……………………………………...…………………………………….49 
 
16 Stratigraphy, facies, C-isotope, and petrographic data for the Henry’s Fork Creek 

section………………………………...………………………………………….50 



xi 

 
17 Photograph of partial Hades Creek sections that have been correlated to create 

composite Hades Creek section …………………………………………………61 
 
18 Correlation of type, Hades composite, Henry’s Fork, and Ashley Creek measured 

sections……………………...……………………………………………………64 
 
19 Correlation between the north and south flank measured sections (Hades Creek 

and type sections)…………………………………..………………………….…66 
 
20 Composite stratigraphic column, mineralogy, C-isotope, TOC, and sea level 

graphs of Red Pine Shale………………………………………………………...69 
 
21 Paleogeographic model of Uinta Mountain and Big Cottonwood basin during 

deposition of the lower Red Pine sediment….………………………..……..…...71 
 
22 Stratigraphy and C-isotope data from the Chuar Group and Uinta Mountain Group 

showing correlation……………………………………………………….……...77 



2 

CHAPTER 1 

INTRODUCTION AND GEOLOGIC BACKGROUND 

1.1 – Introduction and Significance 

Recent Precambrian research has raised many questions about Neoproterozoic 

climate change, biologic evolution, and the rifting of Rodinia (e.g., Dalziel, 1997; 

Colpron et al., 2002; Hoffman and Schrag, 2002; Knoll, 2003).  The ability to test current 

hypotheses begins with the fundamental understanding of Neoproterozoic successions 

that capture this time period.  The Red Pine Shale of the Uinta Mountain Group is a mid-

Neoproterozoic succession that records some of these phenomena and, at a minimum, the 

resulting data will contribute to an understanding of this unique time in Earth history.   

The Red Pine Shale is the uppermost formation of the Neoproterozoic Uinta 

Mountain Group in northeastern Utah (Figs. 1 and 2) and is now measured to ~1120m 

thick.  This unit is an organic-rich sedimentary succession that was formally named by 

Williams (1953), and, until now has not been formally described using Stratigraphic 

Code guidelines (NACSM, 1983).  Nevertheless, a number of workers have studied the 

Red Pine Shale and interpreted it to represent a variety of depositional environments and 

paleogeographic settings. 

The Uinta Mountains are an east-west trending range that spans about 190 km from 

northeastern Utah to northwestern Colorado (Fig. 1).  They are flanked by the North 

Flank and South Flank fault systems, two Laramide-age high-angle reverse faults that 

have kilometers of displacement (Hansen, 1965; Wallace and Crittenden, 
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Figure 1.  Geologic map of Uinta Mountains, northeastern Utah, showing mapped extent of Red Pine Shale and four study site 
locations.  Site 1: type section and Mud Lake Flat Road section; Site 2: Hades Creek section; Site 3: Henry’s Fork section; Site 4: 
Ashley Creek section.   (Modified from Dehler et al., 2007) 2
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Figure 2.  Stratigraphic columns of the eastern and western Uinta Mountain Groups  
and a more detailed composite section of the Red Pine Shale with corresponding C-
isotope curve.  Note that the Red Pine Shale composite section is from the two localities 
that will be the focus of this research.  (Modified from Dehler et al., 2007) 
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1969).  The related Uinta anticline spans the length of the range and is about 50 km wide 

(Hansen, 1965).  The core of the Uinta Mountains is occupied by the Uinta Mountain 

Group.  The Red Pine Shale has only been mapped in the western part of these 

mountains.  East of 110° longitude this unit may undergo facies changes in combination 

with partial truncation by an angular unconformity and overlying Paleozoic units 

(Sprinkel, 2002; Kowallis, pers comm., 2008). 

The objectives of this paper are twofold:  to characterize and interpret the Red Pine 

Shale in detail using stratigraphy, facies analysis, geochemistry, and petrography; and to 

fulfill the  requirements to revise the Red Pine Shale as a formal unit in accordance with 

the Stratigraphic Code (NACSM, 1983).  In this paper, it is hypothesized that the Red 

Pine Shale represents a deltaic system in a marine intracratonic seaway at ~750 Ma.  It is 

further hypothesized that this unit correlates with the Chuar Group and middle Pahrump 

Group, and perhaps the Big Cottonwood Formation (Dehler, 2008).  Finally, it is 

suggested that this unit is important for continued studies on the Pre-Sturtian (~750 Ma) 

Earth system. 

1.2 – Geologic Background - The Uinta Mountain Group 

The Uinta Mountain Group is one of the few well preserved mid-Neoproterozoic 

successions in North America.  It is a thick siliciclastic succession of mostly shale, 

sandstone, and orthoquartzite, yet is unmetamorphosed (Wallace and Crittenden, 1969).  

It is unclear how the eastern and western Uinta Mountain Group correlate, but it has been 

documented that strata in the northern part of the range are dominated by deposits derived 

from the Wyoming craton, and strata from the southern part are dominated by deposits 
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from Paleoproterozoic and Mesoproterozoic sources to the east (Fig. 2; e.g., Sanderson, 

1984; Ball and Farmer, 1998; Condie et al., 2001; Mueller et al., 2007). 

1.3 - Geologic Background - Eastern Uinta Mountain Group 

The eastern Uinta Mountain Group is over 7 km thick and is separated from the 

western Uinta Mountain Group by latitude 110°W (Hansen, 1965).  These strata have 

received less attention than the western Uinta Mountain Group, due to their apparent 

homogeneous sandy nature.  The eastern Uinta Mountain Group unconformably rests on 

the Paleoproterozoic-Archean(?) Red Creek Quartzite metamorphic complex and is 

overlain by the Cambrian Lodore Formation (e.g., Sprinkel, 2002).  The formations 

present on this side of the range include the basal Jesse Ewing Canyon Formation, the 

formations of Diamond Breaks, Outlaw Trail, and Crouse Canyon, and sections of 

undivided Uinta Mountain Group (Dehler and Sprinkel, 2005, and references therein).   

The Jesse Ewing Canyon Formation is >1000 m thick (Brehm, 2007) and is the basal 

unit of the eastern Uinta Mountain Group, unconformably overlying the Red Creek 

Quartzite.  It consists of two members:  a lower member dominated by clast-supported 

conglomerate and breccia, and an upper member dominated by red to black shale with 

lesser mixed-composition arenite (Brehm, 2007).  Sediment sources for this formation are 

to the north, east, and south (Sanderson and Wiley, 1986; Brehm, 2007).  Fossils in the 

Jesse Ewing Canyon Formation include Leiosphaeridia sp. and filament fragments (Nagy 

and Porter, 2005; Sprinkel and Waanders, 2005). This unit is interpreted to represent 

alluvial fan and fan delta deposition along a wave-affected marine shoreline (Sanderson 

and Wiley, 1986; Dehler et al., 2007).   
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Conformably (?) above the Jesse Ewing Canyon Formation is ~6 km of undivided 

Uinta Mountain Group.  This section consists of massive and crossbedded sandstone 

interbedded with intervals of red-to-green shale and conglomerate.  This undifferentiated 

Uinta Mountain Group is interpreted to represent shallow marine to subaerial 

environments within a trough that was rapidly subsiding (Hansen, 1965).  

In some areas, the undifferentiated Uinta Mountain Group has been subdivided into 

three informal units (DeGrey, 2005).   The formation of Diamond Breaks is the 

lowermost unit and has been measured to between 500 and 1000m thick, though the base 

is not exposed.  This unit is dominantly quartz arenite with lesser arkosic arenite, 

subarkosic arenite, and shale.  It is conformably (?) overlain by the formation of Outlaw 

Trail and is considered to represent a braided river system flowing to the southwest.  

(DeGrey, 2005) 

The formation of Outlaw Trail is a <300 m thick unit dominated by thick green to 

gray to red shale with subordinate sandstone intervals (DeGrey, 2005; Rybczynski, in 

prep).  These shale intervals are laminated to thinly bedded and the interbeds of arkosic 

and quartz sandstone and siltstone exhibit thin to thick beds.  Fossils include 

Leiosphaeridia sp. and filament fragments (Sprinkel and Waanders, 2005).  It is 

interpreted to represent a fluvio-estuarine setting (Dehler et al., 2007; Rybczynski, in 

prep). 

The formation of Crouse Canyon is estimated to be ~3200m to 5km thick (DeGrey 

and Dehler, 2005; Rybczynski,in prep).  This formation is similar to the formation of 

Diamond Breaks and is suggested to represent a similar environment of deposition: a 
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braided river environment flowing to the southwest indicating an increase in energy from 

the formation of Outlaw Trail (De Grey, 2005) 

1.4 - Western Uinta Mountain Group 

The western Uinta Mountain Group totals over 4 km thick and, although the base is 

not exposed, has been subdivided into 7 units (Fig. 2): the formation of Red Castle, the 

formation of Moosehorn Lake, the formation of Dead Horse Pass, the Mount Watson 

Formation, the formation of Hades Pass (Wallace, 1972; Sanderson, 1984), and the Red 

Pine Shale (Williams, 1953). 

The basal unit of the western Uinta Mountain Group is the formation of Red Castle 

(~750).  It is dominantly an arkosic arenite with lesser quartz and subarkosic arenite. 

Sedimentary structures include planar crossbeds, trough crossbeds, ripples, mudcracks, 

and mud chips.  The formation of Red Castle is interpreted to represent a braided stream 

with sources from the north and east succeeded by a tidal system with flood tide 

paleoflow from the south (Wallace and Crittenden, 1969; Kingsbury, 2008).  This unit is 

unconformably overlain by the formation of Deadhorse Pass, or possibly the Hades Pass 

quartzite, and possibly interfingers laterally with the formation of Moosehorn Lake 

(Kingsbury, 2008) The formation of Moosehorn Lake is ~150 to 300m thick and 

comprises green shale interbedded with pebbly to coarse-grained arkosic arenite.  It 

contains ripples, soft sediment deformation, and mud cracks.  This unit includes organic 

fragments and siliceous casts that are suggestive of vase-shaped microfossils, though they 

are not conclusive (Nyberg, 1982; Dehler et al., 2007).  This unit is interpreted to 

represent various marine environments that laterally relate to the fluvial environment of 
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the formation of Red Castle (Wallace and Crittenden, 1969; Wallace, 1972).   

The Mount Watson Formation is from 550 to 1000m thick and is dominantly quartz 

arenite with some subarkosic arenite, arkosic arenite, and green shale.  The most common 

sedimentary structures are planar and trough cross-beds, soft sediment deformation, 

ripples, and parting lineations (Wallace and Crittenden, 1969).  It has been interpreted to 

be fluvial (Sanderson, 1984) or a combination of fluvial, deltaic, and marine 

environments (Wallace and Crittenden, 1969; Wallace, 1972).   The Mount Watson 

Formation grades laterally into the formation of Dead Horse Pass and grades upward (?) 

into the formation of Hades Pass (Wallace and Crittenden, 1969). 

The formation of Dead Horse Pass is ~900m thick and comprises quartz arenite and 

orthoquartzite with lesser gray to red shale and siltstone.  The most common sedimentary 

structures are trough and planar cross-beds, soft sediment deformation, ripples, and 

mudchips (Wallace, 1972), although hummocky-cross stratification and planar beds are 

also present (Kingsbury,2008).   To the west, this unit grades laterally into the Mount 

Watson Formation (Wallace, 1972).  Similar to the Mount Watson Formation, the 

formation of Dead Horse Pass is interpreted to be a fluvial environment (Sanderson, 

1984) or fluvial and marine (Wallace, 1972).  

Overlying the formation of Red Castle, the Mount Watson Formation, and formation 

of Dead Horse Pass is the formation of Hades Pass.  It is composed of quartz arenite, 

subarkosic arenite, and arkosic arenite with lesser shale intervals and ranges in thickness 

from 1825 to 3000m.  This reddish sandstone is dominated by crossbedding and soft-

sediment deformation (Wallace and Crittenden, 1969; Wallace, 1972).  It is interpreted to 
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represent a fluvial environment with a dominantly eastern source (Wallace and 

Crittenden, 1969; Wallace, 1972), although it likely has a marginal marine component at 

the top due to the gradational upper contact with the hypothesized marine-deltaic Red 

Pine Shale (Dehler et al., 2007). 

  



10 

CHAPTER 2 

PREVIOUS WORK ON THE RED PINE SHALE 

2.1 – Stratigraphy and mapping 

In 1953, Williams differentiated the Red Pine Shale from the Ophir shale, stating that 

it was upper Precambrian and not Cambrian.  He based his decision upon finding an 

angular unconformity between the two shale units.  Williams found a nice exposure that 

became the type section of this Precambrian shale in Red Pine Canyon, which is a 

tributary of Smith and Morehouse Creek.  He formally named the Red Pine Shale based 

on this location. 

In 1954, Larsen wrote a masters thesis on the Precambrian geology of the western 

Uinta Mountain, in which he compiled a history of research on the Red Pine Shale.  He 

describes the stratigraphy of this unit and its relationships with adjacent units and also  

summarizes Williams’ (1953) work and agreed with his findings.  He reported a 

maximum thickness of the Red Pine Shale as >900m.  Wallace and Crittenden (1969), 

also gave a general stratigraphic description of the Red Pine Shale and the adjacent units.  

They described the lower contact between the Red Pine Shale and what is now referred to 

as the Hades Pass quartzite, as gradational.  They stated that the Red Pine Shale is the 

most likely Uinta Mountain Group unit to contain fossils.  Then in 1972, Wallace 

produced a more detailed description of the stratigraphy of the Red Pine Shale and a new 

maximum thickness of 1830m.  Wallace (1972) also mapped all known locations of the 

Red Pine Shale in the western Uinta Mountains.  More recently, Bryant (1992) created a 

geologic map of the Salt Lake City 1° x 2° quadrangle.  This included all locations of the 
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Red Pine Shale as well as a brief description of this unit; much of his mapping of the 

Uinta Mountain Group was based upon Wallace’s original mapping.  Sprinkel (2002) 

mapped the Red Pine Shale in the Dutch John 30° x 60° sheet, extending its known 

outcrop belt east of the 110°W longitude line, and as far east as Ashley Creek. 

Dehler et al. (2007) studied the Red Pine Shale in reconnaissance fashion.  The main 

two sections they studied were the type section (~550 m) and the Hades Creek locality 

(Fig. 1; Appendix A). This latter locale consists of five partial measured sections (upper 

Hades Creek, Hades Creek A, B, C, and lower Hades Creek) ranging from ~ 69 m to 370 

m in thickness (Appendix A).  Only the thickest partial section is used in the composite 

general section of Fig. 2.  Other localities included in the reconnaissance work of Dehler 

et al., (2007) included:  Ashley Creek, Henry’s Fork (Fig. 1; Appendix A), and White 

Rocks canyon.   

2.2 - Facies Analysis 

Three main facies were proposed for the Red Pine Shale by Dehler et al. (2007).  The 

first is a shale facies that consists of organic-rich gray to black siltshale, mudshale, and 

clayshale.  This facies is between 1 and 100 m thick and is considered to be about 70% of 

the composite section.  The second facies is the shale-and-sandstone facies that is 

composed of organic-rich shale (similar to the previous facies) interbedded with fine- to 

coarse-grained quartz arenite to arkosic arenite in thin to very thin beds.  This facies 

comprises about 20% of the composite section and can be found in intervals between 1 

and 10 m thick.  The third facies is sandstone, which is mostly fine-grained to granule 

quartz arenite to arkosic arenite.  Sedimentary structures are present and include graded 
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bedding, hummocky cross-stratification, ripples, and load structures. (Dehler et al., 2007)   

2.3 - Depositional Environment 

The depositional environment of the Red Pine Shale is interpreted as mud flat, fluvial, 

or marine deltaic (Wallace and Crittenden, 1969; Link et al., 1993; Condie et al., 2001; 

Dehler et al., 2007).  Contrasting paleogeographic models suggest either deposition in an 

east-west-trending intracratonic trough that was dominated by fluvial systems (Condie et 

al., 2001), or a marine system that was open to the west and south (Wallace and 

Crittenden, 1969; Dehler et al., 2001). 

Though Wallace and Crittenden (1969) do not commit to a depositional environment 

for the Red Pine Shale, they do tentatively offer ideas that are consistent with their 

interpretations for the rest of the Uinta Mountain Group.  Based on its similarity to other 

shale units in the Uinta Mountain Group, they suggest that this was an environment of 

shallow water, a restricted basin, or a mudflat.  Preliminary paleocurrent data collected 

from the lower western Uinta Mountain Group suggest that transport of sediment was to 

the south and the west, simultaneously.  Wallace and Crittenden (1969) also document a 

gradational lower contact with a fluvial succession of the Hades Pass quartzite.  Based on 

these data, Wallace and Crittenden (1969) developed a paleogeographic model that 

represented a shallow marine environment that was open to the south and southwest, 

though they generally address the western Uinta Mountain Group as a whole. 

Condie et al. (2001) assert that the Uinta Mountain Group was deposited in an east-

west-trending intracratonic trough that opened into a shallow sea to the west and was 

dominated by an axial fluvial system, although their work was dominantly geochemical 
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and emphasized provenance, not depositional environments.  Based on the estimated age 

of the Uinta Mountain Group, Condie et al. (2001) suggest that this was a rift basin 

associated with the breakup of Rodinia, but that it was not an aulocogen due to the 

location of this deposit 500 km from the Proterozoic edge of the craton in Nevada and the 

fact that the Uinta Mountain Group rests on continental crust.   

Dehler et al. (2007) hypothesize that the Red Pine Shale was deposited in a deltaic 

environment in a marine basin associated with the breakup of Rodinia.  The C-isotope 

data used in this study showed variability similar to that of known C-isotope curves from 

mid- to late Neoproterozoic marine successions.  Marine microfossils found in the Red 

Pine Shale were used to further support the claim that this was a marine environment.  

The similarity of many data sets in the Red Pine Shale and the Chuar and middle 

Pahrump groups suggest an intracratonic seaway connecting separate rift basins at ~750 

Ma (ChUMP hypothesis of Dehler, 2008).   

2.4 - Age 

Dating Techniques used for this unit include microfossils, Rb/Sr and U/Pb dating, and 

correlation of carbon isotopes and fossils.  Crittenden and Peterman (1975) reported an 

age for the Red Pine Shale of 950 Ma using whole rock Rb/Sr dating on shale, which fits 

within the bracketed age given by Hedge et al. (1986) for the entire Uinta Mountain 

Group (1.4 – 0.9 Ga).  These ages contradict the age suggested by the microfossil 

assemblage found in the Red Pine Shale.  Vase-shaped microfossils and Bavlinella 

faveolata have been identified, as well as a variety of acritarchs (Vidal and Ford, 1985; 

Horodyski, 1993; Dehler et al., 2007).  Bavlinella faveolata first appears in the 
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sedimentary record just before the Sturtian glaciation (750 to 700 Ma) (Vidal, 1976; 

Knoll and Swett, 1985), while the vase-shaped microfossils have yet to be found in rocks 

that are post-Sturtian (Porter and Knoll, 2000).  These data suggest that the Red Pine 

Shale was deposited before or during the Sturtian glaciation (Dehler et al., 2007).  These 

microfossil data, in conjunction with C-isotope data from the Red Pine Shale, suggest 

that this unit correlates with the Chuar Group of Arizona (Dehler et al., 2001; Dehler et 

al., 2007).  The Chuar Group is ~770 to 742 Ma (Karlstrom et al., 2000, Dehler et al., 

2005), suggesting a similar age for the Red Pine Shale.  The formation of Outlaw Trail of 

the middle-lower eastern Uinta Mountain Group has yielded a population of grains 

(n=4/128) which indicate a maximum depositional age of 766±4 Ma (Dehler et al., in 

review).  Though the relationship between the Red Pine Shale and the formation of 

Outlaw Trail is not completely understood, the Red Pine Shale is most likely 

stratigraphically above the formation of Outlaw Trail (Dehler et al., 2007).  Therefore, the 

best constraints on the Red Pine Shale indicate that it is between ~770 Ma and 742 Ma. 

2.5 – Correlations 

The Uinta Mountain Group is hypothesized to correlate with the Big Cottonwood 

Formation west of the Uinta Mountains (see Fig. 1), the Pahrump Group in Death Valley, 

California, and, as mentioned, the Chuar Group of Grand Canyon, Arizona (Link et al., 

1993; Dehler et al., 2007).  These correlations are based on combined lithologic, 

microfossil, and C-isotope data (Link et al., 1993; Dehler et al., 2007).  The Big 

Cottonwood Formation has been correlated with the Uinta Mountain Group using 

lithology and a preliminary paleomagnetic direction and pole data (Link et al., 1993; 
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Ehlers and Chan, 1999).  New detrital zircon data from the Red Pine Shale and the Big 

Cottonwood Group show two identical population distributions and suggest this 

correlation is robust (Dehler et al., in review).  The Chuar and Uinta Mountain groups 

have been correlated by paleomagnetic data, chemostratigraphy and paleontology (e.g., 

Dehler et al., 2005; Weil et al., 2006).  Lithologic characteristics and some paleontology 

of the Pahrump Group have been correlated to the Uinta Mountain Group (Link et al., 

1993; Dehler, 2008). 

2.6 – Geochemistry 

Condie et al. (2001) used geochemical and Nd isotopic analyses to understand 

provenance and paleogeography of the western Uinta Mountain Group and the Big 

Cottonwood Group. They found that Th values within Red Pine Shale samples range 

from 15 to 40 ppm Th.  These values are considered unusually high relative to most 

Phanerozoic shale samples (<20 ppm Th) (Condie, 1993).  Chemical index of alteration 

(CIA) values within the Red Pine Shale were found to be high and in conjunction with 

Al2O3, CaO + Na2O, and K2O molecular values, they suggest paleoweathering 

conditions.  They suggest that the Uinta Mountain and Big Cottonwood groups were 

deposited during subtropical to tropical climates.  Nd isotopes and geochemical analyses 

from this study also suggest that the sediment of the Uinta Mountain Group was derived 

from a mixing of Archean and Paleoproterozoic sources.   

Preliminary C-isotope data by Dehler et al. (2007) are shown in Fig. 2.  This curve is 

a composite of the thickest partial section of the Hades Creek locality (upper part) and the 

type section (lower part).  Although some C-isotope variability is expressed, the pilot data 
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are low resolution (average spacing of ~20 m).  Preliminary TOC data for the Red Pine 

Shale range from 0.32 to 5.9%, but represent only a subset of the samples previously 

analyzed for isotopic composition (Dehler et al., 2007).   

2.7 – Paleontology 

Vidal and Ford (1985) conducted some of the earliest paleontologic work on samples 

from the Uinta Mountain Group.  They identified multiple microfossils within the Red 

Pine Shale including Chuaria circularis, Leiospheridia sp., other acritarchs, and 

filaments.  They also identified rare examples of more complex fossils such as 

Melanocyrillium (vase-shaped microfossils), Valeria lophostriata, cf. Stictosphaeridium, 

Trachysphaeridium sp. A, T. laminaritum, T. laufeldi, and Tasmanitesrifeiicus.   

Current paleontologic studies of the Red Pine Shale are revealing an interesting 

assemblage of fossilized eukaryotes.  These microfossils include vase-shaped 

microfossils, Bavlinella faveolata, Leiosphaeridia sp., ornamented acritarchs, assorted 

filaments, and rare Chuaria circularis (e.g., Nagy and Porter, 2005; Dehler et al., 2007).  

The evidence of early heterotrophic protists found in the Red Pine Shale indicates not 

only an increase in food web complexity by this time, but has implications for 

prokaryotic and eukaryotic evolution prior to the Cambrian explosion (Porter and Knoll, 

2000; Dehler et al., 2007). 

The microfossil assemblages dominated by Bavlinella faveolata have been found in 

the Red Pine Shale near Hoop Lake, White Rocks, and the Hades Creek locale (Fig. 1, 

Table 1) (Nagy and Porter, 2005).  These fossils are about 5-20 µm in diameter and are 

frequently accompanied by Leiosphaeridia sp. and acritarch envelopes (Nagy and Porter, 
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2005; Dehler et al., 2007).  Some Bavlinella faveolata specimens (e.g. White Rocks  

locale) appear to have been pyritized.  Assemblages of vase-shaped microfossils and 

occasional acritarchs have been found in the Red Pine Shale at the type section (Vidal 

and Ford, 1985; Dehler et al., 2007).  Vase-shaped microfossils are found in silicified 

mudstone nodules as casts (Porter et al., 2003; Dehler et al., 2007).   

Locale Year Sample Fossil(s)
Henry's Fork 2002 HF-3 Satka colonialica; filaments
Henry' Fork 2002 HF-7 Leiosphaeridia sp.; filaments; possible VSMs
Ashley Creek 2002 AC-1 Leiosphaeridia sp.; filaments
Type Section 2004 RP04-3 Leiosphaeridia sp.; filaments
Type Section 2004 RP04-10 Leiosphaeridia sp.; filaments
Type Section 2000 RP00B-8 Leiosphaeridia sp.
Type Section 2000 RP00B-32 Leiosphaeridia sp.
Type Section 2000 RP00B-40 VSMs
Hades B 2003 RP03B-24 Chuaria circularis
Hades B 2003 RP03B-25 Leiosphaeridia sp.
Lower Hades 2001 RP01A-50 Leiosphaeridia sp.; filaments; B. faveolata
Lower Hades 2001 RP01A-63 Leiosphaeridia sp.; filaments
Lower Hades 2001 RP01A-68 Leiosphaeridia sp.; filaments
Lower Hades 2001 RP01A-70 Leiosphaeridia sp.; filaments

Lower Hades 2001 RP01A-85 B. faveolata
B. faveolata : Bavlinella faveolata
VSM : vase-shaped microfossil

Table 1:  Paleontology of the Red Pine Shale

from Nagy and Porter, 2005  
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CHAPTER 3 

METHODS 

Both field and laboratory methods were applied to address the proposed hypotheses 

of this research.  The multiple techniques used include measuring of sections, facies 

analysis, petrography, carbon-isotope stratigraphy, and shale geochemistry. 

3.1 - Field Methods 

Measuring of section and minor geologic mapping were necessary to help in the 

overall characterization of the Red Pine Shale.  Geologic mapping was done to locate, as 

well as to locally correlate, measured sections.  Sedimentologic studies of the Red Pine 

Shale involved facies analyses including the identification of facies as well as description 

of sedimentary features and structures seen within these facies.  Paleocurrent analyses 

were attempted, yet appropriate sedimentary structures are limited.  The stratigraphic 

framework of this unit is based on identified marker beds, facies changes, and correlation 

between measured sections.  Two main localities (type section and Hades Creek locales), 

and three others, were previously identified and preliminary data were collected by C. 

Dehler in these areas.  These localities are the focus of this study.                                       

Samples were collected throughout each measured section using both a uniform and a 

stratified sampling method. Specific strategic intervals were also sampled for 

collaborative paleontologic and geochronologic studies (U-Pb and Re-Os dating).   A 

total of 320 shale samples were collected and analyzed for C-isotope ratios and TOC in 

the University of New Mexico’s stable isotope lab.  Sixty-nine sandstone samples were 
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collected and made into thin sections by Quality Thin Sections in Tucson, Arizona.  This 

field work and high resolution sampling was the first step in the interpretation of the 

depositional system, provenance, and age of the Red Pine Shale.  

3.2 - Lab Methods 

Sample collection and preparation procedures for shale followed those used by 

Dehler et al. (2005).  About 20g of shale chips was chosen from samples to be cleaned 

with 10% HCl solution.  After drying, samples were crushed in a zirconium shatter box to 

~200 mesh and were again digested in 10% HCl solution until all carbonate was 

dissolved.  Samples were then rinsed with deionized water until pH reached 5.5.  Samples 

from the shale facies were analyzed for organic δ13C and TOC using the mass 

spectrometer at the University of New Mexico, with some trial work at Brigham Young 

University.  C-isotopic data are reported relative to the Peedee belmnite (PDB) standard. 

Precision for these analyses is 0.1‰ based on multiple analyses of international standards 

and duplicate samples.  TOC was determined by evolved CO2 volume (Strauss et al., 

1992).   

Each of the 69 thin sections was point counted using the traditional method and a 

sampling target of 300 points per slide.  The categories were limited to the following: 

monocrystalline quartz, undulatory quartz, polycrystalline quartz, plagioclase, potassium 

feldspar, weathered feldspar, muscovite, chlorite, mudstone fragment, siltstone fragment, 

matrix, and other lithics.  For each sample average grain size, rounding, sorting, and 

additional features were described.  All petrographic analysis was done at the University 

of New Mexico.  Detrital zircon analyses were conducted by Mark Fanning at the 
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Australian National University, Canberra, Austrailia, using a sensitive high resolution ion 

microprobe (SHRIMP); see Dehler et al. (in review) for methodology.  Some of these 

detrital zircon results were published in Fanning and Dehler (2005) and Dehler et al. (in 

review).  
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CHAPTER 4 

FACIES ANALYSIS 

4.1 - Introduction and subdivision 

Six facies were identified within the Red Pine Shale.  This analysis builds on the 

work of Dehler et al. (2007) by adding three new facies (concretion, slump fold, pebble 

sandstone) and expanding the descriptions and interpretations of the previously identified 

three facies (shale, shale-and-sandstone, sandstone).  Facies are defined by grain size, bed 

thickness and packaging, and sedimentary structures (Table 2).   Normalized point count 

data from sandstone samples were plotted on QFL ternary diagrams to aid in facies 

descriptions (Fig. 3).  Delta terminology is used to describe these facies, though the 

defining delta shape cannot be seen in the exposed Red Pine Shale due to the lack of 

laterally extensive exposure.  This decision is based on the gradational transition from the 

underlying Hades Pass quartzite, which represents braided fluvial deposition (Wallace 

and Crittenden, 1969; this study), and, more generally, on the idea that transverse and 

axial streams fed the Uinta Mountain Group basin (e.g., Wallace, 1972).  Fig. 4 shows the 

interpreted depositional setting for each facies in a deltaic system. 

4.2 - Facies 1: Shale 

4.2.1 – Description 

This facies, originally identified by Dehler et al. (2007) is dominated by organic-rich  
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Facies Description Facies Definition
Environmental 
Interpretation

1: Shale

Gray to black claystone to siltstone, thin to thick beds, organic-
rich, contains Bavlinella faveolata and acritarch fossils, and rare 

10cm to 1m thick tabular fine sandstone beds; sandstone  is 
quartz arenite to arkosic arenite, usually weathered and oxidized 

with siltstone lenses, graded bedding, ripple and parallel 
laminations, hummocky-cross stratification, swaly bedding, tool 

marks, symmetric and interference ripples.

Mostly clay to siltstone with 
few 10cm to 1m thick fine 

sandstone beds.   Shale beds 
5m to 310m thick.

Distal prodelta

2: Concretion

Silt to medium sand, usually gray to black shale, some thin sandy 
interbeds with silty lenses, graded bedding, ripple to parallel 
laminations, vase-shaped microfossils, and multiple silica 

concretions.

1-4m thick siltstone with some 
medium sandstone beds.  

Distinguishing features are 
silica concretions.

Distal prodelta

3: Shale-and- 
Sandstone

Shale interbedded with sandstone.  Shale is claystone to 
siltstone, gray to black, some maroon with parallel laminations, 

silty lenses, acritarch fossils; sandstone is fine- to coarse-grained, 
moderately sorted quartz to arkosic arenite, thin to medium beds, 

graded bedding, planar-tabular, swaley, and hummocky cross-
bedding, ripple-cross and parallel laminations, and climbing and 
symmetric ripples, siltstone rip-ups, scoured contacts, and cut-
and-fill structures with coarse sand fining upward to silt, many 

beds are massive.

Interbedded sandstone beds 
<2m with shale beds <5m 
thick.  This combination is 

from 3-16m thick.

Delta front, prodelta

Table 2:  Summary of Red Pine Shale Facies Descriptions and Interpretations

continued
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Facies Description Facies Definition
Environmental 
Interpretation

4: Slump Fold

Gray to black mudstone with some sandstone beds.  Sandstone 
is fine-grained quartz to arkosic arenite with symmetric ripples, 
ripple laminations, hummocky-cross stratification up to 1m x 

20cm, slump folds up to 1m x 30cm.

Usually mudstone with some 
fine sandstone interbeds, 1-

4m thick.  Distinguishing 
feature is slump folding.

Proximal prodelta, 
delta front

5: Sandstone

Fine- to coarse-grained sandstone, subarkosic to arkosic, some 
quartz arenite, muscovite and rare chlorite, mudstone intraclasts 

angular to subrounded grains, poorly to well sorted, tabular, 
undulatory to planar beds, thin to medium bedding, normal to 

reverse grading, symmetric ripples, granule sandstone lenses, cut 
and fill structures, laminations within thin shale interbeds, 
mudstone rip-ups, parallel and ripple-cross laminations, 

hummocky- and swaley cross stratification, and planar and 
tangential cross-bedding.

Sandstone ranging in 
thickness from 2-17m thick. Delta front

6: Pebble 
Sandstone

Fine to coarse pebbly sandstone, quartzite to sub lithic or 
subarkosic, angular to subangular, moderate to poor sorting, 

undulatory to tabular thin to medium beds with normal and reverse 
grading, maroon siltstone rip-ups, and pebbles up to 5mm in 

diameter.

Granule to pebble sandstone 
<10m thick, from 0.5-7m 

thick.
Delta front

Table 2:  Summary of Red Pine Shale Facies Descriptions and Interpretations (continued )
23 
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a.  

 

Figure 3.  Ternary diagrams with normalized point count data from sandstone samples. 

a. Quartz-feldspar-lithic (QFL) ternary diagram of all sandstone samples.  
b. Quartz-potassium feldspar-plagioclase (QKP) ternary diagram with weathered 

grains excluded. 
c. Polycrystalline-monocrystalline-undulatory quartz (QpQmQu) ternary diagram of 

sandstone samples from all sections. 

 

Type Section 
Hades Composite Section 
Ashley Creek Section 
Henry’s Fork Section
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b.  

c. 



Delta Front

Prodelta

pebble sandstone

sandstone

slump fold

shale-and-sandstone

shale

concretion

Facies Key 26

Figure 4.  Illustration showing facies positions in a deltaic setting.  Six facies are 
identified and depositional settings are interpreted as follows: shale facies - distal 
prodelta; concretion facies – distal prodelta; shale-and-sandstone facies - proximal 
prodelta to delta front; slump fold facies - proximal prodelta or delta front; sandstone 
facies - delta front; pebbly sandstone facies - delta front. 
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gray to black siltshale, mudshale, and clayshale (Fig. 5).  The shale facies is defined as 

any shale interval > 5m thick.  Outcrops of this facies are present at all study sites.  The 

shale facies is the most common of all facies found within the Red Pine Shale. 

The shale facies ranges in thickness from 5 to 310 m thick and is composed of clay- 

to silt-sized particles in thin to thick beds with subordinate sandstone beds.  Centimeter- 

to 1-m-thick tabular beds of fine-grained quartz and arkosic sandstone are present within 

this facies.  The sandstone beds are typically oxidized.  Aside from laminations in the 

shale, the majority of sedimentary structures are present in the sandstone beds.  These 

include graded bedding, ripple and parallel laminae, hummocky-cross stratification, 

swaley bedding, tool marks, symmetric and interference ripples, and cm-scale siltstone to 

sandstone lenses.  Both Bavlinella faveolata and acritarch microfossils are present (Nagy 

and Porter, 2005).    The shale facies is most often in association with the shale-and-

sandstone facies and less frequently with the sandstone facies.   

4.2.2 - Interpretation 

The shale facies represents a wave-affected distal prodelta in a marine setting, which 

is in agreement with the interpretations of Dehler et al. (2007) (Fig. 4).  The supporting 

evidence specifically suggests a combination of suspension settling and punctuated dilute 

density currents, indicating deposition predominantly below storm wave base.   

Based on the thickness, continuity, and lack of subaerial sedimentary features of this 

shale, it was most likely deposited in an extensive, low energy subaqueous environment 

where processes are dominated by suspension settling.  Thick intervals of parallel- 



Figure 5.  Photograph looking north of the shale facies from Hades Creek A locale.  Shale 
slopes are photographed from across Hades Creek drainage.  Slope is ~30m in height and 
is near the base of Hades A. 

28
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laminations in the shale support deposition from suspension, much of which was below 

storm wave base (Prothero and Schwab, 1996).  Discrete changes in grain size within 

some laminae, ripple laminations, graded beds, and tool marks indicate intermittent weak, 

dilute density currents affected the bottom bed at times (Collinson and Thompson, 1982).  

Hummocky-cross stratification and swaley bedding indicate combined-flow at or near 

fair-weather wave base (Harms et al., 1975).  The silty and sandy lenses also represent 

scour and deposition likely caused by storm waves. Symmetric ripples are consistent with 

these features and also represent wave-generated currents near fair-weather wave base.  

The presence of Bavlinella faveolata and acritarch microfossils suggests deep- to 

shallow-water marine environments (Knoll et al., 1981; Nagy and Porter, 2005).  

Relatively high TOC content (up to 2.29%) (Appendix B) in the shale facies is 

characteristic of prodelta settings (Bhattaacharya and Walker, 1991).    

4.3 - Facies 2: Concretion 

4.3.1 - Description 

The concretion facies is very similar to the shale facies and is characterized by meter-

scale intervals of shale or sandstone with multiple silica concretions.  This facies is only 

seen in outcrop at the type section (Appendix A). 

The concretion facies is 1 to 4 m thick and consists of siltstone to medium-grained 

sandstone.  Though it is usually composed of gray to black shale, there are thin sandy 

interbeds with some silty lenses.  Sedimentary structures found within this facies are 

ripple and parallel laminae with graded bedding.  The concretions within this facies are 

typically <10cm in diameter, have ovular to spherical shape, and are composed of 
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silicified shale.  They are significant because they contain vase-shaped microfossils 

(Dehler et al., 2007).  One unusual pair of these fossils was preserved in a position 

suggesting they were asexually reproducing (Fig. 6).  This facies is typically found in 

association with the shale facies, but it is also seen less often in contact with the shale-

and-sandstone facies.   

4.3.2 - Interpretation 

The similarity to, and association with, the shale facies indicate that the concretion 

facies was also deposited in a distal prodelta setting (Fig. 4).  This facies, however, lacks 

significant sandstone and hence, the associated sedimentary structures representing 

higher energy currents.  Parallel laminae likely represent a combination of suspension 

settling and weak dilute density currents.  Graded bedding within some lamina and thin 

beds also indicate deposition by weak density currents.  Ripple laminae could also be 

deposited by waning weak density currents, or could indicate reworking by weak storm 

waves (Prothero and Schwab, 1996; Nichols, 2001).  The majority of sedimentary 

structures in this facies reflect density current deposits that have survived reworking and 

therefore were likely deposited below storm wave base (Prothero and Schwab, 1996).   

The lack of sedimentary structures indicating higher energy currents suggests that this 

facies represents the deepest water setting in the Red Pine Shale.   It is most commonly 

associated with the shale facies, and less so with the shale-and-sandstone facies, 

suggesting an overall proximal to dominantly distal prodelta setting.  This is consistent 

with observations that, in delta deposits, concretions are most likely to be found in the  

prodelta (Prothero and Schwab, 1996; Bhattacharya, 2006).
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Figure 6.  Photograph of Bavlinella faviolata performing asexual reproduction at time of 
death.  These microfossils were found within the concretion facies near the base of the 
type section measured section.  Each microfossil is ~75 µm in length.  (From Porter and 
Knoll, 2000 and Dehler et al., 2007) 
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The presence of vase-shaped microfossils in this subtidal facies may indicate that they 

have a broader environmental range.  Prior to recent studies on the Red Pine Shale, vase-

shaped microfossils were thought to represent only tidal-flat and lagoonal environments 

(Porter and Knoll, 2000).  These organisms have preservable tests that can be deposited 

immediately or can be transported by currents before deposition.   Though it cannot be 

ruled out, it is unlikely that these tests were transported due to their low concentration 

within the silica concretions of the Red Pine Shale (Dehler et al., 2007).  Porter and Knoll 

(2000) found that the tests of modern testate amoeba are typically found in dense 

concentrations when transported.  This is consistent with exceptionally high 

concentrations of vase-shaped microfossils found within dolomite nodules of the upper 

Walcott Member of the Chuar Group, which were interpreted to have been transported by 

storms (Porter and Knoll, 2000).   

4.4 - Facies 3: Shale-and-Sandstone 

4.4.1 - Description 

The shale-and-sandstone facies (Fig. 7), originally defined by Dehler et al. (2007), is 

composed of organic-rich shale (similar to the shale facies) interbedded with fine- to 

coarse-grained sandstone.  To be considered part of the shale-and-sandstone facies, the 

sandstone intervals must be <2m thick and interbedded with shale intervals that must be 

<5m thick.  Outcrops of this facies are found in all of the study areas.  This facies can be 

found in intervals between 3 and 16m thick.  The shale intervals of this facies are similar 

in composition to those of the shale facies and are slightly more common than the 

intervals of sandstone.  The shale intervals are usually gray to black and, less frequently, 
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Figure 7.  Photograph of the shale-and-sandstone facies near the base of the Henry’s Fork 
section.  The thickest sandstone beds are ~10cm thick. 
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maroon in color.  These beds are composed of claystone to siltstone with parallel 

laminations and common silty lenses.  Acritarch fossils are found in these shale units 

(Nagy and Porter, 2005). 

The sandstone is fine- to coarse-grained, moderately sorted quartz to arkosic arenite 

in thin to medium beds.   Sedimentary structures include graded bedding, planar-tabular, 

swaley, and hummocky cross-bedding, ripple-cross and parallel laminations, and 

climbing and symmetric ripples.  Many beds are massive.  There are also siltstone rip-

ups, scoured contacts, and cut-and-fill structures with coarse sand fining upward to silt.   

4.4.2 - Interpretation 

Similar to the previous two facies, the shale-sandstone-facies also represents 

suspension settling punctuated by density currents and wave action.  Despite their 

similarities, this facies shows an increase in sand percentage and displays sedimentary 

features that suggest a more proximal position on the delta (proximal prodelta to delta 

front environment; Fig. 4).    

 The shale of this facies is similar to that of the shale and concretion facies.     The 

combination of parallel laminations and silty lenses indicate suspension settling 

interrupted by weak density currents and some reworking of sediment by waves, near 

storm wave base (Prothero and Schwab, 1996).  Acritarch fossils found in this facies are 

interpreted to represent deep- and shallow-water marine environments (Knoll et al., 1981; 

Nagy and Porter, 2005), consistent with our interpretation. 

The sandstone of the shale-and-sandstone facies represents the shift to a higher 

energy environment of deposition.  Sedimentary structures indicate that two main 
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currents influenced these deposits; density currents and storm waves.  The higher 

frequency of sandstone within this facies represents a shift towards a more proximal 

prodelta or even delta front environment (Prothero and Schwab, 1996; Bhattacharya, 

2006).  Density currents are responsible for generating the graded beds, scours, and 

parallel laminations in sandstones (planar beds).  Climbing ripples can also form in 

density currents when the rate of sedimentation is comparable to that of ripple migration 

(e.g., Nichols, 2001).  Storm events are represented in these sandstones by siltstone rip-

ups, hummocky and swaley crossbeddding, and symmetric ripples.  Siltstone rip-ups 

require that the silt was cohesive enough to endure transport by storm-wave-generated 

currents.  In summary, this facies indicates deposition from near fair weather wave base 

to near storm wave base by suspension settling, density, and storm wave currents in the 

prodelta and delta front settings. 

4.5 - Facies 4: Slump fold 

4.5.1 - Description 

The slump fold facies (1 to 4 m thick; Fig. 8) is primarily a mudstone unit with some 

fine sandstone interbeds, and is similar to the shale-and-sandstone facies.  This facies is 

defined by meter-scale beds distinguished by slump folding.  Outcrops of this facies can 

be found in the Hades Creek and Ashley Creek locales.   

This facies is usually associated with the shale-and-sandstone facies and less 

frequently is found with the shale facies.  The sandstone beds are typically composed of 

fine-grained quartz to arkosic arenite with symmetric ripples and ripple laminations.  

Hummocky-cross stratification is rare but can be up to ~1m wide by ~20cm high.  The 



36

Figure 8.  Photograph of slump fold facies within the Hades Creek B section.  Arrow on 
notecard is 10 cm in height. 
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slump folds are up to 30cm in height and 1m in length and are generally isoclinal (Fig. 8).  

4.5.2 - Interpretation 

The slump fold facies is similar to, and associated with, the shale-and-sandstone 

facies and likely represents a similar environment on the delta (Fig. 4).  Symmetric 

ripples and ripple laminations represent an environment that was influenced by waves.   

Hummocky-cross stratification suggests deposition in an area affected by storm waves.  

These sedimentary structures together suggest deposition above storm wave base and 

near, but below fair-weather wave base (Prothero and Schwab, 1996; Nichols, 2001). 

Slump folds typically form in unconsolidated fine-grained sediment on unstable 

slopes (Collinson and Thompson, 1982).  Elevated pore-fluid pressure in certain layers, 

in combination with high sedimentation rates, often causes the instability; these processes 

are followed by gravity-driven movement downslope as a coherent mass.  Slump folds 

commonly form on over-steepened and overloaded slopes in the delta front and the 

proximal prodelta settings (Prothero and Schwab, 1996; Bhattacharya, 2006). 

4.6 - Facies 5: Sandstone 

4.6.1 - Description 

The sandstone facies (Fig. 9) is characterized by sandstone intervals >2m thick.  

Outcrops of this facies are present in all four study locales.  The sandstone facies is fine- 

to coarse-grained sandstone that ranges in thickness from 2 to 17m.  It is mostly 

subarkosic to arkosic with some quartz arenite present (see Fig. 10).  There are also 

muscovite and rare chlorite grains present, as well as mudstone intraclasts.  Sandstone 

grains are angular to subrounded and poorly to well sorted within tabular, undulatory to 
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Figure 9.  Photograph showing planar-tabular foresets in the sandstone facies.  Although 
measureable crossbed sets are rare, these foresets in White Rocks Canyon indicate 
paleoflow to the south.  Rock hammer for scale. 
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Figure 10.  Photomicrographs taken at 10x magnification showing textures and grains 
from petrographic analysis.

 

a. RP0B-23 – sublithic sandstone showing grains of orthoquartzite and muscovite 
b. RP0B-30 – subarkosic sandstone showing high matrix content 
c. AC04-7 – quartz arenite sandstone showing examples of well rounded quartz 

grains, silica cement, quartz overgrowths, and very little matrix content 
d. Hades 2 – arkosic sandstone showing angular grains 
e. Hades 10 – subarkosic sandstone showing examples of plagioclase grains 
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4.6.2 - Interpretation 

 This facies represents a change towards a higher energy environment, in this case the 

delta front (Fig. 4).  Sedimentary structures present show evidence of a mixed-influenced 

deltaic setting that was near to above fair weather wave base.   Interpretations of other 

facies suggest a wave-dominated delta, though the sedimentary features of this facies 

suggest a combination of fluvial and marine (wave and tidal) processes.   

Common sedimentary structures in the delta front environment are cross bedding, cut-

and-fill structures, and ripple marks.  Symmetric ripples indicate oscillatory flow from 

wave refraction (e.g., Prothero and Schwab, 1996).  Granule sandstone lenses found in 

this facies are common in a river-dominated deltaic setting in the delta front, as are cut-

and-fill structures (Prothero and Schwab, 1996; Nichols, 2001; Bhattacharya, 2006).  

Shale partings seen draping cross-beds are suggestive of deposition from suspension 

during the short time of slack water between tidal reversals (Prothero and Schwab, 1996).  

Though this delta may not have been tidal-dominated, tides may have had an effect.  

Planar and amalgamated and accreted tangential crossbedding indicate subaqueous dunes 

and bars above fair-weather wave base, likely in a distributary mouthbar setting (Nichols, 

2001).  Reverse grading indicates deposition from a grain flow, which is due to instability 

on the delta; this instability can result from of an overly steep surface or over-loading, 

which is frequently found in the delta front of river-dominated deltas (Prothero and 

Schwab, 1996; Bhattacharya, 2006).   Hummocky crossbedding is the result of storm 

waves acting upon sediment that has been deposited at the transition zone between fair-

weather wave-base and storm wave-base (Harms et al., 1975; Nichols, 2001).  Associated 
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parallel laminations indicate plane bed conditions generated by storm-wave currents.  

Preservation of organic matter is often higher in river-dominated delta front settings 

where sedimentation rates are relatively high and can rapidly bury available organic 

material (Bhattacharya and Walker, 1991).  Overall, the features suggest deposition above 

to below fair-weather wave-base in a high-energy delta front setting.     

4.7 - Facies 6: Pebbly sandstone 

4.7.1 – Description 

The pebbly sandstone facies (Fig. 12) is characterized by cm- to m-scale beds of 

granule- to pebble- sandstone.  Outcrops of this facies are found in both northern locales: 

Henry's Fork and the type section (Fig. 1).   

The pebbly sandstone facies is between 0.5 and 7m thick and is usually associated 

with the sandstone facies at the type section and with the shale-and-sandstone facies at 

the type and Henry’s Fork sections.  This facies is a fine- to coarse-grained sandstone that 

is usually quartzite-lithic or subarkosic and contains pebbles of quartzite.  These grains 

are angular to subangular with moderate to poor sorting.  This facies is found in 

undulatory to tabular thin to medium beds with normal and reverse grading, maroon 

siltstone rip-ups, and pebbles up to 5mm in diameter. 

4.7.2 – Interpretation 

The pebbly sandstone facies is representative of a delta front to proximal prodelta 

setting whereby coarse sediment from the fluvial system fed the delta during storm 

events.  Compared to the sandstone facies, this facies is coarser grained, more arkosic, 

and is more poorly sorted.  This indicates that the pebbly sandstone facies was deposited     



Figure 12.  Photograph of pebbly sandstone facies near the top of the Henrys Fork 
section.  Lithic grains are dominantly quartzite in composition.  Abney level and upper 
part of Jacob Staff for scale (~0.3 meters). 
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closer to its source than the sandstone facies or that higher energy processes were 

occurring in the same depositional setting.  The pebbly sandstone facies is found at the 

two northern-most sampling locales, and not in the southern localities, suggesting that 

there was a proximal source to the north of these deposits.  This is consistent with 

observations by previous workers that there were transverse streams entering the basin 

from the north (e.g., Wallace and Crittenden, 1969; Sanderson, 1984; Ball and Farmer, 

1998; Condie et al., 2001; Dehler et al., 2007).  When compared to the sandstone facies, 

the pebbly sandstone typically represents deposition in a more specific setting on the 

delta front (Fig. 4). 

Undulatory bedding in conjunction with the pebbles found in this facies suggests that 

these may be subaqueous distributary mouth bar deposits affected by both marine and 

fluvial processes (Prothero and Schwab, 1996; Nichols, 2001; Bhattacharya, 2006).  

Asymmetric ripples support this interpretation while symmetric ripples show that this 

facies was still in an environment affected by waves.  Siltstone rip-ups from nearby 

cohesive beds were eroded and transported either by wave-generated currents or by 

fluvial currents, and deposited in the distributary mouth area (Prothero and Schwab, 

1996).  Reverse grading indicates deposition from a grain or debris flow, due to 

instability on an overly steep surface or over loading (Prothero and Schwab, 1996; 

Boggs, 2006; Bhattacharya, 2006).  This is frequently found in the delta front of river-

dominated deltas (Prothero and Schwab, 1996; Boggs, 2006; Bhattacharya, 2006).  In 

rare cases, the pebbly sandstone beds are found in association with the shale facies and 

contain reverse grading or siltstone rip-ups.  This implies transport from the coarser delta 
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front into deeper water by higher energy processes (Prothero and Schwab, 1996; Boggs, 

2006).  
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CHAPTER 5 

GEOCHEMISTRY AND PETROGRAPHY RESULTS 

5.1 – Trends in C-isotope and TOC curves 

The ranges of C-isotope and TOC data for each measured section are displayed in 

Table 3 and all data can be seen in Appendix B.  C-isotope data are displayed next to each 

stratigraphic column in Figs. 13-16 and TOC data are displayed in Figs. 13-14.  Isotope 

data collected and analyzed in 2000 by Dehler are also included, some of which appear in 

Dehler et al. (2007).  The type section contains the least negative C-isotope value and the 

lowest TOC value within the Red Pine Shale.  Ashley Creek and Henry’s Fork sections 

have limited C-isotope data and no TOC data.  These data were reported in Dehler et al. 

(2007), yet they were not put into a stratigraphic context.   

 
Table 3:  C-Isotope and TOC Ranges from Each Measured Section 
Measured Section C-isotopes (PDB) TOC 
Type Section -29.12 to -16.91 0.04% to 2.29% 
Mud Lake Flat Road -26.03 to -19.74 0.15% to 1.16% 
Hades Creek A -29.46 to -23.90 0.1% to 3.7% 
Hades Creek B -27.10 to -24.65 0.06% to 0.29% 
Lower Hades Creek -24.87 to -23.99 0.20% to 0.54% 
Hades Creek C -29.26 to -27.37 1.33% to 5.91% 
Ashley Creek -27.65 to -17.10 -- 
Henry’s Fork -26.47 to -19.55 -- 

 

C-isotope values from the type section show significant variability of up to 12‰.  

The most positive values can be found at the base of the section as well as in the Mud 

Lake Flat Road section, correlative to the base of the type section.  At the base of the type
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Figure 14.  Stratigraphy, facies, C-isotope, TOC, and petrographic data for the composite 
Hades Creek section.  Quartz percentage is shown relative to all other grain types present 
in sample. 
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 section the C-isotope curve shows an initial rise from ~26‰ to ~17‰ over 0.5m and a 

fall over 1m to ~24‰.  This is followed by another positive excursion to ~18.5‰ over 

1m.  From here, the type section C-isotope curve drops to values as low as ~ -27‰ over 

35m.  For the next 60m, the C-isotope values increase to a maximum of ~ -22.5‰ before 

dropping to ~ -26.5‰ for the next 60m.  The values then begin a long climb to ~23.5‰ 

over the next 250m.  The values in the final 34 m of the section shift to more negative 

values again and reach ~-29‰.   

The changes within the type section C-isotope curve show a cyclicity that is generally 

bounded by a maximum of ~-23‰ and a minimum of ~-26‰.  Generally each drop or 

rise is over a 35 or 60m section.  There is an overall pattern of decreasing C-isotope 

values up-section with values mostly bounded by -27‰ to -23.5‰ in the lower half of 

the section and by -29‰ to -25‰ in the upper half.  This excludes the noteworthy cluster 

of relatively positive values near the base ranging from ~17‰ (Dehler et al., 2007) and 

18.5‰ (this research) from the type section to ~19.5‰ from the Mud Flat Lake Road 

section.  The overall decline in this section spans ~12‰, which is consistent with the 

findings of Dehler et al. (2007).  Though the data patterns are similar, there are some 

inconsistencies between the C-isotope data from Dehler et al. (2007) and the values 

obtained by this research.  This is most likely due to minor differences in sampling, 

sample preparation, in the analysis of these samples, or inherent variability. 

Using field methods (i.e., mapping and identifying marker beds) the Hades Creek 

measured sections have been correlated and are now referred to as the “composite Hades 

Creek section.”  These correlations are discussed below and shown in Fig. 14.  The 
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composite Hades Creek section shows a very low variability of the C-isotope values in 

the lower~400m, which becomes more variable in the upper part of the section, opposite 

to what is seen in the type section.   The base of the Red Pine Shale is not exposed at this 

locale, so unfortunately a full comparison of the C-isotope datasets is not possible.  This 

includes the inability to test whether the positive excursion at the base of the type section 

is present at this locale.  The Hades Creek section is also twice as thick as the type 

section, so these strata inevitably preserve isotopic structure that is not preserved at the 

type locale.  

The composite Hades Creek sections shows similar isotopic variability to the type 

section, with an average rise or drop in C-isotope values over a 30 to 65m section but 

also, with a few gradual positive shifts that cover just under 200 m of section (Figs. 13 

and 14).  Data from the lower Hades Creek section show a short rise of ~1‰ over 24m of 

section.  It is unknown what happens to the C-isotope curve until the Hades Creek B 

section begins at 225m, where the curve has dropped 2‰ over 165m of covered section.  

Hades Creek B C-isotope values continue to drop for 30m to ~-27‰.  Then there is a rise 

for 60m to ~-24‰ and a drop to ~-28‰ over the next 30m.  This is followed by an 

increase to ~-25‰ and a decrease to ~-29‰ both over about 45m of section.  From here, 

there is a gradual increase for about 180m to ~-27‰, then a decrease to ~-28 for 45m.  

There is another gradual rise over 190m to ~-26‰, followed by a final drop for 20m to ~-

29‰.  This curve also shows a cyclicity similar to the type section with average shifts 

over about 30-65m.  This C-isotope curve also shows a pattern of gradual positive shifts 

followed by more rapid negative shifts on a larger scale.  On a larger scale, this section 
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has a general pattern of C-isotope values becoming more negative upsection until about 

435m where the curve begins to become more positive upsection.    

Both Ashley Creek and Henrys Fork also have values that fall within the typical C-

isotope value range for the Red Pine Shale between ~ -23‰ to ~ -28‰ (Figs. 15 and 16).  

The less negative values at the base of the type section and Mud Lake Flat Road are also 

observed in the basal Ashley Creek and Henry’s Fork sections.   Ashley Creek has the 

most values that concentrate near -17‰.  Henry’s Fork section has less negative values of 

~19.5‰.  In Ashley Creek there are two excursions of C-isotope values near -17‰. 

Strauss et al. (1992) reported C-isotope values of -17.7 and -17.1‰ and H/C values of 

0.62 and 0.68, respectively, from the Red Pine Shale near the base of the type section.  

Strauss et al. (1992) regarded an H/C value of 0.2 as a threshold for alteration of organic 

carbon; the organic component from samples with ratios lower than 0.2 were considered 

to be thermally altered and isotopic values from these samples would not reflect a 

primary value.  More recently, DesMarais (1997) found that this value was much too high 

for recording thermal alteration of organic carbon.  The relatively high thermal alteration 

values in the Red Pine Shale of 0.62-0.68 (Strauss et al., 1992) suggest that they were not 

substantially altered.  Strauss et al. (1992) suggest that there is a relationship between 

higher concentrations of organic matter in shale and better preservation of organic 

carbon.  TOC values in the Red Pine Shale are as high as 5.91%, with an average TOC 

value of 0.69%. These relatively high TOC values, in combination with the high thermal 

alteration values of Strauss et al. (1992), and the similarity of isotopic values at all four 

locales argue that these samples are minimally altered and represent the primary carbon-
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isotope composition of Neoproterozoic seawater. 

There is an obvious inverse relationship between the C-isotope and TOC data (Figs. 

13-16).  Nearly all positive shifts in C-isotope values correspond to a negative shift in 

TOC values.  Though these shifts are opposite from one another, the TOC and C-isotope 

values show similar variability between samples in different parts of the curves.  The 

TOC curve for the type section shows, on average, a higher variability between each data 

point near the base of the section (~1%) while the data points tend to get tighter higher in 

the upper section (~0.5%).  In the composite Hades Creek section, the TOC data points 

are tightly bound through the lower Hades Creek and Hades Creek B section (~0.5%), but 

become, on average, more variable in the upper part of this section (~1%).  The same 

pattern is seen in the C-isotope data curves for these measured sections.  For the type 

section, there is an average variability of ~3‰ near the base of the section whereas, 

higher in the upper section, it is closer to ~1‰.  In the composite Hades Creek section, 

the C-isotope values through the lower Hades Creek and Hades Creek B section have an 

average variability of ~1.5‰ and ~4‰ in the upper part of this section.  This change in 

variability corresponds with a positive shift in C-isotope values.  There seems to be no 

relationship between these datasets and the facies data (Figs. 13-16). 

5.2 – Petrographic analysis and sandstone textures  

Petrographic analysis of the 69 thin sections revealed an array of textural 

characteristics.  Sandstone samples collected from the type section range from fine to 

coarse sand, with one sample containing pebble-sized grains; most samples have 

medium-sized sand grains (Appendix C).  They range from poorly to well-sorted but are 
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usually moderately sorted, and generally are angular to sub-angular with some sub-

rounding.  The composite Hades Creek section sandstones (Fig. 14) have fine to coarse 

sand with mostly medium sand.  The grains are usually poorly to moderately sorted and 

rarely well-sorted.  They range from very angular to sub-rounded but are mostly sub-

angular.  Ashley Creek (Fig. 15) samples are very fine- to fine-grained, with one sample 

of medium to very coarse-grained sand.  The grains are sub-angular to well-rounded, but 

are mostly sub-rounded.  These sandstones are poorly to well-sorted and usually are well-

sorted.  The Henry’s Fork (Fig. 16) sandstones are very fine to medium sand to pebble 

sandstones, with mostly fine sand.  The grains are poorly to well-sorted but are usually 

well-sorted and angular to rounded, usually sub-rounded.  There is one sample from the 

pebbly sandstone facies that is coarser, has more angular grains, and is poorly sorted. 

Fig. 10 shows photomicrographs taken to illustrate various categories used for point 

counting.  AC04-7 is a clear example of what was considered well rounded, while Hades 

2 shows an example of angular grains.  AC04-7 is also an example of a sample with little 

to no matrix.  RP0B-30 demonstrates how some of the Red Pine Shale sandstones contain 

higher amounts of matrix.  The rest of the photomicrographs show examples of various 

mineral categories used in this petrographic analysis, such as polycrystalline quartz and 

muscovite in sample RP0B-23, monocrystalline quartz in sample AC04-7, and 

plagioclase in sample Hades 10. 

5.3 – Sandstone composition and petrographic data 

Appendix C and D contains all raw petrographic data.  All data collected from the 

petrographic analysis were normalized for quartz, feldspar, and lithics for compositional 
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analysis and are displayed on quartz-feldspar-lithic (QFL) ternary diagrams (Fig. 3).  

Polycrystalline quartz was included in the “quartz” category as they were likely recycled.  

Quartz-potassium feldspar-plagioclase (QKP) and polycrystalline quartz-monocrystalline 

quartz-undulatory quartz (QpQmQu) ternary diagrams were also generated (Fig. 3).     

The sandstone samples from this study contain examples of sublithic, arkosic, 

subarkosic, and quartz arenite.  The type section and composite Hades Creek section 

sandstone samples, representing the bulk of the Red Pine Shale petrographic analysis, are 

mostly arkosic or quartz arenite in composition.  Though the Ashley Creek and Henry’s 

Fork sections have far fewer thin sections, they are both represented by mostly quartz 

arenite.  Samples classified as sublithic are >10% lithic and between 10-25% feldspar 

grains.  They are fine to pebbly sandstones with mostly angular grains and are moderately 

to poorly sorted.  These samples are only found within the type section.  Sandstones that 

are compositionally arkosic have >25% feldspar and >25% lithic content.  They are 

dominantly medium sand, sub-angular grains, and are poorly sorted.  This composition is 

found within the composite Hades Creek, Henry’s Fork, and type sections.  Samples from 

subarkosic sandstones have between 10 and 25% feldspar, <10% lithics and are generally 

medium-grained, sub-angular and moderately sorted.  These sandstones are also found 

within the composite Hades Creek, Henry’s Fork, and type sections.  Quartz arenite 

sandstones are found in each of the locales; composite Hades Creek, Henry’s Fork, type 

section, and Ashley Creek.  The sandstones with this composition are mostly very fine to 

fine sand, sub-rounded, and well-sorted and are composed of >90% quartz grains.  The 

QpQmQu plot (Fig. 3) shows that quartz grains are dominantly monocrystalline.  A 
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significant number of weathered feldspar grains were found within the Red Pine Shale 

sandstone samples, which poses a problem when plotting data on a QKP ternary diagram.  

Though it shows that grains are dominantly quartz, it is unclear if there are more 

plagioclase or potassium feldspar grains.  On average, there are more weathered feldspar 

grains than plagioclase or potassium feldspar, but discounting the weathered grains, 

plagioclase is more common (Fig. 3).     

The percentage of quartz in each sample was plotted on the QFL ternary diagram 

(Fig. 3) and for each measured section and can be seen in Figs. 13-16 in the petrographic 

curves.  These curves show the percentage of quartz from each sample relative to 

combined feldspar and lithic totals.  The type section petrographic curve (Fig. 13) shows 

more compositional variability at the base and becomes consistently more quartz-rich 

upsection.  The sandstone beds in this section also become more fine-grained and are 

increasingly well-rounded up section, which is consistent with the compositional trends.  

In the composite Hades Creek section (Fig. 14), the sandstone beds show an increase in 

arkose farther up section.  These sandstone samples also become more angular and are 

more poorly sorted higher in the section, again consistent with compositional trends.  The 

Ashley Creek section and the Henry’s Fork section have too few samples to recognize 

definitive trends, but the petrographic data are displayed in Figs. 15 and 16 respectively.  

There does not seem to be a relationship between the petrographic curve and the C-

isotope and TOC curves.   

5.4 – Detrital zircon data 

Three detrital zircon samples from the western locales show a diversity of age 
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populations and distributions.  Two of these detrital zircon plots were first reported in 

Fanning and Dehler (2005) (samples RP03B-2 and 69PL05).  Sample 69PL05 is from 

meter 80 in the type section.  Samples RP03B-2 and 135PL02 are from the same 20 m 

interval at the base of Hades Creek section B (Appendix E).  Sample 69PL05 (35 grains) 

has an exclusively Archean-Paleoproterozoic population, with a peak at 2.6 Ga, and 

represents direct sourcing of the Wyoming craton to the north.  This single population 

also suggests that this part of the delta system was not mixing with the other sources.  

Both 135PL02 (58 grains) and RP03B-2 (30 grains) also show a high concentration of 

grains at 2.6 Ga., yet also have populations at 1.1-1.2 Ga, 1.4 Ga, and 1.7-1.8 Ga.  The 

1.1-1.2 Ga peak represents the Grenville orogeny and these grains likely came from the 

east-southeast (Fanning and Dehler, 2005; Mueller et al., 2007).  The 1.4 Ga grains are 

likely derived from mid-continent A-type granites and the 1.7 to 1.8 Ga grains  represent 

a source from the Yavapi-Mazatzal Province, which is to the east and south of the Uinta 

Mountains (Fanning and Dehler, 2005; Foster et al., 2006).  The assortment of grain 

populations found in these sandstones suggests that the sediments deposited in the Red 

Pine basin were derived predominantly from the north, east, and possibly southeast.  

These observations are consistent with facies and petrographic trends in the Red Pine 

Shale, as well as Nd-isotope and detrital mode studies by Condie et al. (2001) and facies 

and petrographic studies of Wallace (1972).  Though there are no point count data from 

these three samples, the sample from the type section is an arkosic arenite and the two 

samples from the Hades section are quartz arenites.  
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CHAPTER 6 

STRATIGRAPHIC RESULTS 

6.1 - Introduction and Study Sites 

Multiple measured sections (from 18.5 to 662 m thick) from the four study areas were 

used in this research to stratigraphically characterize the Red Pine Shale:  the type 

section, Mud Lake Flat Road section, Hades Creek A (now combined with upper Hades 

Creek), Hades Creek B, Hades Creek C, lower Hades Creek, Ashley Creek, and Henry’s 

Fork (Appendix E; Appendix F). The type section and the composite Hades Creek 

measured sections are considered the main reference sections and jointly will be the 

composite-stratotype for the Red Pine Shale.  The Ashley Creek and Henrys Fork 

sections are also considered reference sections.   

The type section is the only measured section with all six facies present and is the 

only section that can be easily measured from the base to the top.  The sole purpose of 

measuring and sampling the adjacent and correlative Mud Lake Flat Road partial section 

was to try to recapture the positive C-isotope excursion recorded near the base of the type 

section (Fig. 2).  The Mud Lake Flat Road section was correlated to the type section by 

using stratigraphy and C-isotope data.   

The Hades Creek locality (Appendices A and B) includes five partial sections 

previously identified by Dehler et al. (2007) that have now been correlated to form one 

composite section.  The base of the Red Pine Shale is not exposed in this location, so 

these measured sections do not represent the total thickness of the formation, though a 

calculated total thickness is possible using new data from a recently drilled well (Richins 



60 

and Sons, Inc., 2006).  The correlation of the Hades Creek measured sections was done 

using field methods (i.e. mapping and identification of marker beds) and facies 

characteristics.  The Hades Creek section A was measured to the unconformable contact 

between the Red Pine Shale and the Mississippian Madison Formation; all other 

measured sections of the Hades Creek locale are ‘floating’ partial sections, with no upper 

or lower contacts. Correlations between generalized measured sections can be seen in 

Fig. 17.  The Hades Creek A and upper Hades Creek sections were measured as two 

separate sections that stack exactly on top of one another.  These sections are now the 

composite Hades Creek section and represent a continuous section 660m thick.  By 

identifying marker beds within the lower part of section Hades Creek A, it was possible 

to correlate sections Hades Creek B and lower Hades Creek sections.  Beds of fine-

sandstone in the slump fold facies in section B from ~51 to 54m and ~59 to 60m correlate 

to more resistant beds in Hades Creek section A from ~50 to 52m and ~54 to 56m (Fig. 

17, Appendix E).  This is further supported by the beginning of distinctive cyclic 

interbedding of mudstone and siltstone to sandstone found beginning at 91.5m in Hades 

Creek section A and at 100m in Hades Creek section B (Appendix E).  The top of the 

lower Hades Creek section is separated from the Hades Creek section by 156m of cover.  

Hades Creek section C correlates to the cliffy sandstone unit just below the contact 

between Hades Creek section A and upper Hades Creek section, at ~235m.  Hades Creek 

section C was more difficult to correlate due to its distance from the other sections, but 

this is the most likely position for this measured section based on stratigraphic position, 

facies characteristics, TOC, and C-isotope correlation.  The composite measured exposed 
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Figure 17.  Photograph looking southeast of partial Hades Creek sections that have been correlated to create composite Hades Creek 
section.
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thickness of the Hades Creek measured sections is ~890m. 

A replacement water well was drilled in July of 2006 by Richins and Sons, Inc. 

beginning at approximately the base of the measured Hades Creek sections.  This drilling 

penetrated the Red Pine Shale and terminated in a sandy unit interpreted to be Hades Pass 

quartzite with a contact depth of 231m (Richins and Sons, Inc., 2006).  With this added 

thickness to the base of the composite Hades Creek section, the maximum measured 

thickness of the Red Pine Shale is now known to be at least 1121m.  This is much less 

than Wallace’s (1972) thickness of the Red Pine Shale (1830m). 

The Ashley Creek locale, the most southeastern exposure of the Red Pine Shale, has 

potential for generating a complete measured section, but, due to vegetation and talus 

cover, it has only been measured as a partial section of 187.5m (Appendices A and E).  

Though access to this area is difficult and the section is on a very steep slope, this section 

provides important lateral and vertical faces information. The total map-calculated 

thickness of this section, from the gradational basal contact between the Red Pine Shale 

and the Hades Pass quartzite, to the unconformity with the overlying Mississippian 

Madison Limestone, is ~300 m.  Because this area is difficult to access, samples are 

limited and, therefore, only a few C-isotope values have been obtained. 

The Henry's Fork partial section is 248m thick and, though it is not a complete 

measured section due to accessibility and cover, has the potential to be the thickest 

overall section of the Red Pine Shale.  The total map-calculated thickness is ~1800m 

(Bryant, 1992).  This section also shows the gradational contact between the Red Pine 

Shale and the Hades Pass quartzite.  Due to the high amount of cover in this locale and 
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lesser exposed black shale, C-isotope analysis has only been done on a few samples thus 

far.   

6.2 – Physical and Chemical Stratigraphy 

Initial correlation of the four measured sections was based on facies associations and 

the basal contact with the underlying Hades Pass quartzite (Fig. 18).  The shale, shale-

and-sandstone, and sandstone facies are the three most common facies and all three of 

these facies are seen in each of the measured sections, yet in varying proportions.  The 

concretion facies is present only in the type section.  The slump fold facies is seen in the 

type, composite Hades Creek, and Ashley Creek sections representing the western, 

southwestern and southern localities.  The pebbly sandstone facies is found only within 

the two northernmost sections: type and Henry's Fork sections. 

Vertical patterns within the type section, Henry's Fork, and Ashley Creek locales are 

similar.  Each of these sections shows a decrease in sandstone percentage upsection.  The 

composite Hades Creek section shows the opposite, an increase in sandstone percentage 

near the upper contact with the Madison Limestone.  Because the type section, Henry's 

Fork, and Ashley Creek locales are less complete measured sections, it is possible that a 

coarsening upward sequence, such as the one seen at the Hades Creek locale, either is 

present and covered, or was present before removal by erosion.  The drillers logs from the 

well at the Hades Creek locale do show an increase in sandstone percentage downwards 

towards the lower contact with the Hades Pass quartzite (Appendix E), consistent with 

the other locales.  
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Figure 18.  Correlation of type, Hades Creek composite, Henry’s Fork, and Ashley Creek measured sections based on their contacts between the Red Pine Shale and the Hades 
Pass quartzite is gradational, though it is not seen at the Hades Creek locale.  Stratigraphy below 0m at this measured section is based on subsurface data.  Henry’s Fork and 
Ashley Creek sections are not measured to upper contact with Mississippian Madison limestone because of cover and accessibility issues.
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A relationship between the physical stratigraphy and C-isotope values can be seen in 

both the type and composite Hades Creek sections (Fig. 19).  C-isotope values generally 

become less negative throughout finer grained intervals and become more negative in 

sandier intervals.  The type section has higher concentrations of shale near the base and 

top of the section, which is also where C-isotope values are relatively less negative.  In 

the center of the section is an interval of dominantly sandstone that has more negative C-

isotope values.  In the composite Hades Creek section there are relatively less negative C-

isotope values in the lower half of the section where there are also higher concentrations 

of shale.  In the upper half of this section, there are relatively more negative C-isotope 

values and more sandstone.  Although there is a general correlation between isotopic 

values and grain size, there does not appear to be a specific facies dependence with 

isotopic values.  For example, within a single facies, there is isotopic variability, and two 

different facies can also show similar values. 

The most robust correlation is made when combining facies, petrography, C-isotope, 

and TOC data from the two main sections.  The type section is best correlated with the 

base of the composite Hades Creek section and the subsurface Red Pine Shale below the 

at the Hades Creek locale.  Fig. 19 shows this correlation and illustrates the best fit of the 

C-isotope and TOC data from each section, and the consistency with the estimated basal 

contact of the Red Pine Shale in the subsurface.  The established correlation makes lateral 

facies trends recognizable; the type section is coarser (sandier) than the equivalent strata 

of the Hades Creek composite section, which is supportive of a delta system prograding 

from the north.  
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The Henry's Fork and Ashley Creek locales may exhibit lateral facies changes as 

compared to the western locales.  While both of these measured sections fine upwards, 

they have a lower sandstone percentage than the two westernmost sections.  The base of 

each of these measured sections contains thin sandstone beds, but relatively more 

interbedded shale.  The composition of these sandstones is also different than those of the 

type and Hades Creek sections.  Both Henry's Fork and Ashley Creek sandstones are 

more quartz-rich, with finer-grained, more-rounded, and better-sorted sand.  This 

suggests that these two locales received sediment from a distal source, likely to the east 

based on previous paleogeographic models of the Uinta Mountain Group (Wallace and 

Crittenden, 1969; Condie et al., 2001).  The Henry's Fork measured section does include 

the pebble facies that is seen in the type section and therefore shows the interaction of a 

proximal source to the north and a distal source from the east.  

6.3 Sequence Stratigraphy 

Generalized sequence stratigraphic terms are applied to these strata, although this 

application is somewhat difficult and therefore limited due to the lack of continuous 

vertical and lateral exposure.  Because the contact with the underlying Hades Pass 

quartzite is apparently gradational, sequence stratigraphy of the Red Pine Shale requires 

consideration of this lower unit.  The Hades Pass quartzite (1825-3000 m thick) is an 

understudied unit, but is generally interpreted as representing dominantly braided fluvial 

deposits (Wallace and Crittenden, 1969; Wallace, 1972).  Kingsbury (2008) places a 

sequence boundary at the base of the Hades Pass quartzite.  It appears that the Hades Pass 

quartzite and overlying Red Pine Shale package represent a single low order (2nd?) cycle 
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close to 4000 m thick.  Considering the age (10s of millions of years) and thickness of the 

cycle, it is likely 2nd order (Prothero and Schwab, 1996).  If there is a subtle unconformity 

at the base of the Red Pine Shale, then it would be considered a single transgressive-

regressive cycle, possibly of 3rd order or sequence scale.  Another possibility is that there 

is an unconformity at the base of the sandy upper part of the Red Pine Shale.  However, 

no incision was observed and the intimately alternating facies patterns suggest a 

gradational contact.  Also, there is not a significant facies change in this interval.   

The Red Pine Shale shows stacking patterns of alternating coarse- and fine-grained 

intervals on 10-100s m scale and meter-scale that may reflect higher order cyclicity (Fig. 

20).  Cycles range from 32 to 143 m thick.  These are defined by typical coarsening 

upward trends from shale to sandstone.  Cycle tops were chosen above thick intervals 

(~30-100 m thick) of relatively coarser grained intervals (Fig. 20, Appendix E).  Above 

these coarser grained intervals, the grain size typically decreases abruptly, although in 

some cases, the top of the coarser-grained interval grades upward into finer facies 

(Appendix E).  Cyclicity in the Hades Creek sandstones was more difficult to assess due 

to significant cover.  Eleven sequences are identified in the composite section, and if the 

Red Pine Shale represents ~10-20 million years, each sequence would approximate ~ 1 

million year in duration, consistent with the duration of many Phanerozoic sequences.  

Within these potential sequences, higher order cyclicity on a meter to sub-meter scale is 

also defined by alternating coarse- and fine-grained intervals.  There are thick (10-100 m 

scale) intervals where no higher-order cyclicity is notable, especially in the shale intervals 

of the type section.  
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CHAPTER 7 

DISCUSSION 

7.1 - Paleogeography of the Red Pine basin 

A combination of evidence from this study and from previous research (Wallace and 

Crittenden, 1969; Farmer and Ball, 1998; Condie et al., 2001; Dehler et al., 2007) 

indicate that the Red Pine Shale represents a marine deltaic setting with streams feeding 

the area from sources to the east and north (Fig. 21).  More specifically, the facies show 

the interrelationship of prodeltaic and delta front environments that were affected at 

different times by different processes (fluvial, wave, and tide).   

Lateral north to south correlation between sections show that the type section strata 

are relatively sandier than the correlative strata at the Hades Pass section (Fig. 18).  

Similarly, the basal partial section at Henry’s Fork is relatively sandier than the same 

interval at Ashley Creek section to the south (Fig. 18).  These lateral correlations show 

that the dominant deltaic system was being fed by rivers from the north, providing 

coarser sediment to the northern part of the basin and finer coeval sediment to the south.  

It is notable that the two southern localities are relatively finer grained, do not contain 

pebbles, both have slump folds, and contain a greater percentage of mature sandstone.  

These similarities suggest that these localities were distal to the immature sediment 

source and were also receiving sediment from another, more distal source, likely to the 

east. Another implication of these correlations is that there is still no evidence of a source 

or basin edge to the south (Condie et al., 2001), yet paleocurrent data from older units in 



111o00’ 110o45’ 110o30’ 110o15’ 110o00’

40o45’

109o45’ 109o30’

1

2

3

4

100 20 Mi

100 20 Km

Big Cottonwood
Formation

outcrop extent of
Uinta Mountain Group

?

?

??

? ?

minimum eastern
extent of shoreline
minimum eastern
extent of shoreline

Figure 21.  Paleogeographic model of Uinta Mountain and Big Cottonwood basin during 
deposition of the lower Red Pine sediment.  Major transverse stream systems brought 
sediment from the east and north. 1 - type section, 2 - Hades Creek section, 3 - Henry’s 
Fork section, 4 - Ashley Creek section.  (Modified from Wallace and Crittenden, 1969) 

71



72 

the Uinta Mountain Group and correlative Big Cottonwood Formation show a northerly 

component of paleoflow.  This suggests that there were marine currents flowing to the 

north at times, yet no obvious basin edge coincides with the southern termination of the 

Uinta Mountain Group outcrop extent (i.e., basin continues past Uinta Mountain Group 

outcrop extent to south).  This is consistent with the ChUMP hypothesis of Dehler (2008), 

which proposes an interior seaway stretching from the Red Pine basin south to the Chuar 

and Pahrump group basins in the Grand Canyon and Death Valley regions, respectively. 

The petrography of the sandstone-bearing facies in the eastern and southern sections 

shows a high percentage of quartz arenite, which likely reflects a deltaic system feeding 

the basin from the east, whereas sandstone facies in the northern and some eastern 

localities are more arkosic, reflecting the proximal source to the north.  This is consistent 

with petrographic analyses of previous workers (e.g., Wallace, 1972; Condie et al., 2001).  

Other notable trends are the high concentrations of monocrystalline quartz grains and 

relatively high plagioclase and lesser orthoclase percentages, collectively suggesting first 

cycle sediments were derived from, in part, tonalitic and sialic granite sources that were 

exposed on the Wyoming craton.  This research suggests that TTG complexes (tonalite-

trondhjemite-granodiorite) were still a major source rock component on the Wyoming 

Craton (Frost, 1993) and were being exhumed during Uinta Mountain Group time, 

contrary to Condie et al (2001) who state that there is no record of TTG complexes in the 

Uinta Mountain Group sandstones because the Wyoming craton had experienced a period 

of uplift and erosion of the TTGs prior to Uinta Mountain Group time.  

The detrital zircon data reflect the petrographic data.  The arkosic Red Pine Shale 
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sample from the north flank shows exclusively Archean grain populations, reflecting a 

fluvial-dominated part of the delta that was tapping sediment from the Wyoming craton.  

This indicates that, at times, the delta sediment was not mixing with sediment from other 

sources and also shows the link between immature composition (and texture) and a 

locally derived source.  Exclusively Archean populations are seen in the basal Red Castle 

formation (Kingsbury, 2008) and in the basal Big Cottonwood Formation to the west 

(Dehler et al., in review).   This indicates that the fluvial system feeding the greater Uinta 

Mountain Group and Big Cottonwood basin from the north was sustained throughout the 

life of the basin and also emphasizes the genetic relationship between the Uinta Mountain 

Group and the Big Cottonwood Formation.    The two quartz-rich samples from the south 

flank, as expected, show the range of age populations reported by other workers (Mueller 

et al., 2007; Kingsbury, 2008), except for the 766 Ma population reported by Dehler et al. 

(in review).  These populations show a mixing of Archean grains derived from the north 

and east, with Proterozoic grains derived from the east-southeast.  This shows a link 

between mature sandstone composition and farther-traveled Proterozoic grains.  This 

spectrum of ages is also seen in a sample from the middle Big Cottonwood Formation 

(Dehler et al., in review), again emphasizing the relationship between the Uinta Mountain 

Group and Big Cottonwood Formation, and showing that there was a mixing of sources 

at times in the Big Cottonwood Formation part of the basin.  The detrital zircon age 

modes from the Red Pine Shale can be used to indicate direction, proximity, and lithology 

of a source to a certain degree.  However, the youngest age population only indicates that 

the Red Pine Shale has a maximum depositional age of 950 Ma (Crittenden and 
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Peterman, 1975), whereas it is very likely younger than 766 Ma (Dehler et al., 2007).  

Furthermore, it is not possible, as was hoped, to tie a certain age spectra to a certain 

facies type/depositional environment or place in a transgressive-regressive cycle, because 

the two main sediment sources do not change as the facies do. 

7.2-Controls on cycles 

The Hades Pass quartzite-Red Pine Shale low-order (2nd?) cycle represents a 

somewhat symmetrical cycle showing fluvial deposition at the base (lowstand), grading 

into organic-rich prodelta deposits in the middle (transgression) and followed by coarser 

delta front (and possibly delta plain) deposits at the top (highstand).  This large-scale 

cycle is likely riddled with hiatal and/or unconformable surfaces, yet, because the strata 

appear to be genetically related, there is likely no significant time missing (or at least no 

basin reorganization) in this cycle.  It should be noted that there is a similar cycle that 

makes up the lower western Uinta Mountain Group.  The Red Castle formation and 

equivalents grade up into the Mount Watson Formation and equivalents and are capped 

by the Hades Pass quartzite.  This stratigraphically lower 2nd order cycle also represents 

fluvial deposition grading up to marginal marine and marine deposition and contains 

higher-order cycles (3rd-5th) order (Kingsbury, 2008). 

Controls on cyclicity in the Red Pine Shale  are likely a combination of allogenic and 

autogenic processes.  The lower order (2nd?) cyclicity is likely controlled by changes in 

seafloor spreading rates (Prothero and Schwab, 1996; Nichols, 2001) associated with the 

breakup of Rodinia.  Although there could be local tectonic controls on this order of 

cyclicity, these alone could not explain marine incursion of ~500 km from the craton 
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edge.  Higher-order cycle controls are difficult to assess due to the lack of lateral 

exposure of cycles.  Local tectonic and deltaic controls likely contributed to (or even 

dominated) stratal stacking patterns, although glacioeustatic controls cannot be ruled out.  

7.3- Controls on C-isotope composition and stratigraphy 

The relationship between the physical stratigraphy and C-isotope values in the Red 

Pine Shale suggests that there is a common control on sedimentation patterns and organic 

carbon burial rates during Red Pine deposition.  Within intervals of high shale content, 

the C-isotopes shift to relatively more positive values, and within coarser intervals, the 

values become relatively more negative.  Because changes in sea level are hypothesized 

to be the cause of the lower order changes in sedimentation patterns in the Red Pine 

Shale, then it is likely that these changes are also responsible for C-isotope variability.   

Many workers have noticed a relationship between C-isotope values and strata 

indicating sea-level change.  Neoproterozoic glacial intervals, which are associated with 

sea-level fall, are generally associated with a decrease in C-isotope values, whereas strata 

indicating interglacial times and higher sea level are typically associated with less 

negative C-isotope values (e.g., Knoll et al., 1986; Kaufman and Knoll, 1995; Kaufman 

et al., 1997; Dehler et al., 2001; Dehler et al., 2007).  Lithostratigraphic cycles in the pre-

glacial Neoproterozoic Chuar Group have been attributed to subtle changes in 

glacioeustasy and concomitant local climate change; the cycles show less negative C-

isotope values in relatively deeper-water facies when sea-level is at its highest, and more 

negative C-isotope values in shallow water and peritidal facies during lowstands (Dehler 

et al., 2005).  These patterns are not limited to the Neoproterozoic; similar relationships 
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are observed in Phanerozoic deposits.  For example, Cretaceous strata also show the 

relationship between transgressions and positive shifts in C-isotope composition and 

regressions with negative shifts in C-isotope composition, although excursions are much 

lower in magnitude (~2 per mil) (Jarvis et al., 2002; Lintnerova and Michalik, 2002).  A 

similar relationship can be seen at the Ordovician-Silurian boundary prior to a short-lived 

glaciation (Brenchley, 1988; Brenchley et al., 1994).  There is a complicated, but clear 

relationship between transgressions and relatively more positive C-isotope values and 

regressions with relatively more negative C-isotope values prior to and throughout this 

glaciation (Brenchley et al. 1994; Underwood et al., 1997).  

If changes in the physical and C-isotope stratigraphy in the Red Pine Shale are a 

regional or global signature, then controls on the Red Pine Shale can be attributed to 

changes associated with eustasy.  There is a possibility that the Red Pine Shale is 

recording local effects on these sedimentologic and geochemical processes, yet, 

considering that the isotope variability is similar to mid-Neoproterozoic sections nearby 

and around the globe, it is hypothesized that the Red Pine Shale records a global 

signature of sea-level and isotopic change (Dehler et al., 2005; Halverson et al., 2005; 

Dehler et al., 2007; Dehler, 2008).   

Dehler et al. (2005, 2007) suggest that the Red Pine Shale correlates with the Chuar 

Group of Grand Canyon using, in part, C-isotope curves (Fig. 22).  The high-resolution 

C-curve for the Red Pine Shale from this research adds strength to this correlation by 

reproducing the large-scale variability in C-isotopes used to make the correlation.  This 

correlation is strengthened by similar microfossil assemblage, facies similarities, and 
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Figure 22.  Stratigraphy and C-isotope data from the Chuar Group and Uinta Mountain 
Group showing Neoproterozoic correlation.  The correlation was made based on C-
isotope patterns, stratigraphy, and microfossil assemblages.  (Modified from Dehler er al., 
2008, and Dehler, unpublished data)
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depositional ages (Dehler, 2008).  Both the Chuar Group and Red Pine Shale show 

variability on the order of ~12 ‰, which is a common magnitude of C-isotope variability 

just prior to the first of at least two low-latitude glaciations (Halverson et al., 2005), the 

first of which is thought to have occurred at about 750-700 Ma (Hoffman et al., 1998). 

Shale geochemical data show a relationship between kaolinite abundance and C-

isotope values (Bloch unpubl data; Fig. 20), which have implications for control on 

isotopic composition.  Where kaolinite percentages are high, C-isotope values are 

relatively positive, and where kaolinite is less abundant, the C-isotopes values are lower. 

This independent dataset suggests that there was more weathering and likely greater 

humidity during times of greater organic-carbon burial rates, and less weathering in the 

source area and greater aridity during times of lower organic carbon burial rates.  Dehler 

et al. (2005) report the same relationship in the correlative Chuar Group:  high C-isotope 

values associated with high kaolinite abundances (and higher CIA values) and lower C-

isotope values with lower kaolinite abundances (and lower CIA values).   

This research suggests that the model used by Dehler et al. (2005) to explain the 

multiple data sets in the Chuar Group can also be used to explain the Red Pine Shale 

datasets.  Relatively more positive C-isotope values associated with higher kaolinite 

percentages and fine-grained intervals suggest that, during wetter times, sedimentation 

rates and sea level were higher, hence burying greater amounts of organic carbon.  

Conversely, more negative C-isotope values associated with coarser grained intervals 

suggest drier conditions, lower sedimentation rates and lower sea level, and hence less 

organic carbon burial.  Because this is seen in both Red Pine Shale and the coeval Chuar 
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Group, and these strata are similar to global mid-Neoproterozoic data sets, it is likely that 

these parameters – climate-driven sedimentation rates and sea level change -- are, in part, 

responsible for C-isotope variability globally at this time.   

The Red Pine and Chuar basins were areas of the craton that were flooded during 

times of high sea level, likely associated with increased seafloor spreading rates as 

Rodinia broke apart.   These basins were reservoirs for carbon storage, and when 

productivity rates were likely high due to higher sedimentation rates and related nutrient 

levels, significant burial would have taken place.  If the cratons worldwide were 

intermittently flooded during the mid-Neoproterozoic, then significant amounts of carbon 

could be sequestered.  This could ultimately lead to CO2 drawdown and global cooling, 

which is seen in deposits overlying the Red Pine Shale correlatives: stratigraphic units 

which record low-latitude glaciations.   
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CHAPTER 8 

CONCLUSIONS 

1)  This study used both field and laboratory techniques to formally characterize the 

Red Pine Shale.  Up until now, although the Red Pine Shale is formally named, it is not 

formally described.  This paper fulfills the requirements to modify the Red Pine Shale 

(Williams, 1953) in accordance with the Stratigraphic Code (NACSM, 1983).  The type 

section and Hades Creek composite measured sections, the main reference sections, are 

proposed as the composite-stratotype for the Red Pine Shale.  The Henry's Fork and 

Ashley Creek sections are proposed reference sections.   

2)  Facies, petrographic, and stratigraphic analyses of the Red Pine Shale indicate that 

it represents marine deltaic systems being fed by rivers transporting mature sediment 

from the east and coincident immature sediment from the north.  Six facies indicate 

wave-, storm-, and possibly tidal-influences on prodelta and delta front areas of these 

delta systems through Red Pine time. The composite measured section of the Red Pine 

Shale shows overall low order (2nd?) transgressive-regressive cycles with ~11 C-isotope 

cycles within and is evidence for a north-south progradation of deltas from the north.  

The longer-term low-order cycle must be in part controlled by tectonoeustacy as these 

marine deposits are hundreds of kilometers inboard from the cratonic edge.  Higher-order 

cycles have mixed controls and, therefore, are harder to discern. This interpretation is 

consistent with the petrographic data, which show more input from a quartz-rich source at 

the base of the section with an increasing amount of mixing with a more arkosic source 

through time; the arkosic sandstone reflects delta progradation from the north.  Detrital 
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zircon analyses also show two major grain population distributions: one from the north 

consisting of only Archean grains and one from the east showing mixed Proterozoic and 

Archean populations.     

3)  The composite C-isotope curve from the type section and correlative Hades 

section shows high-magnitude variability at the base of the section with declining 

variability upsection.   Local and regional C-isotope correlation, H/C, and TOC values 

suggest that these values represent primary seawater values.   

4)  Correlation of C-isotope values with shale geochemistry and facies data suggest 

common controls on these parameters.  Less negative C-isotope values correspond to 

relatively high sea level and higher kaolinite abundances (humid climate).  More negative 

C-isotope values correspond to relatively lower sea level and lower kaolinite abundances 

(arid climate).  These same relationships are seen in the correlative Chuar Group of 

Grand Canyon, and suggest that changes in sedimentation rates, driven by climate 

change, may be in part responsible for the high-magnitude variability in C-values at this 

time globally and the related CO2 drawdown responsible for ensuing colder times of the 

Sturtian episode.  
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Appendix B: C-isotope data 
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Locale Sample Meter C-isotope TOC Composite 
Hades Meter

Lower Hades LH03-01 9 -24.61 0.50 9
Lower Hades LH03-02 12 -24.60 0.54 12
Lower Hades LH03-03 14 -24.83 0.33 14
Lower Hades LH03-04 18 -24.52 0.35 18
Lower Hades LH03-05a 21 -24.87 0.38 21
Lower Hades LH03-05b 21 -24.70 0.40 21
Lower Hades LH03-06 24 -24.09 0.42 24
Lower Hades LH03-07 27 -24.43 0.33 27
Lower Hades LH03-08 30 -24.26 0.32 30
Lower Hades LH03-09 33 -24.29 0.32 33
Lower Hades LH03-10 36 -23.99 0.34 36
Lower Hades LH03-11 39 -24.21 0.40 39
Lower Hades LH03-12 42 -24.12 0.49 42
Lower Hades LH03-13 45 -24.15 0.21 45
Lower Hades LH03-15 48 -24.47 0.29 48
Lower Hades LH03-16 51 -24.46 0.32 51
Lower Hades LH03-17 54 -24.14 0.34 54
Lower Hades LH03-18 57 -24.30 0.24 57
Lower Hades LH03-19 60 -24.33 0.31 60
Lower Hades LH03-20 66 -24.21 0.20 66
Lower Hades LH03-21 69 -24.34 0.23 69
Hades B RP01B-01 3 -25.61 0.54 228
Hades B RP03B-01 3 -25.47 0.07 228
Hades B RP01B-02 6 -25.58 0.27 231
Hades B RP03B-03 6 -26.01 0.09 231
Hades B RP01B-03 9 -24.70 0.15 234
Hades B RP03B-04 9 -24.86 0.21 234
Hades B RP03B-05 11.5 -25.38 0.11 236.5
Hades B RP01B-04 12 -26.71 0.33 237
Hades B RP03B-07A 14 -25.85 0.06 239
Hades B RP03B-07B 14 -25.94 0.06 239
Hades B RP01B-05 15 -24.44 0.23 240
Hades B RP01B-06 18 -25.50 0.05 243
Hades B RP03B-09 18 -26.05 0.17 243
Hades B RP01B-07 21 -24.87 0.07 246
Hades B RP03B-10 21 -25.65 0.24 246
Hades B RP01B-08 24 -30.77 0.61 249
Hades B RP03B-11A 24 -24.65 0.14 249
Hades B RP03B-11B 24 -25.02 0.10 249
Hades B RP01B-09 27 -26.18 0.23 252
Hades B RP03B-12 27 -24.53 0.15 252
Hades B RP01B-10 30 -24.17 0.12 255
Hades B RP03B-13 30 -25.89 0.13 255
Hades B RP03B-14 33 -25.46 0.12 258
Hades B RP01B-12 36 -25.47 0.18 261
Hades B RP03B-15 36 -25.56 0.12 261
Hades B RP01B-13 39 -25.81 0.52 264
Hades B RP03B-16 39 -26.35 0.29 264
Hades B RP01B-14 42 -25.60 0.15 267
Hades B RP03B-17 42 -26.07 0.21 267  
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Locale Sample Meter C-isotope TOC
Composite 

Hades Meter

Hades B RP01B-15 45 -25.98 0.18 270
Hades B RP01B-16 48 -25.65 0.15 273
Hades B RP03B-18 48 -25.88 0.08 273
Hades B RP03B-19 51 -25.97 0.22 276
Hades B RP01B-18 52 -25.31 0.09 277
Hades B RP01B-19 54 -25.45 0.09 279
Hades B RP01B-19D 54 -25.75 0.14 279
Hades B RP01B-20 56 -27.15 0.32 281
Hades B RP03B-20 57 -26.61 0.22 282
Hades B RP03B-21 63 -26.09 0.13 288
Hades B RP03B-22 75 -25.67 0.22 300
Hades B RP03B-23 84 -26.44 0.15 309
Hades B RP03B-24 90 -27.10 0.19 315
Hades B RP03B-25 100 -26.17 0.18 325
Hades B RP03B-26 101 -26.75 0.19 326
Hades A RP01A-01 3 -27.31 0.59 333
Hades A RP01A-02 4 -25.42 0.15 334
Hades A RP01A-04 6 -25.60 0.63 336
Hades A RP01A-05 9 -25.64 0.19 339
Hades A RP01A-06 12 -26.16 0.26 342
Hades A RP01A-07 15 -25.20 0.19 345
Hades A RP01A-08 18 -25.92 0.69 348
Hades A RP01A-09 21 -25.61 0.23 351
Hades A RP01A-10 24 -26.78 0.25 354
Hades A RP01A-11 27 -25.38 0.15 357
Hades A RP01A-11D 27 -26.07 0.13 357
Hades A RP01A-12 30 -26.49 0.74 360
Hades A RP01A-13 33 -26.36 0.26 363
Hades A RP01A-14 36 -26.21 0.25 366
Hades A RP01A-15 39 -26.85 0.28 369
Hades A RP01A-16 42 -25.20 0.67 372
Hades A RP01A-17 45 -26.05 0.17 375
Hades A RP01A-18 48 -26.19 0.17 378
Hades A RP01A-20 53 -26.59 0.67 383
Hades A RP01A-21 56 -25.84 0.12 386
Hades A RP01A-22 59 -25.87 0.20 389
Hades A RP01A-24 63 -26.82 0.46 393
Hades A RP01A-25 66 -26.55 0.61 396
Hades A RP01A-27 69 -25.92 0.22 399
Hades A RP01A-28 72 -25.77 0.22 402
Hades A RP01A-29 75 -25.91 0.33 405
Hades A RP01A-30 78 -25.43 0.18 408
Hades A RP01A-31 81 -25.32 0.15 411
Hades A RP01A-32 84 -26.28 0.25 414
Hades A RP01A-33 87 -27.13 0.46 417
Hades A RP01A-34 90 -25.49 0.14 420
Hades A RP01A-35 93 -24.39 0.10 423
Hades A RP01A-36 96 -25.10 0.15 426
Hades A RP01A-37 99.5 -26.09 0.52 429.5
Hades A RP01A-38 102 -23.90 0.13 432
Hades A RP01A-39 105 -24.79 0.14 435  
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Locale Sample Meter C-isotope TOC
Composite 

Hades Meter
Hades A RP01A-40 108 -24.58 0.17 438
Hades A RP01A-41 111 -26.82 0.48 441
Hades A RP01A-42 114 -24.76 0.10 444
Hades A RP01A-44 120 -25.02 0.13 450
Hades A RP01A-45 123 -27.62 0.73 453
Hades A RP01A-46 126 -25.45 0.17 456
Hades A RP01A-47 129 -25.49 0.18 459
Hades A RP01A-48 132 -27.63 0.66 462
Hades A RP01A-49 135 -25.57 0.18 465
Hades A RP01A-50 138 -24.76 0.17 468
Hades A RP01A-51 141 -25.77 0.17 471
Hades A RP01A-52 144 -27.12 0.43 474
Hades A RP01A-53 147 -25.38 0.14 477
Hades A RP01A-54 150 -25.17 0.16 480
Hades A RP01A-55 153 -25.50 0.15 483
Hades A RP01A-56 156 -26.42 0.46 486
Hades A RP01A-57 159 -25.27 0.16 489
Hades A RP01A-58 162 -25.58 0.15 492
Hades A RP01A-59 165 -25.49 0.17 495
Hades A RP01A-60 168 -25.63 0.53 498
Hades A RP01A-61 171 -25.76 0.16 501
Hades A RP01A-62 174 -25.27 0.22 504
Hades A RP01A-63 177 -24.96 0.15 507
Hades A RP01A-64 180 -26.11 0.67 510
Hades A RP01A-65 183 -25.50 0.18 513
Hades A RP01A-66 186 -26.05 0.20 516
Hades A RP01A-67 189 -27.18 0.27 519
Hades A RP01A-68 192 -25.57 0.66 522
Hades A RP01A-69 195 -26.35 0.17 525
Hades A RP01A-70 198 -26.14 0.16 528
Hades A RP01A-71 201 -26.01 0.19 531
Hades A RP01A-73 207 -26.77 0.70 537
Hades A RP01A-75 212.5 -27.70 0.46 542.5
Hades A RP01A-79 220.5 -29.46 1.20 550.5
Hades A RP01A-81 254 -27.89 2.21 584
Hades A RP01A-82 266 -27.85 0.68 596
Hades A RP01A-84 276.5 -27.44 1.52 606.5
Hades A RP01A-85 280.5 -28.59 3.70 610.5
Hades A Hades 01 291 -27.20 0.89 621
Hades A Hades 03 294 -28.07 1.27 624
Hades A Hades 04 303 -27.52 1.12 633
Hades A Hades 05 306 -28.18 0.91 636
Hades A Hades 06 311 -27.57 1.68 641
Hades A Hades 07 315 -27.82 1.02 645
Hades A Hades 08 318 -28.13 2.41 648
Hades A Hades 09 322.5 -28.08 2.46 652.5
Hades A Hades 11 337 -27.09 1.39 667
Hades A Hades 12 339 -27.72 1.40 669
Hades A Hades 13 344 -26.76 0.97 674
Hades A Hades 14 346 -26.60 0.83 676  
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Locale Sample Meter C-isotope TOC
Composite 

Hades Meter

Hades A Hades 16 357 -27.55 1.18 687
Hades A Hades 17 379 -28.78 0.97 709
Hades A Hades 18 387 -27.60 0.84 717
Hades A Hades 19 396 -26.83 1.90 726
Hades A Hades 20 397 -26.50 0.67 727
Hades A Hades 22 401 -26.85 0.85 731
Hades A Hades 23 404 -27.32 1.07 734
Hades A Hades 24 417.5 -27.34 0.76 747.5
Hades A Hades 25 424 -26.63 0.46 754
Hades A Hades 26 442 -27.87 2.17 772
Hades A Hades 27 446 -28.22 0.94 776
Hades A Hades 30 489 -27.62 0.59 819
Hades A Hades 31 498 -27.20 1.53 828
Hades A Hades 32 503 -27.04 2.74 833
Hades A Hades 33 510 -27.33 1.32 840
Hades A Hades 34 518 -27.09 1.81 848
Hades A Hades 35 523 -27.69 1.12 853
Hades A Hades 36 528 -27.35 1.89 858
Hades A Hades 37 544 -27.37 1.26 874
Hades A Hades 38 548 -27.61 0.67 878
Hades A Hades 40 588 -26.71 0.49 918
Hades A Hades 41 589 -26.85 1.09 919
Hades A Hades 42 591 -26.21 1.01 921
Hades A Hades 43 592.5 -26.43 1.58 922.5
Hades A Hades 44 594 -26.83 0.90 924
Hades A Hades 45 597 -26.69 0.57 927
Hades A Hades 46a 600 -27.32 0.82 930
Hades A Hades 46b 600 -27.19 1.04 930
Hades A Hades 47 601.5 -27.85 1.31 931.5
Hades A Hades 48a 603 -27.29 0.87 933
Hades A Hades 48b 603 -26.99 1.37 933
Hades A Hades 49 607 -27.00 1.13 937
Hades A Hades 50 608 -27.82 1.18 938
Hades A Hades 51 609 -26.40 1.65 939
Hades A Hades 52 612 -26.43 1.77 942
Hades A Hades 54 624.5 -25.85 1.52 954.5
Hades A Hades 55 627 -26.39 0.96 957
Hades A Hades 57 627.2 -26.35 0.91 957.2
Hades A Hades 58 631.5 -26.94 1.10 961.5
Hades A Hades 59 639 -25.48 -- 969
Hades A Hades 62 657 -28.54 -- 987
Hades A Hades 63 658 -28.54 -- 988
Hades C RP01C-03 13.5 -27.37 4.12 443.5
Hades C RP01C-05 54 -27.73 2.75 484
Hades C RP01C-06 78 -28.24 1.33 508
Hades C RP01C-07 121 -29.26 5.91 551
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Locale Sample Meter C-isotope TOC type section 
Meter

Mud Lake Flat Road Road Section 01 0 -22.68 0.35 41
Mud Lake Flat Road Road Section 02 1.5 -26.03 0.29 42.5
Mud Lake Flat Road Road Section 03 3 -24.08 0.39 44
Mud Lake Flat Road Road Section 04 3.5 -19.74 1.16 44.5
Mud Lake Flat Road Road Section 04D 3.5 -20.03 0.91 44.5
Mud Lake Flat Road Road Section 05 6 -25.32 0.68 47
Mud Lake Flat Road Road Section 06 7.5 -24.20 0.42 48.5
Mud Lake Flat Road Road Section 07 9 -24.74 0.42 50
Mud Lake Flat Road Road Section 08 12 -22.97 0.41 53
Mud Lake Flat Road Road Section 09 13.5 -24.47 0.53 54.5
Mud Lake Flat Road Road Section 10 15 -23.74 0.15 56
Mud Lake Flat Road Road Section 11 16 -23.47 0.35 57
Mud Lake Flat Road Road Section 12 17.5 -24.66 0.43 58.5
Mud Lake Flat Road Road Section 13 18.5 -23.39 0.40 59.5
type section TS-706-01 80 -25.43 0.19
type section RP00-B-01 81.5 -24.05 0.28
type section TS-706-02 82 -19.37 0.22
type section RP00-B-02 83 -16.91 0.24
type section TS-706-03 83 -19.17 0.18
type section TS-706-04 84 -24.30 0.21
type section RP00-B-03 84.5 -22.00 0.27
type section TS-706-05 85 -18.63 0.26
type section TS-706-06 86 -23.79 0.48
type section TS-706-07 89 -26.01 0.40
type section TS-706-08 92 -24.89 0.57
type section TS-706-09 95 -25.52 0.26
type section TS-706-10 101 -23.42 0.42
type section RP00-B-06 101.5 -22.52 0.60
type section TS-706-11 104 -26.57 0.65
type section TS-706-12 106 -23.13 0.21
type section TS-706-13 110 -25.47 0.42
type section TS-706-14 113 -24.59 0.43
type section TS-706-15 116 -26.99 0.77
type section TS-706-16 119 -26.38 0.87
type section TS-706-17 122 -24.07 0.42
type section TS-706-18 125 -25.84 0.38
type section RP00-B-09 128 -25.80 0.30
type section TS-706-19 132 -26.02 0.46
type section TS-706-20 135 -24.73 0.51
type section TS-706-21 138 -23.91 0.21
type section RP00-B-11 140 -24.80 0.48
type section TS-706-22 141 -24.13 0.26
type section TS-706-23 145 -24.12 0.31
type section TS-706-24 148 -23.75 0.33
type section TS-706-25 154 -23.77 0.94
type section TS-706-25a 157 -23.95 0.17
type section RP00-B-13 160 -24.60 0.51  
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Locale Sample Meter C-isotope TOC

type section TS-706-26 160 -23.56 0.24
type section TS-706-27 163 -24.79 0.81
type section TS-706-28 166 -24.07 0.92
type section TS-706-29 169 -23.99 0.86
type section TS-706-30 172 -24.49 0.64
type section TS-706-31 175 -22.58 0.19
type section TS-706-32 178 -23.18 0.60
type section RP00-B-15 181.5 -23.19 1.51
type section TS-706-33 184 -23.92 0.83
type section TS-706-34 187 -23.41 1.61
type section RP00-B-16 190 -23.22 0.71
type section TS-706-35 193 -23.85 1.59
type section TS-706-36 196 -25.36 2.92
type section TS-706-37 199 -23.45 0.43
type section RP00-B-17 200 -23.12 1.11
type section TS-706-38 202 -23.38 0.76
type section TS-706-39 205 -23.62 0.30
type section TS-706-40 228 -25.23 0.38
type section RP00-B-19 230 -23.90 0.33
type section TS-706-41 231 -26.58 1.11
type section TS-706-42 234 -26.55 0.32
type section TS-706-43 237 -26.57 0.89
type section TS-706-44 243 -25.29 1.22
type section TS-706-45 248 -25.51 0.68
type section RP00-B-20 249 -25.90 0.93
type section TS-706-46 251 -26.16 0.53
type section RP00-B-24 255.5 -24.10 0.54
type section TS-706-47 266 -26.44 0.55
type section RP00-B-25 269 -25.26 0.84
type section TS-706-48 272 -26.24 0.36
type section TS-706-49 275 -25.94 0.22
type section RP00-B-27 320 -27.50 0.18
type section TS-706-50 323 -26.75 0.50
type section RP00-B-28 327 -26.76 0.57
type section RP00-B-32 340 -26.90 0.36
type section RP00-B-33 345.5 -25.87 0.25
type section TS-706-51 349 -26.02 0.23
type section TS-706-52 353 -26.16 0.21
type section TS-706-53 356 -25.83 0.18
type section RP00-B-35 359.5 -25.17 0.31
type section TS-706-55 365 -25.33 0.21
type section TS-706-56 368 -25.91 0.27
type section RP00-B-36 371.5 -27.61 0.56
type section TS-706-57 374 -25.33 0.20
type section RP00-B-37 377 -26.51 0.34
type section TS-706-58 380 -25.81 0.25
type section TS-706-59 383 -25.76 0.22
type section TS-706-60 386 -25.12 0.14
type section TS-706-61 389 -26.34 0.38  
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Locale Sample Meter C-isotope TOC

type section RP00-B-39 393 -26.75 0.52
type section TS-706-62 395 -25.14 0.14
type section TS-706-63 398 -25.35 0.40
type section TS-706-64 401 -26.18 0.55
type section TS-706-65 404 -25.52 0.47
type section TS-706-66 407 -26.01 0.55
type section TS-706-67 413 -25.78 0.46
type section TS-706-68 416 -25.94 0.69
type section TS-706-69 419 -25.15 0.48
type section TS-706-70 422 -25.54 0.97
type section TS-706-71 429 -25.08 0.55
type section TS-706-72 432 -24.80 0.32
type section TS-706-73 435 -25.97 0.92
type section TS-706-74 438 -24.82 0.32
type section TS-706-75 441 -25.67 0.47
type section RP00-B-43 444 -28.85 1.18
type section TS-706-76 447 -25.13 0.51
type section TS-706-77 450 -25.00 0.30
type section TS-706-78 454 -24.99 0.28
type section TS-706-79 457 -25.40 0.55
type section TS-706-80 460 -24.67 0.14
type section TS-706-81 463 -24.77 0.09
type section TS-706-82 466 -24.85 0.08
type section RP00-B-45 470.5 -25.52 0.62
type section TS-706-83 474 -25.14 0.07
type section TS-706-84 477 -25.23 0.08
type section TS-706-85 480 -26.42 0.21
type section TS-706-86 483 -24.38 0.04
type section RP00-B-46 486 -27.87 0.10
type section RP00-B-47 490.5 -28.16 0.15
type section TS-706-87 492 -23.66 0.79
type section TS-706-88 495 -24.46 0.07
type section TS-706-89 501 -25.63 0.12
type section TS-706-90 504 -25.70 0.15
type section TS-706-91 507 -25.31 0.14
type section TS-706-92 510 -25.55 0.17
type section RP00-B-49 512 -26.67 0.55
type section RP00-B-50 517 -28.93 0.17
type section TS-706-93 519 -26.39 0.18
type section TS-706-94 522 -26.27 0.19
type section TS-706-95 525 -26.02 0.15
type section TS-706-96 528 -27.62 0.37
type section RP00-B-51 530 -25.14 0.13
type section TS-706-97 534 -26.31 0.10
type section TS-706-98 537 -25.64 0.10
type section TS-706-99 540 -26.31 0.09
type section TS-706-100 543 -26.36 0.11
type section TS-706-101 546 -27.01 0.19
type section RP00-B-52 548.5 -25.86 0.07
type section TS-706-102 552 -28.03 0.70
type section TS-706-103 555 -28.31 0.58
type section TS-706-104 558 -29.12 1.15
type section RP00-B-53 560 -28.17 0.67  
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Locale Sample Meter C-isotope TOC

Ashley Creek AC01 9 -17.27 --
Ashley Creek AC06 59 -18.81 --
Ashley Creek AC09 82.5 -27.65 --
Ashley Creek AC12 110.5 -17.11 --
Ashley Creek AC13 117 -17.10 --
Ashley Creek AC14 118.5 -22.80 --
Ashley Creek AC15 129 -23.23 --
Henry's Fork HF02 sub 0 -25.19 --
Henry's Fork HF04 7 -26.47 --
Henry's Fork HF11 151 -19.55 --
Henry's Fork HF13 154 -24.87 --  
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Appendix C: Raw point count data tables 
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Point Count Raw Data 

Sample   
Mono-

crystalline 
Quartz 

Undulatory 
Quartz 

Poly-
crystalline 

Quartz 
Plagioclase 

AC-3 Count 134.00 -- -- 3.00 
% 44.67 -- -- 1.00 

AC-10 Count 265.00 -- 5.00 4.00 
% 88.33 -- 1.67 1.33 

AC-11 Count 239.00 -- 1.00 4.00 
% 79.67 -- 0.33 1.33 

AC04-7 Count 247.00 51.00 1.00 1.00 
% 82.33 17.00 0.33 0.33 

RP01A-19.5 Count 242.00 18.00 -- 10.00 
% 80.67 6.00 -- 3.33 

RP01A-23 Count 207.00 11.00 3.00 15.00 
% 69.00 3.67 1.00 5.00 

RP01A-26 Count 203.00 14.00 4.00 25.00 
% 67.67 4.67 1.33 8.33 

RP01A-47A Count 204.00 13.00 2.00 13.00 
% 68.00 4.33 0.67 4.33 

RP01A-72 Count 205.00 14.00 -- 9.00 
% 68.33 4.67 -- 3.00 

RP01A-74A Count 196.00 6.00 3.00 17.00 
% 65.33 2.00 1.00 5.67 

RP01A-76 Count 174.00 6.00 6.00 78.00 
% 58.00 2.00 2.00 26.00 

RP01A-76A Count 155.00 -- 6.00 29.00 
% 51.67 -- 2.00 9.67 

RP01A-77 Count 193.00 -- 4.00 18.00 
% 64.33 -- 1.33 6.00 

RP01A-78 Count 181.00 -- 7.00 26.00 
% 60.33 -- 2.33 8.67 

RP01A-79a Count 138.00 38.00 4.00 33.00 
% 46.00 12.67 1.33 11.00 

RP01A-80 Count 139.00 42.00 4.00 22.00 
% 46.33 14.00 1.33 7.33 

Hades 2 Count 162.00 28.00 5.00 14.00 
% 54.00 9.33 1.67 4.67 

Hades 10 Count 206.00 33.00 -- 11.00 
% 68.67 11.00 -- 3.67 

Hades 15 Count 222.00 26.00 6.00 6.00 
% 74.00 8.67 2.00 2.00 

        continued 
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Point Count Raw Data (continued) 

Sample   Potassium 
Feldspar 

Weathered 
Feldspar Muscovite Chlorite 

AC-3 Count -- -- -- -- 
% -- -- -- -- 

AC-10 Count 1.00 -- 6.00 10.00 
% 0.33 -- 2.00 3.33 

AC-11 Count 1.00 -- 1.00 25.00 
% 0.33 -- 0.33 8.33 

AC04-7 Count -- -- -- -- 
% -- -- -- -- 

RP01A-19.5 Count -- 1.00 8.00 3.00 
% -- 0.33 2.67 1.00 

RP01A-23 Count -- 10.00 5.00 5.00 
% -- 3.33 1.67 1.67 

RP01A-26 Count -- 7.00 5.00 -- 
% -- 2.33 1.67 -- 

RP01A-47A Count -- 12.00 7.00 5.00 
% -- 4.00 2.33 1.67 

RP01A-72 Count -- 19.00 2.00 3.00 
% -- 6.33 0.67 1.00 

RP01A-74A Count -- 38.00 1.00 -- 
% -- 12.67 0.33 -- 

RP01A-76 Count 2.00 27.00 -- 2.00 
% 0.67 9.00 -- 0.67 

RP01A-76A Count 2.00 46.00 6.00 34.00 
% 0.67 15.33 2.00 11.33 

RP01A-77 Count 2.00 54.00 -- 9.00 
% 0.67 18.00 -- 3.00 

RP01A-78 Count 5.00 48.00 2.00 2.00 
% 1.67 16.00 0.67 0.67 

RP01A-79a Count 5.00 49.00 5.00 3.00 
% 1.67 16.33 1.67 1.00 

RP01A-80 Count 1.00 38.00 9.00 6.00 
% 0.33 12.67 3.00 2.00 

Hades 2 Count -- 58.00 5.00 11.00 
% -- 19.33 1.67 3.67 

Hades 10 Count 3.00 12.00 3.00 5.00 
% 1.00 4.00 1.00 1.67 

Hades 15 Count -- 15.00 4.00 3.00 
% -- 5.00 1.33 1.00 

        continued 
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Point Count Raw Data (continued) 

Sample   Mudstone Siltstone Other 
Lithic Matrix 

AC-3 Count -- -- -- 163.00 
% -- -- -- 54.33 

AC-10 Count 9.00 -- -- -- 
% 3.00 -- -- -- 

AC-11 Count 9.00 -- -- 20.00 
% 3.00 -- -- 6.67 

AC04-7 Count -- -- -- -- 
% -- -- -- -- 

RP01A-19.5 Count -- -- -- 18.00 
% -- -- -- 6.00 

RP01A-23 Count -- -- -- 44.00 
% -- -- -- 14.67 

RP01A-26 Count -- -- -- 42.00 
% -- -- -- 14.00 

RP01A-47A Count 4.00 -- -- 40.00 
% 1.33 -- -- 13.33 

RP01A-72 Count -- -- -- 48.00 
% -- -- -- 16.00 

RP01A-74A Count -- -- -- 39.00 
% -- -- -- 13.00 

RP01A-76 Count -- -- -- 5.00 
% -- -- -- 1.67 

RP01A-76A Count -- -- -- 22.00 
% -- -- -- 7.33 

RP01A-77 Count -- -- -- 20.00 
% -- -- -- 6.67 

RP01A-78 Count -- -- -- 29.00 
% -- -- -- 9.67 

RP01A-79a Count 7.00 1.00 -- 17.00 
% 2.33 0.33 -- 5.67 

RP01A-80 Count 4.00 -- -- 35.00 
% 1.33 -- -- 11.67 

Hades 2 Count 6.00 -- -- 11.00 
% 2.00 -- -- 3.67 

Hades 10 Count 2.00 1.00 -- 24.00 
% 0.67 0.33 -- 8.00 

Hades 15 Count 3.00 -- -- 15.00 
% 1.00 -- -- 5.00 

        continued 
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Point Count Raw Data (continued) 

Sample   
Mono-

crystalline 
Quartz 

Undulatory 
Quartz 

Poly-
crystalline 

Quartz 
Plagioclase 

Hades 21 Count 165.00 29.00 14.00 22.00 
% 55.00 9.67 4.67 7.33 

Hades 28 Count 196.00 21.00 9.00 14.00 
% 65.33 7.00 3.00 4.67 

Hades 29 Count 175.00 14.00 4.00 26.00 
% 58.33 4.67 1.33 8.67 

Hades 39 Count 165.00 11.00 11.00 25.00 
% 55.00 3.67 3.67 8.33 

Hades 56 Count 153.00 6.00 9.00 5.00 
% 51.00 2.00 3.00 1.67 

Hades 60 Count 170.00 9.00 16.00 21.00 
% 56.67 3.00 5.33 7.00 

Hades 61 Count 166.00 13.00 18.00 25.00 
% 55.33 4.33 6.00 8.33 

Hades 64 Count 153.00 7.00 14.00 37.00 
% 51.00 2.33 4.67 12.33 

Hades 06-1 Count 228.00 11.00 4.00 11.00 
% 76.00 3.67 1.33 3.67 

Hades 06-2 Count 209.00 23.00 7.00 24.00 
% 69.67 7.67 2.33 8.00 

Hades 06-3 Count 252.00 12.00 2.00 7.00 
% 84.00 4.00 0.67 2.33 

RP03B-8 Count 237.00 8.00 6.00 10.00 
% 79.00 2.67 2.00 3.33 

RP03B-27 Count 195.00 -- 8.00 18.00 
% 65.00 -- 2.67 6.00 

HadesB 06-1 Count 176.00 4.00 -- 4.00 
% 58.67 1.33 -- 1.33 

RP01C-1 Count 170.00 -- 6.00 24.00 
% 56.67 -- 2.00 8.00 

RP01C-4 Count 162.00 -- 2.00 33.00 
% 54.00 -- 0.67 11.00 

RP01C-8 Count 144.00 -- 8.00 24.00 
% 48.00 -- 2.67 8.00 

HC06-1 Count 156.00 -- 4.00 47.00 
% 52.00 -- 1.33 15.67 

HCO6-2 Count 169.00 -- 9.00 33.00 
% 56.33 -- 3.00 11.00 

HC06-3 Count 171.00 -- 15.00 42.00 
% 57.00 -- 5.00 14.00 

HC06-4 Count 173.00 -- 8.00 36.00 
% 57.67 -- 2.67 12.00 

HF-1 Count 209.00 -- 3.00 30.00 
% 69.67 -- 1.00 10.00 

HF-5 Count 246.00 -- 5.00 10.00 
% 82.00 -- 1.67 3.33 

continued 
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Point Count Raw Data (continued) 

Sample   Potassium 
Feldspar 

Weathered 
Feldspar Muscovite Chlorite 

Hades 21 Count 2.00 29.00 12.00 -- 
% 0.67 9.67 4.00 -- 

Hades 28 Count 2.00 25.00 9.00 7.00 
% 0.67 8.33 3.00 2.33 

Hades 29 Count 10.00 37.00 1.00 -- 
% 3.33 12.33 0.33 -- 

Hades 39 Count 10.00 57.00 2.00 4.00 
% 3.33 19.00 0.67 1.33 

Hades 56 Count 2.00 104.00 3.00 14.00 
% 0.67 34.67 1.00 4.67 

Hades 60 Count 4.00 71.00 3.00 1.00 
% 1.33 23.67 1.00 0.33 

Hades 61 Count 4.00 48.00 6.00 10.00 
% 1.33 16.00 2.00 3.33 

Hades 64 Count 8.00 79.00 -- -- 
% 2.67 26.33 -- -- 

Hades 06-1 Count -- 41.00 1.00 -- 
% -- 13.67 0.33 -- 

Hades 06-2 Count 3.00 18.00 6.00 3.00 
% 1.00 6.00 2.00 1.00 

Hades 06-3 Count 1.00 22.00 2.00 -- 
% 0.33 7.33 0.67 -- 

RP03B-8 Count -- 7.00 4.00 7.00 
% -- 2.33 1.33 2.33 

RP03B-27 Count 1.00 7.00 7.00 1.00 
% 0.33 2.33 2.33 0.33 

HadesB06-1 Count -- 27.00 5.00 1.00 
% -- 9.00 1.67 0.33 

RP01C-1 Count 14.00 53.00 1.00 3.00 
% 4.67 17.67 0.33 1.00 

RP01C-4 Count 4.00 71.00 2.00 1.00 
% 1.33 23.67 0.67 0.33 

RP01C-8 Count -- 82.00 3.00 2.00 
% -- 27.33 1.00 0.67 

HC06-1 Count 4.00 55.00 -- 4.00 
% 1.33 18.33 -- 1.33 

HCO6-2 Count 5.00 53.00 3.00 3.00 
% 1.67 17.67 1.00 1.00 

HC06-3 Count 6.00 22.00 2.00 2.00 
% 2.00 7.33 0.67 0.67 

HC06-4 Count 9.00 44.00 3.00 5.00 
% 3.00 14.67 1.00 1.67 

HF-1 Count 1.00 10.00 10.00 23.00 
% 0.33 3.33 3.33 7.67 

HF-5 Count -- -- 3.00 4.00 
% -- -- 1.00 1.33 

        continued 
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Point Count Raw Data (continued) 

Sample   Mudstone Siltstone Other 
Lithic Matrix 

Hades 21 Count 5.00 -- -- 22.00 
% 1.67 -- -- 7.33 

Hades 28 Count 2.00 -- -- 15.00 
% 0.67 -- -- 5.00 

Hades 29 Count -- -- -- 33.00 
% -- -- -- 11.00 

Hades 39 Count -- -- -- 15.00 
% -- -- -- 5.00 

Hades 56 Count -- -- -- 4.00 
% -- -- -- 1.33 

Hades 60 Count -- -- -- 5.00 
% -- -- -- 1.67 

Hades 61 Count 2.00 -- -- 8.00 
% 0.67 -- -- 2.67 

Hades 64 Count -- -- -- 2.00 
% -- -- -- 0.67 

Hades 06-1 Count -- -- -- 4.00 
% -- -- -- 1.33 

Hades 06-2 Count 4.00 -- -- 3.00 
% 1.33 -- -- 1.00 

Hades 06-3 Count -- -- -- 2.00 
% -- -- -- 0.67 

RP03B-8 Count 9.00 -- -- 12.00 
% 3.00 -- -- 4.00 

RP03B-27 Count 23.00 -- -- 40.00 
% 7.67 -- -- 13.33 

HadesB06-1 Count 7.00 -- -- 76.00 
% 2.33 -- -- 25.33 

RP01C-1 Count -- -- -- 29.00 
% -- -- -- 9.67 

RP01C-4 Count -- -- -- 25.00 
% -- -- -- 8.33 

RP01C-8 Count -- -- -- 37.00 
% -- -- -- 12.33 

HC06-1 Count 2.00 2.00 -- 26.00 
% 0.67 0.67 -- 8.67 

HCO6-2 Count -- 2.00 -- 23.00 
% -- 0.67 -- 7.67 

HC06-3 Count -- -- -- 40.00 
% -- -- -- 13.33 

HC06-4 Count -- 1.00 -- 21.00 
% -- 0.33 -- 7.00 

HF-1 Count 5.00 -- -- 9.00 
% 1.67 -- -- 3.00 

HF-5 Count 6.00 -- -- 26.00 
% 2.00 -- -- 8.67 

        continued 
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Point Count Raw Data (continued) 

Sample   
Mono-

crystalline 
Quartz 

Undulatory 
Quartz 

Poly-
crystalline 

Quartz 
Plagioclase 

HF-6 Count 228.00 -- 2.00 14.00 
% 76.00 -- 0.67 4.67 

HF-12 Count 200.00 -- 59.00 15.00 
% 66.67 -- 19.67 5.00 

HF-14 Count 284.00 -- 2.00 3.00 
% 94.67 -- 0.67 1.00 

HF-15 Count 258.00 -- 2.00 4.00 
% 86.00 -- 0.67 1.33 

HF-16 Count 183.00 -- -- 56.00 
% 61.00 -- -- 18.67 

LH03-14 Count 202.00 -- 3.00 12.00 
% 67.33 -- 1.00 4.00 

LH06-1 Count 161.00 -- 4.00 24.00 
% 53.67 -- 1.33 8.00 

RP00B-2.5 Count 205.00 17.00 13.00 14.00 
% 68.33 5.67 4.30 4.60 

RP00B-5 Count 247.00 -- 8.00 16.00 
% 82.33 -- 2.67 5.33 

RP00B-7 Count 208.00 -- 12.00 12.00 
% 69.33 -- 4.00 4.00 

RPP00B-10 Count 195.00 9.00 3.00 7.00 
% 65.00 3.00 1.00 2.30 

RP00B-12 Count 215.00 18.00 -- 18.00 
% 71.60 6.00 -- 6.00 

RP00B-17.5 Count 202.00 16.00 6.00 9.00 
% 67.27 5.33 2.00 3.00 

RP00B-21 Count 179.00 19.00 -- 8.00 
% 58.67 6.33 -- 2.60 

RP00B-22a Count 176.00 24.00 2.00 13.00 
% 58.60 8.00 0.60 4.30 

RP00B-22b Count 184.00 32.00 6.00 14.00 
% 61.33 10.67 2.00 4.60 

RP00B-23 Count 231.00 -- 39.00 12.00 
% 77.00 -- 13.00 4.00 

RP00B-30 Count 85.00 -- 7.00 2.00 
% 28.33 -- 2.33 0.67 

RP00B-32 Count 203.00 25.00 1.00 7.00 
% 67.67 8.33 0.30 2.30 

RP00B-40 Count 180.00 12.00 1.00 11.00 
% 60.00 4.00 0.30 3.60 

RP00B-42a Count 204.00 12.00 10.00 14.00 
% 68.00 4.00 3.30 4.60 

RP00B-44 Count 128.00 9.00 25.00 2.00 
% 42.60 3.00 8.30 0.60 

        continued 
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Point Count Raw Data (continued) 

Sample   Potassium 
Feldspar 

Weathered 
Feldspar Muscovite Chlorite 

HF-6 Count -- 6.00 6.00 14.00 
% -- 2.00 2.00 4.67 

HF-12 Count -- 4.00 -- -- 
% -- 1.33 -- -- 

HF-14 Count -- -- -- 2.00 
% -- -- -- 0.67 

HF-15 Count -- 1.00 3.00 7.00 
% -- 0.33 1.00 2.33 

HF-16 Count -- 5.00 7.00 26.00 
% -- 1.67 2.33 8.67 

LH03-14 Count -- 43.00 2.00 2.00 
% -- 14.33 0.67 0.67 

LH06-1 Count -- 46.00 2.00 7.00 
% -- 15.33 0.67 2.33 

RP00B-2.5 Count -- 7.00 6.00 12.00 
% -- 2.30 2.00 4.00 

RP00B-5 Count -- 4.00 8.00 5.00 
% -- 1.33 2.67 1.67 

RP00B-7 Count -- 19.00 2.00 11.00 
% -- 6.33 0.67 3.67 

RPP00B-10 Count -- 5.00 7.00 20.00 
% -- 1.60 2.30 6.60 

RP00B-12 Count -- 5.00 1.00 4.00 
% -- 1.60 0.30 1.30 

RP00B-17.5 Count -- 12.00 2.00 5.00 
% -- 4.00 0.60 1.60 

RP00B-21 Count -- 8.00 4.00 2.00 
% -- 2.60 1.30 0.30 

RP00B-22a Count -- 8.00 6.00 5.00 
% -- 2.60 2.00 1.60 

RP00B-22b Count -- 1.00 5.00 3.00 
% -- 0.30 1.60 1.00 

RP00B-23 Count -- 11.00 -- 1.00 
% -- 3.67 0.00 0.33 

RP00B-30 Count -- 1.00 58.00 3.00 
% -- 0.33 19.33 1.00 

RP00B-32 Count -- 3.00 11.00 3.00 
% -- 1.00 3.20 1.00 

RP00B-40 Count -- 13.00 5.00 3.00 
% -- 4.30 1.60 1.00 

RP00B-42a Count -- 3.00 2.00 0.00 
% -- 1.00 0.60 0.00 

RP00B-44 Count -- 7.00 5.00 0.00 
% -- 2.30 1.60 0.00 

        continued 
 
 
 
 
 



115 

 

Point Count Raw Data (continued) 

Sample   Mudstone Siltstone Other 
Lithic Matrix 

HF-6 Count -- -- -- 30.00 
% -- -- -- 10.00 

HF-12 Count -- -- 1.00 21.00 
% -- -- 0.33 7.00 

HF-14 Count -- -- -- 9.00 
% -- -- -- 3.00 

HF-15 Count -- -- -- 25.00 
% -- -- -- 8.33 

HF-16 Count 2.00 -- -- 21.00 
% 0.67 -- -- 7.00 

LH03-14 Count -- -- -- 36.00 
% -- -- -- 12.00 

LH06-1 Count 8.00 -- 3.00 45.00 
% 2.67 -- 1.00 15.00 

RP00B-2.5 Count 5.00 -- -- 21.00 
% 1.60 -- -- 7.00 

RP00B-5 Count -- -- -- 12.00 
% -- -- -- 4.00 

RP00B-7 Count -- 2.00 4.00 30.00 
% -- 0.67 1.33 10.00 

RPP00B-10 Count -- -- 2.00 52.00 
% -- -- 0.60 17.30 

RP00B-12 Count -- -- -- 39.00 
% -- -- -- 13.00 

RP00B-17.5 Count 2.00 -- 7.00 39.00 
% 0.60 -- 2.30 13.00 

RP00B-21 Count 9.00 -- 14.00 57.00 
% 2.90 -- 4.60 19.00 

RP00B-22a Count -- -- 3.00 63.00 
% -- -- 1.00 21.00 

RP00B-22b Count -- -- 6.00 49.00 
% -- -- 2.00 16.30 

RP00B-23 Count -- -- 4.00 2.00 
% -- -- 1.33 0.67 

RP00B-30 Count -- -- -- 144.00 
% -- -- -- 48.00 

RP00B-32 Count 1.00 -- 1.00 45.00 
% 0.30 -- 0.30 15.00 

RP00B-40 Count 3.00 -- 4.00 68.00 
% 1.00 -- 1.30 22.60 

RP00B-42a Count -- -- 2.00 53.00 
% -- -- 0.60 17.60 

RP00B-44 Count 4.00 -- 27.00 93.00 
% 1.30 -- 9.00 31.00 

        continued 
 
 
 
 
 



116 

 

Point Count Raw Data (continued) 

Sample   
Mono-

crystalline 
Quartz 

Undulatory 
Quartz 

Poly-
crystalline 

Quartz 
Plagioclase 

TS1-SS Count 188.00 9.00 4.00 16.00 
% 62.67 3.00 1.33 5.33 

TS3-SS Count 195.00 7.00 -- 18.00 
% 65.00 2.33 -- 6.00 

TS5-SS Count 161.00 7.00 7.00 44.00 
% 53.67 2.33 2.33 14.67 

TS6-SS Count 208.00 12.00 -- 21.00 
% 69.33 4.00 -- 7.00 

TS7-SS Count 216.00 16.00 -- 25.00 
% 72.00 5.33 -- 8.33 

        continued 
 
  



117 

 

Point Count Raw Data (continued) 

Sample   Potassium 
Feldspar 

Weathered 
Feldspar Muscovite Chlorite 

TS1-SS Count -- 41.00 13.00 18.00 
% -- 13.67 4.33 6.00 

TS3-SS Count -- 54.00 15.00 6.00 
% -- 18.00 5.00 2.00 

TS5-SS Count -- 32.00 9.00 12.00 
% -- 10.67 3.00 4.00 

TS6-SS Count -- 17.00 19.00 10.00 
% -- 5.67 6.33 3.33 

TS7-SS Count -- 12.00 13.00 2.00 
% -- 4.00 4.33 0.67 

        continued 
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Point Count Raw Data (continued) 

Sample   Mudstone Siltstone Other 
Lithic Matrix 

TS1-SS Count 6.00 -- -- 5.00 
% 2.00 -- -- 1.67 

TS3-SS Count 1.00 -- -- 4.00 
% 0.33 -- -- 1.33 

TS5-SS Count -- -- 23.00 5.00 
% -- -- 7.67 1.67 

TS6-SS Count -- -- 4.00 9.00 
% -- -- 1.33 3.00 

TS7-SS Count -- -- 12.00 4.00 
  % -- -- 4.00 1.33 
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Locale Sample Meter Grain Size Range Rounding Sorting Notes

Lower Hades LH06-1 0 c. sand sub-rounded poor
Lower Hades LH03-14 44 med. sand sub-rounded moderate
Hades B RP03B-8 16 f.-med. sand sub-ang. - sub-round moderate-well
Hades B HadesB 06-1 36 f. sand sub-ang. - sub-round moderate-well
Hades B RP03B-27 92 f. sand sub-rounded moderate small sample=denser pt. ct.
Hades A RP01A-19.5 52 v.f.- f. sand sub-ang. - sub-round moderate
Hades A RP01A-23 62 f.-med. sand sub-rounded poor
Hades A RP01A-26 65 med. sand sub-ang. - sub-round moderate
Hades A RP01A-47A 129 v.f.- f. sand sub-angular poor small sample=denser pt. ct.
Hades A RP01A-72 204 v.f.- f. sand sub-ang. - sub-round moderate
Hades A RP01A-74A 210 med.-c. sand sub-angular moderate
Hades A RP01A-76 213 med. sand sub-angular poor
Hades A RP01A-76A 213 med. sand sub-ang. - sub-round poor
Hades A RP01A-77 213.5 c. sand sub-angular poor
Hades A RP01A-78 218 c. sand sub-angular poor
Hades A RP01A-79a 225 med. sand v. angular moderate
Hades A RP01A-80 240 f. sand v. angular moderate
Hades A Hades 02 292 f.-med. sand v. angular moderate-poor
Hades A Hades 06-1 309 med. sand sub-ang. - sub-round poor
Hades A Hades 10 336 med. sand sub-rounded moderate lots of plucked grains
Hades A Hades 06-2 348 med. sand angular poor
Hades A Hades 15 351 med.-c. sand sub-rounded poor lost of plucked grains
Hades A Hades 06-3 365 f. sand sub-rounded moderate
Hades A Hades 21 400 f. sand sub-angular poor
Hades A Hades 28 446 v.f.- f. sand sub-angular moderate
Hades A Hades 29 461 c. sand sub-angular poor
Hades A Hades 39 564 med. sand sub-angular moderate
Hades A Hades 56 627 med. sand sub-angular moderate-poor
Hades A Hades 60 650 med. sand sub-angular poor
Hades A Hades 64 653 c.-v.c. sand sub-ang. - sub-round moderate
Hades A Hades 61 654.5 med. sand ang.-sub-angular poor

continued

Thin Section Textural Data
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Locale Sample Meter Grain Size Range Rounding Sorting Notes

Hades C HC06-1 20.5 med.-c. sand ang.-sub-angular poor
Hades C RP01C-1 0.5 c. sand sub-angular poor
Hades C RP01C-4 15 c. sand angular poor
Hades C RP01C-8 25 med.-c. sand sub-ang. - sub-round moderate-poor
Hades C HC06-2 33 med.-c. sand sub-angular poor
Hades C HC06-3 63 med.-c. sand ang.-sub-angular moderate-poor
Hades C HC06-4 76 med.-c. sand sub-angular poor
Type Section RP00B-2.5 43.5 med. sand sub-angular moderate-well
Type Section RP0B-5 45 f.-med. sand sub-angular moderate-poor
Type Section RP0B-7 49 med.-c. sand ang.-sub-angular moderate-poor
Type Section TS1-SS 86 med. sand sub-angular poor
Type Section RP00B-10 91.5 med.-c. sand sub-angular moderate-poor
Type Section TS3-SS 103 med. sand sub-angular moderate
Type Section RP0B-23 105 med.-v.c. sand ang.-sub-angular poor
Type Section RP00B-12 112 med. sand sub-rounded moderate-well
Type Section TS5-SS 132 c. sand ang.-sub-angular moderate
Type Section RP0B-30 135 v.f.- f. sand ang.-sub-angular moderate
Type Section TS6-SS 172 med. sand sub-angular moderate
Type Section RP00B-17.5 177.5 med.-c. sand ang.-sub-angular moderate-poor
Type Section RP00B-21 207 f.-med. sand ang.-sub-angular moderate
Type Section RP00B-22a 218 f.-c. sand sub-angular moderate-poor
Type Section RP00B-22b 219 f.-c. sand sub-rounded moderate-poor
Type Section TS7-SS 265 med.-c. sand angular moderate
Type Section RP00B-32 300 f. sand sub-rounded well sorted
Type Section RP00B-40 360 f. sand sub-rounded well sorted
Type Section RP00B-42a 387 f.-c. sand sub-angular moderate-poor
Type Section RP00B-44 413 f. sand-pebble ang.-sub-angular poor
Ashley Creek AC04-7 -- med.-v.c. sand well rounded poor
Ashley Creek AC-3 67 v.f. sand sub-rounded moderate-well small sample=denser pt. ct.
Ashley Creek AC-10 124 v.f.- f. sand sub-rounded well sorted small sample=denser pt. ct.
Ashley Creek AC-11 124 v.f.- f. sand sub-ang. - sub-round well sorted

continued
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Locale Sample Meter Grain Size Range Rounding Sorting Notes

Henry's Fork HF-1 sub 0 v.f.- f. sand sub-angular moderate Hades Quartzite sample
Henry's Fork HF-5 126 f. sand sub-rounded well sorted
Henry's Fork HF-6 129 v.f. sand sub-rounded well sorted small sample=denser pt. ct.
Henry's Fork HF-12 153.5 med. sand -fine pebbles angular poor
Henry's Fork HF-14 165 f.-med. sand sub-round - rounded well sorted
Henry's Fork HF-15 168 f. sand sub-round - rounded well sorted
Henry's Fork HF-16 209 f.-med. sand sub-rounded moderate-poor

Thin Section Textural Data (continued )

 

122 



123 

 

 

 

 

 

Appendix E: Detailed stratigraphic columns 



sample
location description

Red Pine Shale
Type Section

m
et

er
s

0

80

85

90

95

100

pgcmfsc

N65E, 42W--in shale beds, 

RP00B1

RP00B2.5

RP00B3

gray-maroon shale

gray to black shale

interbedded medium sand and shale 

PL05-70 z

RP00B4

RP00B5

gray to black mudrock

gray shale

gray shale

gray organic laminations

medium sand with <10 cm shale beds

sandstone thin to medium bedded, 
medium to coarse grained, moderate 
sorting, angular

PL05-69 z
TS-706-1

TS-706-2

TS-706-4
RP00B2
TS-706-3

i

TS-706-5

TS-706-6

TS-706-7

TS-706-8

TS-706-9

i
i

i

i
i

i

i

i

pet
i

i

i

i

re

re

gray fine sandstone, medium bedded

124



sample 
location description

Red Pine Shale
Type Section

(continued)

m
et

er
s

100

105

110

115

120

125

pgcmfsc

RP00B8

RP00B7

RP00B6

interbedded medium sand
and silty shale

medium to coarse sand, angular to 
sub-angular, moderate to poor 
sorting, with lenses of coarse 
grained sand laminations, some 
thin bedded otherwise massive 
with granule sandstone lens

black shale

medium tabular beds

TS1-SS

TS-706-10

TS-706-11

TS-706-12

TS-706-13

TS-706-14

TS-706-15

TS-706-16

TS-706-17

i
i

i

i

pet

i

i

paleo

i

i

i

pet medium sand, sub-angular, 
poorly sorted

125



RP00B9

sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

125

130

135

140

145

150

pgcmfsc

RP00B11

TS2-SS

black to gray siltstone interbeds

gray siltstone

gray clay to siltstone

black shale

slump fold ~20 cm high

hummock ~1m wide by 20 cm high

siltstone with sandstone interbeds

iTS-706-18

TS-706-20

RP00B10
TS-706-18

TS-706-21

TS-706-22

TS-706-23

TS-706-24

i

i

i

i

i

i

i

i

shale interbeds

pet
medium to coarse sandstone, 
sub-angular, moderate to 
poor sorting, thin to medium 
bedding, siltstone laminations

126



RP00B12

sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

150

155

160

165

170

175

pgcmfsc

RP00B14

TS4-SS

few organic rich shale interbeds and
some coarser cm thick tabular 
beds with sharp contacts

gray shale

organic rich shale laminations
arkosic sandstone with

thin to medium bedded
sandstone with some silty interbeds

TS5-SS

TS-706-25

TS-706-25a

RP00B13
TS-706-26

TS-706-27

TS-706-28

TS-706-29

TS-706-30

TS-706-31

i

i

i
i

i

i

i

i

pet

i

127



RP0015B

sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

175

180

185

190

195

200

pgcmfsc

RP0016B

black silty-shale

black shale

TS-706-33

Re-Os
TS-706-32

TS-706-34

TS-706-35

TS-706-36

TS-706-37

i
re

i

i

i

i

i

i

i

128



RP00B17.5

RP00B17

sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

200

205

210

215

220

225

pgcmfsc

RP00B23

RP00B18

tabular medium to thick bedsTS6-SS

granual to pebble sandstone
undulatory to planar, medium beds

arkosic fine-coarse sandstone, 
angular to subrounded, medium 
bedded with few siltstone interbeds 

Re-Os
TS-706-38 i

TS-706-39 i

re

i

pet

pet

129



RP00B19

sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

225

230

235

240

245

250

pgcmfsc

RP00B20

RP00B21

black to dark gray shale

Re-Os 2

20-30 cm wide ripple

sandstone and siltstone rip-ups

siltstone and sandstone lenses

iTS-706-40

TS-706-41

TS-706-42

TS-706-43

TS-706-44

TS-706-45

i

i

i

i

re

i

i

i

pet

130



sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

250

255

260

265

270

275

pgcmfsc

RP00B22a

RP00B24

RP00B22b

RP00B26

RP00B25

sandstone medium bedded with
2 cm thick siltstone beds in between
organic rich some cut and fill

medium to coarse sandstone, cut 
and fill filled with coarse sand 
fining up with 10 cm thick coarse 
sand at top

dark gray to black shale

thin lens of fine sandstone

silica concretion

TS-706-46 i

i

pet

pet

TS-706-47

TS-706-48

i

i

i

131



sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

275

280

285

290

295

300

pgcmfsc

some shale laminations, organic rich

iTS-706-49

132



sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

300

305

310

315

320

325

pgcmfsc

RP00B27

siltstone to fine to medium 
sandstone laminated

siltstone to fine to medium 
sandstone laminated

3-6 cm sets of granual to coarse 
sandstone alternating with fine 
sandstone with fining up sequence
quartz granules and pebbles coarse 
sand lenses, 0.5 to 2 cm forsets

TS7-SS

TS-706-50 i

i

pet medium to coarse sand, angular, 
moderate sorting
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sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

325

330

335

pgcmfsc

340

345

350
RP00B34

RP00B33

RP00B32

RP00B31

RP00B30

RP00B28
some fine sand laminations

sandstone and siltstone, 
laminations

sandstone with organic matter,
mm scale laminations

i

i, pet, 
paleo

i

TS-706-51 i

sampled concretion

fine sand, sub-rounded, 
well sorted
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sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

350

355

360

pgcmfsc

365

370

375

RP00B36

RP00B35

dark gray to black siltstone 

TS-706-52

TS-706-53

TS-706-55

TS-706-56

TS-706-57

i

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Type Section
(continued)

m
et

er
s

375

380

385

pgcmfsc

390

395

400
RP00B40

RP00B39

RP00B38

RP00B37

TS-706-58

TS-706-59

TS-706-60

TS-706-61

TS-706-62

TS-706-63

i

i

i

i

i

i

i

i

pet, 
paleo

concretion:
fine sand, sub-rounded, 
well sorted
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sample 
location description

Red Pine Shale
Type Section

(continued)

m
et

er
s

400

405

410

pgcmfsc

415

420

425

RP00B41

thin bedded sandstone,
some laminations,
Fe2O3 weathered

Fe2O3 weathered

TS-706-64

TS-706-65

TS-706-66

TS-706-69

TS-706-68

TS-706-67

TS-706-70

i

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Type Section

(continued)

m
et

er
s

425

430

435

pgcmfsc

440

445

450

RP00B43

RP00B42a
RP00B42b

i

TS-706-71

TS-706-72

TS-706-73

TS-706-74

TS-706-75

TS-706-76

TS-706-77

i

i

i

i

i

i

pet

i

fine to coarse sand, sub-angular, 
moderate to poor sorting
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sample 
location description

Red Pine Shale
Type Section

(continued)

m
et

er
s

450

455

460

pgcmfsc

465

470

475

RP00B45

RP00B44
fine sand to pebbly sandstone, 
angular to sub-angular, poor
sorting, with mostly quartz and 
some maroon sedimentay clasts

reddish gray, fissile

i

TS-706-78

TS-706-79

TS-706-80

TS-706-81

TS-706-82

TS-706-83

i

i

i

i

i

i

pet
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sample 
location description

Red Pine Shale
Type Section

(continued)

m
et

er
s

475

480

485

pgcmfsc

490

495

500

RP00B48

RP00B47

RP00B46

oxidized sandstone

TS-706-84 i

i

i

TS-706-85 i

TS-706-86 i

TS-706-87 i

TS-706-88 i
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sample 
location description

Red Pine Shale
Type Section

(continued)

m
et

er
s

500

505

510

pgcmfsc

515

520

525

RP00B50

RP00B49

TS-706-92

TS-706-89 i

i

TS-706-90 i

TS-706-91 i

TS-706-95 i

TS-706-93 i

TS-706-94 i

i

i
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sample 
location description

Red Pine Shale
Type Section

(continued)

m
et

er
s

525

530

535

pgcmfsc

540

545

550

RP00B51

RP00B52

TS-706-100

TS-706-97 i

i

TS-706-98 i

TS-706-99 i

TS-706-101 i

TS-706-96 i

i

i
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sample 
location description

Red Pine Shale
Type Section

(continued)

m
et

er
s

550

555

560

pgcmfsc

565

595

600

RP00B53

TS-706-97 i

TS-706-98 i

TS-706-99 i

i

Madison limestone
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sample 
location description

Red Pine Shale
Road Section

m
et

er
s

0

5

10

15

20

25

pgcmfsc
iRoadSection1

RoadSection2

RoadSection3
RoadSection4

RoadSection5

RoadSection6

RoadSection7

RoadSection8

RoadSection9

RoadSection10

RoadSection11

RoadSection12

RoadSection13

i

i
i

i

i

i

i

i

i

i

i

i

.2-5 cm thick, medium to coarse 
sandstone, mostly quartz with 
oxidized cement, some ripples
interbedded with 1 cm thick silty to
fine sandstone, mostly quartz
interbedded with 1-4 cm black shale

thin to medium bedded medium
sandstone, thin black shale interbeds

mudstone with cm fine to medium 
sand lenses

5-10cm thick medium to coarse 
sandstone, mostly quartz, some 
weathered grains, climbing ripples, 
mud drapes, starved ripples

black shale with fairly continuous 
.5 cm oxidized layers, 5 cm 
lenticular layers of silt to fine sand 
with quartz and mica
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sample 
location description

Red Pine Shale
Hades Section A

m
et

er
s

   0

    5

  10

pgcmfsc

  15

  20

  25

RP01A-7

RP01A-6

RP01A-10

RP01A-9

RP01A-8

RP01A-5

RP01A-4

RP01A-3

RP01A-2

RP01A-1 interbeded mudshale and siltshale 
to sandy siltstone to fine 
sandstone, fine laminations to 
massive, gray to dark gray

very fine sandstone, highly 
fractured, medium to light brown

blocky mudshale to siltshale
dark greenish brown

i

i

i

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

  25

  30

  35

pgcmfsc

  40

  45

  50

RP01A-15

RP01A-14

RP01A-18

RP01A-17

RP01A-16

RP01A-13

RP01A-12

RP01A-11
tan to medium brown

medium gray

claystone to mudstone with very 
thin beds of siltstone

i

i

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

  50

  55

  60

pgcmfsc

  65

  70

  75

RP01A-23

RP01A-22

RP01A-28

RP01A-27

RP01A-25

RP01A-21

RP01A-20

RP01A-19

thinly bedded

RP01A-26

RP01A-24

RP01A-29

RP01A-19.5

siltstone to mudstone,
medium to dark gray

laminated sandy siltstone

fine horizontal to ripple 
laminated fine sandstone, tan to 
red-tan weathering, <1 cm thick 
ripple sets

ts

ts

i

i

i

i

i

i

i

ts
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

  75

  80

  85

pgcmfsc

  90

  95

100

laminations of very fine sand and 
weathered feldspar interbedded 
with brown mudstone,
laminations are wavy to 
horizontal

RP01A-34

RP01A-33

RP01A-37

RP01A-36

RP01A-35

RP01A-32

RP01A-31

RP01A-30

interbedded mudstone and 
siltstone

interbedded weathered tan to 
grayish brown mudstone/siltstone 
and linley tan weatheredgray to 
brown tabular to lenticular 
laminated siltstone/sandstone 

i

i

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

100

105

110

pgcmfsc

115

120

125

RP01A-42

RP01A-41

RP01A-45

RP01A-44

RP01A-43

RP01A-40

RP01A-39

RP01A-38

interbedded weathered tan to 
grayish brown mudstone/siltstone 
and linley tan weathered gray to 
brown tabular to lenticular 
laminated siltstone/sandstone 

partially oxidized claystone with 
iron nodules 

i

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

125

130

135

pgcmfsc

140

145

150

RP01A-50

RP01A-49

RP01A-53

RP01A-52

RP01A-51

RP01A-48

RP01A-47,
RP01A-47a

RP01A-46

fine grained sandstone, brown to 
yellow weathered, light gray to 
purple, very thin beds from .75 
to 2.5 cm thick, within each set
are subcritically climbing ripples,
well to subrounded, mud partings 
between laminations, some very 
low amplitude ripples

i

i

i

i

i, paleo

i

i

ts

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

150

155

160

pgcmfsc

165

170

175

RP01A-59

RP01A-58

RP01A-62

RP01A-61

RP01A-60

RP01A-57

RP01A-56

RP01A-55 i

i

i

i

i

i

i

i

RP01A-54 i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

175

180

185

pgcmfsc

190

195

200

RP01A-67

RP01A-66

RP01A-70

RP01A-69

RP01A-68

RP01A-65

RP01A-64

RP01A-63

organic material

organic film on shale chipsi, paleo

i

i

i

i

i

i, paleo

i, paleo
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

200

205

210

pgcmfsc

215

220

225

RP01A-75

RP01A-78

RP01A-73

RP01A-72

RP01A-71

medium to coarse sand, 
sub-angular, moderate sorting, 
hummocks draped with mudstone

thinly bedded to laminated, shale
partings in recessive areas, 
couplets from 1 to 4 cm thick, 
wavy to lenticular lenses of 
sandstone, horizontal laminations, 
very fine to fine sand, sub-angular 
to sub-rounded, moderate sorting

gravel to pebble sandstone, exotics 
and lithics, massive, loaded, 
subangular to rounded, 
poor sorting

cm scale intraclasts, loading,
 lenticular, coarse sand, 
sub-angular, poor sorting

medium to poorly sorted, fine to 
coarse grained, laminated and 
orange at top

light gray claystone

RP01A-77

RP01A-76
& 76 a

coarse sand, sub-angular, poor 
sorting,massive beds, medium 
bedded, laterally discontinuous,
laterally are interbedded with
mudstone and are also massive 
and medium bedded

interbedded siltstone and 
mudstone

thinly bedded, wavy to horizontal 
beds

i

ts

i

i

ts

i

ts

RP01A-79

ts
ts

RP01A-74a,
  b, & c

ts
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

225

230

235

pgcmfsc

240

245

250

RP01A-80

medium sorting, fine to coarse 
grained, massive beds, medium 
bedded, laterally discontinuous, 
laterally are interbedded with 
mudstone and are also massive 
and medium bedded

RP01A-79a ts

ts

dark gray

massive to thinly bedded

horizontal to ripple laminated 
sandstone intercolated with 
yellow to tan sand weathered 
gray mudstone on a cm scale 
up to decimeter scale

massive, moderately sorted, very 
angular,fine to granule sand

intercolated medium beds of 
tabular, massive fine to granule
sandstone with recessive medium 
scale intervals of sandy mudstone
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

250

255

260

pgcmfsc

265

270

275

RP01A-82

RP01A-81

intercalated medium beds of 
tabular, massive, fine to granule 
sandstone with recessive medium 
scale intervals of sandy mudstone

sandy mudstone and siltstone 
with ledge ofmedium bedded 
fine grained sandstone

poorly sorted muddy sandstone 
and sandy mudstone

medium to thick bedded,
massive, fine grained sandstone 
moderate sorting, yellow to 
black weathering, brownish gray, 
angular to subrounded, blocky to 
rounded

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

275

280

285

pgcmfsc

290

RP01A-85

RP01A-83

white to gray shale

RP01A-84

fine to medium grained, 
moderate sorting, tan to 
gray weathered, gray sandstone

295

300

Hades Section A

Upper Hades Section

Hades 1

Hades 2

Hades 3

gray claystone to mud shale

fine to medium sand, very 
angular to sub-angular, moderate 
to poor sorting, possible medium 
beds

black to gray siltstone

i

i, paleo

i

ts

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

300

305

310

pgcmfsc

315

Hades 6

Hades 4 black clay-shale

Hades 5

320

325

Hades 7

Hades 8

Hades 9

black clay-shale

black mud to clay shale

black mud to clay shale

clay to mud shale

clay to mud shale

fine to medium sand, 
sub-angular to sub-rounded, poor 
to moderate sorting, possible 
medium beds

Hades06-1

i

i

ts

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

325

330

335

pgcmfsc

340

Hades 12

Hades 10 moderate sorting, fine to medium 
sand, sub-rounded to sub-angular, 
organic rich, gray sandstone, 
weathers to yellowish brown, 
medium to thick bedded, massive, 
very weathered

Hades 11

345

350

Hades 13

Hades 14

weathered black shale 
intercolated with sandstone, 
medium to thickly bedded 
sandstone, massive, 
weathered and friable

black shale

black shale

black shale

Hades06-2

medium sand, angular, poor 
sorting

ts

i

i

i

ts

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

350

355

360

pgcmfsc

365

Hades 15

Hades 16

370

375

tabular to channelform 
geometry, medium to coarse 
sand, sub-rounded, poor sorting

mostly covered intercolated 
shale and sandstone

black shale

Hades06-3 fine sand, sub-rounded, 
moderate sorting

ts

i

ts
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

375

380

385

pgcmfsc

390

Hades 17

Hades 18

395

400

weathered black shale

weathered black shale

sandstone with shale interbeds

Hades 19

weathered black shale

Hades 20 black shale

Hades 21 brown weathered sandstone, fine 
sand, sub-angular, poor sortingts

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

400

405

410

pgcmfsc

415

Hades 22

Hades 23

420

425

black shale

black shale

sandstone interbedded with shale

Hades 24

black shale

Hades 25 black shalei

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

425

430

435

pgcmfsc

440

445

450

black shale

sandstone with few thin 
interbeds of shale

Hades 26

possibly shale

Hades 27 
& Hades 28

samples from float: 
black shale
sandstone

possibly shale interbedded 
with sandstone

i
ts

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

450

455

460

pgcmfsc

465

470

475

very weathered sandstone 
outcrop, gray, fine to coarse, 
angular to round with finer gray 
ground mass, poorly sortedHades 29

possible shale interbeds

ts
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

475

480

485

pgcmfsc

490

495

500

gray to black shaleHades 30

black clayshaleHades 31

resistant unit with sandstone in 
float

mostly shale with sandstone 
interbeds

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

500

505

510

pgcmfsc

515

520

525

Hades 33

black clayshaleHades 35

Hades 32

Hades 34

black clayshale

black clayshale

black clayshale

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

525

530

535

pgcmfsc

540

545

550

Hades 37

Hades 36

Hades 38

black shale

black shale

black shale

interbedded shale and sandstone

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

550

555

560

pgcmfsc

565

570

575

Hades 39 medium to coarse sand, 
sub-angular, moderate sorting

dominantly sandstone but few 
shale interbeds

covered but dominantly shale

very immature feldspathic pink 
to white sandstone, slightly 
weathered, massive, medium 
beds, fine to coarse grained, 
sub-angular

ts
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

575

580

585

pgcmfsc

590

595

600

Hades 42

covered but dominantly shale

Hades 46

Hades 45

Hades 43

Hades 44

Hades 40

Hades 41

weathered blackshale

black shale

weathered black shale

black shale

weathered black shale

weathered black shale

black shalei

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

600

605

610

pgcmfsc

615

620

625

Hades 47 black shale

Hades 48 
   a&b

black shale

Hades 49 black shale

Hades 53 black shale

Hades 52 black shale

Hades 51 black shale

Hades 50 black shale

Hades 54 interbedded black shale and 
sandstone

i

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

625

630

635

pgcmfsc

640

645

650

Hades 58

Hades 60 medium sand, sub-angular, poor 
sorting,very weathered, gray to 
brown to tan, thin bedded 
sandstone interbedded with shale

Hades 59

interbedded black shale and 
sandstone

Hades 55 black shale
Hades 56

medium sand, sub-angular, 
moderate to poor sorting

Hades 57
black shale

interbedded black shale and 
medium to thick bedded 
sandstone

ts

i

ts
i

i

i*
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sample 
location description

Red Pine Shale
Hades Section A

(continued)

m
et

er
s

650

655

660

pgcmfsc

665

670

675

Hades 63 interbedded black shale and
medium sandstoneHades 62

Hades 61

Hades 64

fine to medium sand, angular to 
sub-angular, poorly sorted

Hades 64:  float of coarse 
sandstone coarse to very coarse 
sand,  sub-angular to sub-rounded, 
moderate sorting

i*

i*

ts

ts

Madison limestone
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sample 
location description

Red Pine Shale
Hades Section B

m
et

er
s

   0

    5

  10

pgcmfsc

  15

  20

  25

RP03B-1

gray mudstone interbedded with 
thin silty lenses

RP03B-3

RP03B-4

RP03B-6 &
RP03B-5

RP03B-7a 
 & b

RP03B-8

RP03B-9

RP03B-10

RP03B-11a 
 & b

RP03B-2

mudstone with sandstone lenses, 
bed parallel cm thick white to 
green lenses of clay sized material

red weathered to gray fresh 
sandstone, well cemented fine 
grained, quartz arenite, tabular, 
horizontal laminations, sharp 
contact above with shale

fine-medium sand, sub-angular to 
sub-rounded, moderate to well 
sorted

i

i

i

i
i

pet

i

i
i
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sample 
location description

Red Pine Shale
Hades Section B

(continued)

m
et

er
s

  25

  30

  35

pgcmfsc

  40

  45

  50

cm to decimeter scale silty sandy 
intervals interbedded with 
mudstone laminations, 
ripple foresets

RP03B-13

RP03B-14

RP03B-15,

RP03B-16

RP03B-17

RP03B-18

RP03B-19

RP03B-12

brown mudstone

thin interbeds of yellow to red 
weathered gray siltstone and 
silty sandstone

interbedded siltstone and 
mudstone, poorly exposed 
section

RP03B-8 pet

i

i

i

i

i
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sample 
location description

Red Pine Shale
Hades Section B

(continued)

m
et

er
s

  50

  55

  60

pgcmfsc

  65

  70

  75

RP03B-20

RP03B-21

RP03B-22

gray mudstone

soft sediment deformed sandstone 
interbedded with siltstone and 
mudstone folds are 30 cm high

i

i

i
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sample 
location description

Red Pine Shale
Hades Section B

(continued)

m
et

er
s

  75

  80

  85

pgcmfsc

  90

  95

100

RP03B-23

RP03B-24

RP03B-25

silty with sandstone lenses on cm 
scale

gray mudstone

i

i, paleo

i, paleo
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sample 
location description

Red Pine Shale
Hades Section B

(continued)

m
et

er
s

pgcmfsc

120

125

RP03B-27

RP03B-26

fine sand, sub-rounded, moderate 
sortingpet

110

115

100

105

i
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sample 
location description

Red Pine Shale
Lower Hades Section

m
et

er
s

    0

    5

  10

pgcmfsc

  15

  20

  25

LH-03-01

gray mudstone

LH-03-02

LH-03-03

LH-03-04

LH-03-05a 
 & b

LH-03-06

LH-03-05b is <1m 
straigraphically 
below LH-03-05a

i

i
i

i

i

i

i
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sample 
location description

Red Pine Shale
Lower Hades Section

(continued)

m
et

er
s

  25

  30

  35

pgcmfsc

  40

  45

  50

LH-03-07

LH-03-08

LH-03-09

LH-03-10

LH-03-11

LH-03-12

LH-03-13

LH-03-15

LH-03-14

mudstone, silty sandstone, fine 
grained sandstone interval, 
mudstone grades to silt to 
sandstone and back again, 
sandstone bodies are lenticular, 
medium to thin beds,g ray to 
reddish brown weathered, silica 
and hematite cement

gray mudstone

pet

i

i

i

i

i

i

i

i
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sample 
location description

Red Pine Shale
Lower Hades Section

(continued)

m
et

er
s

  50
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Red Pine Shale
Hades C Section
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RP01C-1

RP01C-2

RP01C-3
  & Re-Os-8

RP01C-4

HC06-1

coarse, poor to well sotring, 
angular to subrounded, matrix 
supported, medium to thin bedded, 
massive, no apparent laminations

sub angular to well rounded, 
weathers to tan to orange,  fine to 
coarse, medium to thinly bedded, 
gray sandstone

fine grained sandstone with 
abundant matrix

fine grained sandstone with 
abundant matrix

fine grained sandstone, 
amalgamated lenticular sand 
bodies 3 cm high by 25 cm wide 
that get thinner upward

medium to coarse grained 
sandstone, thinly bedded, swaley 
to tabular beds, massive, 
amalgamated lenticular sand 
bodies 3 cm high by 25 cm wide 
that get thinner upward

medium to coarse grained 
sandstone, thinly bedded, swaley 
to tabular beds, massive, 
amalgamated lenticular sand 
bodies 3 cm high by 25 cm wide 
that thin upward

medium to coarse grained 
micaceous sandstone, angular 
grains, thinly bedded, swaley to 
tabular beds, massive, 
amalgamated lenticular 
sand bodies 3 cm high by 25 cm 
wide that thin upward, angular, 
poorly sorted

shale interbedded with 
medium to coarse grained 
micaceous sandstone, thinly 
bedded, swaley to tabular beds, 
massive, amalgamated lenticular 
sand bodies 3 cm high by 25 cm 
wide that thin upward
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Red Pine Shale
Hades C Section
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HC06-2

fine grained sandstone, thinly 
bedded, amalgamated lenticular 
sand bodies 3 cm high by 25 cm 
wide that thin upward

medium to coarse grained 
sandstone, thinly bedded, swaley 
to tabular beds, massive, 
amalgamated lenticular sand 
bodies 3 cm high by 25 cm wide 
that thin upward

fine grained sandstone with 
abundant matrix

fine to coarse grained sandstone, 
thinly bedded, swaley to tabular 
beds, massive, amalgamated 
lenticular sand bodies 3 cm high 
by 25 cm wide that thin upward

petRP01C-8
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Red Pine Shale
Hades C Section
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RP01C-5

medium to coarse, tabular beds

loading

black mudstone

interbedded m-scale cliffs of 
amalgamated sandstones, swaly 
beds, thin to medium beds,
between sandstone beds are 
decimeter scale recessive wacky 
mudstones

amalgamated swaly beds, beds all 
have same dip and shale partings

wacke to mudstone, massive
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Red Pine Shale
Hades C Section

(continued)
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HC06-4

thin to medium beds up to 0.5 m 
thick beds amalgamated beds 
getting thicker

amalgamated sandstone with 
swaly beds, swales are ~1 m wide 
by 20-25 cm high

medium beds of sandstone 
intercolated with mudstone/wacke

RP01C-6 black mudstone

sandstone intercolated with thin 
to medium beds of mudstone

swaly beds with mud partings
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Red Pine Shale
Hades C Section

(continued)
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amalgamated sandstone with 
swaly beds, swales are ~1 m wide 
by 20-25 cm high

RP01C-7

thin to medium swaly beds, 2-3m 
wide by 40 cm deep filled with 
amalgamated beds or hummocks

fine to medium grained sandstone, 
micaceous, well sorted, thin 
recesses of mudstone/wacke, 
sampled mudstone and sandstone
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sample 
location description

Red Pine Shale
Ashley Creek Section
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Medium fine-granule sandstone 
quartz-lithic arenite, sub-angular, 
quartzite angular pebbles and 
granules, low angle cross 
bedding, fining upward sequences, 
1.5m thick high angle cross bed set 
with smaller cross beds within, tan 
to brown weathered, mauve fresh.

covered but mostly red siltstone and 
shale with thin to medium beds of 
sandstone

Hades Quartzite Medium fine-granule sandstone 
quartz-lithic arenite, sub-angular, 
quartzite angular pebbles and 
granules, 40 cm wide soft sediment 
deformation, low angle cross 
bedding, 1.5m thick high angle 
cross bed set with smaller cross 
beds within, tan to brown 
weathered, mauve fresh.
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Red Pine Shale
Ashley Creek Section
        (continued)
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Fine grained sandstone, well sorted, 
well rounded, thin bedded, mud and 
silt drapes on top of beds, weathered 
red to white, fresh mauve to white, 
low amplitude ripples, symmetric 
ripples, ripple laminations.

Greenish white fine grained 
sandstone, moderate sorting, sheath 
folds, symmetric ripples, trough 
cross stratification, laterally becomes 
shale dominant with green mudshale 
to siltshale and lenses of sandstone.

Interbedded green mudstone, 
siltstone with lenses of weathered 
sandstone similar to sandstone 
below, sandier at top.

186



sample 
location description

Red Pine Shale
Ashley Creek Section
        (continued)
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gray claystone to siltstone

red siltstone to mudstone

gray weathered, red to tan fresh, 
very fine laminated to medium beds,
with shale interbeds

dark red to brown

dark red silty sandstone, tabular 
beds, red to gray weathered, thinly 
bedded, very fine grained, sub-
rounded grains, moderate to well 
sorted, interbedded with mudstone 
to siltstone

mostly covered, red to gray 
siltstone to mudstone
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Red Pine Shale
Ashley Creek Section
        (continued)
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AC-5

green mudstone to siltstone with 
black laminations in eroded area

mostly cover, gray to red mudstone

thin to very thin bedded, very fine 
sandstone, interbedded with 
laminated siltstone to mudstone. 
ripples to mega ripples, low angle 
cross beds, hummocks?

mostly red siltstone, silty mudstone 
with few sandstone siltstone beds
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Red Pine Shale
Ashley Creek Section
        (continued)
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thin to very thinly bedded very fine 
sandstoneinterbedded with siltstone 
and mudstone, green to brown 
weathered, green to white fresh, 
interbeds very finely laminated

red siltstone to mudstone

green mudstone
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Red Pine Shale
Ashley Creek Section
        (continued)
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AC-9 i green to gray mudstone

symmetric and asymetric ripples, 
laminations, light olive green 
weathered and fresh, very fine to 
fine grained, sub-rounded to 
sub-angular, poorly sorted

interbedded dominantly silty shale 
beds with green mudshale

varegated mudshale with some 
sandstone beds

AC-10, 11
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Red Pine Shale
Ashley Creek Section
        (continued)
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green to gray shale

mudrock, mostly green to gray with 
some red  

gray brown

green to gray

red blocky sandstone

mostly green to gray green
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Red Pine Shale
Ashley Creek Section
        (continued)

m
et

er
s

175

180

185

190

195

pgcmfsc
170

green to gray siltstone
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Red Pine Shale
Henry’s Fork Section
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HF-1 & HF-2 were collected 
from below the base of the 
section.

Section is covered from 15m 
to 117 m.

HF-5

gray siltshale

gray

maroon

coarse to fine sand, moderately 
sorted, medium to thin beds with 
shake partings, scoured base, 
quartz and weathered minerals

fine sand, sub-dounded, well 
sorted, very thinly bedded, 
interbedded with shale partings, 
lenticular tabular beds, fine 
sandstone, small scale ripples, 
ripple laminations
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Red Pine Shale
Henry’s Fork Section
        (continued)
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very fine sand, sub-rounded, well 
sorted

pet

gray to green siltshale

interbedded siltstone and shale

maroon to red

gray shale

gray shale

dominantly red shale

red siltstone interbedded with 
brown to green sandstone
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Red Pine Shale
Henry’s Fork Section
        (continued)
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green shale

gray shale

gray green shale

fine to corse pebbly sandstone, 
angular, poorly sorted

yellow brown weathered, white 
to dark green fresh, looks 
quartzitic, thin to medium beds, 
scours, undulatory contacts

ripple laminated turbidites
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Red Pine Shale
Henry’s Fork Section
        (continued)
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covered from 168 to 190.5 m

pet
fine to medium sand, 
sub-rounded, moderate to poor 
sorting

mostly covered green to 
gray shale
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Red Pine Shale
Henry’s Fork Section
        (continued)
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dark gray with some red shale

black to reddish shale

gray to red shale

gray shale

red shale

gray shale

gray shale
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Red Pine Shale
Henry’s Fork Section
        (continued)
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trail at 247.5 m

gray shale

red shale

medium to thin beds, wavy 
contacts, massive

gray shale
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acritarch

sample location

laminations

pebble

hummocky cross-stratification

ripple cross-lamination

lens

concretion

slump fold

asymmetric ripples

fining upward sequence

shale rip-ups

symmetric ripples

i  isotope and TOC sample

i*  isotope sample but no TOC value

pet  petrography sample

re  Re-O sample

paleo  paleontology sample

dz  detrital zircon sample

sandstone with pebbles

sandstone

siltstone

mudstone and claystone

Key to measured sections

covered section

channel 

cut and fill
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pebble sandstone

ganule sandstone

coarse sandstone

siltstone

medium sandstone

fine sandstone

claystone
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Section Location Description
Type Section Located in northwestern part of the range along 

Red Pine Creek, a tributary to Smith and 
Moorehouse Creek (figs. 3a. and 4a.).  The 
contact between the Red Pine Shale and the 
Hades Pass quartzite is UTM zone 12T 0490444 
E, 4508422N in Red Pine Creek. 

Thickness: 662m ; The only measured section that exhibits all 
six facies; C-isotope range: -29.12‰ to -16.91‰ PDB; Average: 
-25.19‰ PDB; TOC range: 0.04% to 2.29%; Average: 0.46%; 
Complete section showing gradational basal contact with the 
Hades quartzite and erosional upper contact with the 
Mississippian Madison limestone; identified by Williams (1953).

Mud Lake                
Flat Road

Located in the northwestern part of range along 
Red Pine Creek, approximately 1mi. northeast on 
Mud Lake Flat Road from type section (figs. 3a. 
and 4a.)  Section begins on road.

Thickness: 18.5 m; C-isotope range:  -26.03‰ to -19.74‰ PDB; 
Average:-23.54‰ PDB.  TOC range: 0.15% to 1.16 Average: 
0.49%; partial section.

Hades A Located in the southwest part of range along 
Hades Creek, a tributary of north fork of the 
Duchesne River across from the USFS Hades 
campground and up National Forest Road 312 
(figs. 3b. and 4b.).  Section begins in the creek 
bed just west of “Hades Creek dam” on the north-
facing slope at UTM zone 12T 0511871E, 
4488004N.

Measured thickness: 290m; Facies present: shale, shale-and-
sandstone, sandstone; C-isotope range: -29.46‰ to -23.90‰ 
PDB; Average: -26.52‰ PDB; TOC range: 3.7% to 0.1%; 
Average: 0.76%; base not exposed.

upper Hades Measured from the top of Hades A section to the 
Mississippian Madison limestone.  The contact 
between Hades A and the upper Hades section is 
UTM zone 12T 0512276E, 4488166N and the 
upper contact of this section with the Madison 
limestone is UTM zone 12T 0513568E, 4488531N.

Thickness: 370m; Facies present: shale, shale-and-sandstone, 
sandstone; C-isotope range: -29.46‰ to -23.90‰ PDB; 
Average: -26.52‰ PDB; TOC range: 3.7% to 0.1%; Average: 
0.76%; Erosional upper contact with Mississippian Madison 
limestone.

continued

Measured Section Localities and Descriptions
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Section Location Description
Hades B Found by walking laterally southwest from the 

base of Hades A to the next exposed area of the 
Red Pine Shale.  The base is ~70 m downstream 
from the “Hades dam” on the north-facing slope.  
Base of section is UTM zone 12T 0511795E, 
4487901N in the creek bed.  Top of section is UTM 
zone 12T 0511954E, 4487816N. 

Thickness: 104m; Facies present: shale, shale-and-sandstone, 
slump fold; C-isotope range: -24.65‰ to -27.10‰ PDB; 
Average: -25.84‰ PDB; TOC range: 0.29% to 0.06%; Average: 
0.15%.; partial floating section.

Lower Hades Located just downstream from Hades B at nose of 
the same ridge.  Can be found by walking directly 
south from bend in National Forest road 312 and 
crossing Hades Creek.  Section is measured from 
creek bed up the slope until Red Pine Shale is 
covered.  Base of section is UTM zone 12T 
0511442E, 487380N and top is UTM zone 12T 
0511519E, 4487336N.

Thickness: 69m; Facies present: shale, shale-and-sandstone; C-
isotope range: -23.99‰ to -24.87‰ PDB; Average: -24.38‰ 
PDB; TOC range: 0.54% to 0.20%; Average: 0.35%; partial 
floating section.

Hades C Located in the southwest part of the range west 
across the Duchesne River from Iron Mine 
Campground on unmarked road north of second 
switchback of National Forest high clearance road 
180.  Base of section is UTM zone 12T 
05088220E, 4488240N.

Thickness: 123m; Facies present: shale-and-sandstone, 
sandstone; C-isotope range: -27.37‰ to -29.26‰ PDB; 
Average: -28.21‰ PDB; TOC range: 5.91% to 1.33%; Average: 
3.56%; partial floating section.

continued

Measured Section Localities and Descriptions (continued )
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Section Location Description
Ashley Creek Located on south-central part of range on west 

side of Ashley Creek where Red Pine trail 
intersects Ashley Creek (figs 3c., and 4c.).  Basal 
contact with Hades Pass quartzite is exposed 
near gauging station.

Measured thickness: 178.5m; Total thickness measured from 
Sprinkel (2002) geologic map:  ~300m; Facies Present: shale, 
shale-and-sandstone, slump fold, sandstone; C-isotope range: -
17.10‰ to -27.65‰ PDB; Average: -20.97‰ PDB; Sandstones 
are mostly very fine- to fine-grained well sorted and well to sub-
rounded quartz arenite; measured from gradational contact with 
the Hades Pass quartzite.

Henry's Fork Located on north flank of range and west side of 
Henry's Fork, ~0.75 mi up the trail that follows the 
creek (figs. 3d. and 4d.).  The measured section 
begins in the creek bed.

Measured thickness: 248m; Total thickness measured from 
Bryant (1995) geologic map: ~1800m; Facies present: shale, 
shale-and-sandstone, sandstone, pebbly sandstone; C-isotope 
range: 19.55‰ to -26.47‰ PDB; Average: -24.02‰ PDB; 
Sandstones are mostly fine- to medium-grained generally sub-
rounded and well sorted quartz arenite; measured from 
gradational contact with Hades Pass quartzite.

Measured Section Localities and Descriptions (continued )
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