les

The need for cross-calibration of space sensors

Cross-calibration of space-based Earth observing systems is the way to guarantee consistency between 2 time series from 2 different sensors in order to build Iong-term time series of observations, which is essential in the frame of global analysis and climate change monitoring
 combining measurements from different sensors → improve spatial coverage or compute geophysical products

analyzing differences between products obtained from measurements of different sensors: (MODIS & PARASOL in the A-train context) • combination of data from AM and PM sensors (MODIS instruments on-board TERRA and AQUA satellites)

meteorological applications: guarantee consistency between observations from LEO and GEO satellites. Part of GSICS mission: cross-calibrate
geostationary weather satellites (GOES and MSG), but also characterize them w.r.t. low orbit sensors (MODIS)

Calibration over desert sites can be used:

• to provide a cross-calibration between two sensors • to provide powerful information for multi-temporal monitoring or trending

This poster focuses on the cross-calibration rather than the monitoring, but both aspects can be linked through specific optimizations that can be made for

The approach between the extended to SWIR bands (1.6 or 2.2 μ m) \rightarrow the results presented here are limited to spectral range from VIS to NIR

The desert sites

 Based on Meteosat-4 data 100x100km2 areas were identified

- Spatial uniformity less than 3% 30 to 60% of non cloudy days
- Variation of BRDF: less than 15%
- Redefined and fixed to 0.45° in latitude and longitu de

Geometrical sampling

Typical geometrical sampling of selected acquisitions • one year of acquisitions over Libya-1 • θ_v from 0 to 80°

Δφ., from 0 (on the right) to 360° (counterclockwise)

VEGETATION / SPOT5 POLDER / PARASOL

Bidirectional reflectance illustration for Libya-1 at 565 nm for 4 Sun zenith angle (0s) ranges • ground reflectances derived from PARASOL measurements 2005-2008 (black dots) other values interpolated for this representation · BRDF plotted in polar coordinate

The process of selecting the best desert sites suitable for cross-calibration includes an extensive evaluation of the radiometric characteristics of all desert sites, performed over the years; morphology spectral profile altimetry seasonal variations brightness spatial homogeneity bidirectional effects · long-term stability

Cross-calibration method

Geometrical coupling

 uses matched measurements from 2 sensors for which simultaneity is not required • Same geometrical and solar conditions → limit the impact of bidirectional behaviour • Definition of a geometrical window \Rightarrow increase number of matchups • Reciprocity principle ($\theta_s \leftrightarrow \theta_v$)

Standard definition of geometrical window for coupling

Construction of the reference reflectance

The loop is performed for each pair of measurements \rightarrow modelling the reflectance that the reference sensor (REF) would have measured in the same geometrical conditions and same spectral bands than the sensor to calibrate (CAL):

spheric contribution (inverse radiative transfer) TOA reflectance from REF is corrected from the atmosphere \rightarrow

- surface reflectance in REF spectral bands SMAC (Simplified Method for Atmospheric Corrections) using
- sensors spectral responses
- meteo data (water vapor, pressure from NCEP) ozone data (TOMS) aerosols optical thickness assumed to be 0.2 at 550nm
- desertic aerosol model

Spectral interpolation

-> Surface reflectance in CAL spectral bands Use of a Spline function. May introduce a bias if high descrepancy between spectral bands of the 2 instruments to inter-calibrate

Atmospheric contribution (direct radiative transfer)

Computation of inter-calibration coefficients

Ratio between the reflectance computed with REF and the one actually measured by CAL → calibration coefficient for the considered geome ical configuratio

Cross-Calibration over Desert sites : Description, Methodology and Operational Implementation

Philippe Gamet, Sophie Lachérade, Bertrand Fougnie, Patrice Henry Centre National d'Etudes Spatiales, Toulouse, France ophie.Lacherade@cnes.fr, Bertrand.Fougi nie@cnes.fr, Patrice.Henry@cnes.fr, Philippe.Gamet@cnes.fr

From article submitted to IEEE Trans. Geosci. and Remote Sensing, Special Issue on Inter-Calibration, 2012.

(color from a MODIS view)

Surface reflectance

Central Latitude (°) (°)

 (*)
 (*)

 Algeria 1
 23.80
 -00.40

 Algeria 2
 26.09
 -01.38

 Algeria 3 (*)
 30.32
 07.66

 Algeria 4
 30.04
 05.29

 21.23
 21.23
 21.23

Algeria 5 (*) 31.02 02.23

28.92

Egypte 1 27.12 26.10 Libya 1 (*) 24.42 13.35 Libya 2 25.05 20.48

 Libya 4 (*)
 28.55
 23.39

 Mali 1
 19.12
 -04.85

 Mauritania 1 (*)
 19.40
 -09.30

 Niger 1
 19.67
 09.81

 Niger 2
 21.37
 10.59

 Niger 3
 21.57
 07.96

21.74 28.22

18.88 46.76 20.13 50.96

Site

Arabia 1 Arabia 2 Arabia 3

Libva 3

(*) site selected by IVOS

Mean surface reflectance for the 20 desert sites derived from a set of MERIS acquisitions in various geometrical conditions (mean over a 4-year archive). Sites are listed from the brighter site for 865nm (Libya-1), to the darker site (Arabia-3).

. Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Time series of MODIS top-of-atmosphere reflectance: Libya-3 (red)
 Arabia-3 (blue) blue band (469nm)
 near infrared band (858nm)

 extracted from SADE (*) database (*) Data Repository for Calibration Mea
 time period: 2002-2011 nts (French acro

Except seasonal variations and assuming that MODIS radiometric trending is perfectly corrected, Libya-3 shows a very long-term stability while Arabia-3 evidences a longm increase of TOA reflectance for both wavelength

And now ? Work in progress...

- BRDF consideration for the geometrical coupling step (dynamic window size depending on geometrical conditions): the geometrical window used for coupling could be enlarged > more matchups, reduction of errors due to bidirectional effects
- > A priori on surface spectrum for spectral interpolation (combining on-ground measurements when available with satellite-based measurements) -> reduce spectral interpolation error by a few tenth of percent
- > Extension of the spectral domain to SWIR: surface reflectance of desert sites up to 0.7, limited atmospheric contribution out of absorption bands
- > Cross-calibration GEO-LEO: method fully applicable (necessary to optimize the geometrical coupling step)

References

Cabot F. et al., "Intercalibration Using Desertic Sites as a Reference Target", Proc. Geosci. and Remote Sensing Symposium, Seattle, WA, vol. 5, pp. 2713-2715, 6-10 July, 1998. Cabot F. et al., "Relative & multitemporal calibration of AVHRR, SeaWIFS & VGT using POLDER charact. of desert sites", Proc. Int. Geosci. and Remote Sensing Symposium, Honolulu, Hawaii, vol. 5, pp. 2188-2190, 2000. Cabot F. et al., "Use of remote sensing data repository for in-flight calibration of optical sensors over terrestrial targets", Proc of SPIE'99, Denver, CO, USA, July 1999. CEOS-IVOS web site, http://ceoswacy-ivos.org

CEOS reference Standard Test Sites, http://catula.cr.usgs.gov/sites_catalog_ceos_sites.php CEOS Reference Standard Test Sites, http://catula.cr.usgs.gov/sites_catalog_ceos_sites.php Cosenfory H. et al., "Selection and Characterization of Saharian and Arabian desert sites for the calibration of optical satellite sensors", *Remote Sensing Environ*, vol. 58, nºl, pp. 101-114, 1996. Doelling D. R. et al., "Spectral Reflectance Corrections for Satellite Intercalibrations Using SCHIAMACHY Data", *IEEE Geosci. Remote Sens. Letters*, vol. 9, nºl, 2012. Down of the star, operating the meaning of the starts to be an international band of any operation of the starts, net and star

The Libva-4 desert site

Typical VISNIR aspect Digital elevation model from SRTM me (altitude 225 to 380m)

Surface reflectances normalized to the value at 681nm

			Lib-1
			Lib-2
_			— — Alg-5
			Lib-4
			Mali-1
			Nig-1
			— — Egy-1
			Mau-1
			—— Alg-4
			Mau-2
			— — Lib-3
			Alg-3
			Sou-1
			-Alg-2
			— — Ara-1
			Ara-2
			-Nig-2
700	800	900	— — Nig-3
(nm)			— — Ara-3

MODIS time series

MODIS

• criteria: $\theta_v \le 40^\circ \& \Delta \phi_v \ge 90^\circ$