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A DYNAMIC AND STOCHASTIC ANALYSIS 

OF DECISION MAKING IN ARRANGED 

MARRIAGES 

Amitrajeet A. Batabyal 

ABSTRACT 

111 

In a recent paper, Batabyal (1997) has analyzed the decision making process in arranged 

marriages. In particular, Batabyal shows that a marrying agent's optimal policy depends only on the 

nature of the current marriage proposal, independent of whether there is recall of previous marriage 

proposals. In this paper, I continue this line of inquiry by focusing on the decision problem faced by 

a marrying agent who wishes to maximize the probability of getting married to the best possible 

person. Inter alia, I show that this agent's optimal policy calls for waiting a while, and saying yes 

to the first candidate thereafter. 

Key words: Arranged marriage, decision making, uncertainty 
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A DYNAMIC AND STOCHASTIC ANALYSIS 

OF DECISION MAKING IN ARRANGED 

MARRIAGES! 

1. Introduction 

"Marriage is popular," said Shaw, "because it combines the maximum of temptation with the 

maximum of opportunity." This popularity notwithstanding, economists have been interested in 

systematically studying marriage only since Becker (1973). Further, this interest has largely been 

restricted to the study of marriage in a deterministic setting, in the context of western societies. 

(Becker, 1991). In non-western societies, arranged marriages have been around for several centuries. 

Indeed, they are the rule rather than the exception in large parts of Africa, Asia and the Middle East. 2 

Despite this phenomenon, economists in general have paid scant attention to arranged marriages. 

Consequently, very little is known about the nature of decision making in such marriages. 

Given this state of affairs, this paper has two objectives. First, I shall formulate and analyze 

a model of decision making in arranged marriages. In particular, I shall focus on the following 

question: When should an agent wishing to have an arranged marriage say yes to a marriage proposal 

and not wait any longer? Second, I shall discuss some of the implications of my findings for our 

understanding of arranged marriages. 

The rest of this paper is organized as follows. Section 2 provides an overview of arranged 

marriages and a brief review of the relevant literature. Section 3 provides a detailed description and 

an analysis of a stylized model of decision making in arranged marriages. Finally, section 4 

IThis research was supported by the Utah Agricultural Experiment Station, Utah State University, Logan, UT 
84322-4810, by way of project UTA 024. Approved as journal paper No. 5072. 

2See Mandelbaum (1970), Moore (1994), Otani (1991) and Rao and Rao (1982), for a more detailed 
corroboration of this claim. 
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concludes and offers suggestions for future research. 

2. Arranged Marriages: An Overview 

Becker (1991, p. 324) has noted that imperfect information is a key feature of decision 

making in the marriage market. This observation applies with equal force in the context of arranged 

marriages as well. The logic of arranged marriages tells us that because of a variety of reasons such 

as (i) imperfect and incomplete information stemming from limited social experiences and travel 

opportunities (Goode, 1963, p. 210), and (ii) the tendency of young people to seek pleasure 

(Auboyer, 1965, p. 176), young persons generally cannot be trusted to find a suitable partner for 

themselves. Consequently, parents, relatives, and increasingly matchmaking intermediaries, take 

upon themselves the task of looking for a suitable bride (or groom). While in western countries, the 

agent wishing to marry generally looks for a partner himself (or herself), in an arranged marriage this 

important task is not undertaken by the agent but by his (or her) family, friends and intermediaries.3 

The reader should note that this is a fundamental difference between arranged marriages and 

marriages in western nations. 

The second germane aspect of arranged marriages concerns the marrying agent's decision. 

As Rao and Rao (1982, pp. 32-33) have noted, in contemporary arranged marriage settings, the agent 

wishing to marry has considerable autonomy over the actual marriage decision. In other words, while 

family and friends look for appropriate marriage prospects, it is the agent who decides when to say 

yes. This agent receives marriage proposals as a result of the investigative activities undertaken by 

others. His (or her) decision is to decide which proposal to say yes to. Clearly, this marriage decision 

3For a more detailed description of the marriage related investigative activities of parents, friends and 
intermediaries, see Mace and Mace (1960) and Vatuk (1972). 
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is indivisible. For the purpose of this paper, I shall assume that it is irreversible as well.4 

Recently, Batabyal (1997) has analyzed a model of decision making in arranged marriages. 

Batabyal shows that a marrying agent's optimal policy depends only on the nature of the current 

marriage proposal, independent of whether there is recall of previous marriage proposals. Batabyal' s 

approach implicitly assumes that the marrying agent has already made a decision to get married; as 

such, the relevant issue in his paper involves determining when the agent should say yes to a specific 

marriage proposal. In this paper, I shall explore the nature of the marriage decision in a model in 

which the agent may not get married at all. This possibility arises because the marrying agent's 

objective involves maximizing the probability of accepting the best possible marriage proposal, 

when these proposals are received sequentially. As we shall see, in this scenario, the marrying 

agent's optimal policy (OP) involves waiting a while and saying yes to the first marriage proposal 

thereafter. 

The theory of optimal stopping5 can be used to comprehend the nature of the marrying 

agent's choice problem. I now use this theory to formulate and analyze a model of decision making 

in arranged marriages. 

3. The Theoretical Framework 

The model is based on Gilbert and Mosteller (1966) and the spirit of the analysis is closely 

4By making this assumption, I wish to capture the fact that in most societies in which arranged marriages are 
prevalent, social pressures are such that once the agent agrees to a marriage proposal, it is generally difficult for him 
(or her) to renege on the original decision, at least in the short run. I do not wish to imply that separation or divorce is 
never an option for the agent. Further, the reader should note that while the marrying agent's role described here is increasingly 
the prevalent one, it is not the only possible one. In some settings, the agent 's role is essentially consultative. For more on this, see 
section 4. 

5For more on this, see Dixit and Pindyck (1994) and Harris (1987). 
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related to that in Batabyal (1997). Consider a stochastic environment in which our agent who seeks 

to be married receives marriage proposals sequentially in discrete time. The environment is 

stochastic because the decision to get married depends on the receipt of marriage proposals; these 

are of uncertain quality. It is assumed that successive marriage proposals are statistically 

independent. In other words, a particular marriage proposal is received at time with a certain 

probability, independent of any previous or subsequent proposals. As discussed in section 2, this 

receipt of proposals is the result of investigative activities undertaken by the marrying agent's 

family, friends, and intermediaries. 

I shall first focus on the case of a known finite number - say n - of marriage proposals.6 

Upon receipt of a proposal, our marrying agent must decide whether to accept the proposal (say yes 

to marriage) or reject the proposal (say no to marriage) and wait for additional proposals. If the agent 

accepts a proposal, i.e., ifhe ( or she) says yes to marriage, then the question of subsequent proposals 

is irrelevant. Consequently, the stochastic proposal generation process terminates. The agent's 

decision to say yes or no is binding in the sense that a rejected proposal cannot be recalled at a 

subsequent point in time.7 Our marrying agent has no access to any prior information about the 

probabilistic nature of the proposals. Upon receipt of a proposal, the marrying agent is able to rank 

the proposal in terms of its quality. As such, the only information that the agent is privy to is the 

relative rank of a proposal, as compared to previous proposals. The marrying agent's objective is to 

maximize the probability of accepting the best (highest quality) marriage proposal when all n! 

orderings of the various proposals are equally likely. 

6The asymptotic case, i.e. , the n--+oo case, will be analyzed later. 

7For a detailed analysis ofthe effects of recall on the decision to say yes in an arranged marriage, see Batabyal 
(1997). 
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From the standpoint of the marrying agent, the scenario described above involves acting in 

a sequential decision making framework. I shall refer to a proposal as a candidate if this proposal 

is of higher rank (quality) than any previously received proposal. Further, I shall say that we are in 

state k, if the kth proposal, 1 ~ k~ n, has been received and it is a candidate. Let W(k) denote the best 

decision that the marrying agent can make in this setting. Then it follows that 

W(k)=max{P(k), R(k)}, k=l, ... ,n, (1) 

where P(k) is the probability that the highest quality proposal will materialize if the kth proposal 

is accepted and R(k) is the best decision that the agent can make if the kth proposal is rejected. 8 

Now conditioning9 on the event that the kth proposal is a candidate, I get 

P(k)=P{prop highest of n prop/prop highest of k prop} =kln. (2) 

An explicit interpretation can now be given to R(k). It is the maximal probability of accepting the 

highest quality proposal when the previous k proposals have been rejected by our marrying agent. 

The reader should note that (i) P(k) is increasing in k and (ii) the case in which the first k proposals 

have been rejected is at least as desirable as the case in which the first k+ 1 proposals have been 

rejected. These two facts tell us that R(k) is decreasing in k. Now because P(k) is increasing in k 

and R(k) is decreasing in k, we know that there must exist a proposal I such that 

kln=P(k)~R(k), k~l, (3) 

and 

kln=P(k»R(k), k>l (4) 

hold. From equations (3) and (4), the nature of our marrying agent's optimal policy (hereafter OP) 

8In all the subsequent equations of this paper, highest means of highest quality, or alternately, of highest rank. 

9For more on this, see Ross (1993, pp. 100-106). 
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can be detennined intuitively. This OP says the following: Forsomeproposal/~n-l, reject the first / 

proposals, i.e., say no to marriage, and then accept the first candidate proposal (say yes) that is 

received. 

Having detennined the nature of the marrying agent's OP, our next task is to compute the 

probability - P op(highest) - of accepting the marriage proposal of highest quality when this policy 

is used. From Ross (1993, p. 100), it follows that this probability is given by 

P op(highest)='[!:7-lp op{highest of nlk+/ prop accepted}-P op{k+/ prop accepted}. (5) 

Now following the line of reasoning that led to equation (2), the conditional probability on the RHS 

of equation (5) can be simplified. This gives 

P op{highest of nlk+/ prop accepted} =(k+l)ln. (6) 

The second probability on the RHS of equation (5) can also be simplified by writing this probability 

as a joint probability. This simplification yields 

P op(k+/ prop accepted)={l/(k+/-l)}{l/(k+l)}. (7) 

With equations (6) and (7), the expression for P op(highest) in equation (5) can be rewritten. This 

gIves 

m=n-l 
P op(highest) = (l/n)'[m =1 (11m), (8) 

where m =k+/-l. The probability in equation (8) is what our marrying agent wishes to maximize. 

However, in the finite n, i.e., the finite number of proposals case, this maximization exercise cannot 

be perfonned in any straightforward manner. 10 Hence in what follows, I shall restrict attention to the 

asymptotic (n~oo) case. 

lOIn the finite n case, one can provide approximations which give us lower and upper bounds on the optimal 
proposal that should be accepted by the marrying agent. For more on this and related numerical approaches, see Gilbert 
and Mosteller (1966, pp. 39-40). 
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For large n, the summand in equation (8) can be approximated well by the natural logarithm 

function. Using this approximation, I get 

P op(highest)=(l/n)loge{(n-I)/l}. (9) 

Let h(z):::(zln)loge {(n-I)lz} =P op(highest). Our marrying agent's optimization problem can now be 

stated. This agent solves 

maxz[(zln)loge {(n-I)lz}]. (10) 

The first order necessary condition is 

z * =(n-I)le. (11) 

Substituting z * into h(·) gives 

h(z *)={(n-I)ln}(lle). (12) 

Equation (12) gives us a quantitative characterization of the marrying agent's OP. In tum, this leads 

to 

Theorem 1: The marrying agent should reject the first (lie) fraction of marriage proposals and he 

( or she) should accept the first candidate proposal thereafter. 11 

Theorem 1 provides an answer to the "When to say yes" question. This theorem tells us that 

when faced with the prospect of receiving a large number of proposals sequentially, our marrying 

agent should ini tiall y say no to marriage, i. e., he (or she) should rej ect the first (lie) fraction of all 

proposals. He (or she) should then say yes to the first candidate proposal. The probability that the 

use of this OP will result in the best proposal being accepted is (lie);::: 0.37. This tells us that 

irrespective of how actively friends, family and intermediaries look for marriage proposals, if our 

marrying agent insists on saying yes only to the highest quality proposal, he ( or she) may never get 

I I This statement uses the fact that lim,.-oo {(n -1)ln} = 1. 

J 
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married at all. 

To intuitively see why an OP of the type described in Theorem 1 makes sense, recall the 

irreversibility of the marriage decision. This irreversibility implies that there is an asymmetry 

associated with the marrying agent's yes/no decision. From the perspective of this agent, a no 

decision always leads to future options, but a yes decision terminates the stochastic proposal 

generation process. Consequently, there is a premium associated with a no decision because this 

decision preserves flexibility. The policy described in Theorem 1 optimally trades off this flexibility 

premium with the likelihood that the highest quality proposal will be lost if the agent waits too long 

to say yes. 12 

Consider the issue of the robustness of Theorem 1. In this connection, let me note that the 

only two assumptions that we needed to obtain the result described in this theorem are (i) that the 

marrying agent know the relative rank of each marriage proposal and (ii) that the successive 

marriage proposals be statistically independent. The informational assumption is parsimonious and 

the independence assumption is quite standard. Consequently, it seems reasonable to say that these 

two assumptions comprise the minimal set of assumptions that is necessary to generate the result 

contained in Theorem 1. 

Now suppose that these assumptions do not hold. The independence assumption is clearly 

crucial; if this does not hold then Theorem 1 will also not hold and the underlying problem will 

become substantially more complicated. While the marrying agent must have access to some 

information for his (or her) decision problem to be well posed, the exact form of the informational 

assumption is not that important. For instance, suppose that our marrying agent is not privy to the 

12This is related to the "value of waiting" result in the investment under uncertainty literature. For more on this, 
see McDonald and Siegel (1986), Pindyck (1991), and Dixit and Pindyck (1994). 
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relative rank of a proposal. Instead, this agent only observes numerical scores from some distribution 

function. As long as these scores are independent and the distribution from which the scores are 

drawn is known to the agent, Theorem 1 will continue to hold. 

4. Conclusions 

In this paper I modeled the marriage decision in arranged marriages in a dynamic and 

stochastic framework. In this setting, in response to the "When to say yes" question, I provided an 

OP for our marrying agent. This policy involved a probabilistic comparison of the benefit from 

accepting a current proposal, i.e., saying yes now, with the benefit to be obtained by rejecting the 

current proposal and waiting for future marriage proposals. The asymptotic optimality of this policy 

tells us that the policy is best viewed as an optimal course of action over a long time horizon - such 

as a lifetime - during which our marrying agent can be expected to receive a large number of 

marriage proposals. 

The analysis of this paper can be generalized in a number of directions. In what follows, I 

suggest two possible extensions. First, one can extend the analysis of this paper by studying arranged 

marriage situations in which the marrying agent's role is not definitive but only consultative. This 

will involve the analysis of a different kind of stopping problem. Second, suppose that the marrying 

agent learns the statistical properties of the stochastic proposal generation process. We would then 

have a dynamic problem with an element of inference as well as of decision. In this situation, one 

can analyze scenarios in which the marrying agent first goes through a period of learning and then 

he (or she) makes a decision. A study of these aspects of the problem will permit richer analyses of 

the connections between the information gathering activities of family and friends and the marriage 

decision in an arranged marriage context. 

./ 
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