
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2011

Log-Data Visualization Tool for Analyzing and Improving Log-Data Visualization Tool for Analyzing and Improving

Performance of Data De-Duplication Tool in Charm-II Performance of Data De-Duplication Tool in Charm-II

Daniel Erickson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Erickson, Daniel, "Log-Data Visualization Tool for Analyzing and Improving Performance of Data De-
Duplication Tool in Charm-II" (2011). All Graduate Plan B and other Reports. 164.
https://digitalcommons.usu.edu/gradreports/164

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/164?utm_source=digitalcommons.usu.edu%2Fgradreports%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

LOG-DATA VISUALIZATION TOOL FOR ANALYZING AND IMPROVING

PERFORMANCE OF DATA DE-DUPLICATION TOOL IN CHARM-II

by

Daniel Erickson

A report submitted in partial fulfillment of

requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

______________________ ______________________

Dr. Stephen W. Clyde Dr. Vicki Allan

Major Professor Committee Member

Dr. Scott Cannon

Committee Member

UTAH STATE UNIVERSITY

Logan, Utah

2011

ii

Copyright © Daniel Erickson 2011

All Rights Reserved

iii

ABSTRACT

Log-data Visualization Tool for Analyzing and Improving Performance of Data

De-duplication Tool in CHARM-II

by

Daniel Erickson, Master of Science

Utah State University, 2011

Major Professor: Dr. Stephen W. Clyde

Department: Computer Science

 A de-duplication tool used in CHARM-II, called the CHARM Matcher, produces

log files that record why it decides two records are or are not a match. This data, if

properly analyzed, could help CHARM developers improve the Matcher over time by

tuning its configuration. However, the log data is complex and recorded chronologically

in the log files instead of in a way that would aid analysis. Further, visually studying the

raw log data is a laborious and difficult task. This report describes a tool that parses and

organizes the raw log data, and then produces graphical reports that summarize key

performance indicators. The performance indicators give CHARM developers exactly

what they need to know to improve the Matcher’s specificity and sensitivity [1] for any

particular data source. A significant contribution of this report and prerequisite to

creating a meaningful tool was the investigation into possible performance indicators and

determination which would be best suited for the existing CHARM matcher. In

iv

anticipation of further evolution of the CHARM matcher, the proposed tool is designed to

be extensible, so additional indicators and reports could be added later, as the need arises.

 (39 pages)

v

CONTENTS

Page

ABSTRACT ... iii

LIST OF FIGURES ... vi

CHAPTER

1. INTRODUCTION ...7

2. CHARM OVERVIEW...12

3. REQUIREMENTS ...17

4. DESIGN AND IMPLEMENTATION ..24

5. TESTING ...34

6. SUMMARY AND FUTURE WORK ...36

REFERENCES ..38

vi

LIST OF FIGURES

Figure Page

Figure 1. Activity diagram of the general algorithm ...26

Figure 2. Class diagram. ..28

Figure 3. Number of requests...29

Figure 4. A count of each field in child request queries. ...30

Figure 5. A count of each field in adult request queries. ...30

Figure 6. Break down of queries by the type of candidate set produced.31

Figure 7. Histogram of candidate set sizes. ...32

Figure 8. Percentages of requests within each candidate set threshold.32

Figure 9. Candidate scores per classifier. ..33

7

CHAPTER 1

INTRODUCTION

 The Child Health Advanced Record Management (CHARM) system includes a

component, called the Matcher, that is responsible for determining whether two or more

person records represent the same individual [2]. Given a subject record from a particular

data source, the Matcher accomplishes this task in two steps. First, it uses candidate

rules to select a relatively small set of potential matches from millions of records

contained in a central person database -- a filtering process often referred to as blocking

or search-space reduction [3]. One difference between CHARM’s approach to candidate

set selection and a traditional blocking algorithm, however, is that CHARM uses different

sets of candidate rules, based on the subject record’s data source. This opens the door for

the CHARM matcher to better accommodate the idiosyncrasies of each data source, but

requires the CHARM developers to create, tune, and maintain multiple candidate rule

sets.

The Matcher’s second step is a classification process, in which it decides whether

each candidate record matches the subject record and how confident it is about that

decision. To do this, the Matcher uses a set of clue-based classification rules organized

into a decision tree. The clues that make up a rule represent various ways in which a

candidate and a subject record can be compared. For example, one clue may be a birth-

date comparison. Another clue may be an edit-distance comparison on first names. Still,

another clue may be a name-bag comparison that matches any name (first, middle, or

last) from one record against any name from the other. The results of a clue can provide

8

evidence that the two records match or that they do not match. However, some carry

more weight than others, so a rule can combine their results using a weighted sum. A

rule then compares the aggregate result against several different thresholds to classify the

pair of records as a) a definite match, b) a possible match, c) a definite non-match, or d)

an undeterminable pair. The results of this classification from one rule can trigger the

execution of another classification rule or the re-execution of step 1 with a different

candidate rule set. For example, a classification of a possible match might trigger the

execution of another more detailed classification rule.

As with candidate rule sets, the Matcher can use a different set of classification

rules for each data source. Again, this allows the Matcher to find differences in the

availability and quality of personal-identify information (PII) [4]. It also allows the

CHARM developers to tune the Matcher’s specificity and sensitivity [1], and balance

other performance factors. Unfortunately, deciding which clues to use, organizing them

into rules, adjusting the clue weights, and organizing the rules into a decision tree is a

complicated task that requires good insight into the nature of the data source’s data and

the ability to try many different variations.

 Sadly, the CHARM Matcher currently lacks the ability to measure the

effectiveness of specific aspects of a candidate set or classification rule sets. Information

about impact of a particular candidate rule, classification rule, or clues on match

decisions would give CHARM developers valid feedback for optimizing the matcher for

a particular data source.

9

One way to gather the such information, without changing the existing Matcher,

would be to analyze its log files. These log files contain a chronological record of

Matchers activities, which for a single match request would include:

• Information about which candidate rule was used

• The size of the resulting set of potential matches

• Information about the first classification rule that was fired

• The result of each of that rule’s clues

• The rule’s classification

• If another rule was fired, information about that rule

• And so forth

In addition, the log file includes the elapse time for each match request. Unfortunately, in

its raw format, the log data is difficult to understand, let alone analyze.

 This report describes a tool, called the Match Log Analyzer (MLA) for analyzing

the Matcher’s performance relative to any data source, quickly and effectively. Its

primary goal is to parse and organize log data from a set of log files, and then generate

visual reports that summarize that data in meaningful ways. However, to satisfy this goal,

it must also meet the following secondary goals:

1. Define a set of indicators or metrics that will give the CHARM developers

meaningful abstractions on the Matcher performance. Specifically, the indicators

need to bring to the forefront those factors that most affect the Matcher’s

specificity, sensitivity, match rate, and efficiency, while hiding uninteresting

details that have not significantly affected its performance.

10

2. Access and parse the rule sets that the Matcher uses for given data source, so it

can correctly process and interpret the log data corresponding to data from that

source.

3. Allow the tool to be easily modifiable so it can adapt to future Matcher changes

and to shifts in meaning or format of the log data.

4. Allow the tool to be extensible so CHARM developers can easily add new reports

that might give insight into the Matcher's performance.

 This project covers the design, implementation, and testing of the initial log-

analyzing and reporting tool. It does not address the procedures or policies for using that

information or for making improvements to the Matcher and rule definitions.

 There are a few issues that add to the complexity of this project. First, the

complexity of the log files is one of the biggest problems which need to be addressed.

Tracing the path of a search query of more than a dozen criteria through a participating

program’s chains of candidate rules, classifier rules, and clues from just the log files is

challenging.

Second, this project needs to handle changes to the configuration of the Matcher.

In other words, changes to the Matcher’s configuration should not require the MLA’s

code to be changed or rebuilt. It is expected that, over time, CHARM will grow in both

scope and functionality. For example, additional information systems will start providing

information to CHARM and using it to access other systems' data. Each new

participating program will require their own set of matching rules. Also, as existing

11

participating programs evolve, their matching rules will undoubtly also have to evolve to

take into account shifts in data structures and data semantics.

Log files have been used to analyze many aspects of IT systems. The authors of

[5] identified several uses for the information retrieved from log files, such as debugging,

operational profiling, finding anomalies, detecting security threats, and measuring

performance. Their research produced a general method for abstracting log lines to log

event types. The MLA will do similar work in order to process the Matcher log files.

Similar to methods used in [6], the MLA will be parsing log files to create static

visualizations for offline analysis. Also, another common problem of using log files for

analysis, as pointed out by the authors of [7], is the huge amounts of data contained in log

files that make them impossible to analyze in their raw format. The authors work in [7] is

concerned with producing visualizations of log files that help with identifying anomalies

as part of a security audit, which is very similar to the goals of the MLA, except that it is

attempting to analyze performance instead.

 Since MLA is specific to the CHARM Matcher, this report first provides in

Chapter 2 an overview of the CHARM system in terms of its purpose and architecture.

To help clarify the problem, Chapter 2 also provides some background on what methods

currently exist to measure Matcher performance. Chapter 3 then discusses the functional

and non-functional requirements for MLA, which lay the foundation for its design and

implementation, which are explained in Chapter 4. Chapter 5 explains how MLA was

tested and how its use has helped improve the Matcher’s performance. Finally, Chapter 6

discusses what further work could be done to continue to enhance the MLA tool.

12

CHAPTER 2

CHARM OVERVIEW

 The CHARM system was developed to create a virtual health-care profile for all

children who have records in many of Utah's child health-care programs [2]. The

CHARM Integrated Infrastructure (CHARM-II) is a distributed middleware system that

allows these health-care programs to securely share data. Each health-care program

maintains stewardship over their own data, and CHARM presents a virtual health-care

profile that spans the data from each program. Therefore, much of the data is

decentralized in potentially heterogeneous systems. Although most of the programs

within the Utah Department of Health (UDOH) are the primary producers and consumers

of these virtual health-care profiles, other entities outside UDOH may also benefit from

accessing this data, as long as these entities follow UDOH's privacy, confidentiality, and

security policies.

 The goals of CHARM-II include providing access to authoritative data in near

real-time, allowing integration with participating programs with minimal impact to their

information systems and doing so with relative ease, allowing each program to maintain

stewardship over their own data, and enforcing privacy, confidentiality, and security

policies appropriate for health information [2].

 Each participating program integrates with CHARM via a CHARM Agent, which

provides the means for querying the CHARM server for data, as well as exporting data

that the participating program shares. The CHARM server itself is responsible for

executing distributed queries, guaranteeing security, and keeping audit trails.

13

 The Utah Statewide Immunization Information System (USIIS), Women, Infants,

and Children (WIC), Vital Statistics (VS), Early Hearing Detection and Intervention

(EHDI), and Heel-Stick (metabolic) Screening are the some of the information systems

deployed by UDOH and are participants in the CHARM system. Several more

participating programs are being developed as well, and all of these programs would

benefit from sharing data with each other, yet at the same time, they all need to maintain

stewardship over their own data, and meet strict privacy, confidentiality, and security

requirements. Because each of these systems has been developed independently, each

solution varies greatly in system design, supporting software, data abstractions, data

quality, and other factors. In order to provide the benefits of a common child health

profile to these heterogeneous systems, the CHARM Matcher is configurable on a per-

program basis. General configurations of the Matcher can be shared between programs

when appropriate. Additions of new or changes to existing participating programs

requires changes to the Matcher’s configuration, and the performance measurements

gathered by the MLA will help ensure that the Matcher functions correctly and within

reasonable time constraints.

The Matcher uses a two-step matching algorithm [8]. The first step is called

blocking. The Matcher’s implementation uses a loose SQL query to generate the initial

set of candidates to be processed by the second step, called clustering or classification.

Finding the right balance for the blocking step is a key to identifying matching candidates

in reasonable amount of time. If the blocking step is too tight, it may eliminate positive

matches from the set of candidates, losing accuracy. If it is too loose, it could include too

14

many candidates for the clustering step to process, resulting in intolerably long queries or

a larger number of false positives.

The clustering step does more in-depth processing of the candidates on a field-by-

field basis. The Matcher uses classifier rules with weighted scores that add to or take

away from the confidence level that a particular candidate is a positive match to the

search query. The classifier rules to use and the weights to apply are determined

manually by a domain expert, one who has a deep knowledge of the systems in question.

The classifier rules and the weights used could also vary between participating programs,

so the needs of each program should be understood.

The configuration for the Matcher is very complex. It takes into consideration

each participating program, configuration of different classifiers for children and adults,

classifiers for single- and multiple-birth children, as well as other factors that address the

participants’ needs. When configuring the Matcher, the CHARM developer is tasked with

defining rules that execute in a reasonable amount of time, but with few false positive

matches. The configuration must also consider which classifiers or clues are relevant, and

which can be safely left out to improve matching speed without sacrificing accuracy.

The Center for Disease Control and Prevention (CDC) has developed a

probabilistic record linkage program to link records for cancer registries, called Link Plus

[9]. Link Plus is part of a larger suite of programs called Registry Plus. Link Plus was

designed for use by cancer registries, but can also be used for linking any type of data

using fixed width or delimited formats. One way to measure this program’s performance

would be to calculate the sensitivity and specificity of matches found using test data. The

15

tool provides the ability to export its results, which could then be used to calculate the

values for the performance indicators. One study [10] manually checked the results of

doing electronic data linkage using Link Plus, and determined that the results of accurate

linkage can be useful in estimating the prevalence of HIV/AIDS.

Lan Hu, developer of the CHARM Matcher, created a tool, called the Log Reader,

to gather statistics from the Matcher’s log files. This tool parses log files produced by the

Matcher and provides a summary of some statistics, such as average request time per

query, the total number of queries, the number of candidates within each confidence

threshold, and the percentage that each criterion is used in a query. Additional statistics

are gathered for some candidate nodes, such as a further breakdown of matching criteria,

as well as the number of candidates within each confidence threshold.

 Although not part of the original work of building the Matcher, the Log Reader

did provide insight into the performance of the Matcher. Many of the ideas for the MLA,

such as some of the statistics gathered, came from the Log Reader. There are several

problems with the Log Reader that make it difficult to use, maintain, and extend. This is

due to duplicate code and hard-coded details about participating programs and candidate

rules. For example, the code for parsing the log file formats is duplicated in many places

and does not always gather the same information. This requires multiple passes when

parsing the log files. Also, many of the candidate rule configurations are hard-coded. This

becomes a problem when the rules configuration is updated, but the Log Reader code is

not. The design of the MLA needs to address these issues. I discuss additional problems

and design considerations in the next few chapters.

16

 The MLA provides visual representations of the reports from the Log Reader, and

introduces new reports as well. Additionally, the MLA is aware of the Matcher’s rule

configuration and is able to use that additional context to provide more informative

reports. Effectively, the MLA is an extension of the Log Reader.

 Due to the sensitive nature of the data involved, the MLA must also conform to

the security policies required by the CHARM system. The log files produced by the

Matcher do contain PII, so great care must be taken to ensure that any sensitive

information is not leaked. This means that the MLA should only be run on properly

secured hardware, and only by authorized personnel. The output of the MLA should not

contain any PII, but should only contain statistics and reports that can freely be shared

with any interested parties, without fear of leaking sensitive information.

17

CHAPTER 3

REQUIREMENTS

 The first step was to gather requirements for the tool. I met with Lan Hu and Dr.

Stephen Clyde to determine what would be necessary. Together we identified the inputs

and outputs for the tool, including the Matcher rules file and the log files. We also

identified some other configuration options, such as the ability to filter the logs by date or

by participating program, and the ability to specify the location of the output file. We

determined that to be consistent with the rest of the CHARM-II codebase, Java would be

the language to use.

 Several performance indicators were identified during requirements analysis.

General request statistics concerning the execution time of a query indicate whether the

system is responding quickly enough to requests. Statistics about request criteria show

the frequency that each criterion was being used for searches. The overall matching rate

that shows the number of requests that resulted in a positive match is necessary for

calculating sensitivity and specificity measurements, using test data and queries with

known positive matches. The matching rate for each individual candidate rule is also

reported, which allows a more fine-grained sensitivity and specificity measurements to be

calculated. These fine-grained measurements are also necessary in order to measure the

performance of matcher rules built for a specific participating program. Of course, the

MLA filter for participating programs can also be useful when analyzing a participating

program’s use of general matcher rules. Also, for each candidate rule, statistics about the

18

scores of each classifier used in the rule demonstrate well that the classifiers correctly

discriminate candidates in the result set.

 For most of the performance indicators above, it is useful to distinguish between

child and adult searches. The Matcher itself defines separate rules for searching for adults

and children.

 The generated reports need to show the exact numbers needed in order to

calculate the sensitivity and specificity measurements for when known test data and

search criteria are used. From those statistic, bar and pie charts then show the relative

counts and percentages of the data.

Initially, the preferred format for the reports was a Microsoft Excel workbook.

The workbook is a template, made of multiple spreadsheets wherein several of the

spreadsheets contain charts that reference the data in another spreadsheet. The MLA

needs to produce a CSV file that conforms to the format that the data spreadsheet expects,

such that the charts reference the correct data. The charts should update automatically

when the MLA output is pasted into the data spreadsheet.

 There are some advantages to using an Excel workbook to produce the reports.

The charts are relatively easy to produce. Additional reports can be added by laying out

the CSV file in such a way that the charts can reference them. The template can be

updated at the same time new reports are added, and the programming involved is no

more complex than modifying a text file. Producing charts programmatically would be

much more complex, even with the help of a third-party library.

19

 On the other hand, there are also distinct disadvantages to using Excel. The

template sometimes needs to be modified when the Matcher's configuration changes,

such as when adding or removing candidate nodes, classifiers, or clues. Also, using Excel

requires the manual step of copying the template file, then copying and pasting the output

into a worksheet.

 There are alternatives to using Excel to generate the required charts. JFreeChart is

a free, open-source Java library that can programmatically generate charts. It is capable

of exporting charts in several different formats, including image files, PDF files, or even

as Swing components, which would be very useful for a GUI version of the MLA.

 Another alternative is the popular Business Intelligence and Reporting Tools

(BIRT) reporting system. Based on Eclipse, BIRT provides more than just a library for

generating charts. For example, it also provides an API for connecting to a data source

that contains the data from which reports can be generated. The data source could be a

database connection, a CSV file, or a completely custom format.

 A third option is the JasperReports, an open source Java reporting library.

JasperReports is similar to BIRT in that it provides more functionality than generating

charts. In fact, it uses the JFreeChart library to render the charts that it includes in reports.

Similar to BIRT, it provides an API for connecting to several common data sources, as

well as allowing custom data sources to be created.

 All three of these alternatives allow creating charts programmatically. Any one of

these options could potentially reduce the number of manual steps required to generate

and maintain reports. However, each tool has its own API and requires the maintainer of

20

the MLA to learn these technologies to produce reports. As I mentioned previously, the

Excel charts are relatively simple to understand and update. Thus, I decided to use the

Excel workbook because of its relative simplicity.

 A sample Excel file was included with the requirements document that defined

the expected format for the file, as well as the specific reports that were expected. The

following are descriptions of the expected reports:

1. General - This report should contain general statistics, such as the total number of

queries, the number of queries for adult records and child records, as well as the

minimum, maximum, and average execution times for those queries.

2. Request Statistics - This report should show how often each criterion was used for

the queries, separated by adult and child queries. For instance, out of the total

number of queries for child records, the number of queries including the social

security number.

3. Candidate Sets - This report should show the number of queries that found

candidates within any of the defined candidate set thresholds.

4. Candidate Nodes - This report should show specific information about each

candidate node, such as the number of requests that had candidate sets of a certain

size, the number of requests that produced candidate sets within each threshold,

and statistics about the scores of each classifier included in the candidate node.

There also needs to be a separate Excel worksheet for each candidate node

defined in the Matcher's configuration.

21

 The information for these reports comes from two log files produced by the

Matcher. The first log file, called the matching process log, records contains the

following information:

1. Matching ID - A unique id that identifies one query.

2. Real Time - The date and time that the query was performed.

3. Client IP address and port - The IP address and port of the client requesting the

query.

4. Matching Criteria ID - An identifier, assigned by the client, for the matching

criteria sent .

5. Participating Program ID – An identifier for specifying the participating program,

and therefore a set of candidate nodes, classifiers, and clues.

6. Candidate Node IDs - The set of candidate node ids that were used during the

matching process.

7. Number of Candidates - The total number of candidates found by the set of

candidate nodes.

8. Total Matching Process Time - The number of milliseconds it took to run the

query.

9. Candidate set sizes - The number of high confidence matches, probable matches,

maybe matches, and no matches candidate sets.

10. Matching Criteria - The criteria provided by the client that was used to perform

the matching.

22

 The second log file, called the rule detail log, contains more detailed information

about each matching process. Multiple log entries in the rule detail log correspond to a

single log entry in the matching process log. Each log entry in the rule detail log contains

information for a specific candidate rule. Each log entry contains the following

information:

1. Matching ID - This ID refers to the matching process log entry. This is not unique

in this file, as there are multiple entries, one for each candidate rule used during

the matching process.

2. Candidate Node ID - The ID of the candidate node. This references the candidate

node in the matcher's rules configuration.

3. Candidate Rule Name - The name of the candidate rule.

4. Candidate Charm IDs - The charm IDs of all candidates added to a candidate set

by this candidate node.

5. Number of candidates - Total number of candidates added to a candidate set by

this candidate node. This should simply be a count of the previous field.

6. Candidate rule execution time - the number of milliseconds spent executing this

candidate rule.

7. Classifier Node ID - The ID of a classifier node. There are possibly multiple

entries, one for each classifier node contained in the definition of the candidate

node. The log for each classifier node includes the following information:

a. Clue name and score - Each clue produces a score that is totaled to

determine which candidate set the potential matches fall into.

23

b. Candidate classification score - The total score produced by the classifier

for the particular candidate.

c. Candidate classification time - The time in milliseconds to perform the

classification.

8. Candidate set sizes and Charm IDs - The total number of candidates in each

candidate set, as well as the Charm IDs of the candidates in those sets. There

should be four sets: high confidence matches, probable matches, maybe matches,

and no matches.

24

CHAPTER 4

DESIGN AND IMPLEMENTATION

 The primary goal of the MLA is to process the Matcher’s log files and generate

graphical reports. The review of what data was available in the log files constrained what

sorts of performance indicators could be extracted and put into a useful visualization.

 The first step in processing a log file is to open it and begin reading entries.

Understanding of this step helped me identify two useful components: a LogDatasource

that knows how to open files and a LogEntry that knows how to parse each entry in the

log file. The LogEntry class is also important because it helps address another goal of the

MLA, which is to make it easier to deal with changes in the log file format. The LogEntry

class is the one place wherein parsing the log files takes place, unlike the Log Reader

tool, which has multiple implementations for extracting partial entry information. Having

a single object that extracts all the information once means the log files themselves only

need to be read once.

 Before a LogEntry continues through processing, it must pass through filters that

could exclude the LogEntry from processing. One of the requirements that we identified

was the ability to filter on participating programs and a date range. I introduce a

LogEntryFilter interface to take on this responsibility. Two concrete implementations of

LogEntryFilter exist, one to filter entries by the participating program and another to

filter by date range. Additional filters can be implemented as needed. If a log entry is

excluded, that entry is discarded and the next log entry begins processing.

25

 After parsing a log entry, the MLA still needs to do something with it to generate

a graphical report. All of the data for a report needs to be gathered before the report can

be rendered. Therefore, I identify two additional classes to accomplish this: the Report

class and the ReportWriter class. The responsibility of the Report class is to accept each

LogEntry and extract the pertinent data for the report. Once the Report has completed its

task, the ReportWriter is then responsible for generating a graphical representation of the

report. In the case of the Excel spreadsheet, the ReportWriter generates a CSV file that

can be pasted into the data spreadsheet of the workbook template. One advantage of

separating the responsibilities of the Report class and the ReportWriter class is the ability

to create additional ReportWriters that could generate a different graphical representation

of the same report. The actual report is decoupled from its graphical representation. This

design resembles the Reference Model pattern as described in [11], but lacks a controller

class because there is no user interaction with the reports.

 Some reports need more information than what is provided in the log files

themselves. Specifically, the Matcher rules configuration file has information necessary

for some reports in order to interpret the results in the log files correctly. I include a

component that parses the xml and loads the configuration into model objects that are

held in memory and made available to the reports that require the information.

 As part of the design, I produced an activity diagram that shows the general

algorithm used, identifying the major components and showing how they collaborate.

The second diagram is a class diagram for the major components.

26

4.1 Algorithm

 The algorithm was developed using an activity diagram, as shown in Figure 1.

The algorithm is divided into two main sections. The first section deals with processing

the log files. The log files are referred to as data sources. Each entry is passed to each of

the reports, and the report is responsible for collecting relevant data. After all of the log

Figure 1. Activity diagram of the general algorithm.

27

entries have been read from all of the data sources, the algorithm moves on to the next

section, where the reports are produced and written to a file.

 There are two different approaches that I considered when implementing this

algorithm in the Analyzer class. The first is the Template pattern as described in [12]. The

algorithm would be implemented in a single method of the abstract Analyzer class, with

calls to abstract template methods for each major step. A subclass would then be

responsible for implementing those template methods.

 The second approach is the one that I actually implemented. The Analyzer class

requires concrete implementations of abstract factories, following the Abstract Factory

pattern, which is also described in [12]. The result is very similar to using the Template

pattern, but instead of template methods being called, factory methods are called instead.

This implementation uses composition instead of direct inheritance to accomplish the

same task. I describe the factories used after presenting the class diagram.

 The class diagram, in Figure 2 below, identifies the classes that are used as part of

the algorithm. The classes are identified by name there, and are the names that are used

for the implementation.

For the Matcher Log Analyzer, the LogDatasourceFactory is configured with an

implementation of a LogSource that loads both that matching process log file and the rule

detail log file. When retrieving the next entry, the implementation checks to see if all the

matching process log entries have been read before reading the rule detail log entries. The

ReportFactory is configured with all of the defined reports in the system. This is the

extension point for adding new reports to the tool. The new reports simply need to be

28

registered with the ReportFactory, and they will be given all of the log entries for

processing. The ReportExporterFactory itself needs one ReportExporter for each of the

Reports registered with the ReportFactory. The ReportExporterFactory was separated

from the ReportFactory to allow different types of ReportExporters to export Reports

into varying formats. The current implementation uses a CSV format, but other formats

Figure 2. Class diagram.

29

could be added easily as the need arises. Finally, LogEntryFilters are defined. These

should be configurable via a configuration file, with no coding necessary to add or

remove these filters. These filters simply short-circuit the processing of a log entry, if the

criteria for the filter have been met. So far, the only filters implemented involve

specifying which participating programs are included in the report and specifying a date

range for the log entries. Adding new filters is accomplished by implementing the

LogEntryFilter interface and registering the filter with the Analyzer, based on external

configuration.

4.2 Report Formats

 For the General Report, a simple bar chart is used, as shown in Figure 3. The

report need only tally up the number of requests from the matching process log,

distinguishing requests for a child versus adult record.

Figure 3. Number of requests.

30

 The Request Statistics Report is also a bar chart, showing the total number of

requests that contain each of the search criteria fields. Examples of this report are shown

in Figures 4 and 5.

Figure 4. A count of each field in child request queries.

Figure 5. A count of each field in adult request queries.

31

 The report on candidate sets uses pie charts to show how many requests produced

candidate sets within each of the thresholds. Three pie charts are produced, one for child

queries, one for adult queries, and one for all queries. An example is shown in Figure 6.

Figure 6. Break down of queries by the type of candidate set produced.

 The last kind of report, the Candidate Rule Report, has many instances, one for

each candidate rule. This report shows a bar chart for the number of candidate sets that

produced a certain number of candidates. There are also bar charts that show the number

of queries that received full or partial scores from each classifier. Figures 7, 8, and 9

show examples of these charts.

32

Figure 7. Histogram of candidate set sizes.

Figure 8. Percentages of requests within each candidate set threshold.

33

Figure 9. Candidate scores per classifier.

 The implementation of this last report is also the first report that required the

matcher's rule configurations. The candidate nodes are referenced in the log files by an

integer identifier, so the node must be looked up. Classifiers are also referenced by an

identifier. Clue scores are summed and compared with the maximum and minimum total

scores to determine if full, partial, or no points were awarded.

 Once the Report objects have collected what they need, they are passed to

ReportExporter objects. Currently, the matcher log analyzer has CSV implementations

of report exporters which produce CSV files that can be pasted into the predefined Excel

spreadsheet. Further work can be done to implement new Report Exporters. Some ideas

include producing charts programmatically and saving them as PDF files, or if a GUI is

developed, charts could also be presented directly in the GUI.

 Additional reports can be introduced by implementing Report and

ReportExporter. New reports that use the CSV exporter may also need to update the

template Excel spreadsheet to include a new sheet of charts.

34

CHAPTER 5

TESTING

 To test the MLA, I used both automated unit and integration tests, as well as

manual testing with real data. For the unit testing, I focused mostly on parsing files,

including the log files as well as the rules configuration file. Unit tests are important

because they help guarantee that any changes to the file formats will be handled

correctly. New tests can be added for any additional data, and the old tests will ensure

that the parsers are still collecting the correct data.

 I also wrote an automated integration test that constructs the Analyzer class with

all of its dependencies, configured to analyze the sample matching process and rule detail

log files. This is an integration test because it exercises every component from end to

end, unlike a unit test, which tests a single component in complete isolation from all other

components. This test produces an output file that is ready to be pasted into the Excel

template.

 In addition to the automated unit and integration tests, I also performed some

manual testing on real data obtained from the production server. Due to the sensitive

nature of the data, I did not think it wise to bundle these log files with automated unit

tests. Instead, I performed the manual tests and then removed the log files from my

machine. I configured the MLA to analyze 20 requests from the Matcher log files, with a

mix of search queries for adults and children. The small sample of requests, taken from

the production log, was large enough to show that the MLA is able to process the files,

but still small enough to reasonably verify its results by hand. To verify the General

35

Report, I totaled the requests for adults and children then compared them with the results

produced by the MLA. Similarly, for the Request Statistics Report, for each request

criteria field, I totaled the number of requests where that field was provided. For the

Candidate Sets Report, I counted the number of requests that produced a candidate set

within a certain confidence threshold. For the Candidate Rule Report, I also had to count

the requests that resulted in a particular candidate rule producing a candidate set within a

confidence threshold. I also had to calculate how many requests received a full or partial

score for each classifier rule used by the candidate rule.

 I performed other manual testing on the tool, such as making sure that every

configuration option worked as intended, as well as reviewing the log files produced the

by the MLA. The MLA logs errors or warnings about problems it encounters, such as

malformed log entries.

 The performance indicators identified for the initial version of the MLA are a

good starting place, but may require refinement. Over time, the CHARM developer

responsible for configuring the Matcher will be able to see which reports on performance

indicators are useful, and which may require modification. Some of the performance

indicators were selected based on the available data in the Matcher’s log files. Additional

views of the existing logs can be created, or if more data is necessary, more data can be

logged for the MLA to process.

36

CHAPTER 6

SUMMARY AND FUTURE WORK

 The MLA has been designed to produce visual reports of the Matchers

performance from log files. Several extensible points in the architecture of the MLA

have been defined to achieve several of the goals listed earlier. Each major piece of the

MLA’s algorithm encapsulates cohesive components, making it easier to modify the

parsing of log files and the Matcher configuration. It is also easy to modify or create

new reports and report visualizations. Each of the visualizations reports helps the

maintainer of the Matcher understand the impact of configuration changes on the

performance of the Matcher. However, there is room for improvement as well.

The manual steps involved in copying and pasting exported data into an Excel file

could be eliminated with different implementations of the ReportExporter. The tool could

be extended to use any of alternatives to Excel mentioned in Chapter 3.

 The tool could be converted to monitor performance in real-time, as the log

entries are written to the file. Many of the same components could be used, but the

algorithm would probably need to be modified. One thing that would need to change is

that as each log entry is read, it would also be passed to the report. When the report is

updated, the report exporter would need to be notified of the update and redraw the

charts. This would not work with the Excel template at all. The reports would have to be

generated programmatically.

 Another improvement would be to track statistics over time. Currently, to follow

any trends, one must generate multiple reports and extract any information of interest.

37

The MLA could keep track of each use and produce addition reports that show trends in

each report or even changes to the matcher rules file. From that kind of a report, it may be

possible to identify whether a rule change has had a positive or negative effect on

matcher performance.

38

REFERENCES

[1] Altman, G. and Bland, J. Diagnostic tests 1: sensitivity and specificity. British

Medical Journal, 308 (1994), 1552.

[2] Clyde, S. Executive Summary: Child-Health Advanced Record Management

Integration Infrastructure, CHARM Project. Utah Department of Health, Jan

2002.

[3] Elmagarmid, A., Ipeirotis, P., and Verykios, V. Duplicate record detection: A

survey. IEEE Transactions on Knowledge and Data Engineering, 19 (2007) 1-16.

[4] McCallister, E., Grance, T., and Scarfone, K. Guide to Protecting the

Confidentiality of Personally Identifiable Information (PII). NIST Special

Publication 800-122, Apr. 2010.

[5] Nagappan, M., Vouk, M.A. Abstracting log lines to log event types for mining

software system logs. Mining Software Repositories (MSR), 2010 7
th
 IEEE

Worker Conference (2010) 114-117.

[6] Siirtola, H., Raiha, K.-J., Surakka, V., and Vanhala, T. Flexible Method for

Producing Static Visualizations of Log Data. Information Visualization, 2008.

12
th
 International Conference (2008) 127-132.

[7] Takada, T. and Koike, H. Tudumi: Information Visualization System for

Monitoring and Auditing Computer Logs. Information Visualisation, 2002. Sixth

International Conference (2002) 570-576.

[8] Hu, L. A Deduplication System For Integrated Person-centric Information

Systems. Master’s Thesis, Utah State University, 2007.

39

[9] U.S. Department of Health and Human Services, Centers for Disease Control and

Prevention. National Center for Chronic Disease Prevention and Health

Promotion. 2010. http://www.cdc.gov/cancer/npcr/. September 2011.

[10] Electronic Record Linkage to Identify Deaths Among Persons with AIDS -

District of Columbia -2000—2005. Morbidity and Mortality Weekly Report.

(2008) http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5723a4.htm.

September 2011.

[11] Heer, J. and Agrawala, M. Software design patterns for information

visualization. IEEE Transactions on Visualization and Computer Graphics 12, 5

(2006) 853-860.

[12] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

	Log-Data Visualization Tool for Analyzing and Improving Performance of Data De-Duplication Tool in Charm-II
	Recommended Citation

	Microsoft Word - DanErickson-Report-2011-11-15.doc

