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ABSTRACT 

 

Log-data Visualization Tool for Analyzing and Improving Performance of Data 

 

De-duplication Tool in CHARM-II 

 

 

by 

 

 

Daniel Erickson, Master of Science 

 

Utah State University, 2011 

 

 

Major Professor: Dr. Stephen W. Clyde 

Department: Computer Science 

 

 A de-duplication tool used in CHARM-II, called the CHARM Matcher, produces 

log files that record why it decides two records are or are not a match. This data, if 

properly analyzed, could help CHARM developers improve the Matcher over time by 

tuning its configuration. However, the log data is complex and recorded chronologically 

in the log files instead of in a way that would aid analysis. Further, visually studying the 

raw log data is a laborious and difficult task.  This report describes a tool that parses and 

organizes the raw log data, and then produces graphical reports that summarize key 

performance indicators.  The performance indicators give CHARM developers exactly 

what they need to know to improve the Matcher’s specificity and sensitivity [1] for any 

particular data source.  A significant contribution of this report and prerequisite to 

creating a meaningful tool was the investigation into possible performance indicators and 

determination which would be best suited for the existing CHARM matcher.  In 
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anticipation of further evolution of the CHARM matcher, the proposed tool is designed to 

be extensible, so additional indicators and reports could be added later, as the need arises. 

 (39 pages) 
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CHAPTER 1 

INTRODUCTION 

 The Child Health Advanced Record Management (CHARM) system includes a 

component, called the Matcher, that is responsible for determining whether two or more 

person records represent the same individual [2]. Given a subject record from a particular 

data source, the Matcher accomplishes this task in two steps.  First, it uses candidate 

rules to select a relatively small set of potential matches from millions of records 

contained in a central person database -- a filtering process often referred to as blocking 

or search-space reduction [3].  One difference between CHARM’s approach to candidate 

set selection and a traditional blocking algorithm, however, is that CHARM uses different 

sets of candidate rules, based on the subject record’s data source.  This opens the door for 

the CHARM matcher to better accommodate the idiosyncrasies of each data source, but 

requires the CHARM developers to create, tune, and maintain multiple candidate rule 

sets. 

The Matcher’s second step is a classification process, in which it decides whether 

each candidate record matches the subject record and how confident it is about that 

decision.   To do this, the Matcher uses a set of clue-based classification rules organized 

into a decision tree.  The clues that make up a rule represent various ways in which a 

candidate and a subject record can be compared.  For example, one clue may be a birth-

date comparison.  Another clue may be an edit-distance comparison on first names.  Still, 

another clue may be a name-bag comparison that matches any name (first, middle, or 

last) from one record against any name from the other.  The results of a clue can provide 
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evidence that the two records match or that they do not match.  However, some carry 

more weight than others, so a rule can combine their results using a weighted sum.  A 

rule then compares the aggregate result against several different thresholds to classify the 

pair of records as a) a definite match, b) a possible match, c) a definite non-match, or d) 

an undeterminable pair.   The results of this classification from one rule can trigger the 

execution of another classification rule or the re-execution of step 1 with a different 

candidate rule set.  For example, a classification of a possible match might trigger the 

execution of another more detailed classification rule. 

As with candidate rule sets, the Matcher can use a different set of classification 

rules for each data source.  Again, this allows the Matcher to find differences in the 

availability and quality of personal-identify information (PII) [4].  It also allows the 

CHARM developers to tune the Matcher’s specificity and sensitivity [1], and balance 

other performance factors.   Unfortunately, deciding which clues to use, organizing them 

into rules, adjusting the clue weights, and organizing the rules into a decision tree is a 

complicated task that requires good insight into the nature of the data source’s data and 

the ability to try many different variations.  

 Sadly, the CHARM Matcher currently lacks the ability to measure the 

effectiveness of specific aspects of a candidate set or classification rule sets.  Information 

about impact of a particular candidate rule, classification rule, or clues on match 

decisions would give CHARM developers valid feedback for optimizing the matcher for 

a particular data source. 
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One way to gather the such information, without changing the existing Matcher, 

would be to analyze its log files. These log files contain a chronological record of 

Matchers activities, which for a single match request would include: 

• Information about which candidate rule was used 

• The size of the resulting set of potential matches 

• Information about the first classification rule that was fired 

• The result of each of that rule’s clues 

• The rule’s classification 

• If another rule was fired, information about that rule 

• And so forth 

In addition, the log file includes the elapse time for each match request. Unfortunately, in 

its raw format, the log data is difficult to understand, let alone analyze. 

 This report describes a tool, called the Match Log Analyzer (MLA) for analyzing 

the Matcher’s performance relative to any data source, quickly and effectively.  Its 

primary goal is to parse and organize log data from a set of log files, and then generate 

visual reports that summarize that data in meaningful ways. However, to satisfy this goal, 

it must also meet the following secondary goals: 

1. Define a set of indicators or metrics that will give the CHARM developers 

meaningful abstractions on the Matcher performance.  Specifically, the indicators 

need to bring to the forefront those factors that most affect the Matcher’s 

specificity, sensitivity, match rate, and efficiency, while hiding uninteresting 

details that have not significantly affected its performance. 
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2. Access and parse the rule sets that the Matcher uses for given data source, so it 

can correctly process and interpret the log data corresponding to data from that 

source.  

3. Allow the tool to be easily modifiable so it can adapt to future Matcher changes 

and to shifts in meaning or format of the log data.  

4. Allow the tool to be extensible so CHARM developers can easily add new reports 

that might give insight into the Matcher's performance.  

 This project covers the design, implementation, and testing of the initial log-

analyzing and reporting tool.  It does not address the procedures or policies for using that 

information or for making improvements to the Matcher and rule definitions.  

 There are a few issues that add to the complexity of this project.  First, the 

complexity of the log files is one of the biggest problems which need to be addressed. 

Tracing the path of a search query of more than a dozen criteria through a participating 

program’s chains of candidate rules, classifier rules, and clues from just the log files is 

challenging. 

Second, this project needs to handle changes to the configuration of the Matcher. 

In other words, changes to the Matcher’s configuration should not require the MLA’s 

code to be changed or rebuilt. It is expected that, over time, CHARM will grow in both 

scope and functionality.  For example, additional information systems will start providing 

information to CHARM and using it to access other systems' data.  Each new 

participating program will require their own set of matching rules.  Also, as existing 
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participating programs evolve, their matching rules will undoubtly also have to evolve to 

take into account shifts in data structures and data semantics. 

Log files have been used to analyze many aspects of IT systems. The authors of 

[5] identified several uses for the information retrieved from log files, such as debugging, 

operational profiling, finding anomalies, detecting security threats, and measuring 

performance. Their research produced a general method for abstracting log lines to log 

event types. The MLA will do similar work in order to process the Matcher log files. 

Similar to methods used in [6], the MLA will be parsing log files to create static 

visualizations for offline analysis.  Also, another common problem of using log files for 

analysis, as pointed out by the authors of [7], is the huge amounts of data contained in log 

files that make them impossible to analyze in their raw format. The authors work in [7] is 

concerned with producing visualizations of log files that help with identifying anomalies 

as part of a security audit, which is very similar to the goals of the MLA, except that it is 

attempting to analyze performance instead. 

 Since MLA is specific to the CHARM Matcher, this report first provides in 

Chapter 2 an overview of the CHARM system in terms of its purpose and architecture. 

To help clarify the problem, Chapter 2 also provides some background on what methods 

currently exist to measure Matcher performance.   Chapter 3 then discusses the functional 

and non-functional requirements for MLA, which lay the foundation for its design and 

implementation, which are explained in Chapter 4.  Chapter 5 explains how MLA was 

tested and how its use has helped improve the Matcher’s performance.  Finally, Chapter 6 

discusses what further work could be done to continue to enhance the MLA tool. 
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CHAPTER 2 

CHARM OVERVIEW 

 The CHARM system was developed to create a virtual health-care profile for all 

children who have records in many of Utah's child health-care programs [2]. The 

CHARM Integrated Infrastructure (CHARM-II) is a distributed middleware system that 

allows these health-care programs to securely share data. Each health-care program 

maintains stewardship over their own data, and CHARM presents a virtual health-care 

profile that spans the data from each program. Therefore, much of the data is 

decentralized in potentially heterogeneous systems. Although most of the programs 

within the Utah Department of Health (UDOH) are the primary producers and consumers 

of these virtual health-care profiles, other entities outside UDOH may also benefit from 

accessing this data, as long as these entities follow UDOH's privacy, confidentiality, and 

security policies.  

 The goals of CHARM-II include providing access to authoritative data in near 

real-time, allowing integration with participating programs with minimal impact to their 

information systems and doing so with relative ease, allowing each program to maintain 

stewardship over their own data, and enforcing privacy, confidentiality, and security 

policies appropriate for health information [2]. 

 Each participating program integrates with CHARM via a CHARM Agent, which 

provides the means for querying the CHARM server for data, as well as exporting data 

that the participating program shares. The CHARM server itself is responsible for 

executing distributed queries, guaranteeing security, and keeping audit trails. 
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 The Utah Statewide Immunization Information System (USIIS), Women, Infants, 

and Children (WIC), Vital Statistics (VS), Early Hearing Detection and Intervention 

(EHDI), and Heel-Stick (metabolic) Screening are the some of the information systems 

deployed by UDOH and are participants in the CHARM system. Several more 

participating programs are being developed as well, and all of these programs would 

benefit from sharing data with each other, yet at the same time, they all need to maintain 

stewardship over their own data, and meet strict privacy, confidentiality, and security 

requirements. Because each of these systems has been developed independently, each 

solution varies greatly in system design, supporting software, data abstractions, data 

quality, and other factors. In order to provide the benefits of a common child health 

profile to these heterogeneous systems, the CHARM Matcher is configurable on a per-

program basis. General configurations of the Matcher can be shared between programs 

when appropriate. Additions of new or changes to existing participating programs 

requires changes to the Matcher’s configuration, and the performance measurements 

gathered by the MLA will help ensure that the Matcher functions correctly and within 

reasonable time constraints. 

The Matcher uses a two-step matching algorithm [8]. The first step is called 

blocking. The Matcher’s implementation uses a loose SQL query to generate the initial 

set of candidates to be processed by the second step, called clustering or classification. 

Finding the right balance for the blocking step is a key to identifying matching candidates 

in reasonable amount of time. If the blocking step is too tight, it may eliminate positive 

matches from the set of candidates, losing accuracy. If it is too loose, it could include too 
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many candidates for the clustering step to process, resulting in intolerably long queries or 

a larger number of false positives. 

The clustering step does more in-depth processing of the candidates on a field-by-

field basis. The Matcher uses classifier rules with weighted scores that add to or take 

away from the confidence level that a particular candidate is a positive match to the 

search query. The classifier rules to use and the weights to apply are determined 

manually by a domain expert, one who has a deep knowledge of the systems in question. 

The classifier rules and the weights used could also vary between participating programs, 

so the needs of each program should be understood. 

The configuration for the Matcher is very complex. It takes into consideration 

each participating program, configuration of different classifiers for children and adults, 

classifiers for single- and multiple-birth children, as well as other factors that address the 

participants’ needs. When configuring the Matcher, the CHARM developer is tasked with 

defining rules that execute in a reasonable amount of time, but with few false positive 

matches. The configuration must also consider which classifiers or clues are relevant, and 

which can be safely left out to improve matching speed without sacrificing accuracy.  

The Center for Disease Control and Prevention (CDC) has developed a 

probabilistic record linkage program to link records for cancer registries, called Link Plus 

[9]. Link Plus is part of a larger suite of programs called Registry Plus. Link Plus was 

designed for use by cancer registries, but can also be used for linking any type of data 

using fixed width or delimited formats. One way to measure this program’s performance 

would be to calculate the sensitivity and specificity of matches found using test data. The 
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tool provides the ability to export its results, which could then be used to calculate the 

values for the performance indicators. One study [10] manually checked the results of 

doing electronic data linkage using Link Plus, and determined that the results of accurate 

linkage can be useful in estimating the prevalence of HIV/AIDS. 

Lan Hu, developer of the CHARM Matcher, created a tool, called the Log Reader, 

to gather statistics from the Matcher’s log files. This tool parses log files produced by the 

Matcher and provides a summary of some statistics, such as average request time per 

query, the total number of queries, the number of candidates within each confidence 

threshold, and the percentage that each criterion is used in a query. Additional statistics 

are gathered for some candidate nodes, such as a further breakdown of matching criteria, 

as well as the number of candidates within each confidence threshold.  

 Although not part of the original work of building the Matcher, the Log Reader 

did provide insight into the performance of the Matcher. Many of the ideas for the MLA, 

such as some of the statistics gathered, came from the Log Reader. There are several 

problems with the Log Reader that make it difficult to use, maintain, and extend. This is 

due to duplicate code and hard-coded details about participating programs and candidate 

rules. For example, the code for parsing the log file formats is duplicated in many places 

and does not always gather the same information. This requires multiple passes when 

parsing the log files. Also, many of the candidate rule configurations are hard-coded. This 

becomes a problem when the rules configuration is updated, but the Log Reader code is 

not. The design of the MLA needs to address these issues. I discuss additional problems 

and design considerations in the next few chapters. 
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 The MLA provides visual representations of the reports from the Log Reader, and 

introduces new reports as well. Additionally, the MLA is aware of the Matcher’s rule 

configuration and is able to use that additional context to provide more informative 

reports. Effectively, the MLA is an extension of the Log Reader. 

 Due to the sensitive nature of the data involved, the MLA must also conform to 

the security policies required by the CHARM system. The log files produced by the 

Matcher do contain PII, so great care must be taken to ensure that any sensitive 

information is not leaked. This means that the MLA should only be run on properly 

secured hardware, and only by authorized personnel. The output of the MLA should not 

contain any PII, but should only contain statistics and reports that can freely be shared 

with any interested parties, without fear of leaking sensitive information. 
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CHAPTER 3 

REQUIREMENTS 

 The first step was to gather requirements for the tool. I met with Lan Hu and Dr. 

Stephen Clyde to determine what would be necessary. Together we identified the inputs 

and outputs for the tool, including the Matcher rules file and the log files. We also 

identified some other configuration options, such as the ability to filter the logs by date or 

by participating program, and the ability to specify the location of the output file. We 

determined that to be consistent with the rest of the CHARM-II codebase, Java would be 

the language to use. 

 Several performance indicators were identified during requirements analysis. 

General request statistics concerning the execution time of a query indicate whether the 

system is responding quickly enough to requests. Statistics about request criteria show 

the frequency that each criterion was being used for searches. The overall matching rate 

that shows the number of requests that resulted in a positive match is necessary for 

calculating sensitivity and specificity measurements, using test data and queries with 

known positive matches. The matching rate for each individual candidate rule is also 

reported, which allows a more fine-grained sensitivity and specificity measurements to be 

calculated. These fine-grained measurements are also necessary in order to measure the 

performance of matcher rules built for a specific participating program. Of course, the 

MLA filter for participating programs can also be useful when analyzing a participating 

program’s use of general matcher rules. Also, for each candidate rule, statistics about the 
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scores of each classifier used in the rule demonstrate well that the classifiers correctly 

discriminate candidates in the result set. 

 For most of the performance indicators above, it is useful to distinguish between 

child and adult searches. The Matcher itself defines separate rules for searching for adults 

and children. 

 The generated reports need to show the exact numbers needed in order to 

calculate the sensitivity and specificity measurements for when known test data and 

search criteria are used. From those statistic, bar and pie charts then show the relative 

counts and percentages of the data.  

Initially, the preferred format for the reports was a Microsoft Excel workbook. 

The workbook is a template, made of multiple spreadsheets wherein several of the 

spreadsheets contain charts that reference the data in another spreadsheet. The MLA 

needs to produce a CSV file that conforms to the format that the data spreadsheet expects, 

such that the charts reference the correct data. The charts should update automatically 

when the MLA output is pasted into the data spreadsheet. 

 There are some advantages to using an Excel workbook to produce the reports. 

The charts are relatively easy to produce. Additional reports can be added by laying out 

the CSV file in such a way that the charts can reference them. The template can be 

updated at the same time new reports are added, and the programming involved is no 

more complex than modifying a text file. Producing charts programmatically would be 

much more complex, even with the help of a third-party library. 
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 On the other hand, there are also distinct disadvantages to using Excel. The 

template sometimes needs to be modified when the Matcher's configuration changes, 

such as when adding or removing candidate nodes, classifiers, or clues. Also, using Excel 

requires the manual step of copying the template file, then copying and pasting the output 

into a worksheet. 

 There are alternatives to using Excel to generate the required charts. JFreeChart is 

a free, open-source Java library that can programmatically generate charts. It is capable 

of exporting charts in several different formats, including image files, PDF files, or even 

as Swing components, which would be very useful for a GUI version of the MLA. 

 Another alternative is the popular Business Intelligence and Reporting Tools 

(BIRT) reporting system. Based on Eclipse, BIRT provides more than just a library for 

generating charts. For example, it also provides an API for connecting to a data source 

that contains the data from which reports can be generated. The data source could be a 

database connection, a CSV file, or a completely custom format. 

 A third option is the JasperReports, an open source Java reporting library. 

JasperReports is similar to BIRT in that it provides more functionality than generating 

charts. In fact, it uses the JFreeChart library to render the charts that it includes in reports. 

Similar to BIRT, it provides an API for connecting to several common data sources, as 

well as allowing custom data sources to be created. 

 All three of these alternatives allow creating charts programmatically. Any one of 

these options could potentially reduce the number of manual steps required to generate 

and maintain reports. However, each tool has its own API and requires the maintainer of 
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the MLA to learn these technologies to produce reports. As I mentioned previously, the 

Excel charts are relatively simple to understand and update. Thus, I decided to use the 

Excel workbook because of its relative simplicity. 

 A sample Excel file was included with the requirements document that defined 

the expected format for the file, as well as the specific reports that were expected. The 

following are descriptions of the expected reports:  

1. General - This report should contain general statistics, such as the total number of 

queries, the number of queries for adult records and child records, as well as the 

minimum, maximum, and average execution times for those queries.  

2. Request Statistics - This report should show how often each criterion was used for 

the queries, separated by adult and child queries. For instance, out of the total 

number of queries for child records, the number of queries including the social 

security number.  

3. Candidate Sets - This report should show the number of queries that found 

candidates within any of the defined candidate set thresholds.  

4. Candidate Nodes - This report should show specific information about each 

candidate node, such as the number of requests that had candidate sets of a certain 

size, the number of requests that produced candidate sets within each threshold, 

and statistics about the scores of each classifier included in the candidate node. 

There also needs to be a separate Excel worksheet for each candidate node 

defined in the Matcher's configuration. 
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 The information for these reports comes from two log files produced by the 

Matcher. The first log file, called the matching process log, records contains the 

following information:  

1. Matching ID - A unique id that identifies one query.  

2. Real Time - The date and time that the query was performed.  

3. Client IP address and port - The IP address and port of the client requesting the 

query.  

4. Matching Criteria ID - An identifier, assigned by the client, for the matching 

criteria sent . 

5. Participating Program ID – An identifier for specifying the participating program, 

and therefore a set of candidate nodes, classifiers, and clues.  

6. Candidate Node IDs - The set of candidate node ids that were used during the 

matching process.  

7. Number of Candidates - The total number of candidates found by the set of 

candidate nodes.  

8. Total Matching Process Time - The number of milliseconds it took to run the 

query.  

9. Candidate set sizes - The number of high confidence matches, probable matches, 

maybe matches, and no matches candidate sets.  

10. Matching Criteria - The criteria provided by the client that was used to perform 

the matching. 
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 The second log file, called the rule detail log, contains more detailed information 

about each matching process. Multiple log entries in the rule detail log correspond to a 

single log entry in the matching process log. Each log entry in the rule detail log contains 

information for a specific candidate rule. Each log entry contains the following 

information:  

1. Matching ID - This ID refers to the matching process log entry. This is not unique 

in this file, as there are multiple entries, one for each candidate rule used during 

the matching process.  

2. Candidate Node ID - The ID of the candidate node. This references the candidate 

node in the matcher's rules configuration.  

3. Candidate Rule Name - The name of the candidate rule.  

4. Candidate Charm IDs - The charm IDs of all candidates added to a candidate set 

by this candidate node.  

5. Number of candidates - Total number of candidates added to a candidate set by 

this candidate node. This should simply be a count of the previous field.  

6. Candidate rule execution time - the number of milliseconds spent executing this 

candidate rule.  

7. Classifier Node ID - The ID of a classifier node. There are possibly multiple 

entries, one for each classifier node contained in the definition of the candidate 

node.  The log for each classifier node includes the following information:  

a. Clue name and score - Each clue produces a score that is totaled to 

determine which candidate set the potential matches fall into.  
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b. Candidate classification score - The total score produced by the classifier 

for the particular candidate.  

c. Candidate classification time - The time in milliseconds to perform the 

classification.  

8. Candidate set sizes and Charm IDs - The total number of candidates in each 

candidate set, as well as the Charm IDs of the candidates in those sets.  There 

should be four sets: high confidence matches, probable matches, maybe matches, 

and no matches.  
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CHAPTER 4 

DESIGN AND IMPLEMENTATION 

 The primary goal of the MLA is to process the Matcher’s log files and generate 

graphical reports. The review of what data was available in the log files constrained what 

sorts of performance indicators could be extracted and put into a useful visualization.  

 The first step in processing a log file is to open it and begin reading entries. 

Understanding of this step helped me identify two useful components: a LogDatasource 

that knows how to open files and a LogEntry that knows how to parse each entry in the 

log file. The LogEntry class is also important because it helps address another goal of the 

MLA, which is to make it easier to deal with changes in the log file format. The LogEntry 

class is the one place wherein parsing the log files takes place, unlike the Log Reader 

tool, which has multiple implementations for extracting partial entry information. Having 

a single object that extracts all the information once means the log files themselves only 

need to be read once. 

 Before a LogEntry continues through processing, it must pass through filters that 

could exclude the LogEntry from processing. One of the requirements that we identified 

was the ability to filter on participating programs and a date range. I introduce a 

LogEntryFilter interface to take on this responsibility. Two concrete implementations of 

LogEntryFilter exist, one to filter entries by the participating program and another to 

filter by date range. Additional filters can be implemented as needed. If a log entry is 

excluded, that entry is discarded and the next log entry begins processing. 
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 After parsing a log entry, the MLA still needs to do something with it to generate 

a graphical report. All of the data for a report needs to be gathered before the report can 

be rendered. Therefore, I identify two additional classes to accomplish this: the Report 

class and the ReportWriter class. The responsibility of the Report class is to accept each 

LogEntry and extract the pertinent data for the report. Once the Report has completed its 

task, the ReportWriter is then responsible for generating a graphical representation of the 

report. In the case of the Excel spreadsheet, the ReportWriter generates a CSV file that 

can be pasted into the data spreadsheet of the workbook template. One advantage of 

separating the responsibilities of the Report class and the ReportWriter class is the ability 

to create additional ReportWriters that could generate a different graphical representation 

of the same report. The actual report is decoupled from its graphical representation. This 

design resembles the Reference Model pattern as described in [11], but lacks a controller 

class because there is no user interaction with the reports.  

 Some reports need more information than what is provided in the log files 

themselves. Specifically, the Matcher rules configuration file has information necessary 

for some reports in order to interpret the results in the log files correctly. I include a 

component that parses the xml and loads the configuration into model objects that are 

held in memory and made available to the reports that require the information. 

 As part of the design, I produced an activity diagram that shows the general 

algorithm used, identifying the major components and showing how they collaborate. 

The second diagram is a class diagram for the major components. 
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4.1 Algorithm 

 The algorithm was developed using an activity diagram, as shown in Figure 1.  

The algorithm is divided into two main sections. The first section deals with processing 

the log files. The log files are referred to as data sources. Each entry is passed to each of 

the reports, and the report is responsible for collecting relevant data. After all of the log 

 

Figure 1. Activity diagram of the general algorithm. 
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entries have been read from all of the data sources, the algorithm moves on to the next 

section, where the reports are produced and written to a file. 

 There are two different approaches that I considered when implementing this 

algorithm in the Analyzer class. The first is the Template pattern as described in [12]. The 

algorithm would be implemented in a single method of the abstract Analyzer class, with 

calls to abstract template methods for each major step. A subclass would then be 

responsible for implementing those template methods. 

 The second approach is the one that I actually implemented. The Analyzer class 

requires concrete implementations of abstract factories, following the Abstract Factory 

pattern, which is also described in [12]. The result is very similar to using the Template 

pattern, but instead of template methods being called, factory methods are called instead. 

This implementation uses composition instead of direct inheritance to accomplish the 

same task. I describe the factories used after presenting the class diagram. 

 The class diagram, in Figure 2 below, identifies the classes that are used as part of 

the algorithm. The classes are identified by name there, and are the names that are used 

for the implementation. 

For the Matcher Log Analyzer, the LogDatasourceFactory is configured with an 

implementation of a LogSource that loads both that matching process log file and the rule 

detail log file. When retrieving the next entry, the implementation checks to see if all the 

matching process log entries have been read before reading the rule detail log entries. The 

ReportFactory is configured with all of the defined reports in the system. This is the 

extension point for adding new reports to the tool. The new reports simply need to be 
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registered with the ReportFactory, and they will be given all of the log entries for 

processing. The ReportExporterFactory itself needs one ReportExporter for each of the 

Reports registered with the ReportFactory. The ReportExporterFactory was separated 

from the ReportFactory to allow different types of ReportExporters to export Reports 

into varying formats. The current implementation uses a CSV format, but other formats 

 

 

 

Figure 2. Class diagram. 
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could be added easily as the need arises. Finally, LogEntryFilters are defined. These 

should be configurable via a configuration file, with no coding necessary to add or 

remove these filters. These filters simply short-circuit the processing of a log entry, if the 

criteria for the filter have been met. So far, the only filters implemented involve 

specifying which participating programs are included in the report and specifying a date 

range for the log entries. Adding new filters is accomplished by implementing the 

LogEntryFilter interface and registering the filter with the Analyzer, based on external 

configuration.  

4.2 Report Formats 

 For the General Report, a simple bar chart is used, as shown in Figure 3. The 

report need only tally up the number of requests from the matching process log, 

distinguishing requests for a child versus adult record. 

 

Figure 3. Number of requests. 
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 The Request Statistics Report is also a bar chart, showing the total number of 

requests that contain each of the search criteria fields. Examples of this report are shown 

in Figures 4 and 5.  

 

 

Figure 4. A count of each field in child request queries. 

 

 

Figure 5. A count of each field in adult request queries. 
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 The report on candidate sets uses pie charts to show how many requests produced 

candidate sets within each of the thresholds. Three pie charts are produced, one for child 

queries, one for adult queries, and one for all queries. An example is shown in Figure 6. 

 

Figure 6. Break down of queries by the type of candidate set produced. 

 

 The last kind of report, the Candidate Rule Report, has many instances, one for 

each candidate rule. This report shows a bar chart for the number of candidate sets that 

produced a certain number of candidates. There are also bar charts that show the number 

of queries that received full or partial scores from each classifier. Figures 7, 8, and 9 

show examples of these charts. 
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Figure 7. Histogram of candidate set sizes. 

 

Figure 8. Percentages of requests within each candidate set threshold. 
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Figure 9. Candidate scores per classifier. 

 

 The implementation of this last report is also the first report that required the 

matcher's rule configurations. The candidate nodes are referenced in the log files by an 

integer identifier, so the node must be looked up. Classifiers are also referenced by an 

identifier. Clue scores are summed and compared with the maximum and minimum total 

scores to determine if full, partial, or no points were awarded. 

 Once the Report objects have collected what they need, they are passed to 

ReportExporter objects.  Currently, the matcher log analyzer has CSV implementations 

of report exporters which produce CSV files that can be pasted into the predefined Excel 

spreadsheet.  Further work can be done to implement new Report Exporters.  Some ideas 

include producing charts programmatically and saving them as PDF files, or if a GUI is 

developed, charts could also be presented directly in the GUI.  

 Additional reports can be introduced by implementing Report and 

ReportExporter. New reports that use the CSV exporter may also need to update the 

template Excel spreadsheet to include a new sheet of charts. 
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CHAPTER 5 

TESTING  

 To test the MLA, I used both automated unit and integration tests, as well as 

manual testing with real data. For the unit testing, I focused mostly on parsing files, 

including the log files as well as the rules configuration file. Unit tests are important 

because they help guarantee that any changes to the file formats will be handled 

correctly. New tests can be added for any additional data, and the old tests will ensure 

that the parsers are still collecting the correct data. 

 I also wrote an automated integration test that constructs the Analyzer class with 

all of its dependencies, configured to analyze the sample matching process and rule detail 

log files. This is an integration test because it exercises every component from end to 

end, unlike a unit test, which tests a single component in complete isolation from all other 

components. This test produces an output file that is ready to be pasted into the Excel 

template. 

 In addition to the automated unit and integration tests, I also performed some 

manual testing on real data obtained from the production server. Due to the sensitive 

nature of the data, I did not think it wise to bundle these log files with automated unit 

tests. Instead, I performed the manual tests and then removed the log files from my 

machine. I configured the MLA to analyze 20 requests from the Matcher log files, with a 

mix of search queries for adults and children. The small sample of requests, taken from 

the production log, was large enough to show that the MLA is able to process the files, 

but still small enough to reasonably verify its results by hand. To verify the General 
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Report, I totaled the requests for adults and children then compared them with the results 

produced by the MLA. Similarly, for the Request Statistics Report, for each request 

criteria field, I totaled the number of requests where that field was provided. For the 

Candidate Sets Report, I counted the number of requests that produced a candidate set 

within a certain confidence threshold. For the Candidate Rule Report, I also had to count 

the requests that resulted in a particular candidate rule producing a candidate set within a 

confidence threshold. I also had to calculate how many requests received a full or partial 

score for each classifier rule used by the candidate rule. 

 I performed other manual testing on the tool, such as making sure that every 

configuration option worked as intended, as well as reviewing the log files produced the 

by the MLA. The MLA logs errors or warnings about problems it encounters, such as 

malformed log entries. 

 The performance indicators identified for the initial version of the MLA are a 

good starting place, but may require refinement. Over time, the CHARM developer 

responsible for configuring the Matcher will be able to see which reports on performance 

indicators are useful, and which may require modification. Some of the performance 

indicators were selected based on the available data in the Matcher’s log files. Additional 

views of the existing logs can be created, or if more data is necessary, more data can be 

logged for the MLA to process.   
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

 The MLA has been designed to produce visual reports of the Matchers 

performance from log files. Several extensible points in the architecture of the MLA 

have been defined to achieve several of the goals listed earlier. Each major piece of the 

MLA’s algorithm encapsulates cohesive components, making it easier to modify the 

parsing of log files and the Matcher configuration. It is also easy to modify or create 

new reports and report visualizations. Each of the visualizations reports helps the 

maintainer of the Matcher understand the impact of configuration changes on the 

performance of the Matcher. However, there is room for improvement as well. 

The manual steps involved in copying and pasting exported data into an Excel file 

could be eliminated with different implementations of the ReportExporter. The tool could 

be extended to use any of alternatives to Excel mentioned in Chapter 3. 

 The tool could be converted to monitor performance in real-time, as the log 

entries are written to the file. Many of the same components could be used, but the 

algorithm would probably need to be modified. One thing that would need to change is 

that as each log entry is read, it would also be passed to the report. When the report is 

updated, the report exporter would need to be notified of the update and redraw the 

charts. This would not work with the Excel template at all. The reports would have to be 

generated programmatically. 

 Another improvement would be to track statistics over time. Currently, to follow 

any trends, one must generate multiple reports and extract any information of interest. 
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The MLA could keep track of each use and produce addition reports that show trends in 

each report or even changes to the matcher rules file. From that kind of a report, it may be 

possible to identify whether a rule change has had a positive or negative effect on 

matcher performance. 
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