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Exterior Differential Systems with Symmetry

I.M. Anderson and M. E. Fels

Department of Mathematics and Statistics, Utah State University, Logan Utah,
USA, 845321, (anderson@math.usu.edu, fels@math.usu.edu)

Sept. 15, 2004

Abstract. We use the theory of reduction of exterior differential systems with
symmetry to study the problem of using a symmetry group of a differential equation
to find non-invariant solutions.

Keywords: Exterior Differential Systems, Symmetry

1. Introduction

One of Lie’s fundamental contributions to the analysis of differential
equations was to use a symmetry group of a differential equation to help
find particular solutions. The solutions which are fixed under the action
of the group are known as group invariant solutions and the mechanism
for determining these particular solutions is well understood. At the
other extreme lie solutions which have little or no symmetry. In order
to find this type of solution Lie hoped to find a “reduced” system
of differential equations (the resolvent in (Osvianikov, 1982)) whose
solutions could be used to generate solutions without symmetry for the
original equation.

Numerous problems arise with this approach to reduction when for-
mulated within the usual jet space description of differential equations.
Exterior differential systems (EDS) provide a more intrinsic geometric
approach to studying differential equations and by translating Lie’s
reduction method into an EDS setting many of the problems in Lie’s
original approach disappear.

We associate to a differential equation with symmetry an exterior
differential system with symmetry whose integral manifolds contain the
solutions to the differential equation. The quotient or reduced exterior
differential system by the symmetry group is then easy to define. We
find that if the symmetry group of the EDS satisfies certain transversal-
ity conditions then the entire orbit of a solution to the original system of
differential equations corresponds to a single integral manifold for the
reduced EDS. Conversely, given a single integral manifold to the re-
duced EDS it is a simple matter to reconstruct solutions to the original
system and these solutions form an orbit of non-invariant solutions.

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.
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2. Differential Equations and Symmetry

We begin by reviewing a few basic definitions and properties of group
actions and then apply these to the case of group actions on solution
spaces of differential equations. Let G be group and S a set. A left
action of the group G on the set § is a function p: G x § — S that
satisfies

il ple,r) =2,
ii] p(a,pu(b,z)) = plab,z) , a,be G, v €S8, e=identity. (1)

For convenience we will often write p(a, z) = ax. Let P(S) be the group
of bijections of S. For fixed a € G, the function p, : § — S given by
to(z) = pa,z) is a permutation of S. The map G — P(S) given by
a — [iq is a group homomorphism from G — P(S). The orbit of a point
x € § is the subset O, C S given by

O, ={yeS|y=upla,z) forsomeac G}.

The totality of orbits partition S. This, in turn, defines an equivalence
relation on & for which two points z,y € S are equivalent if O, = O,.
The set of equivalence classes are denoted by S/G and is called the
quotient space of § by G, or the orbit space for the action of G on S.
Let

q:5—-S§/G

be the projection q(z) = O,. For each z € S the isotropy subgroup, or
stabilizer subgroup G, C G is defined by

Gy={acCG|pulaz)=uz}

We think of G, as the symmetry group of the point z € S. The fixed
point set S¢ is

S¢={zeS|ar=x forallacG},

and so, for x € S¢, G, = G. A point z € S with maximal symmetry
will be in S¢ while a point with no symmetry will have G, = {e}.

Let A = 0 be a system of differential equations, and let S be the
solution set. A symmetry group G of the differential equations A = 0
is a group G which acts on the solution space S.

Two fundamental problems with regards to symmetry are;

Lie 1. Determine a non-trivial symmetry group G for the differential
equations A = 0 without explicit knowledge of the space of solutions.
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EDS with Symmetry 3

Lie 2. Given a symmetry group G of A = 0 use this to find explicit
solutions to A = 0.

The books (Olver, 1999; Bluman and Kumei, 1989; Osvianikov,
1982) provide a partial solution to Lie 1. We won’t say too much
about this problem but take the position here that for the differential
equations A = 0 a symmetry group G is given.

Given s € § the isotropy subgroup G5 C G is the symmetry group
of the solution s. For a given G the set of fixed points S, or solutions
with G5 = G, are called G-invariant solutions.

Example 2.1. Let A = gz, + u,, = 0 be Laplace’s equation for u &
C?(IR%?—0, IR) the set of C? real-valued functions on IR?—0, and denote
by S € C?(IR* — 0, IR) the subset of solutions. Let G = SO(2) act on
IR? — 0 in the standard way. If f(x) € C?(IR" — 0, IR) and A € G then
w(A, f)(x) = f(A71x),x € IR? — 0 is an action of G on C?(IR? -0, IR).
It is a simple matter to check that if f(x) is a solution to Laplace’s
equation then p(A, f) is also a solution, so SO(2) is a symmetry group
of Laplace’s equation.

We now find S¢, the SO(2) invariant solutions. To find S¢ we note
that S¢ = SN C?(IR? — 0, IR)®. The set C%(IR* — 0, R)” consists of
functions fixed by the action so f € C?(IR?> — 0, IR)“ if and only if

(A, f)(x) = f(A7'x) = f(x), forall Ac SO(2), x€IR*—0.

This implies f(x) is constant on the orbits of SO(2) acting on IR? —
0, and so f(x) = f(r) where r = /22 + 42 For f € SN C?*(IR? —
0, R)¢ we require f(x) = f(r) to satisfy Laplace’s equation which,
upon substitution, yields

1
f/l+;f/:0

and so f(r) = cologr+c;. These are the SO(2)—invariant solutions to
Laplace’s equation.

Most explicit solutions to differential equations like the Schwarzshild
solution to the Einstein equations, the Veronese solution to the har-
monic map equations, and the fundamental solutions to scalar partial
differential equations are group invariant solutions. (Anderson et. al.,
2000).

At the other extreme lie the solutions which have no symmetry.

REMARK 2.1. The focus of this article is to give a mechanism which
uses the symmetry of a differential equation to produce solutions which
have no symmetry.
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4

We approach this problem using exterior differential systems.

In the next section we show how to replace the differential equations
A = 0 with an exterior differential system Z. In section 4 we define the
reduced exterior differential system Z = 0 whose integral manifolds will
allow us to construct solutions to A = 0 without symmetry. Section 4
also contains several illustrative examples of this reduction procedure.
In section 5 we consider Pfaffian EDS and answer the basic question of
when the reduction of a Pfaffian EDS is also a Pfaffian EDS. Section 6
shows how to reproduce solutions to the original system Z from integral
manifolds of the reduced system Z. This is known as the reconstruc-
tion problem for EDS with symmetry. The integral manifolds produced
this way are the sought after solutions which have no symmetry. The
detailed proofs of the theorems are given in section 7.

3. Exterior Differential Systems with Symmetry

Let M be an n-dimensional differentiable manifold, and let Q*(M) be
the exterior algebra of all differential forms on M. An exterior differen-
tial system (EDS) on M is a differential ideal Z in the exterior algebra
(M) of differential forms on M. The ideal 7 is a direct sum of its
homogeneous components ZF = Z N QF(M),

17:<9k201k

It is customary to assume Z° = 0, so that Z contains no smooth
functions. That Z is closed under differentiation is equivalent to the
statement that if w € 7%, then dw € TF .

We also suppose that 7 is of constant rank in the following sense. For
each k = 1,...n, we assume that there are sub-bundles I* c A¥(T*M)
of rank 7, such that 7% is the space of sections of I*.

An integral manifold of an EDS 7 is an immersion s : N — M such
that s*0 =0, for all 8 € 7.

Let S be a subset of Q*(M). The algebraic ideal generated by S is
denoted by < S > so that the exterior differential system generated by
S is < 5,dS >. The notation mod S means computed modulo the ideal
<S> in the appropriate setting. For example Z? mod Z' is precisely
Z?mod (< Z' >NQ?(M)), but this more cumbersome notation will not
be used. The standard reference on EDS is (BCG?, 1991).

If U is an open subset of M we write Q*(U), Z(U), T*U, I*(U), and
so on to denote the restriction to U. Let U be an open set in M we
say the set of forms {k®*} form a local basis for ZF(U) mod ZF-1(U) if
K"k are point-wise linearly independent and every x € Z¥(U) can be
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EDS with Symmetry 9

written as
K= pu, K" +p

where p,,, € C°(U), p € IZF"1(U), and p,, are unique.
Given an EDS Z, a local basis B(U) on the open set U C M is a
subset B(U) C Z(U) given by

BU)={0",a", ..., kY%, ... ,v""}

where {6%1} are a basis for Z'(U), {2} are a basis for Z?(U) mod Z*(U),
..., {v¥n} are a basis for Z%(U) mod I 1(U). If B(U) is a local basis
then given w € Z¥(U) there exists unique p,, € Q*/(U) such that

W= puy; N+ pw, ARYE (2)

If 7 is a constant rank EDS system, it is easy to check that about each
x € M there an open neighbourhood U of x and local basis B(U) for
Z(U). It is also easy to check that if B(U) is a local basis for Z on U
then s : N — U is an integral manifold if and only if s*B = 0.

Most exterior differential systems that arise in practice are generated
algebraically by forms of low degree (in fact usually of degree one or
two) and sometimes this may be used to simplify the determination of
Z. We make this formal in the next definition.

DEFINITION 3.1. An EDS T is generated algebraically by its first
k-homogeneous components if for each x € M there exits an open
neighborhood U of x such that

T(U) = <IHU), T*(U),..., TFU) > .

If 7 is algebraically generated by its first k-homogeneous compo-
nents, then s : N — M is an integral manifold if and only if s*0 = 0
forall @ e TV, 1 =1,..., k. It is easy to see if 7 is also of constant rank
then there exists a local basis B(U) consisting of forms in Z!(U) for
1<I<k.

We now turn to the relationship between differential equations and
EDS. Every sufficiently regular system of differential equations A =0
for m real-valued functions of n real variables can be encoded, at least
locally, as an EDS in the following standard way. Let J*(IR™ IR™)
denote the jet space of functions from IR"™ to IR™. The standard coor-
dinates on J*(IR", IR™) are
e i)

i o,a
(.CU y Uy Uy u21i27"'7ui1i2...ik

i1 1§i,i1,i2,...ik§n,1§a§m.

new_tut_f.tex; 26/09/2004; 12:45; p.5



6
The contact one forms on J*(IR", IR™) are given for [ = 0,...,k—1 by

a = du¢ . —us .. 41 ]
0.0, = dui, 4, U, i, 4 1 <ddn, i, i S0, 1< a<me.

These forms generate the contact ideal C which is the differential ideal

C=<070%,....6° doe,doe ..., do° > .

s Yipo - 01 lp—1" i1 11 0k—1

A system of differential equations is the zero set of a smooth function
A : J¥(IR", IR™) — IRP. Subject to rank conditions on the Jacobian of
A this zero-set defines the embedded submanifold

M = {(z"u® ..., ul ;)| A=0}.

ey Wy g,

The restriction (or pullback by the inclusion map) of the contact ideal
to M defines an EDS Z on M. A solution to the differential equations
A = 0 defines an integral manifold s : N — M of Z such that s*(dx! A
dz?... A dx™) # 0. Conversely every integral manifold : N — M such
that s*(dzt A dx?... Ada™) # 0 gives rise to a solution of A = 0.

Example 3.1. The F-Gordon equation ug, = F(z,y, u, uz, u,) defines
the 7 dimensional manifold M with coordinates (z,y, u, Uy, Uy, Uzz, Uyy)
as a submanifold of J2(IR?, IR) by

(xvyvua Ua:y“%“a:x,uyy) - <m7y7u7u$7uy7uxa:7umy = F7 uyy)-

The restriction (or pullback by inclusion) of the contact ideal produces
the EDS on M given by

I =< du—uzdr —uydy, duy— uzedr— Fdy, duy,— Fdr— uy,dy
dz N duge +dy N dF, de ANdF +dy A duyy >.

If u= f(x,y) is a C* solution to the F-Gordon equation ug, = F,
then the map s : IR? — M defined by

S(‘Tay) = <x7y?u = faux = a:rf,uy = ayﬁumc = a;%yfauyy = 8§f>
is an integral manifold of Z. Conversely, if

8(337y) = (x,y,u = f17u$ = f27uy = f37uxa: = f4auyy = f5)

where the f; are functions of (z,y), is an integral manifold of Z, then
one readily finds that

fo=0uf1, fa=0yf1, fa=02h, fs =0, h

and u = fi(x,y) satisfies the F-Gordon equation u,, = F. In this way
the EDS 7 encodes the F-Gordon equation.
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EDS with Symmetry 7

The next example shows that a differential equation A = 0 can be
encoded as an EDS in different ways.

Example 3.2. On M = IR® with coordinates (x,y, u, uz, u,) let

1 =< du—uzdr —uydy , dv A dug +dy A duy,
(duy — F(z,y,u, ug, uy)dy) A dx > .

If w= f(x,y) is a solution to uzy = F(z,y,u, us,uy) then the map
s:IR?> — M,

S(l’,y) = (x,y,u:f,ux:&gf,uy :8yf>

is an integral manifold to Z. Conversely, if

S(l’,y) = (x,y,u = f(x’y)7ux = g($7y)’uy = h(SE,y))

is an integral manifold of Z, then it is easy to check that

9=0:f, h=20yf

and u = f(x,y) satisfies the F-Gordon equation wu,, = F. This EDS
also encodes the F-Gordon equation.

A classical contact symmetry of the differential equations A = 0 is
a diffeomorphism ® : J*(IR™, IR") — J*(IR™, IR") such that ®*C =
C and ®(M) = M. Each classical contact symmetry is a symmetry
of the differential equations A = 0 (Olver, 1999). A classical contact
symmetry restricts to a diffeomorphism ® : M — M such that ®*Z =7
and this leads to the following general definition.

DEFINITION 3.2. A symmetry of the EDS T on a manifold M is a
diffeomorphism ¢ : M — M satisfying ¢*Z = Z. A symmetry group of
T is a subgroup G C Diff (M) whose elements are symmetries of I.

If ¢ a symmetry of the EDS 7 then
¢*TF =7F and ¢ IF = I*.

See (Anderson et. al., 1993) for more information on the relationship
between symmetries of EDS associated to differential equations and
classical contact symmetries.

LEMMA 3.1. If ¢ is a symmetry of the EDS T and s : N — M is an
integral manifold of T then ¢ o s is an integral manifold of T.
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8

Proof. We compute (¢ o s)*Z = s*¢*Z = s*Z = 0, and simply note
that ¢ o s is an immersion. ]

This lemma just says that symmetries of an EDS map integral
manifolds to integral manifolds.

4. Reduction of Exterior Differential Systems -
Introduction and Examples

In this section we define the reduction of an exterior differential system
by a symmetry group G. We find that if the action satisfies a certain
transversality condition then the reduction of an EDS can readily be
computed. Four examples are then given in detail.

The definition of a symmetry group G of an EDS allows G to be
an arbitrary subgroup of Diff(M). We will restrict our attention to
symmetry groups which are Lie groups and where the action p : G X
M — M is smooth, even though most of the concepts presented don’t
require this restriction. We will also assume, without loss of generality,
that all actions are effective.

The action of the Lie group G on the manifold M is regular (Olver,
1999) if the quotient space M /G, which we now denote by M , is a
differentiable manifold with the projection map q : M — M /G being a
submersion. If G acts regularly on M with ¢g-dimensional orbits, then
M = M/G is an n — ¢ dimensional manifold.

Let T" be the Lie algebra of infinitesimal generators of the action of
G (Olver, 1999), and let ' C T'M denote the corresponding completely
integrable distribution with I'; = span{I';}. We use the notation X €
T to indicate that X is vector field with values in T, while X € T,
denotes X is a tangent vector at x taking values in I';.

We now give the definition for the reduction of an EDS, (Itskov,
2001).

DEFINITION 4.1. Let G be a Lie group which acts reqularly on the
manifold M and is a symmetry group of the EDS T on M. The reduced
EDS T C Q*( M) is defined by

I={acQ(M)|qacl}.

The reduced EDS 7 is clearly a differential ideal whose homogeneous
components are

" ={acQ¥M)|qacT'}.

While the definition of the reduced EDS 7 is fairly simple, the actual
determination of the properties of Z is not. For example if 7 satisfies
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EDS with Symmetry 9

the constant rank hypothesis there is no reason to believe that 7 will
be of constant rank.

In order to compute Z and study its properties we introduce the
subalgebra of semi-basic differential forms Ay in Z defined by

A ={a €T |1xa=0, foral X eT}. (3)

The algebra Ay, is a direct sum of its homogeneous components A%,
given by

Ay ={aeT! |ixa=0, forall X €T} =T nQk(M),

where Q% (M) is defined in Appendix A. Algebraically Ay, C Q% (M)
is an ideal, and so a local basis B, (U) for the algebra Ay, satisfies the
same conditions in (2) except that p,, € Q';b_l(U).

In a similar manner to Ag we can define the subset A’;b c IF of
semi-basic k-forms which is given point-wise by

Al ={a el |ixa=0, forall X €T} =1InAY (M). (4)

sb,x

It is easy to check that if A’S“b is a bundle, then .A];b are the sections of
this bundle.

REMARK 4.1. Most geometric properties of I can inferred from the
properties of Ay and the sets A’;b.

An illustration of Remark 4.1 is given by Lemma 7.1 where we prove
that if A';'b is a bundle then I” is a bundle and consequently, if this is
true for all k = 1,...,n, then T is of constant rank.

We now look at some other useful relationships between Ay, and 7
that will assist in computing Z. The first point we note is that if @ € Z
then q*a € Ag,. More precisely by Lemma A.3 or (20), we have

A% = q*(T).
The local relationship between Ag, and Z that is given in the next
lemma and its corollary is extremely useful.

LEMMA 4.1. Let U be an open set of M admitting a cross-section
o:U — U, where U = q(U). If a € A¥(U) then o*a € "W).
Therefore o*(A¥,(U)) = D).

Proof. By Lemma A.2 we have q*o*a, ) € I(’f(j) for all z € U.

However both q*o*a and I* are invariant and so q*c*« € Z%(U) which

implies o* o € Z"(U ). The fact that ¢* is onto follows from o*q*@ = &

for any a € Z"(U ). ]
From this we have the following corollary.
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10

COROLLARY 4.1. Let U be an open set, 0 : U — U a cross-section
where U = q(U), and Bs(U) a local basis for Ag(U). The pullback
0*Bsp(U) is a local basis for Z(U ).

Without additional hypothesis about the relationship between the
symmetry group G and Z it is difficult to make inferences about Z.
We now introduce a geometric condition on the action of G which, if
satisfied, allows us to precisely determine the structure of Z. In order to
give this definition we use the notation that if J C T*M is a sub-bundle
then J+ C TM is the annihilator given point-wise by

JE={Y eT,M|iwya=0 foralac.J,}

DEFINITION 4.2. Let T be an exterior differential system and G a
symmetry group of T which acts reqularly on M. The action of G is
transverse to T' if T N (IY)*+ = 0.

Two useful properties of transverse actions are given in the next
proposition.

PROPOSITION 4.1. Let G be a symmetry group of the EDS T which
acts transversally to I'. If s : N — M s an integral manifold of I the
symmetry group of s is discrete and qo s is an integral manifold of T.

Proof. If s : N — M is an integral manifold then s, : T,N — (I')*
but transversality implies s.(7,N) NI = 0. By the effectiveness of the
action of G this implies that s is not invariant with respect to any one
parameter subgroup of G. Therefore the symmetries of s are discrete.
For the second part of the proposition let & € Z. Then q*@ € Z and
(qos)*a = s*q*a = 0 as required. To finish the proof we need to show
that q o s is an immersion. Suppose Y € T, N and that (qo s),Y =
0. Now because s is an integral manifold s,Y € (Ii(m))L, and so, if

(qos)«Y =0 then s,Y € kerq, = I' and hence s,Y € T'N (Il)J-. By
hypothesis this implies that s,Y = 0. But s is an immersion and so
Y =0. |

We now present a proposition which will allow us to compute Z
under the transversality hypothesis.

PROPOSITION 4.2. Let T be an EDS that is algebraically generated
by its first k-homogeneous components and let G be a symmetry group
of T which acts transversally to I*. Then about each point x € M there
exists an open set U and local basis

BU) = {n’,0"",a", ... "} (5)
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EDS with Symmetry 11

1<i<gq 1<w <§ forl =1...k, where 0“1 € AL (U),a*? €
A% (U), ..., 5% € A% (U). Moreover given any local basis of the form
(5), then

1

Bs(U) = {6V ,a"?,..., k"}

is a local basis for Ag,(U).

This proposition in conjunction with Corollary 4.1 allows us to
compute 7 locally by finding a local basis for Ay, consisting of forms
of low degree, and pulling this back by a local cross-section to the
action of GG. All of these steps are algebraic which makes determining
T algebraic (locally). See Corollary 7.3 for some other consequences of
this proposition.

We apply the argument above to the examples where the EDS are
generated by their first two homogeneous components. We work on an
open set U where the action is transverse to Z'(U) and where there
exists a cross-section o : U — U. We then find a local basis for Ag,(U)
which by Proposition 4.2 consists of one-forms and two forms (we leave
the choice of 7 to the reader). By Corollary 4.1 these pull-back to give
a local basis for Z(U ).

Example 4.1. On M = {(z,y, u, uz,uy) € R® | 2 +y#0 } let

Uzl
7T = <du—uzdr—uydy , dugNdr+duyNdy, (dug— j Ldy)Adx > .
rTyY
By definition, 7 is algebraically generated by its first two homogeneous
components, and Z encodes the differential equation of F-Gordon type

(see Example 3.2),
Vit ©)
r+y
We reduce Z by the translational symmetry u — u + ¢,¢c € G = IR.
The Lie algebra of infinitesimal generators on M is I' = span{d, }. The
transversality condition T'N (I')+ = 0 is satisfied everywhere on M.
Note that there are no G-invariant solutions to (6).
Let (z,y,v,w) be coordinates on the quotient M = M/G = IR*
and let o be the map

Umy ==

O-(xvyavvw) = (x:l‘ay:yvu:o’ux =V, Uy :U})

which is easily checked to be transverse to the orbits of G on M, and so
is a local cross-section. We now find generators for Z simply by finding
a basis for Al, and A% mod A, and pulling them back with o. The
forms are found to be

AL = {0}, A% = span{ dz Adu, +dy Aduy , (dug — ‘xuj?;y dy) Ndzx }.
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12

Using the cross-section ¢ and pulling back the basis gives on account
of Corollary 4.1,

I =<dxANdv+dyAdw, (dv—xfj_u;dy)/\dx>.

This is the s = 0 hyperbolic system (Bryant et. al., 1995) which encodes
the differential equations

_ Vow Cw, = Vow ‘ (7)
r+y r+y

Uy

It is interesting to note that both the original scalar equation (6) and
the system (7) in this example are integrable by the method of Darboux.
Moreover equations (7) are linearizable (Bryant et. al., 1995) while the
original equation is not. In a forthcoming paper we will consider the
reduction of Darboux integrable equations in more detail.

Example 4.2. We start with the EDS
T = <du—ugzdt—ugzdr , ditNdugz,+deAduy, (dugy—uyzedz)Adt >

on the five manifold M = IR® with coordinates (¢,,u, uz, Uz ). This
EDS encodes the heat equation u; = uz, and 7 is algebraically gener-
ated by its first two homogeneous components. The action of G = IR*
on M defined by

Wt T, Uy Uy ) = (6,2 Ay Mg, Mgy ), A € G

is easily checked to be a symmetry group of Z. The Lie algebra of
infinitesimal generators on M is I' = span{udy, + 0y, + Uyz0y,, }. We
find that the transversality condition ' N (I')*+ = 0 is satisfied only at
points of M where u # 0. So we work on the open set U = M —{u = 0}
where the action is transverse. Note that working on the set u # 0
eliminates the scale invariant solution u = 0.

Let (t,z,w,w,) be coordinates on the quotient U = U/G = IR* and

let 0 : U — U be the cross-section
o(t,z,w wg) = Lz, u=1,u = W, Upy = Wy + W?).

According to the argument above, we need to find a local basis for the
semi-basic forms A%, (U) and A%, (U). The forms are

Ay(U)= {0}

A% (U) = span{(—u2 + uty,)dt A\ dz + ugdt A du — udt A duy, ,
—Ugedt A\ du + udt N\ dug, — ugdx A du + udz A duy}.
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EDS with Symmetry 13
By pulling back the given basis forms in A2 (U) using o gives
T = < (dw—wydzx) Ndt , d(wy +w?) Adt+dwAdx> .

This exterior differential system encodes Burgers’ equation wy = wy, +
2ww; on a four manifold, see (Bryant and Griffiths, 1995) and (Krasilc-
shchik and Vinogradov, 1984). In this example it is interesting to note
that the heat equation which is in encoded by Z is linear while Burgers’
equation which is encoded by 7 is not. The projection map q in this
example is

a(t, z,u, Uy, Uy ) = (t,z,w = Ugt "t wy = (Ugy — ux2)u72).

By using Proposotion 4.1 we can take any non-vanishing solution to the
linear heat equation and map it by q to a solution to Burgers’ equa-
tion. This transformation is known as the Hopf-Cole transformation
(Bluman and Kumei, 1989).

Example 4.3. The EDS described in section 3 defined by the wave
equation gy = 0 is

T = <du—uzdr—uydy, duz—ugdr, duy—"1uy,dy, dug Ndr, duy, \dy >

on the 7 manifold M = IR" with coordinates (z,y, u, Uz, Uy, Uzz, Uyy).-
The EDS is algebraically generated by its first two homogeneous com-
ponents. The group G = IR? acting by translations * — z+a; y — y+b
is a symmetry group of Z. The Lie algebra of infinitesimal generators
is I' = span{d,, d,} and (I')* NT = 0 is satisfied at all points of the
open set

U= {(-% Y, Uy Ugy Uyy Uy uyy) S JR7 |Uzuyuzmuyy 7é 0 } (8)

A solution to the wave equation ug, = 0 which is invariant under a
connected subgroup of G must be linear and so working on the subset
UpUyyUylz, 7 0 eliminates the invariant solutions.

The transversality condition is satisfied on U. Let o be the cross-
section o : U — U given by

a(a,ﬂ,w,wa, wﬁ) =

(mzo,yzo,u:wmx =, uy = 0, Uugy = wi?uyy: ﬁ) (9)

o wg

where U = {(«, 8, w,wq, wg) € R® | afwawg # 0}. We first compute
AL (U) to be

A;b(U) = span{UyyUpr At — Uyylediy — Ugplydity} .
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To compute A2 (U)mod Al, (U) we note that
duge N dr = uge ™t dug A dug, mod TH(U)
duyy N dy =y, duy A duy, mod IY(U).
Using these new generators in Z2(U) we find
A% (U) = span{dug A dugy ,  duy A duy,} mod AL (U) .
To find Z(U ) we pull back by o the basis forms given above to get
I(U) = <dw — woda —wgdf , dwg ANdo,  dwg Adf >

which is the s = 1 hyperbolic EDS for the wave equation (Bryant et.
al., 1995).

Example 4.4. The standard EDS for the system of two partial differ-
ential equations in the plane u, =0, v, =0 is

T=<du—ugdr, dv—uvydy, dxAduy, dyAdu,>

on the six manifold M = IR® with coordinates (x,y,u,v, Uy, vy). The
ideal 7 is algebraically generated by its first two homogeneous compo-
nents. The EDS 7 is invariant under G = IR acting by simultaneous
translation u — u+a; v — v+a, a € G. The Lie algebra of infinitesimal
generators is I' = span{d, + 0,} and (I')* N T # 0 so the action is
transverse everywhere. Note that there are no G-invariant solutions.

Let (z,y,w,ws,w,) be coordinates on the quotient M = IR® and
let o be the cross-section

o(z,y, w, W, wy) = (,y, w,v = 0, Wy, —wWy). (10)
We compute Z by first finding

Al = span{ du — uydr — dv + v,dy } ,
A% = span{ dz A du,, dy A dv, } mod Al .

Pulling back using the cross-section ¢ we deduce from that
T = <dw—wydx —wydy , dxANdwg, dyAdw,>.

The quotient EDS 7 encodes the wave equation ug, = 0 on a five
manifold (put F' = 0 in Example 3.2).

5. Reduction of Pfaffian Systems

We now apply the previous general discussion to a special but impor-
tant type of exterior differential system called a Pfaffian system.
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DEFINITION 5.1. An exterior differential system 7T is a Pfaffian sys-
tem if for each point x € M there exists an open neighbourhood U C M
such that

T(U) = <6,d0> where § € TV (U).

We will write I instead of I' for Pfaffian systems. The rank of a Pfaffian
system Z is dim I, where x € M which we will assume is independent of
x so that the rank is well defined. Every Pfaffian system is algebraically
generated by its first 2 homogeneous components, but the converse is
not true.

Examples 4.3 and 4.4 in Section 4 demonstrate that the reduction of
a Pfaffian system is not necessarily a Pfaffian system. In Theorem 5.1
below we give sufficient conditions such that the reduction of a Pfaffian
system is again a Pfaffian system. The conditions are expressed in terms
of the derived system Z’ of a Pfaffian system.

DEFINITION 5.2. The deried system I' of T is the Pfaffian system
generated by

I'=<0, df > where #eZ'and df =0 mod Z'.

The main theorem in this section resolves when the reduction of a
Pfaffian system with a symmetry group transverse to Z' is a Pfaffian
System.

THEOREM 5.1. Suppose that G is a p-dimensional Lie group acting
reqularly with q-dimensional orbits on the manifold M, and that G is a
transverse symmetry group of the rank r Pfaffian system Z. The reduced
EDS T is a Pfaffian system if and only if G is transverse to Z'. In this
case the rank of T isr —q, and T' = (T)'

Theorem 5.1 is proved in Section 7. We consider the conditions in
Theorem 5.1 by looking at two examples.

Example 5.1. The Pfaffian system in Example 4.3 is transverse to Z!
on the set U. The derived system is

T' = <du—uzdr —uydy , dzAdug+dy A duy >

so that (I')tNT = { u, 0, —u,0, } and therefore, according to Theorem
5.1, Z is not a Pfaffian system. This is verified by the computations in
Example 4.3. In particular note that the two-form dw, A da € fQ(U )
but

dwa Ada ¢ <THU),dT"(U) >.
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Example 5.2. In Example 4.4 the action is transverse to Z'. The
derived system is Z’ = {0} and (I')* NT =T so G is not transverse
to (Z')!. However let’s consider the prolongation (BCG3, 1991) of T
which consists of writing the EDS for the equations

Uy = 0,0, = 0,uzy = 0,uyy = 0,0z = 0,05, =0

which are obtained by including the first derivatives of the equations
uy = 0,v; = 0. This gives rise to the Pfaffian system

J =< du—uzdr, dv—uvydy, duy—uzdr,
dvy — vyydy ,  dx Adug, , dy Advoy, >

on an eight manifold with coordinates (z,y,u, v, Uz, Vy, Uga, Vyy). The
derived system is

J =<du—uzdr, dv—uvydy, dxAduy, dyAdu,>

and J’ = Z. Therefore (J')- NT = I* NT = 0. By Theorem 5.1, the
reduction of J will be a Pfaffian system. Let (x, y, w, Wy, Wy, Wez, Wyy)
be coordinates on M and by pulling back with the cross-section

0'(37, ya w, wm wya w:m:7 wyy) =

(,y,u=w,v = 0,Uy = Wy, Vy = —Wy, Uy = Wag, Uyy = —Wyy)
we get the Pfaffian system

T =< dw —wydr — wydy, dwy — wezdz, dwy — wy,dy,
dr N\ dwgg, dy N dwy, >.

The EDS J encodes the wave equation Wy = 0 on a 7 manifold in
the standard way. For more information on the relationship between
prolongation and reduction see (Anderson and Fels, 2004).

REMARK 5.1. A Pfaffian system T is completely integrable if it satis-
fies the Frobenius condition Z' = Z. Under fairly mild conditions on the
action of the symmetry group, it is always the case that the reduction of
a completely integrable Pfaffian system by a reqularly acting symmetry
group is again a completely integrable Pfaffian system, (Fels, 2004 ).
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6. Reconstruction

In Lemma 4.1 it was shown that if Z is an EDS, G a symmetry group
transverse to Z! and s : N — M is an integral manifold of Z then qo s
is an integral manifold of Z. The reconstruction problem is essentially
an inverse to this in the following sense: Suppose 5 : N — M is an
integral manifold of Z, find an integral manifold s : N — M of Z such
that § = qos. Note that if s solves the reconstruction problem then so
does pg o s for any g € G.

Given a symmetry group of an EDS 7 satisfying a number of hy-
pothesis (see Proposition 6.1 below) the local reconstruction problem
can be solved in the following way. Let 5 : V' — U be an integral
manifold of Z where U is an open subset of M on which there exists
a cross-section o : U — M. Now let v : V — G be arbitrary and find
integral manifolds s : V' — M of 7 having the form

s = p(y,0038).

In order that s above be an integral manifold the function v has to
satisfy a system of completely integrable differential equations. Once
this system of equations for = are solved, the resulting s is a non-
invariant solution. This decomposes the problem of finding integral
manifolds into two steps. First finding integral manifolds for Z then
finding . Three examples are given below.

An action of G on M is free if G, = {e} for all x € M and we will
consider the reconstruction problem for free actions only.

PROPOSITION 6.1. Let T be a EDS with a symmetry group G which
is transverse to I' and acts freely and reqularly on M. Let s : N — M
be an integral manifold of Z. Then for every point s(ty) € s(N) there
exists a G-invariant open neighborhood U of s(tg) and cross-section
o:U — U, such that s(t) = u(y(t),0 03(t)) for all t € s~ (U) where

1) 5 =qo s is an integral manifold of Z(U ), and

2) v : s Y U) — G, where the graph of v satisfies a completely
integrable Pfaffian system on G x s~ (U).

The essence of Proposition 6.1 is that every integral manifold of 7
can be locally decomposed into a solution of Z and a solution to a
completely integral system of differential equations. We now present
the examples.

Example 6.1. The EDS from Example 4.4 is

T = <du—ugdr , dv—vydy, de Adu; , dy A dv, >
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and G = IR acts by simultaneous translation v — u+4a; v — v+a, a €
G. The quotient is

T = <dw —wydr —wydy , dzANdwy, dyAdw,>.
Let §5: (z,y) — M be the integral manifold

s(x,y) = (z,y,w = f(z) + 9(y), wr = Ou f, w0y = 8,9)
of Z. With v(z,y) = a(z,y) and o given in (10) we have

s(x,y) = p(y(z,y),005(x,y))
= (x,y,u = f+g+a(x,y),v = a(x,y),ux = 8xf)vl‘ = - yg)
This is an integral manifold if and only if
Oza=0, Oya+ 0yg=0.

Solving these equations gives a = —g(y) + ¢g, which makes s a G-
parameter family of (non-invariant) integral manifolds.

Example 6.2. The Pfaffian system from Example 4.3 is
I ={0=du—uzde—uydy, 60p=duy—uzdr, 6,=du,—uydy}

on the open set U =C IR" given in (8). The action is  — = 4+ a; y —
y+b, (a,b) € R? =G and Z(U) is

I(U) = <dw — wedo —wgdf , dwq Nda, dwg ANd3> .

Let g(()é,ﬁ) = (a,ﬁ,w = f(Oé) +g(ﬁ)awa = 6af7wﬁ = aﬁg) be an
integral manifold of Z(U ). Let v(a, 3) = (a(a, B8),b(ar, 3)) then s =
w(y,005) with o in (9) is

s(a, B) = (z = ala, B),y = bla, B),u = f(a) + g(B),

B,u T b )
Uy = O, Uy = Py Ugz = 7> = 7/
Y f/(Oé) vy g’(ﬂ)
For s(a, 3) to be an integral manifold of Z(U) we get
o p
0=s"0, =da— da and 0=s"0,=dp— db.

f'(a) ! g'(B)

Therefore

a:/flia)da—l—co, b:/b/;ﬁ)dﬁ+c1.

This determines a G-parameter family of non-invariant integral mani-

folds.
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Example 6.3. The fourth order differential equation on pg. 156 (Bluman
and Anco, 2002)

2 2 3

DUpgUgrr = AUz,  Uslzzr  SUglpze LU,
Uprzr = + - 2 - - 2
Uy U U U Uz

defines the completely integrable Pfaffian system

I =<du—uzdr, duy— ugdr, dugs— Upzedr,
DUy U 42 uZu Suzu 43
Uy U U U uZ

on M = {(x,u, Uy, Uzz, Uzze) € IR | uu, # 0}. The three dimensional
group G = (a,b,c¢) a € IR,b,c € IR* with multiplication law

(a',V, ) (a,b,c) = (a +Va,b'b,cc),
and action on M
— — _p—1 _ -2 _ 1—3
r=br+a,u=cu, uy =0 "cug, Upz = b “Clgy, Upze = b °Clgys

is a symmetry group of Z which acts freely on M. The Lie algebra of
infinitesimal generators on M is

— 3Ugpza0

Ugzz )

I' =span{ 0, x0y — ugyOy, — 2Uz,0

Uz

On U = M — {utuptppy + Uitz — 2uu
to I'.

Let U = {(t,y) € IR? | y # 2t*> — t} be coordinates on the quotient
U/G and let o(t,y) = (0,1,1,¢,y) be a cross-section. The semi-basic
one forms are

2, = 0} the action is transverse

AL (U) = span{(2uggzuuy, — 2u? u—i—umu Duzdu + uuZ dug,
—(Bugprutty — duu’ +2umu Yudi, — (2utt gy — u2 ) Uty dig, }

and pulling the single generator back by o gives
I(U)=<dy — (1 —2t)dt > .

The most general integral manifold of Z(U ) of the form y(t) is 5(¢) =
(t,y =t —t>+cp), and

oos(t) = (0,1,1,t,t—t2+c0)

With v : IR — G given by ~(t) = (a(t), b(t), c(t)), we compute

5(0) = ur(®), 0 050) = (att), ), 29, 8y 042y gy)).
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The differential equations for v : IR — G are obtained by writing
s*T =0 and we get
bit) -t c(t)

alt) = —_ . b(t) = b(t) &) =

C —-t27 Co —-t2’ N Co —-t2 ’

These differential equations are Lie equations for v : IR — G see (Fels,
2004). The coordinates (a,b,c) for G have been chosen so that the
reconstruction equations can be integrated by quadratures. The exis-
tence of such coordinates is guaranteed because the symmetry group is
solvable.

REMARK 6.1. IfT is a completely integrable Pfaffian system and the
symmetry group G acts freely and transversely to T Y with codimension
1 orbits then then v in Proposition 6.1 is a solution to a Lie equation

(Fels, 2004 ).

7. Reduction of Exterior Differential Systems - Theoretical
Aspects

In this section we will make frequent use of the notation and results
from Appendix A and B. We will assume throughout this section that
G is a symmetry group of the constant rank EDS 7 on M and that the
group G acts regularly on M.

7.1. TRANSVERSALITY AND PROPOSITION 4.2

In this subsection we look at some consequences of transversality and
prove Proposition 4.2. We begin by first looking into the question of
whether 7 is a constant rank EDS. If the dimension of I*NA¥, (T M), 1 <
k <n is independent of z, then

Al = I" N AL (T M)

is a bundle over M and the set of semi-basic forms A’;b in 7 is the space
of sections of A];b'

LEMMA 7.1. If Al;b 1s a bundle, then T is the space of sections of
the bundle T" = qk(Afb), and so I is of constant rank. Conversely, if
7T is constant rank, then A% = q*( Tk) is a bundle.

Proof. A differential form & € QF( M) is a section of I" if and only
if g*a € A%, But q*a € QF (M) always, and so @ is a section of " =
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q"(A%,) if and only if q*@ € T¥.The converse is a direct consequence of
the pullback bundle construction, see Lemma A.1. ]

Note that the bundles A’;b and I* in Lemma 7.1 have the same rank.
In the next proposition we use Appendix B with W =T, and I =7,
for x € M. For example we have from equation (21) that

pk:dim(<f;>mA’f(T;M)) = (Z)—(”?{”) and dj, = 1 — py,

where dj, = rank(I¥ mod I1).

PROPOSITION 7.1. If the symmetry group G acts transversally to I*
then fork=1,...,n andx € M

dim 4%, = dim(E 1 AG@M) = (") (M)

and so Agb 1s a vector bundle.

Proof. Fix z € M. Using Lemma B.2 there exists a basis {n’, §%, w*},

i=1..¢qa =1..rm—-¢s =1...n—r of T;M, with I} =

span{n’, 091}, A;b,x = span{#*}, and w® € A}, (T M) satisfying
ni(Xj) :5;-, Hal(Xj) :0, wS(Xj) =0.

By Corollary B.1 we have

IFA AR (TFM) = span{ A% W' A AW WS AL A WL A QY

S1...8k

ey WL ANOM NG 9N L)

where Agk , w*' A ... Aw’* are dy = ry — pg linearly independent

k-forms. It is easy to compute that

dim A%, | = dim I 0 AR (T M) = (” . q) - (”;“ ) +dy

which is independent of z. ]

COROLLARY 7.1. Let G be a symmetry group of the constant rank
EDS T. If G acts transversally to I' then T is a constant rank EDS.

If we introduce the ideal
Ta=<Agp>=<AY A%, ... A% >

we have the following corollaries (See Corollary A.1 and A.2).
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COROLLARY 7.2. Suppose U is an open set in M such that A% (U), k =
1,...,n are bundles, and let U = q(U). If

{64} is a basis for T+ (U ),

{a®} is a basis for T°(U ),

{v} is a basis for T"(U )
then T4(U) = <q*0™,q*a,...,q*v > =<q*Z(U) > .

We now proceed to the proof of Proposition 4.2.

Proof. By Proposition 7.1 the bundles A% and T " are well defined 7
is a constant rank EDS. Now let x € M and U be an open set about
x where {X;},i = 1...q are a basis for I'(U) and {n,0"!,ws}i =
1...qqw1=1...11—q,s=1...n—ry are a basis for T*U and where
the forms {n’,6“1} form a basis for Z'(U) and satisfy the conditions
from Lemma B.2

n'(X;) =0, 6"'(X;)=0, w(X;)=0,
on U. Construct the generators for Z(U) and Z4(U) exactly as in
Lemma B.3 and Corollary B.1 (a refinement of U might be necessary).
That is
ZU) = <n', 0¥, A¥2 W' AW, ... ,Agf:;ll_,nlwsl Ao AW >

5182

and

IA(U) = < OU, A 5 /\Wszw--,Agf:g:l,lesl A AW S,

5182

where A7! W™ AL AW u = 1...d; are point-wise linearly inde-
pendent.

We now use the same argument as in Lemma B.5. The condition
that Z'(U)...Z%(U) generate Z(U) (after perhaps refining U) imply

that for all [ > k there exists x4 € Q7%(U) such that

ALl L AW AT = Rt A(ARE L WAL AW ) A ARt (AW

T1...T] T1...Tk
Therefore
TA(U) =<0 A2 W™ ANw™, ..., A’;lmslcwsl Ao Aw'F >
with Z(U) behaving similarly.
Now choose forms a®? € A% (U), ..., s € A (U) which provide
a basis for A2 (U) mod AL (U), ..., A% (U)mod AR-H(U). These forms
along with n* and 0! satisfy the conditions of the proposition. ]

One consequence of Proposition 4.2 and Corollary 4.1 is the next
corollary.
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COROLLARY 7.3. LetZ be an EDS algebraically generated by it first
k-homogeneous components and let G a Lie symmetry group which
acts transversally to T. Then T and L are generated their first k-
homogeneous components, and for k > 2

rank(fk mod jk_l) = I‘ank(Ik modzk_l) = rank(Iﬁ mOdI_ﬁil).

7.2. PFAFFIAN SYSTEMS AND THEOREM 5.1

We now turn towards proving Theorem 5.1 on the reduction of Pfaffian
systems. We begin by rewriting Corollary 7.4 when 7 is a Pfaffian.

COROLLARY 7.4. LetZ be a Pfaffian system and G a Lie symmetry
group which acts transversally to T'. Then T4 and I are algebraically
generated by their first two homogeneous components.

This corollary does not say that the reduced system is a Pfaffian
system. The next lemma allows us to decide when a reduced Pfaffian
system 7 is a Pfaffian system in terms of Z 4.

LEMMA 7.2. LetT be a Pfaffian system and G a Lie symmetry group.
The reduced EDS T is a constant rank Pfaffian system if and only if
T4 is a constant rank Pfaffian system.

Proof. Let U ¢ M, U C M, and o : U — U satisfy the conditions
of Corollary 4.1. By Corollary 7.2 Z4(U) = <q*Z(U ) >, so if T is a
Pfaffian system then Z 4 is a Pfaffian system. By Corollary 4.1 Z(U) =
0*TA(U), therefore if T4 is a Pfaffian system, then 7 is a Pfaffian
system. 1

The main result on Pfaffian systems from section 5 can now be
proved.
Proof. (Theorem 5.1) We begin by proving the only if condtion. The
initial conditions are I is of rank r, I’ is of rank r/, and the orbits of G
are of dimension ¢. Suppose that I*-NT' = 0, but dim((I')*NT) = ¢ > 1.
We will show that Z4 is not a Pfaffian system, and so by Lemma 7.3
7 is not. Let U be an open set with {X,},u = 1...t be a basis for
(I")+NT and complete this to a basis { Xy, X, },u = 1...q—t for T(U).
Choose a local basis {n*,0°},v=1...q—t,z=1...7' —t for (T')(U)
such that (see Lemma B.2)

n'(Xu) =0, n"(X,) =4, 0°(Xu) =0, 6°(X,) =0.

Complete this to a local basis {n*,0% n”,0*},v =1...t,a=1...r —
v’ —t for T} (U) such that

nv(Xu) - 657771}()(#) = 07 ea(Xu) = 079a(X,LL) - 07
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and finally complete this to a coframe on U with w®;s =1...n —r
where w*(X) = 0 for all X € T'(U). Now

A (U) = span{6°, 6}, (11)
and the structure equations in our coframe are
dn” =d#* =0 mod ZH(U)
dn’ = A%w* Aw! mod TY(U) (12)

do® = A%w® Awt mod TY(U)

where A%w?® A w® and A%w® A w! are point-wise linearly independent,
otherwise some combination of 7 and 6% would be in Z'(U), which is
a contradiction . Therefore

A2 (U) = span{AY%w® A w!, A%w! AWl pa A OY, p. NG,

where pq, p, € QL (U). By equations (11) and (12) the terms A%w® A
wt € A% (U) are not in the ideal <Z4(U),dZ4(U) > and so Z4 is not
a Pfaffian system. Therefore by Lemma 7.3 Z is not a Pfaffian system
which proves the only if condition.

We now prove that if /- N T = 0 and dim((I")* NT) = 0 then T4 is
a Pfaffian system and by Lemma 7.3, so is Z. We construct the coframe
exactly as in the case above, where ¢ would be zero and so there no X,
vector-fields, or n¥ forms.

The structure equations in (12) are the same except that the second
equation in (12) is not there. Therefore the generating forms for Z(U)
are given by

IY(U) = span{6*,n”,6%},
T2(U) = span{A%w" Aw®, pa AO%, p, A1¥, ps NGO}

The semi-basic forms are
AL (U) = span{6?, 0%}, A% (U) = span{A%w" A w®, ps A 0%, p. A 67},
We now show that the last equation in (12) can be refined to

do* = A%w* Aw'  mod AL (U). (13)

This will prove that 74 is a Pfaffian system. Expanding out the last
equation in (12) we have
d0* = A%w® AW’ + Pow® AnY + Q% n" A’ mod AL(U) .

S

Now using the invariance property Lx, 0% = tx,d0* = OmodZ! we
have P, = 0. Then using d6*(X,, X)) = —0%([X,, X,]) = 0 we have
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i = 0, and so (13) holds. This proves that Z, is a Pfaffian system
and hence by Lemma 7.2 so is Z. The rank of 7 is clearly r — ¢, while
the fact that Z’ = (Z)' is left as an exercise. 1

7.3. RECONSTRUCTION AND PROPOSITION 6.1

In this subsection we give the proof of Proposition 6.1.

We start with a useful construction. Suppose that G is a Lie group
which acts regularly and freely on M. Let U C M be an open set
on which there exists a cross section o : U — U where U = q (U ).
Define the function ® : G x U — U by

(I)(gv'i') = :u(ga U(i'))

The function @ is clearly one-to-one and onto because G acts freely,
but @ is also a diffeomorphism. This can be checked by a computation
similar to the one in (16). The inverse ®! : U — G x U may be
written

7 (z) = (A(z), q(2)), (14)

where the function A is G equivariant. By applying ® to (14) we then
have the following identity on the open set U C M,

z = u(A(z),00q(zx)) for all x € U. (15)

REMARK 7.1. (U, ®71) is a local trivialization of the principle bundle
M — M.

We can use the construction above to give a local factor theorem for
immersions into M.

LEMMA 7.3. Let G act reqularly and freely on M and let s : N — M
be an immersion. Then about each point s(ty) € s(N) there exists a
G-invariant neighborhood U of s(tg) with cross-section o : U — U,
and a smooth function vy : s~ (U) — G such that for t € s~ (U) we
have

s(t) = p(y(t),0 0qos(t)).

Proof. Let U be a G-invariant neighborhood of s(tp) with cross-section
0:U — U where U = q(U) and let A : U — G come from the local
trivialization @1 : U — G x U as in equation (14). Then by equation
(15)

s(t) = u(Aos(t),coqos(t)) foralltes H(U),

so with v = X o s(t) the lemma is proved. 1
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We are now in a position to prove Proposition 6.1.
Proof. (Proposition 6.1). By applying Lemma 7.3 in the case of an
integral manifold of an EDS we get a factor theorem for integral man-
ifolds which proves everything in Proposition 6.1 except the fact that
the graph of « is an integral manifold of a completely integral Pfaffian
system on G x V. Starting with the integral manifold s, U, U and o
as in Lemma 7.3 let §s = qo s and § = 0 o § and define the function
U:GxV —=Uby
U(g,t) = plg,5(t)).

It is easy to see that if s is an integral manifold that the graph of v is an
integral manifold to W*(Z(U)). Therefore to prove the last part of the
proposition we need to show that U*(Z(U)) is a completely integrable
Pfaffian system on G x V. This is a local statement so we can assume
by Proposition 4.2 that

Z(U) = <77i,9w1,aw2,...,/<aw’“>

with the conditions on the forms as stated in the theorem. We have
assumed the action is free so these are easily shown to exist on a G-
invariant open set which we assume to be U.

We now pull back the generators for Z(U) by ¥*. Let T € T;V and
R, € T,G, where R, is a right invariant vector field at g. We find

VR0 (Ry, T) = (n50"")(Ry) + (8" g0 )(T)
=0 (Xu(g,§)) + M;ewl (é*T)v (16)

where X (45 is the infinitesimal generator corresponding to R.. The
first term is clearly 0 because 6“! is semi-basic. The second term can
be written as

(126" (5.T) = (o 150" ) (5.T).
Now 6"t is semi-basic, so, by Lemma 4.1 and the fact that s is an
integral manifold of Z(U ), this term is 0. A similar argument shows
V*a = pia+ 8 pya = 0 for all a € Ag(U). Therefore

<UHI(U)) > = < U™y >,

Now <W*(Z(U)) > is easily checked to be a differential ideal, and so
d¥*n" € <W¥*n® > which proves that < U*n* > is completely integrable.
]
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Appendix
A. G basic differential forms

Let G be a Lie group acting regularly on M with g-dimensional orbits
and projection map q : M — M . In this appendix we characterize the
pullback g*Q*( M ) C Q*(M) which is a subalgebra of Q*(M) over IR.

Recall the Lie algebra of infinitesimal generators is denoted by I' and
the corresponding integrable distribution is T' € TM. Any a € QF( M )

satisfies
tx (g°a) =0 forall X eT. (17)

This observation motivates the definition of the semi-basic k-forms
Ak (T*M) c A¥(T*M) given point-wise by
AR(TEM) = {a € A¥(TFM) | ixa =0, forall X € T,}.
We then have the following important lemma.
LEMMA A.1. The subset Ak (T*M) C A¥(T*M) defined by
AS(T*M) = | A5(T M)
xeM
is a G invariant vector sub-bundle that is isomorphic to the pullback
bundle q*(A*(T* M)). The rank of A%, (T*M) is ( " ; a ) This gives

rise to the commutative diagram
K -
AF(T*M) —2— AR(T* M)

l l (18)
M L N M .
of vector bundles and qF is a bundle homomorphism which is an iso-
morphism on the fibres.

Let QX (M) be the sections of AX, (T*M) which are called the semi-
basic differential k-forms. We give a local coordinate form for o €
Q’;b(M). First for any point x € M there exists a neighborhood U C M
with U = q(U) and local coordinates (z¢,4%),i=1...q,a=1...n—q
on U and local coordinates 4 on U such that q : U — U has the
coordinate form y* = q%(z%,y*) = y® The set U with coordinates
(2%, y?) is called a G-adapted coordinate neighborhood. In a G-adapted

coordinate neighbourhood U, o € QF,(U) has the form
O = Payag..ap (@' y*) dy™ Ndy™ A A dy® (19)
where payay..a;, (2%, y*) € C®°(U), and 1 < ay,...ap <n —gq.
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LEMMA A.2. Let U be an open set such that q: U — U, with U =

q(U) and cross-section o : U — U. If « € QK (M) then
(q*O'*Oé)o(j) = Q4 (3) forallz € U.

Proof. Both sides of the equation are semi-basic forms and so they
are completely determined by their values on an n — ¢ dimensional
subspace of T:(E)U which is complementary to I', = Vert,M. The

subspace 0,15z U is complementary and we find for v € T3 U ,

(@"0" W)o(2)(04(0)) = 07 (2) (V) = o(a)(04D),

which proves the lemma. ]
The following two corollaries of Lemma A.1 are direct consequences
of the pullback bundle construction.

COROLLARY A.1. If U C M is an open set and {k%} a basis of
sections for QF(U )}, then {q*R%} is a basis of sections for A% (T*U)
where U is any open set in M such that q(U) = U .

COROLLARY A.2. Let U C M be an open set which admits a cross-
section o : U — U where U = q(U). If {k®} is a basis of sections
for AR (T*U), then {o*k%} is a basis of sections of AK(T*U) and

k™ =qF o k™ o0,

Note that every G-adapted coordinate neighborhood U satisfies the
conditions of Corollaries A.1 and A.2 with U = q(U).

Finally we can characterize the subset q*(Q*( M )) C Q*(M) by the
following lemma.

LEMMA A.3. Let a € Q¥(M), then a € q*(QF(M)) if and only if
a € QF (M)C. In this case there exists a unique & € QF( M) such that
a=q*a.
The lemma shows that
qa*(QF(M)) = Q5 (M)°. (20)

The differential forms Q% (M)% C Q% (M) are the G basic differential
forms on M.

B. Algebraic Results

Let V be an n-dimensional real vector space and let A*(V*) the exterior
algebra of forms. Let I C A*(V*) be an ideal, I* = I N A¥(V*) be the
elements of degree k in I, and 7, = dim I*. If A C A*(V*) then < A >
denotes the ideal generated by A, and mod A denotes modulo the ideal
< A>.
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LEMMA B.1. Ifk >n—r! then I* =0 mod I'.

Proof. Let {#%},a = 1...r! be a basis for I', and complete this to a
basis {6%,w}, s =1...n —ry for V*. If a € A¥(V*) then in this basis

o= Ag a0 N NOP + Agiay oy W AOUN NG 4
Ay sjarap WA AWSEAGU A LN 4+
Agp 5w N AW,

If kK > n — rq, there are no terms involving just wedge products of only
ws. ]

For each k = 2,...,n — rq, define the integers pp = dim(< I' >F)
and dj, = dim(I¥ mod I'') then

pk=<Z><n7€ﬁ)vand dp =Tk — Pk - (21)

DEFINITION B.1. A subspace W C V is transverse to I' if (I')* N
W =0.

LEMMA B.2. Let W C V be a q-dimensional subspace which is trans-
verse to I'. Let {X;}, j = 1...q be a basis for W, then there exists a
basis {n',0,ws}, i=1...qar =1...r1 —q,s =1...n—ry for V*
with {n%,0“} a basis for I'* such that

n'(X;) =65, 07(X;) =0, w(X;)=0.
Proof. Exercise.

LEMMA B.3. Let W C V be a g-dimensional subspace which is trans-
verse to I' and let ', 0%, w" be the basis for V* from Lemma B.2. For
all k € Z 2 < k < n —ry there exists linearly independent k—forms
A% WAL AW, 1 <y < dg such that

51...5k

I% = span{A% WS AL AW, pi AT, AOUY

$1...5k
where pi, Tq, € AFH(V*) are arbitrary.

Proof. The dimension of ¥ mod I' is dj, and since {n’,#"'} is a basis
for I' there exists representatives for a basis of I* mod I' of the form
A% wSUA L AWk, = 1...dy. Therefore if B € I* there exists

81...Sk

B, € R and ji;,v,, € A¥~1(V*) such that
B =By A% WA AW g A v, AT

51...5k

which proves the theorem. |

Given a subspace W C V define the subalgebra Aj, (V*) = {a C
A(V*) | ixa=0, forall X € W}
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LEMMA B.4. AL, (V*) 2 AR(AL, (V).

Let A= 1N A}, (V*) which is a subalgebra of A*(V'), whose degree
k elements are
AR = TF AR (V) .
The subalgebra A generates the ideal 14 = < A >. Now notice that the
forms in Lemma B.3 satisfy Agk  w*' AL Aw® € IFN AR (V*) = AF
which leads to the second part of the next Corollary.

COROLLARY B.1. Using the basis for V* from Lemma B.2 and the
forms from Lemma B.3 we have

_ i pay u2 s1 89 Un—ry s1 Sn—
I=<n"0 ,Asls2w A w ,...,Asl,“sn#lw A AW >
and
Un —
I4= <9a1,Agf52w51 ANw®, .. .,As{ﬁ,,g;f”wﬁ AL AW >,

LEMMA B.5. If W C V is a gq—dimensional subspace transverse to
I, and for some k,1 <k <n—ry, [ = <I'I? ... IF>, then I, =
<AY A% AR >,

Proof. We start by assuming that 2 < k < n—r; and use the generators

from Corollary B.1. Choose [ satisfying k < [ < n — r1. The condition

that I',...,I* generate I imply that for all [ satisfying k <1 <mn —nr

there exists k% € A""™(V*), m =1...k — 1 such that

AGl WA AW = R NAGE L WAL AW L R AAGT W AW
(22)

This immediately implies that Ag!  w*' A... Aw® may be discarded as

a generator for I4. So A' € < A',...AF> and I, = < Al,... Ak >,
The case k =1 is easy. |

COROLLARY B.2. Starting with the hypothesis of Lemma B.5, let

{42 Wt Aw®} C {AZ W AW},

5182 8182
{AGFE W™ A AW C{A (W™ AL AW}
be subsets which project to basis for I> mod I', ..., I*¥ mod I*~! then
I=<n', 0" A W Aw™, ..., Agk WAL AWTE >
and
Iy =<0 AZ W AW JAGE (WAL AW >,

and these generators are a minimal set.
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