Referencing the Deep Convective Cloud (DCC) calibration to Aqua-MODIS over a GEO domain

Conor Haney^{SSAI}, David Doelling^{NASA}, Arun Gopalan^{SSAI} Benjamin Scarino^{SSAI}, Rajendra Bhatt^{SSAI}

CALCON 2015 Conference, Logan, Utah, August 24-27, 2015

Simple GEO to MODIS Ray-Matching Cross-Calibration Method

- None of the GEO visible sensors have onboard calibration
- Ray-match GEO counts (proportional to radiance) and MODIS radiances within a 0.5° cloudy ocean regions using selection constraints
 - $-\Delta SZA < 5^{\circ}$ (15 minutes), ΔVZA <15°, ΔRAZ < 15°, ΔSCAT < 15°, no sunglint
 - Domain ±20° E,W and ± 15° N,S near sub-satellite point to maximize coincident matches
 - Use Aqua-MODIS Collection 6 as reference
 - Use a SCIAMACHY spectral band adjustment factor derived from all SCIA footprints over the same equatorial region
 - Normalize the cosine solar zenith angle
- Perform monthly linear regressions and derive monthly gains
 - Use published offsets
- Compute timeline trends from monthly gains

Gridded Ray-matching

 $Aqua_{radiance} [\cos(SZA_{GEO}) / \cos(SZA_{Aqua})] SBAF_{GEO/Aqua} = Gain_{GEO} (CNT - CNT_{space})$

All Ray-matching

- Updated SBAFs
- Applied new timeline trend standard deviation filter

Gridded Ray-Matching

- Locked visible spatial homogeneity (SVS) at 0.7 across all GEOs
- Applied new Graduated Angle Matching (GAM) filter

DCC Ray-Matching

All Ray-matching

- Updated SBAFs
- Applied new timeline trend standard deviation filter

Gridded Ray-Matching

- Locked visible spatial homogeneity (SVS) at 0.7 across all GEOs
- Applied new Graduated Angle Matching (GAM) filter

DCC Ray-Matching

Met-9 and Aqua-MODIS 0.65µm spectral response functions

Must account for spectral response differences when inter-calibrating MODIS and Meteosat-9

Use SCIAMACHY hyper-spectral radiances convolved with the spectral response function to derive footprint pseudo radiance pairs over the inter-calibration domain Then use regress the radiance pairs to derive the SBAF

Updated SBAFs

GRIDDED: Use 2nd order ASTO SBAF for MODIS rad<400, Force Fit DCC SBAF for rad>400 DCC: Use Force Fit DCC SBAF for all values

All Ray-matching

- Updated SBAFs
- Applied new timeline trend standard deviation filter

Gridded Ray-Matching

- Locked visible spatial homogeneity (SVS) at 0.7 across all GEOs
- Applied new Graduated Angle Matching (GAM) filter

DCC Ray-Matching

Standard Deviation Filter

Simple filter that removes any outliers that have a gain > 2σ from the original trend

All Ray-matching

- Updated SBAFs
- Applied new timeline trend standard deviation filter

Gridded Ray-Matching

- Locked visible spatial homogeneity (SVS) at 0.7 across all GEOs
- Applied new Graduated Angle Matching (GAM) filter

DCC Ray-Matching

Spatial Homogeneity Testing (SVS)

	SVS < 0.3	SVS < 0.7	All
Mean Monthly Num	226	492	699
Mean Mon STDerr (%)	4.19	5.02	5.39
Number of Months	54	65	66
Timeline STDerr (%)	0.87	0.80	0.83

Need balance of enough points per month and enough months per timeline, while minimizing STDerr

Found that for all GEOs, SVS did not make a large impact when > 0.7

All Ray-matching

- Updated SBAFs
- Applied new timeline trend standard deviation filter

Gridded Ray-Matching

- Locked visible spatial homogeneity (SVS) at 0.7 across all GEOs
- Applied new Graduated Angle Matching (GAM) filter

DCC Ray-Matching

Note most of the points are in clear-sky (dark radiances) where the conditions are most

The least number of points occur over bright clouds that

Then a more restrictive angle matching can be applied to the dark radiances, while retaining

NO GAM

GAM

The x offset or space count is closer to the true space count of 51

Mean 5-year Met-9 space count

Improvement	Space Count
noGAM noSBAF	53.8
GAM noSBAF	53.5
noGAM SBAF	52.6
GAM SBAF	52.1
true	51

Applying SCIAMACHY SBAFs to the Aqua-MODIS radiances and incorporating GAM when regressing the MODIS and Met-9 radiance pairs causes the linear regression space count averaged over the 5-year Met-9 record to be closer to the true space count.

All Ray-matching

- Updated SBAFs
- Applied new timeline trend standard deviation filter

Gridded Ray-Matching

- Locked visible spatial homogeneity (SVS) at 0.7 across all GEOs
- Applied new Graduated Angle Matching (GAM) filter

DCC Ray-Matching

DCC ray-matching

- Find Aqua equatorial crossings in GEO DCC domain (±40° E/W, ±20° N/S of GEO sub-satellite point)
- Identify the MODIS DCC pixels, predict GEO angles at the centers
- Aggregate pixel data into 30-km MODIS FOV, then systematically locate the coldest MODIS FOVs and filter out any overlap
- Use MODIS center lat/lon to locate GEO pixels, and aggregate pixel data into 30-km GEO count and MODIS radiance pairs
- Normalize the cosine SZA, apply SCIAMACHY SBAF factor, perform monthly linear regressions to derive monthly gains
- Compute timeline trends from monthly gains

DCC Parameter	Optimum
σVS	<0.2%
σIR	<7.5K
∆Angle	Δ RZA<25, Δ VZA<15
ΔTime	15 min
Тетр	<220 K
Angles	VZA<40, SZA<40
FOV	30-km

Comparison of DCC and Gridded Raymatching Monthly Regression

Consistency of Calibration Between Ray-matching Methods

DCC ray-matching has the advantage of having a smaller SBAF, and a greater angle matching tolerance, which reduces the monthly stderr.

Conclusions

 Initial disagreement between gridded and DCC raymatching gains prompted improvements in both procedures

• Both the SCIAMACHY SBAF and GAM gridded raymatching methodologies were validated by comparing the linear regression offset to the true space count

• DCC ray-matching relies on sufficient monthly sampling during all months of the year. The thresholds were derived using the months with the least DCC frequency.

• Validate the gridded and DCC ray-matching procedures with other GEOs