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Abstract

Experiments in Distributed Multi-Robot Coordination

by

Larry Dale Ballard, Master of Science

Utah State University, 2008

Major Professor: Dr. Wei Ren
Department: Electrical and Computer Engineering

Consensus control algorithms for multi-agent systems are an area of much research.

Several consensus control laws are experimentally validated on a multi-robot testbed in this

thesis. A graphical user interface (GUI) is developed that simplifies use of the testbed, as

well as allows the execution of the testbed programs to be divided across multiple computers.

This not only provides a more powerful computing environment, but also a more realistic

communication environment for the testbed. A method for a time-varying or dynamic

formation is both proposed and experimentally validated on the testbed. This research

also explores a method for dynamic group resizing, i.e. addition or removal of members of

the formation. Also, a new control law for synchronized oscillations is validated. Finally,

a testbed for multiple cooperative Unmanned Air Vehicles (UAV) is developed for the

Procerus UAV.

(102 pages)
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Chapter 1

Introduction

1.1 Motivation

There has been a large amount of research done in the last two decades with respect

to autonomous mobile robots. With every increase in available technology bigger and more

complex tasks become possible with smaller and more effective systems. As smaller, more

reliable, and longer range communication systems became available, it suddenly became

not only possible, but very useful, to implement cooperative groups of robots to perform

a certain task rather than one monolithic robot. The saying, “The whole is greater than

the sum of the parts” has a lot of truth when dealing with autonomous robots. Cost is

generally lower for several small robots than it would be for one large robot. Also, a group

of robots is capable of many tasks that a single independent robot could never perform.

For instance, there are countless useful applications for distributed mobile sensor networks.

Also, a group of mobile robots with robotic arms attached to them would be able to perform

complex tasks that would be impractical for a single robot to do. Formations of Unmanned

Air Vehicles (UAVs) could be used to perform dangerous tasks to improve the chance of

success even if some of the UAVs are destroyed.

There has been a large amount of effort directed toward finding efficient and robust

methods for controlling these groups of mobile agents [1–4]. Although there has been a

great deal of theory developed for multi-agent control, few researchers have gone as far as

to test theory with a physical system. Implementation on an physical system often can

reveal hidden difficulties and can sometimes lead to unexpected discoveries.

Probably one of the most promising directions for research in this area is consensus-

based coordination. It has been shown by many people that consensus can be used to bring
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groups with limited communication to an agreement on a value of interest [5–7]. Because of

its robustness with limited and even time varying communication between agents [8], these

cooperative control algorithms could effectively be used in a wide range of applications from

mobile robots, UAVs, autonomous underwater vehicles (AUVs), and satellites.

1.2 Contributions

1.2.1 Multi-Robot Testbed

The multi-robot testbed was designed to facilitate the implementation of consensus-

based control algorithms on the AmigoBot mobile-robot platform. The testbed also allows

the simulation of time varying communication topologies among the robots. In this thesis

we expand this multi-robot testbed with a graphical user interface (GUI). The purpose of

the GUI is to both simplify and automate the procedure for running experiments or simula-

tions on the testbed. The process is automated by allowing settings such as communication

topologies, experiment runtime, and other algorithm specific settings to be stored for re-

peated use. For simulations, the simulator program, MobileSim, can be opened and the

poses of the robots automatically set from the GUI. The GUI also provides a way for the

execution of the testbed software to be distributed across multiple computers, thus distribut-

ing the processing load, as well as providing a more realistic communication environment

where communication between robots is wireless.

1.2.2 Dynamic Formation Control

In exploring the literature on cooperative formation control it appears that the shape

or structure of the formation has nearly always been fixed or predefined and time invariant

with a fixed number of points or agents [4,9]. There has been little written with respect to a

dynamically changing or time varying virtual structure. The idea of changing the shape of

the formation for the purpose of obstacle avoidance has been addressed, but the formations

are still predefined [10, 11]. If the structure or formation were able to change dynamically

and in a controlled fashion, group object avoidance could be more effective. That is, it
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would be possible for a wide formation to temporarily form a single file line, or a narrow

formation, in order to pass through a very narrow opening, or a very tight formation could

expand in order to let the obstacle pass through the formation. This functionality might

be useful for a formation of robots in a building where it might be required to pass through

narrow doorways and avoid people or other obstacles.

Another new feature that this algorithm provides is the ability to dynamically change

the number of agents in the formation. Previously if one or more agents lost communication

with the rest of the formation either through a blocked communication path or by being

disabled, the rest of the formation would continue as if the others were still there, with no

knowledge of their absence. This is because each agent has some specific knowledge of its

own position in the formation. That is, each robot in the formation had a specific place

in the formation that it would always occupy. If the lost agent were able to re-establish

communication, it would be able to continue on the mission as before. If the agent had been

destroyed or disabled it would be very difficult to replace because of the need for individual

knowledge of position in the formation. In situations where several groups of mobile robots

might be sent to the same location to accomplish a mission, a formation that can add or

remove agents dynamically would make it possible to shift agents of one group to another

group as needed. For example in fighting a fire, several groups could be sent to fight the

fire from different positions. If one area were identified as very important, then agents

from another group could be transferred to the more critical group. Also in the case that

a large formation of agents were sent on a mission, if a part of the formation lost its line of

communication with the rest of the group, as long as there existed at least one leader with

knowledge of the mission objective in each group, both groups would be able to reform the

formation and continue on the mission.

The purpose of this research is to develop and experimentally validate a new method

allowing time varying formation parameters in a group of mobile robots allowing the group

to more easily avoid or adapt to obstacles in the environment. This research also provides

a method for varying the number of agents in a given formation. All of this requires only
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an undirected connected communication topology.

1.2.3 Coupled Harmonic Oscillation Control

Synchronization phenomena are common in nature. An important avenue of study

in synchronization focuses on coupled oscillators. One classical example is the Kuramoto

model [12], which assumes full connectivity of the network. Recent works generalize the

Kuramoto model to nearest neighbor interaction [13–15]. In the context of multi-agent

systems, Paley, Leonard, and Sepulchre [16, 17] study connections between phase models

of coupled oscillators and kinematic models of self-propelled particle groups and provide

feedback control laws that stabilize symmetric formations of multiple, unit speed particles

on closed curves. In papers by Chopra and Spong [18], passivity-based control is studied

for the problem of synchronization of multi-agent systems. Related to synchronization

are consensus problems in multi-agent systems. Consensus means that a team of agents

reaches an agreement on a common value by negotiating with their neighbors (see [6] for

recent surveys).

The coupled harmonic oscillators examined by Ren [19] are second-order linear os-

cillators, which distinguish them from others [13–17]. The coupled harmonic oscillators

studied by Ren are also related to the second-order consensus algorithms studied in articles

by Ren and Wang [20,21]. However while the consensus equilibrium for state derivatives is a

nonzero constant or zero, the states using the coupled harmonic oscillators are synchronized

to achieve oscillatory motions. Therefore, the coupled harmonic oscillators can be used to

achieve cooperative scanning of an area with multiple robotic vehicles.

The purpose of this research is to experimentally validate the coupled harmonic os-

cillators presented by Ren [19] using a team of mobile robots, in particular to explore

and implement a new decentralized strategy for symmetric formations using the coupled

harmonic oscillators. The purpose of this control strategy is for distributed groups of mo-

bile robots to move in a synchronized manner. Both simulation and experimental results

are shown. Based on the results of both simulation and experimentation this strategy is

an effective method for synchronizing the motion of mobile robots. While distributed co-
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operative control has been an active area of research, experimental results are rare due

to numerous practical challenges (see “Decentralized cooperative control: A multivehicle

platform for research in networked embedded systems” [22] and references therein for some

existing multi-vehicle testbeds). The experimental results in this research are of significance

for real-world applications.

1.2.4 Cooperative UAV Control

UAVs have begun to become a popular area of research as technology makes them a

more feasible solution for many problems. As with wheeled or ground robots, multi-UAV

formations are much more useful and economical than a single UAV trying to accomplish

a similar task. The motivation for this research is the need for a platform with which

cooperative control laws can be tested on UAVs. The goal is to build a testbed platform,

initially for Procerus UAVs, but that will eventually be expanded to support multiple types

of UAVs such as XBow and Paparazzi. The requirements for this research were to build a

testbed similar in function as the AmigoBot testbed described in Chapter 2 where control

algorithms for multi-UAV formations can be implemented and tested with time varying

communication topologies.

1.3 Organization

The remainder of this thesis is organized as follows. In Chapter 2 the process of

designing the GUI for the AmigoBot testbed is explained. Also, in this chapter a short

tutorial for using the AmigoBot testbed with the GUI is presented. Chapter 3 introduces a

new approach for implementing a virtual structure formation with time varying formation

parameters. This dynamic formation scheme is implemented on the AmigoBot testbed, and

results are given. Chapter 4 shows the experimental validation of the coupled harmonic

oscillator control law developed by Ren [19]. Chapter 5 follows the design and building of

a multi-UAV testbed, and Chapter 6 gives concluding remarks.
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Chapter 2

Aria GUI

2.1 Introduction

This chapter presents the development of the GUI for the AmigoBot mobile robot

testbed. Also included in this chapter is an example of the usage of the GUI. The GUI was

developed as the next step in building a useful testbed for cooperative control algorithms.

The purpose being that it should provide a concise way of creating and storing repeatable

experiments. A major motivation for this was also the fact that previously all changes

to any experiment had to be done in code, the entire testbed had to be re-compiled and

then run from the command line. This process could become very complicated and time

consuming.

Another obstacle of the testbed is that previously it was necessary to execute all of

the parts of the testbed on a single computer. We desired to be able to spread the work

load across multiple computers. Doing this would allow more complex algorithms to be

implemented in the future as well as to allow experiments to include more and more mobile

robots without exceeding the processing capabilities of a single computer. Previously, be-

cause of the limited processing power of our computers, the largest group of robots possible

was four; now the limiting factor is the size of the lab and the number of robots available.

2.2 Design Requirements

The first important requirement for the GUI, and one of the main reasons for creating

it, was to be able to design, store, and run experiments without having to modify the code

and recompile. The reason that the settings were hard coded originally is that it was not

reasonable to require that such a large number of settings be entered in the command line.
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The settings that need to be modified for different experiments are:

� Path - Several predefined paths are available, such as a circle or figure 8, etc.

� Communication Matrix - Determines the time-varying communication topology be-

tween robots.

� Leader Array - Determines both the leaders and followers as well as which control law

to use.

� Dynamic Formation Parameters (for dynamic formation experiments) - Determines

parameters specific for the dynamic formation controller (Chapter 3).

� Coupled Harmonic Oscillator Parameters (for coupled harmonic oscillator experi-

ments) - Determines parameters specific for the harmonic oscillator controller (Chap-

ter 4).

These parameters should be able to be entered in an organized manner so that they

can be saved and recalled for use at any time. Gain values were not included in the set of

parameters to be stored because they are rarely changed once a good value has been found

for them, and including them in the experiment parameters would unnecessarily complicate

the GUI.

A second requirement for the GUI design is to allow the user to run either experiments

on the AmigoBots or simulations on MobileSim. MobileSim is a powerful graphic simulator

for ARIA that is useful for preliminary testing. See Appendix A for more information

about ARIA and MobileSim. The GUI should be able to open MobileSim and place the

simulated robots in the correct locations for simulation. This not only will save time by

programmatically placing the robots in MobileSim, but the robots can also be placed more

exactly than by manually moving them with a mouse.

Finally, the last major design requirement was to be able to distribute the processing

between multiple computers. There are three distinct executables that comprise the mobile

robot testbed. The first is “DriverServer.exe.” The purpose of DriverServer.exe is to supply
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the desired position or path to the leader or leaders. Only one instance of this program

needs to be run. The other two executables are linked to the robot, so one instance of

each needs to be running for each robot in the formation. “ClientTest.exe” encapsulates

the controller implementation and handles the communication between neighboring robots,

as well as the “DriverServer.exe” if that particular robot is a leader. “ServerTest.exe” links

to the physical robot and supplies “ClientTest.exe” with feedback from the robot’s sensors.

It also sends the control commands from “ClientTest.exe” to the robot. One instance of

“ServerTest.exe” and “ClientTest.exe” must be running for each robot. Having all of these

programs running on one computer can tax the CPU to the point that one computer is

not capable of running the testbed if there are very many robots in the group. Allowing

the “ClientTest.exe” and “ServerTest.exe” instances for each robot to be run on different

computers would free up processing power to be dedicated to more complex algorithms

as well as allowing more robots to be controlled at once. Another benefit of this setup is

that it models communication between robots more realistically. Instead of simply passing

information from one place to another on a single machine, the data now has to be passed

across a wireless network as it would in a more real world situation.

2.3 Graphical Layout

The GUI is written as a dialog based C++ MFC program. The main dialog is shown

in fig. 2.1. Section A in fig 2.1 is where the user can select the path and the set of stored

parameters for the experiment. The path can be chosen from a list of predefined paths

such as a line, a circle or a figure 8. The experiment settings are user defined and will be

explained shortly. Section B is where the user can define how many robots will be used in

the experiment by selecting them with the corresponding check box. Each AmigoBot has its

own IP address for wireless communication. By specifying the IP address of each AmigoBot

here, it is possible to select which AmigoBots will be used. By selecting the check box in

section C, the location of execution for each robot’s controller and the path planner can be

specified by IP address. By deselecting this check box, everything will be run on the local

computer. Section D is where the user can decide whether to run the experiment on the
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Fig. 2.1: Main dialog for testbed GUI.

AmigoBots or MobileSim. When MobileSim is selected in section D, section E is enabled.

Section E works in a way very similar to section B. By clicking on check boxes, robots can

be added or removed from the simulation. If desired, MobileSim can be opened with a map

that can be selected from the drop down menu. The button “Run MobileSim” will execute

Mobilesim with the selected number of robots and map. The button “Run Experiment”

begins the experiment for either the AmigoBots or MobileSim depending on which one has

been selected. Finally the “New” button opens the dialog in fig. 2.2 for creating a new set

of experiment parameters.

The “Experiment Parameters” window shown in fig. 2.2 is used to enter all of the

parameters for a desired experiment. The connection matrix is set in section A. Section B

is where leader array is set. Section C and D are for parameters specifically for dynamic

formation experiments and coupled harmonic oscillator experiments. These are explained

in detail in Chapters 3 and 4. Once all of the parameters have been entered into the text

boxes, they are added to the experiment by clicking the “–>” button. All of the parameters

can be time varying. Up to nine variations can be stored in a single experiment. Each time

“–>” is pressed, the current set of parameters in the text boxes are added to the experiment.

Section E displays all of the parameters that have been added. When the experiment is

run, the testbed will change from one set of parameters to the next every ten seconds.
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Fig. 2.2: Experiment parameter settings for the GUI.

2.4 Functionality

This section explains the details of the important functionality. We will show how

experiment parameter files (edf) are constructed, stored, and loaded. Then we will examine

the method used for creating new processes from within the GUI. This will include both

loading the testbed executables as well as starting MobileSim. Last we will explain how we

are able to execute programs on remote computers from the GUI.

2.4.1 Saving and Loading

The first step in creating a new set of experiment parameters is to fill in all of the fields in

fig. 2.2 sections A,B,C, and D. Then clicking the “–>” button will add this set of parameters

to the experiment. The parameters are time varying, so the parameters entered in the fields

can be changed and added again. Nine sets of parameters must be added to the experiment

regardless of whether or not the parameters change. The method for saving the experiment

parameters is quite simple. Each time the “–>” button is pressed a section of formatted

text is concatenated to the end of a CString variable the holds the entire set of experiment

parameters. The format of this text is shown in table 2.1. The four sections shown in table

2.1 are: “Connection Matrix” (CM), “Leader Array” (LA), “Dynamic Formation” (DF),

and “Coupled Oscillator” (CO). The # is some integer ranging from 1 to 9.

Once all nine sets of parameters have been added the CString variable is written to

a new file with the .edf suffix. It is written in ASCII format so it is possible to modify
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Table 2.1: Experiment parameter file (edf) format.

CM#
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

LA#
x x x x x

DF#
x x x x

CO#
x x x x x x

these files or even create new files with a text editor. Algorithm 2.1 shows the code that

is used to save the experiment data to a file. Lines 1–5 construct the full file name with

extension and open the file stream to write to the file. Lines 6 and 7 prepare a character

buffer to output the file data to the file. Lines 8–10 write to the file and close it. Once the

file is successfully saved, the “Experiment Parameters” window is closed. The experiment

settings box from section A of fig. 2.1 contains a list of all the experiment data files that

are available and has to be reloaded. The code snippet in algorithm 2.2 shows the method

that was used to build a list of all the previously saved experiment data files. Line 2 shows

a mask string to search for only files with the suffix “.edf”. Lines 3–9 make use of an MFC

class, CFileFinder, to obtain a list of files in the current execution directory that match the

mask. A loop is then used to enter all of the files found into the dropdown box list, where

m ExpSet is the CComboBox variable for the drop-down box.

2.4.2 Loading Executables

To run a simulation using MobileSim, MobileSim needs to be running before the simu-

lation starts. When the “Run MobileSim” button is pressed the GUI will start MobileSim
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Algorithm 2.1 Code for writing the new experiment data to a file.

1 ofstream fout;
2 CString name = m Name + T(".edf");
3 const char * namebuf = new char[name.GetLength()];
4 namebuf = (char*)name.GetBuffer(sizeof(namebuf));
5 fout.open(namebuf,ios::trunc);
6 wchar t *buf = new wchar t[m ExpmntData.GetLength()];
7 buf = (wchar t*)m ExpmntData.GetBuffer(sizeof(buf));
8 fout.write((char*)m ExpmntData.GetBuffer(m ExpmntData.GetLength()),
9 m ExpmntData.GetLength());

10 fout.close();

Algorithm 2.2 Code for finding and listing all of the .edf files that have been created.

1 CString maskDll, fileName;
2 maskDll = T("*.edf");
3 CFileFind finder;
4 BOOL looking = finder.FindFile(maskDll);
5 while(looking){
6 looking = finder.FindNextFile();
7 fileName = finder.GetFileName();
8 m ExpSet.AddString(fileName);
9 }

with a map, if one is selected, and with as many robots as are indicated by the check boxes

in fig. 2.1 section E. The numbers near the check boxes indicate the robot number (not the

number of robots). That means that for five robots to be loaded in MobileSim, all five check

boxes must be marked, and the robots will have ID numbers 1-5. The same is true when

using AmigoBots. The code shown in algorithm 2.3 shows how MobileSim is started from

the GUI. Lines 1–5 show the declaration of variables that are not specifically used here,

but are necessary for the “CreateProcess” function in line 25. Lines 6–22 creates a CString

variable containing the same command line string that would be entered at the command

prompt to run MobileSim. This variable is then passed to the “CreateProcess” function

in line 25. Then the function “CreateProcess” uses the string to run the executable. The

other variables passed in to this function are necessary for the function, but of no use to us

so they are not explained here.

When MobileSim is started, each of the robots are by default placed in a vertical line
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Algorithm 2.3 Code for finding and listing all of the .edf files that
have been created.

1 UpdateData(TRUE);
2 PROCESS INFORMATION ProcessInfo;
3 STARTUPINFO StartupInfo;
4 ZeroMemory(&StartupInfo, sizeof(StartupInfo));
5 StartupInfo.cb = sizeof StartupInfo;
6 CString mobilesim = T("C:\\Program Files\\MobileRobots\\
7 MobileSim\\Mobilesim.exe");
8 if(m CheckSim1.GetCheck())
9 mobilesim += " −r amigo−sh";

10 if(m CheckSim2.GetCheck())
11 mobilesim += " −r amigo−sh";
12 if(m CheckSim3.GetCheck())
13 mobilesim += " −r amigo−sh";
14 if(m CheckSim4.GetCheck())
15 mobilesim += " −r amigo−sh";
16 if(m CheckSim5.GetCheck())
17 mobilesim += " −r amigo−sh";
18 if(m SelectedMap == "")
19 mobilesim += " −nomap";
20 else
21 mobilesim += T(" −m \"C:\\Program Files\\MobileRobots\\MobileSim\\")
22 + m SelectedMap + T("\"");
23

24 CreateProcess(0,(LPSTR)(LPCTSTR)mobilesim,NULL,NULL,FALSE,0,NULL,
25 NULL,&StartupInfo,&ProcessInfo);

at intervals of 1m. They are not arranged into any specific formation until the program

“ServerTest.exe” is started. “ServerTest.exe” arranges the robots by sending a special

packet to MobileSim. An example of this packet is shown in algorithm 2.4 where the

robots are placed in regular intervals around a circle of radius “RADIUS”. The variables

of type ArTypes::Byte4, x, y, and th, on lines 1–4, are used to set the (x, y) position and

the orientation angle of the robots. The packet ID 224 on line 5 tells MobileSim that the

packet contains position coordinates for a robot. The packet is sent to MobileSim via the

connection opened for the robot. In this manner each robot updates its own initial position

in MobileSim.

When all of the options and parameters have been correctly chosen, the experiment

can be run. There is very little difference in what happens programmatically when a

simulation is started for MobileSim as compared to an Experiment for the AmigoBots. The
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Algorithm 2.4 Code for setting the position and orientation of the robots in MobileSim.

1 double ang = (teamSize%2 == 1 ? 0 : M PI/teamSize) − (2*M PI*i/teamSize);
2 ArTypes::Byte4 x = ArTypes::Byte4(cos(ang)*RADIUS);
3 ArTypes::Byte4 y = ArTypes::Byte4(sin(ang)*RADIUS);
4 ArTypes::Byte4 th = 0;
5 unsigned char command = 224; // Command for SIM SET POSE
6 ArRobotPacket packet;
7 packet.empty();
8 packet.setID(command);
9 packet.uByteToBuf(0);

10 packet.byte4ToBuf(x);
11 packet.byte4ToBuf(y);
12 packet.byte4ToBuf(th);
13

14 packet.finalizePacket();
15

16 ArDeviceConnection* conn = robot.getDeviceConnection();
17 conn−>write(packet.getBuf(),packet.getLength());

only difference being that for MobileSim the testbed connects the the simulated robots in

MobileSim and for the AmigoBots, the testbed connects directly to the AmigoBots. More

details about the differences in running simulations as opposed to actual experiments on

the AmigoBots are provided in Appendix A.

The “Run Experiment” button causes the GUI to begin loading the testbed. The

first of the three testbed programs to be started is “ServerTest.exe”. As stated previously,

“ServerTest.exe” provides the interface to the robot, sending motion commands to, and

receiving sensor feedback from the robot. “ServerTest.exe” expects a list of three command

line parameters. The first parameter “-rh” is used to specify the address of the robot. For

MobileSim the address is “localhost” and an additional parameter, “-rrtp”, is required to

specify the simulated robot’s port on localhost. In order for “ServerTest.exe” to communi-

cate sensor data back to “ClientTest.exe” as well as receive command data, the instance of

“ServerTest.exe” for each robot implements a server that listens on a different port. The

next parameter “-sp” indicates which port this particular instance of “ServerTest.exe” will

use to listen for “ClientTest.exe” connections. As a side note, this is also how communica-

tion between robots is implemented. If communication is allowed between two robots, then

“ClientTest.exe” for one robot is able to connect to “ServerTest.exe” of another. The last
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parameter is “-ts”, which indicates the team size or the total number of robots selected by

the check boxes. Algorithm 2.5 shows an example of how an instance of “ServerTest.exe”

is executed.

The next program is “DriverServer.exe”. There are only three command line parame-

ters for “DriverServer.exe”. The first, “-sp” is the server port and is used in the same way

as it was for “ServerTest.exe”. “DriverServer.exe” acts as a Server that allows the leader

robots to connect to it and request path information. The next parameter is “-pfile”. This

parameter passes the name of the .edf file to “DriverServer.exe”. The last parameter is

“-vcpath”. This parameter specifies which of the predefined paths to use.

The last program to start is “ClientTest.exe”. “ClientTest.exe” is a client program that

connects to both “DriverServer.exe” and “ServerTest.exe”. “ClientTest.exe” contains the

controller implementation. It takes up to seven parameters. The first two are always re-

quired. The first, “-num”, is the robot’s number. This identifies the individual robots. For

example, if the second parameter “-ts”, or team size, were set to 5, then “-num” might be

an integer between 1 and 5. The last five parameters are only required if remote execution

is enabled, in which case, they are “-rl1”,“-rl2”,“-rl3”,“-rl4”,“-rl5”, and represent the IP ad-

dresses of remote execution locations for each robot’s “ServerTest.exe” and “ClientTest.exe”

instances. “ClientTest.exe” needs to know these addresses so that it is still able to open a

connection to “DriverServer.exe” and “ServerTest.exe”.

2.4.3 Remote Execution

The purpose of allowing remote execution is to reduce the amount of computing needs

to be performed on one computer. By allowing “DriverServer.exe” and the “ClientTest.exe”,

“ServerTest.exe” pair for each robot to be executed on different computers more complex

experiments can be run. Also, the communication between robots is more realistic because

the communication between robots is forced to go through a wireless network.

Remote execution requires two programs. The first program, a windows service, must

be running on each computer that is to host a remote execution. Also, all of the programs

and files necessary to run them must be located on the remote computer. The job of this
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Algorithm 2.5 Code for starting an instance of ServerTest.exe.

1 m IPAddress1.GetAddress(b1, b2, b3, b4);
2 itoa(b1,buffer1,10);
3 itoa(b2,buffer2,10);
4 itoa(b3,buffer3,10);
5 itoa(b4,buffer4,10);
6 itoa(sp++,spbuf,10);
7 server = serverBase + T(" −rh " + buffer1 + "." + buffer2 + "." +
8 buffer3 + "." + buffer4 + " −sp " + spbuf + T(" −ts ") + tsbuf);
9 if(m EnableRemoteExec.GetCheck())

10 RemoteExec(rl1,server);
11 else
12 CreateProcess(0,(LPSTR)(LPCTSTR)server,NULL,NULL,FALSE,0,NULL,
13 NULL,&StartupInfo,&ProcessInfo);

service is to listen on a port, and when it receives a message on this port it will execute

the command contained in the message. Algorithm 2.6 shows the initialization of the

service. On line 2 of this code snippet a socket is opened on port 9987, and line 3 tells

the service begins listening. If a connection is attempted the connection is passed to the

“ProcConnectionFunc” function in line 16 which is executed in an asynchronous thread

so that subsequent connections are not forced to wait for the “ProcConnectionFunc” to

finish before they can be handled. “ProcConnectionFunc” is shown in algorithm 2.7. Its

purpose is to read data from the socket and create a new process using the data. The

data received in the packet is the command line arguments sent to the server from the

RemoteExec function implemented in the GUI. The service then starts the program in the

same way that MobileSim was started in algorthm. 2.3.

As previously mentioned, the service must be installed on each computer that is to run

the remotely executed programs. To install this service, the executable, rexecService.exe,

must be copied to any directory on the computer. Then in a command prompt window and

in the directory where “rexecService.exe” has been saved, enter the command “rexecService

-i” at the command prompt as illustrated in fig. 2.3(a). This will install the service.

Once the service has been installed it must be configured and started. The service can

be configured and started from “Services Manager” (from the Administrative Tools in the

Control Panel) by making sure that “Allow service to interact with desktop” has been
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Algorithm 2.6 Service initialization.

1 CAsyncSocket SrvSock;
2 SrvSock.Create(9987);
3 SrvSock.Listen();
4 CAsyncSocket CliSock;
5 SOCKADDR addr;
6 int nSize = sizeof(SOCKADDR);
7 // Loop to maintain the search while the application is running.
8 while (!m pStop−>Lock(0))
9 {

10 // Check to see if a connection is being attempted.
11 if(SrvSock.Accept(CliSock, &addr, &nSize))
12 {
13 SOCKET hSock = CliSock.m hSocket;
14 CliSock.Detach();
15 //Let a seperate thread handle the individual connections:
16 AfxBeginThread(ProcConnectionFunc, (LPVOID)hSock);
17 }
18 Sleep(1);
19 }

checked as illustrated in fig. 2.3(b). Once this is complete the service must be restarted,

and it will be ready to work.

The second program required for remote execution is included in the GUI. To run part

of the testbed on another computer the GUI needs to send a packet containing the command

line command to port 9987, the port that the service is listening on. This functionality is

encapsulated in the “RemoteExec” function that was seen earlier in algorithm 2.5. The

“RemoteExec” implementation is shown in algorithm 2.8. Note in line 1 that there are

two arguments. The first is the IP address of the computer where the command is to be

executed. The second is a string containing the command to be executed. In lines 4–17, the

function opens a socket to the given IP address on port 9987. The packet is data is sent to

the remote computer in line 20 where CString variable, “cmdline”, contains the command

line statement to be executed on the remote computer.

2.5 Usage

The example in this section is a short tutorial for using the GUI. For this example we

will assume that we wish to run a new simulation on MobileSim. The first thing that we
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(a) Service installation. (b) Service setup.

Fig. 2.3: Installation and setup of the remote execution service.

need to do once the GUI has been started is to click on the “New” button to create a new

experiment data file. This will open the window shown in fig. 2.2. For this example we will

implement a simple time invariant communication topology, the one shown in fig. 2.4. This

communication topology can be entered into the Communication Matrix field of the GUI

as is shown in fig. 2.5. Also for this example we will let robot 1 be the only leader and the

rest of the robots will be followers. Therefore the Leader Array fields can be set as in fig.

2.5. The rest of the fields can be set to 0 for this example. Once all the fields, including

the name, have been filled the “->” must be pushed nine times, and the experiment data

can be saved by clicking “OK”.

For this example we will have our formation follow a circular path so we will select

“Circle” from the “Virtual Center Path” drop-down box, and we will choose our “Exam-

ples.edf” experiment data file from the “Experiment Settings” drop-down box. as shown in

fig. 2.6. By selecting the MobileSim radio button the controls for MobileSim are enabled.

Since four robots are selected by default there is no need to change that. The next step is to

click the “Run MobileSim” button. Once MobileSim is running and four robots are visible

we can start our simulation by clicking “Run Experiment”. This example could be run just

as easily on the AmigoBots by selecting the “AmigoBots” radio button and entering the

correct AmigoBot IP addresses.
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Fig. 2.4: Communication topology used in this example.

Fig. 2.5: Experiment data for this example.

Fig. 2.6: Experiment data for this example.
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Algorithm 2.7 ProcConnectionFunc implementation.

1 UINT ProcConnectionFunc(LPVOID pParam)
2 {
3 SOCKET hSock = SOCKET(pParam);
4 CAsyncSocket CliSock;
5 CliSock.Attach(hSock);
6

7 CHAR pInData[1028];
8

9 int nTotalBytes = 0;
10 int nRec = 0;
11 while (1)
12 {
13 int nRec = CliSock.Receive(&pInData[nTotalBytes], 1028 − nTotalBytes);
14 if (nRec == SOCKET ERROR | | nRec == 0)
15 break;
16 if (GetApp()−>m pStop−>Lock(0))
17 break;
18

19 nTotalBytes+=nRec;
20 }
21

22 CString strDta(pInData, nTotalBytes);
23

24 STARTUPINFO StartInfo;
25 PROCESS INFORMATION ProcInfo;
26

27 memset(&StartInfo, 0, sizeof(STARTUPINFO));
28 StartInfo.cb = sizeof(STARTUPINFO);
29

30 CString strCmdLine = strDta; //set the command line.
31

32 BOOL fOk = CreateProcess(NULL, strCmdLine.GetBuffer(0), NULL, NULL, FALSE,
33 NORMAL PRIORITY CLASS, NULL, NULL, &StartInfo, &ProcInfo);
34

35 CliSock.Close();
36 return 1;
37 }
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Algorithm 2.8 RemoteExec function implementation.

1 int RemoteExec(CString addr, CString cmdline){
2 int nRetCode = 0;
3

4 if (!AfxSocketInit())
5 {
6 return 1;
7 }
8

9 CSocket cliSock;
10 if(!cliSock.Create())
11 {
12 return 2;
13 }
14 if(!cliSock.Connect(addr, 9987))
15 {
16 return 3;
17 }
18 //Build up the arguments:
19

20 cliSock.Send(cmdline, cmdline.GetLength());
21

22 return nRetCode;
23 }
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Chapter 3

Dynamic Formation Algorithm

3.1 Introduction, Motivations, and Uses

Presented in this chapter is a novel solution for dynamically changing or time varying

formation parameters. That is, a decentralized method of handling time varying forma-

tion parameters such as the number of agents in the formation and formation shape. By

implementing this algorithm a consensus will be reached for the number of agents in the

formation as well as for the parameters that control the shape of the formation.

In previous research consensus has been used mainly to achieve a virtual center of the

formation. The number of agents as well as the individual positions in the formation remain

fixed. If the formation were able to change dynamically and in a controlled fashion, object

avoidance could be more effective. That is, it would be possible for a wide formation to

temporarily form a single file line in order to pass through a very narrow obstacle, or for

a very tight formation to expand in order to let the obstacle pass through the formation.

This functionality might be useful for a formation of robots in a building where groups of

robots were required to pass through narrow doorways and avoid people or other obstacles.

Another new feature is the ability to dynamically change the number of agents in

the formation. Previously if one or more agents lost communication with the rest of the

formation either from blocked line of communication or by being disabled, the rest of the

formation would continue as if the others were still there, with no knowledge of their absence.

If the lost agents were able to re-establish communication, they would be able to continue

on the mission as before. If the agent had been destroyed or disabled, the only way to

replace it would be with another agent with the previous agent’s same knowledge of its

position in the formation.
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In some situations it might be desirable to send several groups to the same location

to accomplish a mission. With a formation that can add or remove agents dynamically, it

would then be possible to shift agents of one group to another. For example, in fighting a

fire several groups could be sent to fight the fire from different positions. If one area were

identified as a very important area, then agents from other groups could be transferred to

the critical group.

3.2 Problem Statement

To achieve this consensus-based, time-varying formation, three problems were identi-

fied.

1. How to determine the number of agents in the formation.

2. How to determine the shape of the formation.

3. How to organize the agents within the formation.

One of the goals was to allow each agent to decide for itself where it should fit in the

formation. This means that all required knowledge of the formation will be common among

all agents, and each agent’s knowledge of its own unique desired position in the formation

will be derived from data shared by its neighbors. The trade off for this ability, and for

having a formation where the number of agents is not fixed, is that each agent must be

able to find out from its neighbors how many agents are in the formation. Since there is

not required to exist a direct line of communication between each agent, it is not possible

for the agents to simply count the other agents in the group. A consensus must then be

reached by all of the agents for how many are in the group.

The formation should be able to accommodate the addition of new agents as well as

their removal in an organized fashion. It should also be able to accommodate a large variety

of shapes, with as small an amount of data as possible required to specify the formation.

The information specifying the formation shape and size will be shared between neighbors

and will then need to be used along with the agent’s distinct identifier, such as an IP address

or serial number, to determine its position in the formation.
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3.3 Algorithm Development

In this section we develop the algorithms necessary for this dynamic formation. Starting

with an algorithm for determining how many agents are part of the formation. Also, we

develop an algorithm for determining the organization and shape of the formation.

3.3.1 Existence Algorithm

Initially, the idea of letting each agent maintain a list of the other agents seemed

somewhat simpler than it actually was. We first explored the idea of having an ID list that

would be passed from each agent to its neighbors, where essentially each agent would add

its neighbors’ IDs to the list and pass the list on. We found that, for adding to the list, this

method would be very easy to implement. The problem with this method is with removing

an ID from the list. It became evident that this method would be very complicated because

of the possibility loops in the graph, and would require that more information be passed

between agents than just an ID list to determine if the ID should be kept in, added to, or

removed from the list. For instance, as a robot enters into the robot’s neighbors would add

this robot’s ID to the ID list and pass the list on. In this way any robot that is not able to

communicate directly with another will still eventually be able to obtain a complete list of

the robots in the group. If a robot then leaves the group, the neighbors of this robot will

receive an ID list with the lost robot’s ID and they will assume that the lost robot is still

somehow connected to the group. To solve this problem flag bits would have to be associated

with each robot’s ID to determine if the ID should be added, kept in, or removed from the

list. The logic required to set and reset these flags became very complicated and prone to

logic errors because of the possibility of having loops in the communication topology.

Instead of the ID list for the existence consensus we devised a better method that

gives each agent a confidence array of the form C =
[
c1 · · · cn

]
. If an agent has

direct communication with agent j then cj = 1. This represents the idea that the agent

knows that agent j exists with no doubt. If there is no connection then the initial value

is cj = 0. Each agent in the group will maintain its own confidence array, C, which it

will share with its neighbors. During each communication cycle, each agent updates its
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own confidence array based on the average of its own confidence array with the confidence

arrays that it receives from each of its neighbors. Only the values that are less than 1 will

be updated since a 1 represents a direct communication link and should only be changed

if the communication link is broken. If agent j is part of the group, then the value cj will

grow to 1 over time. After this cj reaches a defined threshold, the agent is assumed to

exist within the group. When a confidence value starts to decrease, this indicates that a

agent has been lost or removed from the group. Once the confidence value drops below a

lower threshold value, the agent is assumed to no longer be part of the group. When the

confidence value begins to decrease however, a 0 has to be added to the average to account

for the confidence value of 0 for the lost agent and to drive the average to 0. Otherwise

the average can converge to any value between 0 and 1, and cannot be guaranteed to go

below the lower threshold value. The only requirement for this algorithm to work is that

the communication graph contain an undirected spanning tree. A directed spanning tree is

not enough The reason for the undirected requirement is that not even the leader or path

planner knows the correct number of agents in the group. Therefore, each member must

be able to receive information either directly or indirectly from every other member in the

group, and the only way to reasonably ensure this for a changing communication topology

is to provide undirected communication between the agents.

Algorithm 3.1 demonstrates the existence algorithm for agent i in pseudo code, where

A =



a1,1 · · · a1,n

a2,1 · · · a2,n

... · · ·
...

an,1 · · · an,n


is the communication matrix derived from the communication

topology, where ai,j = 1 if agent i receives data from j and 0 otherwise, and Ck =[
ck1 · · · ckn

]
is agent k’s confidence array. After the calculation each agent in the group

counts the confidence values greater than a set upper threshold and uses that as the number

of members in the group. Figure 3.2 shows the confidence values of agents 1, 2, and 4 as

the connection to agent 3 changes over time. The communication matrices are shown in

(3.1).
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Algorithm 3.1 Existence algorithm.
If ai,j = 1→ cij = 1

Else cij =

n∑
k=1

ai,k∗ckj
n∑

k=1
ai,k

If the previous cij < the current cij → cij =

n∑
k=1

ai,k∗ckj

1+
n∑

k=1
ai,k

Figure 3.1 shows the progression of the communication graph. From fig. 3.2 we can

see that quickly all three agents come to an agreement that agent 3 does, in fact, belong

to the group. Then at iteration 30 the link connecting agent 3 to the group is broken. The

consensus quickly converges to 0 meaning that all agents agree that agent 3 is no longer

part of the group. The non-monotonic nature of the decreasing curve is a result of the fact

that the agent that loses the link to agent 3 no longer “knows” whether or not agent 3

exists, so its confidence value drops immediately to 0, then based on the confidence value

of the other agents it raises to a non-zero value again which raises the calculated average

for the next iteration. This oscillation rapidly decays to 0. At iteration 60 two new links

are created to agent 3. As a result the remaining agent that does not have direct link to

agent 3 agrees very quickly that agent 3 is back in the group. This setup creates a loop in

the connection graph. Loops caused a great deal of difficulty and complication with other

algorithms that were tested. This algorithm however had no trouble reaching the correct

answer in the presence of loops as is shown in fig. 3.2 from iteration 60 to the end of the

simulation. At iteration 90 the loop is broken, but agent 3 is left in the group, and finally

at iteration 120 a loop is broken again, this time by removing both links to agent 3, thus

removing it from the group. In all of these cases the algorithm behaved as expected. If

more speed is required the upper threshold that determines when the confidence level is

high enough to consider the agent to be part of the group, and the lower threshold that

determines when the confidence level is low enough to determine that the agent is no longer

part of the group, can be moved closer to .5. This is similar to adjusting the noise margin
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in a digital circuit.

A =



0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0


→



0 1 0 1

1 0 0 0

0 0 0 0

1 0 0 0


→



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0



→



0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0


→



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


→



0 1 0 1

1 0 0 0

0 0 0 0

1 0 0 0


(3.1)

3.3.2 Dynamic Formation Scheme and Agent Organization

Keeping in mind the requirements for the formation algorithm, that there be a minimal

amount of data required to specify the formation thereby minimizing the amount of data

passed between agents, that there be a large variety of possible formation shapes, and that

no unique knowledge, except the agent’s own unique ID number, should be required, an

ellipse was chosen as the base shape for the formation. An ellipse was chosen as an ideal

foundation for the formation because it can be described using only two parameters, the

semi-major and semi-minor axis. By specifying these two parameters, any elliptical form

from a line to a circle can be specified. By specifying the number of agents to place on the

surface of the ellipses, virtually any formation shape can be achieved. Finally by specifying

a shift parameter, the formation is able rotate inside of the ellipse, i.e. the formation can

be rotated in elliptical coordinates to achieve an even greater flexibility of the formation

shape and maneuverability. So there are a total of four parameters required to completely

specify the formation.

Also, part of this algorithm is the task of determining how and where each agent

should be placed in the formation. In order for the shape of the formation and position of
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(a) This graph contains an
undirected spanning tree
where node 3 communi-
cates with only one neigh-
bor.

(b) The link to node 3 has
been lost at iteration 30.

(c) The link to node 3 has
been restored and a loop
that includes node 3 has
been created at iteration
60.

(d) The loop has been lost
by removing one of the
links to node 3 at iteration
90.

(e) The loop has been
recreated by restoring the
link to node 3 at iteration
120.

(f) Both links to node 3
have been lost at iteration
150.

Fig. 3.1: Communication graph progression for existence algorithm simulation.

the agents to be more easily calculated, the agents needed to be spaced evenly around the

surface of the ellipse independent of the shape of the ellipse. Therefore, agents should be

placed at even arc length intervals and not at equal angle intervals. When an odd number

of agents are placed on the surface of the ellipse, the first agent will be placed at 0◦ and

the rest spaced at equal distances along the surface of the ellipse. When an even number

of agents is placed on the perimeter, then the first agent’s place is shifted 1
2 desired arc

length from 0◦ and the rest are again placed at equal intervals along the surface. The one

exception to this rule is when only two agents are placed on the surface. This is to facilitate

a single-file configuration. Once all the available positions on the surface of the ellipse are

filled, additional agents will be placed on imaginary straight lines that connect consecutive

robots on the surface of the ellipse. The extra positions will be created by dividing the
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Fig. 3.2: Confidence values.

space on the imaginary lines evenly between the remaining agents. Figure 3.3(a) shows the

addition of points in a sequence up to 9 points where 4 points are allowed on the ellipse.

Figure 3.3(b) shows a similar sequence where only 3 points are allowed on the ellipse.

The first major obstacle with an elliptical formation is the mathematical complexity

of an ellipse. It is necessary to derive a method for calculating the (x, y) position on the

ellipse from a given distance around the surface of the ellipse so that each agent will be able

to dynamically calculate it’s own position in the formation. The ellipse equation is shown

in
x2

a2
+
y2

b2
= 1, (3.2)

where a is the semi-major axis and b is the semi-minor axis. To calculate the perimeter of

an ellipse exactly requires an infinite sum, but a good estimate is found using Ramunujen’s

Approximation in (3.3).

P = π
(

3(a+ b)−
√

(3a+ b)(a+ 3b)
)

(3.3)

∫ k

j
dS =

∫ k

j

√
1 + ẏ2dx (3.4)

With the perimeter known it is a simple matter to calculate the desired arc length between

agents. It is also necessary to be able to calculate the end point of the given arc where the
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desired arc length and starting point are known. As mentioned earlier, the first agent is

placed on the x-axis at 0◦ when there is an odd number of positions on the surface of the

ellipse. The position of the first agent acts as the starting point for finding the position of

the second agent and so on. For even numbers of agents, the starting point is still on the

x-axis at 0◦, but the first agent is placed at one half the desired arc length distance along

the ellipse from the starting point. From there the second is placed the desired distance

from the first, and so on. Arc lengths of an ellipse can be found from the equation in (3.4).

This equation requires an integral that cannot be found symbolically, so the integration

must be done numerically. Several numeric solving techniques were tested, as well as using

the Taylor Series expansion to solve an estimation of the integral symbolically. The Taylor

Series expansion of an order high enough to provide sufficient accuracy was too difficult to

find. The numerical limit of our computers were reached after finding the 32nd coefficient

of the Taylor series. Even with this many coefficients, this method was not nearly accurate

enough. Figure 3.4 shows the large error of the Taylor expansion. It also shows that

the more circular the ellipse, the more error was produced in this approximation. And

finally this method, although it required no loops to calculate, required a large number

of multiplications. In choosing a numerical solver, no great speed advantage was found

by using any particular numerical solver over another. The Simpson method is used for 0

shown in this thesis.

To solve (3.4) we must first find ẏ. Solving (3.2) for y results in y = b
√

1− x2

a2 , then

taking the derivative yields ẏ = bx√
a4−a2x2

and can be substituted into (3.4) to get the final

arc length equation

S =
∫ k

j

√
1 +

b2x2

a4 − a2x2
dx. (3.5)

Now it is possible to numerically solve where the limits of integration j and k are the initial

and final x-axis values, respectively. This equation will be used to solve for k.

Now that the necessary equations have all been derived, the method for finding the

coordinates for points on the ellipse can be explained. We begin by dividing the perimeter

of the ellipse into equal segments using Ramanujen’s approximation of the perimeter of
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the ellipse and the number of points that will be placed on the surface of the ellipse. For

simplification, the center of the ellipse is always set at the origin with the semi-major axis

on the x-axis. When calculating the arc length the first point can be selected arbitrarily

by selecting any value for −a < x < a, where a is the length of the semi-major axis. Note,

however, that (3.5) is infinity when x = ±a, so the in initial x can be chosen to be a very

small distance from −a. In this discussion the starting point will always be taken to be

−.999a. The value for y is calculated from the ellipse equation once x is known. The end

points of the arc are estimated using a binary search method for finding the upper bound

of the integration, k, in (3.5), where x = .999a is used as the initial upper bound. Once

the end point is found, it is used as the starting point for the next arc, or the lower limit

of integration, j, in (3.5) and the initial upper bound, k, is again set to x = .999a is used

as the initial upper limit. The arc length is calculated using these bounds and compared

to the desired arc length. After each calculation the upper limit is changed based on the

rules of a binary search until the calculated arc length is as close as necessary to the desired

arc length. At this point the upper limit is the next x value and the y value can easily be

calculated. This process continues until all of the desired points are found.

There may be other faster search techniques, but for the purposes of this thesis a binary

search was simple to implement and accomplished the requirements sufficiently well. Using

the binary search method it was found that in nearly all cases no more than 15 iterations

were necessary to reach a suitable estimate for x.

Since the formation will be changing, it is important to control the rate at which the

formation changes to avoid saturation. It would not be desirable, for example, to tell a UAV

to go from an altitude of 100 to 300 feet instantly. There are three parameters that can

affect the size and shape of the formation. They are: semi-major axis, semi-minor axis, and

shift. To find a way limit the rate at which these parameters can change let a represent a

parameter. Then ∆a = af − a0, where a0 is the initial value and af is the final value. Also

let ∆t = tf − t0, where t0 is the initial time and tf is the final time, and let α = ∆a
∆t , where

α is the maximum rate of change and can be chosen for a given parameter. Now the fastest
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that a can go from a0 → af is given by ∆t = ∆a
α . If we let t0 = 0, then tf = ∆a

α . Now

let T be the sampling period. The value found for tf must be rounded up to the nearest

n ∗ T , where n ∈ Z and the amount of change, ε in a per sampling period, T , is calculated

by ε = ∆a
nT . So ε is the ideal amount that a will be required to change after each sample

period and af = a0 +
n∑
i=0

ε.

3.4 Dynamic Formation Algorithm Implementation for AmigoBot Platform

The implementation of the algorithms on the AmigoBot testbed in this chapter will

be explained in some detail in this section. Some background knowledge may be required

about the inner workings of the AmigoBot platform, or ARIA. Appendix A provides a

general overview of the AmigoBot and ARIA, and Appendix B provides a general overview

of our AmigoBot testbed.

The algorithm was placed in “ClientTest.exe”. The job of “ClientTest.exe” is to gather

data from the robot’s sensors and from the robot’s neighbors, as well as from the path

planner if the particular robot is a leader, then use this data in the control algorithm. This

cycle happens every 100 ms. See Appendix B for more detailed information about the

testbed itself.

The first thing that must happen in this cycle is that the robot must calculate its

confidence array. The confidence array is stored in matrix form with the confidence arrays

of each of the robot’s neighbors. The robot must first find out who are its neighbors. For

each link that it has with a neighbor, the corresponding confidence value is set to 1. The

next step is to sum its confidence values with those of its neighbors. Based on the robots

past confidence values and the new confidence values the robot determines if a 0 needs to

be added to the average. Recall that if the average is found to be decreasing a 0 must be

added to the average to account for a link that has been lost.

The next step is to estimate the formation’s virtual center, and the ellipse parameters.

The virtual center is the location of the center of the formation or the (x, y) position that

the path planner sends to the leader. Each of the followers in the formation must estimate

the parameters given by the path planner to the leaders using the data passed to them by
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their neighbors. Over time a consensus is reached by all robots in the group. The algorithm

for consensus is the same for each of the parameters. Let ai be a parameter for robot i,

then

a[k] = a[k − 1] +

∑
n∈Ni(t)

dan

|Ni|
, (3.6)

where k is the discrete-time index, Ni is the set of robot i’s neighbors, dan is the change in

an over time or the derivative of an, and |Ni| is the number of neighbors that robot i has.

Once each AmigoBot has an estimate of the virtual center and the ellipse parameters,

it uses them to calculate the formation positions of each of the robots. Because of the

relatively large amount of processing that must be done to compute the positions, they are

only calculated if any of the estimates of the four ellipse parameters have changed. In this

process the center of the ellipse is placed at the origin and the robot positions on the surface

of the ellipse are calculated first using the ellipse equations derived in this chapter. Once all

of the positions on the surface of the ellipse have been found it is an easy matter of placing

the rest of the points on straight lines connecting the points on the ellipse. In this step much

care had to be taken to make sure that it was never possible to try to place a point exactly

on the x-axis, as (3.5) is undefined where x = a. We found that reasonable results could be

reached by letting −.999a ≤ x ≤ .999a. Care was also taken to find an acceptable accuracy

for the binary search. That is, how close to the actual desired arc length did the binary

search have to get before it would stop? The trade off was between the number of iterations

necessary to reach the final result and the exactness of the positions in the formation. We

settled on an accuracy of .01, meaning that the binary search would continue until the end

point put the arc length within ±.01 of the desired arc length. This gave very accurate

placement on the ellipse and generally took no more than fifteen iterations to finish. Once

all of the points are found the the center of the formation is translated to the position of

the estimated virtual center, and the formation is rotated to the orientation of the virtual

center.

Each of the positions in the formation are found in a sequential order, and therefore

each of the robots can compare their own unique ID with the ID, that is linked to the
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confidence array, of the other robots. In this way the robots are able to place themselves in

the same sequential order in the formation without ever being assigned a fixed place in the

formation.

3.5 Experiments and Results

With the implementation of the dynamic formation controller finalized, the GUI is used

to run the experiments on the testbed. Figure 3.5 shows an example of a new experiment

being set up for the dynamic formation controller. Most of the setup is the same as was

described in Chapter 2. The difference is that for these experiments values must be specified

for the ellipse parameters a, b, poe, and shift, where a is the semi-major axis, b is the semi-

minor axis, poe is the number of positions on the surface of the ellipse, and shift is the

rotation of the formation in elliptical coordinates. The shift parameter works by shifting

the positions on the ellipse the given arc distance around the surface of the ellipse. The

values of a, b, and shift are expected in tenths of meters. The reason for this scaling was to

avoid unnecessary complications in programming, and so that it would be possible to allow

only numerical values as inputs to the GUI, but still allow values smaller than 1 meter as

inputs.

For the experiment shown in fig. 3.6 each of the ellipse parameters are changed in

time to demonstrate the capabilities of the dynamic formation algorithm developed in this

chapter. The communication topology used for this experiment is that given by the graph

shown in fig. 3.7. Initially, all four robots go from their initial positions to form the

triangular formation shown in fig. 3.6(a). In this case the ellipse is a circle because both

the semi-major and semi-minor axes are equal, and with only three positions allowed on the

surface of the ellipse, three of the robots position themselves to form the triangle. The fourth

robot then takes its place at the midpoint between two of the robots on the ellipse. Then

the path planner sends a new set of ellipse parameters to the leader of the formation. The

new parameters place four robots on the surface of the ellipse. The new square formation is

shown in fig. 3.6(b). Next the semi-major axis is increased to from 1m to 3m in figs. 3.6(c)

and 3.6(d). Note the amount of time this takes to occur. The semi-major axis parameter
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grows slowly until it reaches the final value so that the robot motors are never saturated.

From this rectangular formation the robots then form a single file line by changing the

number of positions on the ellipse from four to two as shown in fig. 3.6(e). Finally, the shift

parameter is demonstrated in fig. 3.6(f). To see the effects of shift parameter compare figs.

3.6(e) with 3.6(f). Note how the formation has been rotated inside of the ellipse.

The results of the next experiment, shown in fig. 3.8, demonstrate the ability of the

dynamic formation algorithm to handle the addition and loss of members of the formation.

The addition and removal of a robot from the formation is done simply by changing the

communication matrix between the communication matrices shown in fig. 3.9. In this

experiment all of the ellipse parameters are all held constant. The experiment begins with

only three robots as shown in fig. 3.8(a) using the connection matrix in fig. 3.9(a). The

connection matrix is then changed to the one shown in fig. 3.9(b), which includes a fourth

robot into the formation as shown in fig. 3.8(b). And finally a robot is removed from the

formation by changing the connection matrix to the one shown in fig. 3.9(c) resulting in

formation in fig. 3.8(c). Note how the robots are able to reform the formation when robots

are added and removed.

3.6 Conclusion

From the work that has been shown in this chapter, the ellipse has been shown to be

a workable solution to the problem of dynamically changing formations. Even though the

solution requires numeric integration to find the arc lengths of an ellipse, the calculations

were still easily able to be completed in time, and did not require very much more processing

power than the fixed formation algorithm. However, future work could be done to find a

less computationally intensive method for finding the robot positions. Additional future

research could be done to implement feedback to the path planner. This would allow the

driver to make decisions both for obstacle avoidance as well as path planning to account

agents in the formation that are not able to keep up with the rest of the formation. For

object avoidance, some direction could be taken from Qu, Wang, and Plaisted [23] to

implement object avoidance with a formation of robots.
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(a) Adding members to a formation with four members allowed on the el-
lipse.

(b) Adding members to a formation with three members allowed on the
ellipse.

Fig. 3.3: Demonstration of two different formations using the described method for orga-
nizing robots in formation.
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Fig. 3.4: Taylor estimate vs. numeric estimate.

Fig. 3.5: Dynamic formation experiment setup.
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(a) From the starting po-
sition four robots go to a
triangular formation. a =
10, b = 10, poe = 3, and
shift = 0.

(b) From the triangle for-
mation four robots go to
a square formation. a =
10, b = 10, poe = 4, and
shift = 0.

(c) From the square for-
mation four robots begin
to for a rectangular forma-
tion. a = 30, b = 10,
poe = 4, shift = 0.

(d) Robots finish forming
the rectangular formation
a = 30, b = 5, poe = 4,
shift = 0.

(e) From the rectangular
formation the robots form
a single file line. a = 30,
b = 5, poe = 2, shift = 0.

(f) The shift parameter is
used to rotate the line in-
side the ellipse a = 30, b =
5, poe = 2, shift = 13.

Fig. 3.6: Dynamically changing formation.

Fig. 3.7: Communication topology graph used in the experiment demonstrating the ellipse
parameters.
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(a) From the starting po-
sition three of the four
robots go to a triangular
formation. a = 10, b = 10,
poe = 4, and shift = 0.

(b) The fourth robot is
added to the formation and
the robots assume a square
formation. a = 10, b = 10,
poe = 4, and shift = 0.

(c) A robot leaves the for-
mation and the remaining
three robots assume a tri-
angle formation again. a =
30, b = 10, poe = 4, and
shift = 0.

Fig. 3.8: Depictions of the addition and removal of a robot from the formation.

(a) Communication topol-
ogy graph for first time pe-
riod.

(b) Communication topol-
ogy graph for second time
period.

(c) Communication topol-
ogy graph for third time
period.

Fig. 3.9: Communication topology graphs used in the experiment demonstrating addition
and removal of robots in the formation.
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Chapter 4

Harmonic Oscillation Algorithm

4.1 Introduction

In this chapter we show simulation and experimental results for another new distributed

control algorithm. The new algorithm presented in this chapter is derived from the coupled

harmonic oscillator. In physics a harmonic oscillator is a system that exerts or experiences

a restoring force proportional to its displacement when moved from its equilibrium position.

This is according to Hooke’s law. A coupled harmonic oscillator is a system with multiple

harmonic oscillators where each oscillator’s motion is coupled with or effected by the motion

of the other oscillators. Coupled harmonic oscillators are interesting because in a system

of identical harmonic oscillators the frequency and amplitude of oscillation for each of the

harmonic oscillators will converge to the same value over time, independent of the initial

displacement of any of the oscillators. That is the oscillators naturally reach a group

consensus with only the data received from their neighbors defined by the coupling. Our

goal is to exploit this natural consensus to create an algorithm for repetitive synchronized

movement. Such an algorithm could be used in patrolling or mapping tasks.

In this chapter we will approach the development of the control algorithm by adapting

coupled harmonic oscillator equations so that the coupling is defined by the communication

topology. Then by expanding this uncontrolled algorithm to a leader follower case so that

the final oscillation can be controlled by a path planner and not simply a result of the

initial states of the robots. We will then discuss Matlab simulation results followed by

the setup and usage of the testbed for our implementation and experiments of the coupled

harmonic oscillator controller. Finally, we will show the results of these experiments and

our conclusions based on both simulated and experimental results.



41

4.2 Algorithm Development

We begin this section by applying the coupled harmonic oscillator equations directly

to our control problem. Some Matlab simulation is given to demonstrate that the imple-

mentation works. Subsequently, we show the expansion of this strategy to a leader follower

strategy that provides a means for the parameters of the harmonic oscillation to be exactly

controlled by a path planner. Sections 4.2.1 and 4.2.2 are based on a publication by Ren

[19].

4.2.1 Coupled Harmonic Oscillators

A coupled harmonic oscillator occurs when two masses are connected by a damper with

coefficient b and are each attached to springs with equal spring constants k. The equations

describing this situation are

mẍ1 + kx1 + b(ẋ1 − ẋ2) = 0, (4.1)

mẍ2 + kx2 + b(ẋ2 − ẋ1) = 0, (4.2)

where xi ∈ R denotes the position of the ith mass. Following from (4.1) and (4.2) we

propose n coupled harmonic oscillators with local interaction of the form

ẍi + αxi + β
∑

j∈Ni(t)

(ẋi − ẋj) = 0, (4.3)

where α and β are positive gains, the index i = 1, ..., n, and the set Ni(t) is the time varying

set of neighbors of the ith oscillator. Let the states of the ith oscillator be represented by

ξi and ζi, where ξi = xi and ζi = ẋi.

Ren [19] shows that if there exists at least one oscillator with a directed path to all

other oscillators in the network topology, then (4.3) guarantees that both ξi and ζi achieve

oscillatory trajectories and that both ξi and ζi are synchronized (i.e. ξi approaches ξj and

ζi approaches ζj). We use the directed graph G = (V, ε), where V = {1, . . . , n} is the node

set and ε ⊆ V × V is the edge set to model the interaction among the oscillators. Let £
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denote the Laplacian matrix associated with G. Also, let p ∈ Rn satisfy p ≥ 0, 1T p = 1,

where 1 denotes the n × 1 column vector of all ones, and pT£ = 0. Ren [19] also shows

that for large t

ξi(t)→ ξj(t)→ cos(
√
αt)pT ξ(0) +

1√
α

sin(
√
αt)pT ζ(0), (4.4)

ζi(t)→ ζj(t)→ −
√
α sin(

√
αt)pT ξ(0) + cos(

√
αt)pT ζ(0), (4.5)

where ξ(0) = [ξ1(0), . . . , ξn(0)]T and ζ(0) = [ζ1(0), . . . , ζn(0)]T .

4.2.2 Leader Follower Harmonic Oscillators

Let there be a reference oscillator, labeled as oscillator 0, defined by

ξ̇0 = ζ0, (4.6)

ζ̇0 = −αξ0, (4.7)

where α is a positive gain. Solving the differential equations (4.6) and (4.7) it can be shown

that

ξ0(t) = cos(
√
αt)ξ0(0) +

1
α

sin(
√
αt)ζ0(0), (4.8)

ζ0(t) = −
√
α sin(

√
αt)ξ0(0) + cos(

√
αt)ζ0(0). (4.9)

Now the coupled harmonic oscillator control equations can be given as

ξ̇i = ζi, (4.10)

ζ̇i = −αξi − β
∑

j∈Ni(t)

(ζi − ζj)− bi,0(ζi − ζ0), (4.11)

where bi,0 is defined as 1 if oscillator i receives information directly from the reference

oscillator 0 (i.e. the oscillator is a leader) and bi,0 is 0 otherwise. When the leader has a

directed path to all the other oscillators, Ren [19] shows that (4.4) and (4.5) can be applied
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directly to (4.10) and (4.11) to yield ξi(t) → ξ0(t) → cos(
√
αt)ξ0(0) + 1

α sin(
√
αt)ζ0(0) and

ζi(t)→ ζ0(t)→ −
√
α sin(

√
αt)ξ0(0) + cos(

√
αt)ζ0(0), for large t.

4.3 Experimentation and Results

We will consider a group of four mobile robots with communication topology depicted

in fig. 4.1 throughout the rest of this chapter. An arrow from node j to node i indicates

that robot i can receive information from robot j.

Simulations for this coupled harmonic oscillator control strategy were carried out using

Matlab/Simulink. Matlab/Simulink simulates a continuous-time implementation. The al-

gorithm was then implemented using the testbed for multi-vehicle cooperative control. By

the nature of the testbed, this implementation must be in discrete-time. Therefore, this

chapter will show both continuous and discrete-time results.

For the simulations and experiments contained in this paper two values of α are used,

namely, α = .0044 and α = .071.

4.3.1 Matlab Simulation (Continuous-Time)

To model the AmigoBots used in the testbed, we used a model for a two-wheel dif-

ferential drive robot. The nonlinear state equation that was used in Simulink to model

robots is defined as


ẋi

ẏi

θ̇i

 =


Vi cos(θi)

Vi sin(θi)

ωi

 , where (xi,yi) is the cartesian position, θi

is the heading, and Vi and ωi, respectively, are the translational and rotational velocity

Fig. 4.1: Communication topology.
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inputs corresponding to the ith robot. To avoid the nonholonomic constraint, we consider

a fixed point off center of the wheel axis denoted by (Xhi, Yhi), where xhi = xi + Li cos(θi)

and yhi = yi + Li sin(θi), where Li is the distance from the center of the wheel axis to

the hand position, or a fixed control point off the wheel axis. It follows that

 ẋhi

ẏhi

 =

 cos(θi) −Li sin(θi)

sin(θi) Li cos(θi)


︸ ︷︷ ︸

T

 Vi

ωi

. Letting,

 Vi

ωi

 = T−1

 Uxi

Uyi


=

 cos(θi) sin(θi)

− sin(θi)/Li cos(θi)/Li


 Uxi

Uyi

 ,
it follows that ẋhi = Uxi and ẏhi = Uyi.

The control scheme used in both the simulations and the experiments is illustrated

in fig. 4.2. The driver section shown in fig. 4.2 provides the reference oscillator signal

and has outputs ζx0, ξx0, ζy0, and ξy0. The control scheme consists of two parts, the

coupled oscillator and the linear feedback controller. Note that corresponding to each robot

there exists a coupled oscillator controller and a linear feedback controller. Each coupled

oscillator controller guarantees that its oscillator state is synchronized with the state of the

reference oscillator, while each linear feedback controller guarantees that the corresponding

robot tracks the state of its corresponding oscillator. Let ζxi, ξxi, ζyi, and ξyi denote the

states from the coupled oscillator controller. We use (4.10) and (4.11) to design the coupled

oscillator controller. In particular, we let ξ∗i and ζ∗i
1 satisfy (4.10) and (4.11). We define

our linear feedback controller as

Uxi = ζxi − (xi − ξxi), (4.12)
1Here * denotes x or y.
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Fig. 4.2: Control scheme consisting of the coupled oscillator controller and the linear feed-
back controller.

Uyi = ζyi − (yi − ξyi). (4.13)

Note that the coupled oscillator controller guarantees that ξ∗i(t)→ ξ∗j(t)→ cos(
√
αt)ξ∗0(0)+

1
α sin(

√
αt)ζ∗0(0) and ζ∗i(t)→ ζ∗j(t)→ −

√
α sin(

√
αt)ξ∗0(0)+cos(

√
αt)ζ∗0(0), also that the

linear feedback controller guarantees that xhi(t) → ξxi(t) and yhi(t) → ξyi(t). Combining

these two arguments means that xhi(t)→ xhj(t)→ cos(
√
αt)ξx0(0) + 1

α sin(
√
αt)ζx0(0) and

yhi(t) → yhj(t) → cos(
√
αt)ξy0(0) + 1

α sin(
√
αt)ζy0(0) for large t. Throughout the simula-

tions and experiments in this chapter ξx0(0) = 1.5, ξy0(0) = 0, ζx0(0) = 0 and ζy0(0) = .1

so that the reference path will be a circle of radius 1.5m and the translational velocity of

the robot will be .1m/s for large values of t.

The communication topology is given by fig. 4.1. The initial values for the reference

oscillator states, ξ0(0) and ζ0(0), are the same that were calculated previously in this sec-

tion. The initial values for other coupled harmonic oscillators, ξi(0) and ζi(0) were chosen

arbitrarily to show convergence over time to the reference oscillator states. Figure 4.3

shows the state of each of the coupled oscillators where j = 0 is the reference oscillator. In

fig. 4.3 ζ converges very quickly, and because of this ξ converges very slowly. Both states

should ideally converge at similar rates. In this case the value for β used in (4.11) was

1. The effects of β on the speed of convergence are illustrated in fig. 4.4. This figure

shows that while ζ converges slower, ξ is able to converge faster and as a result the system

converges faster. A reasonable value for β seems to be β = 10α. The gain α also effects the

the rate at which the states will converge. A comparison of fig. 4.5 and fig. 4.3 shows that
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Fig. 4.3: Matlab simulation with α = .0044 and β = 1.

for a larger α (α = .071) the states shown in fig. 4.5 converge long before those of fig. 4.3.

Finally letting β = 10α for this second case, we can see by comparing fig. 4.5 and fig. 4.6

that the states are able to converge faster.

Adding the robot model into the simulation for the case where α = .0044 and where

β = 10α, we are able to see that the local controller is able to track the input from the

harmonic oscillator controller. Figure 4.7 shows the trajectories and snapshots of the four

robots at different time periods and fig. 4.8 shows the complete trajectories of the four

robots with snapshots of the robots. Here we have introduced a deviation to both X and Y

components of the states of the oscillators. Note that the motion of the four robots becomes

synchronized as they move around their circular paths. Figures 4.9 and 4.10 show the x and

y axis positions and the velocities versus time of the four robots together with the reference.

Note that all of the four robots’ states synchronize with the reference states.

4.3.2 AmigoBot Experiment (Discrete-Time)

In order to be able to change the oscillation parameters easily for any given experiment,

the GUI includes the section highlighted in fig. 4.11. These fields represent the initial
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Fig. 4.4: Matlab simulation with α = .0044 and β = 10α < 1.

conditions of the reference oscillator. The x Init and y Init fields correspond to ξx0(0) and

ξy0(0), Vx Init and Vy Init correspond to ζx0(0) and ζy0(0), and Alpha X and Alpha Y both

correspond to α. A distinction was made between the x and y directions for α for added

generality.

As we mentioned previously, the testbed is an implementation of a discrete-time dis-

tributed networked control system. Since the network delay is much less than the nomi-

nal 100ms sample time of the ActivMedia AmigoBots we know the system delay is close

to 100ms. To remove this instability the reference oscillator was implemented as ξ∗0[k] =

cos(
√
αkT )ξ∗0[0]+ 1

α sin(
√
αkT )ζ∗0[0] and ζ∗0[k] = −

√
α sin(

√
αkT )ξ∗0[0]+cos(

√
αkT )ζ∗0[0],

where k denotes the discrete-time index and T denotes the sampling period. Due to the

discrete-time nature of the system, the controller was implemented using zero order hold as

ξi [k + 1] = ξi [k] + Tζi [k] +
1
2
T 2ui [k] , (4.14)

ζi [k + 1] = ζi [k] + Tui [k] , (4.15)

where ζ̇∗i[k] is the kth sample of ζ̇∗i(t) in (4.11).
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Fig. 4.5: Matlab simulation with α = .071 and β = 1.

Our experiments show that the control scheme works just as well in discrete-time as

it does in continuous-time. Figure 4.12 shows the trajectories and snapshots of the four

robots over four time periods and fig. 4.13 shows the complete trajectories of the four

robots. These two figures can be compared to figs. 4.7 and 4.8, respectively. Note that in

both cases the snapshots of the robots become aligned over time.

Figures 4.14 and 4.15 show the x and y axis positions and velocities with respect to

time of the four robots and the reference. See how each of the robots converge to the

reference position and velocity. These plots can also be compared to figs. 4.9 and 4.10.

4.4 Conclusion

In this chapter we have proposed and implemented a distributed strategy for the syn-

chronization of the motions of multiple mobile robots. The results of our simulations and

experiments have shown that we are able to control the shape and speed of the path. Our

results also show robustness to discretized implementations. This research also shows that

using coupled harmonic oscillators is an effective solution to synchronized motion useful for

many repetitive and patrol applications.
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Fig. 4.6: Matlab simulation with α = .071 and β = 10α.

Fig. 4.7: Matlab simulation: Robot paths and snapshots for four consecutive time periods
of 40 second intervals starting at 0 s and ending at 160 s. The white snapshot indicates the
starting positions.
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Fig. 4.8: Matlab simulation: Robot paths for an entire simulation of 360 second with
snapshots at the beginning and end. The white snapshot indicates the starting positions.

Fig. 4.9: Matlab simulation: Robot (x, y) position vs. time.
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Fig. 4.10: Matlab simulation: Robot velocities in the (x, y) directions vs. time.

Fig. 4.11: Shows the usage of the GUI for the coupled harmonic oscillator controller.
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Fig. 4.12: AmigoBot experiment: Robot paths and snapshots for four consecutive time
periods of 40 second intervals. The white snapshot indicates the starting positions.

Fig. 4.13: AmigoBot experiment: Robot paths for an entire simulation of 360 second with
snapshots at the beginning and end. The white snapshot indicates the starting positions.
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Fig. 4.14: AmigoBot experiment: Robot (x, y) position vs. time.

Fig. 4.15: AmigoBot experiment: Robot velocities in the (x, y) directions vs. time.
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Chapter 5

Procerus UAV Formation

5.1 Introduction

As batteries have become lighter and their capacity has increased, and all other elec-

tronic components have grown ever smaller and lighter, electric unmanned aerial vehicles

(UAVs) have entered the spotlight. And with so much work being done on the cooperative

control of ground robots, the next logical step is to apply this knowledge to multiple UAVs.

There are many uses for formations of UAVs, from atmospheric sampling where multiple

UAVs could take air samples or pollution measurements from the same latitude and longi-

tude at different altitudes to achieve a more accurate picture of the pollution distribution

in the atmosphere, to extremely hazardous missions where the loss of one or more UAVs

is possible. This chapter presents work that has been done in constructing a testbed for

coordinated control of UAVs.

The testbed in this chapter is developed for two Procerus UAVs with the Kestrel

autopilot with the goal of being able to expand it in the future to include more UAVs

and to incorporate several other types of autopilots, such as the Xbow and Paparazzi. This

chapter is organized as follows. First we will give an overview of the Procerus UAV platform,

then we discuss the design requirements for the testbed. From there we will go through the

GUI layout and design its functionality. Lastly, we will give our conclusions.

5.2 Procerus UAV Platform Overview

The Procerus UAVs were selected as the initial platform for the testbed because they

can be purchased ready to fly. Little effort is required in the initial set-up and calibration

of the UAVs. They are also quite rugged and durable. The platform introduction presented
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in this section is based on Procerus manuals [24].

5.2.1 Airframe, Sensors, and Actuators

The Procerus airframe is a delta wing made from an EPP foam as shown in fig. 5.1.

The UAVs are propelled by very efficient brushless DC motors, and are powered by three

LiPo batteries. Two small servo motors control the ailerons. Sensors include two pressure

sensors, one to determine the air-speed, and the other to determine the altitude, GPS, 3-axis

gyro and accelerometer, and a dipole antenna for communication. The Kestrel autopilot is

the on-board electronics that handles the low-level control of the UAV.

5.2.2 CommBox

Communication with the UAV is handled by the CommBox shown in fig. 5.2. The

CommBox is the communications gateway between the Virtual Cockpit, RC transmitter,

and multiple Kestrel Autopilots. The virtual cockpit communicates through the CommBox

via the CommBox’s RS-232 serial port. The CommBox parses the packets of data sent by

the virtual cockpit and passes them on to the address specified by the packet.

An RC transmitter can be connected to the CommBox to allow the user to override

the control of the Kestrel autopilot. The RC transmitter can control only one UAV at a

time, but by changing the RC destination address, any UAV can be controlled at any time.

Signals from the RC Transmitter are sent to the UAV at a rate of 13 Hz.

Finally, the autopilot on-board the UAVs transmits and receives communication to

and from the CommBox via the Aerocomm modem. Each packet the CommBox receives

is checked for errors. If no errors are found, the packet is passed on to the virtual cockpit

through the serial connection.

5.2.3 Autopilot

The Kestrel autopilot, shown in fig. 5.3, is a piece of hardware that resides on-board

the UAV and processes all of the data from the sensors and communication with the Virtual

Cockpit and CommBox. It also handles all of the low-level control of the UAV’s actuators,
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Fig. 5.1: Procerus UAVs.

Fig. 5.2: CommBox.

such as propeller speed control and aileron angle. Mid-level control is also handled by the

autopilot. This mid-level control includes numerous modes, such as, take-off, land, loiter,

and navigation modes. The navigation mode is the mode that we will be using in this chapter

to implement our high-level control algorithms. In navigation mode the autopilot flies the

UAV toward waypoints that are sent from the virtual cockpit. Our control algorithms will

generate these waypoints based on the positions of other UAVs. The waypoints are then

sent to the appropriate UAVs.
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Fig. 5.3: Kestrel autopilot.

5.2.4 Virtual Cockpit

The Virtual Cockpit, shown in fig. 5.4, is a Windows-based GUI for the Kestrel au-

topilot, and is very easy to use. It is able to control and monitor multiple UAVs. However,

each UAV is controlled individually simply by setting lists of waypoints for each UAV. The

UAVs do not communicate to each other through the Virtual Cockpit. Our goal is to imple-

ment cooperative control algorithms for UAVs using these tools. This goal is made possible

through the software development kit supplied by Kestrel. This kit allows the developer to

develop software that extends the Virtual Cockpit’s functionality.

5.3 Design Requirements

The objective of the research in this chapter is to develop multi-UAV cooperative

control algorithms and the software for the testbed similar to the testbed designed for the

AmigoBots in Chapter 2. This UAV test bed will aid in much future research.

Specific design goals include:

� Implement pre-flight checks and settings.

– Zero pressure - sets the current air pressure as the reference. Speed and altitude

is then calculated us the difference measured from this reference.

– Check sensors - verifies that all sensor readings are within reasonable bounds and

working properly.
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Fig. 5.4: Kestrel virtual cockpit.

– Fail safe - uploads predetermined actions for the UAV to take in the case of

catastrophic errors or loss of communication.

– Set GPS home - Sets the current GPS coordinates as the home position where

it will return and land.

� Set UAV autopilot modes.

– Take-off mode - uploads a waypoint that the UAV will go to upon successful

take-off and initiates the take-off sequence.

– Land mode - uploads the specific landing parameters and initiates the landing

sequence on the autopilot.

– Loiter mode - tells the autopilot to begin circling its current position.

– Navigation mode - causes the autopilot to follow a flight plan or list of waypoints.

– Manual mode - allows the UAV to be controlled manually by RC transmitter.

– Follower mode - causes the leader follower algorithm developed later on in this

chapter to be enabled.
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� Upload/Download waypoints - used to manually enter waypoints and send them to

the UAV as well as to find out what waypoints are currently on the UAV’s flight plan.

� Data logging - logs all telemetry data for both the leader and follower, as well as all

waypoints supplied to the follower by the follower mode controller.

5.4 GUI Design and Functionality

The GUI and all of its functionality are implemented using Visual C++. The GUI

design, shown in fig. 5.5, is implemented using only a single dialog box. At the time of this

writing, the GUI is used mainly to implement the control algorithm and control the single

follower UAV, but will easily be extended to include more UAVs. The reason for this design

is that we wanted to get a proof of concept as quickly as possible, and also the fact that

we had only two Procerus UAVs available. The leader UAV simply follows a flight path

from the Virtual Cockpit. The controller will take telemetry data from the leader and plot

waypoints for the follower.

5.4.1 Preflight

The preflight functionality is grouped together in section A of fig. 5.5. The “Zero

Pressure” button sends a packet of data to the autopilot containing the command to set the

differential and absolute pressures to zero to calibrate them. The “Check Sensors” button

sends a packet to the autopilot requesting a sensor check.

A reading from each of the sensors, the 3-axis gyros and accelerometers, the differential

and absolute pressure sensors, GPS, temperature and the pitch and roll estimates, is taken

and a bitmask is returned that indicates a good or bad status for each of the sensors’

readings. When the return packet arrives from the autopilot a message box opens alerting

the user of any sensor values that were found to be out of range. Note, the pressures must

have been zeroed before checking the sensors.

The “Failsafe” button causes a set of important failsafe functions to be be enabled on

the autopilot. There are a large number of failsafes available on the Kestrel autopilot, but
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Fig. 5.5: GUI designed for the cooperative UAV testbed.

not all of them need to be set. The “Failsafe” button sets the failsafe actions for loss of

GPS, low battery, critical battery, loss of communication, and altitude. A packet is built

containing a bitmask that indicates which failsafe functions are being enabled by the packet.

Failure values for each failsafe are also added to the packet. For example, to set the low

battery failsafe, the “Low Battery” bit must be set in the bitmask, and a minimum battery

voltage value must be specified in the packet. When this failsafe is set on the autopilot,

the autopilot will execute a predefined action when the battery voltage drops below the

minimum voltage. This action will override all other actions in order to avoid damage due

to a low battery.

The “Set UAV Home” button sets the UAV’s GPS home position. The GPS home

position is a reference for several functions including many failsafe functions, so that the

UAV can attempt to return home. GPS home is also used as a reference point for calculating

distances. This function uses the UAV’s current GPS location to set the GPS home when

this button is pushed. Note that for this reason the GPS must have a signal for GPS home

to be set. If the GPS home is set successfully, the checkbox next to the “Set GPS Home”

button will be checked.
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5.4.2 Waypoints

The purpose of the waypoints section, section B in fig. 5.5, is to allow the user to

upload waypoints manually to the follower UAV while the cooperative control algorithm is

disabled, and also to allow the user to download the UAV’s current waypoint. Downloading

the UAV’s current waypoint is mainly for convenience in debugging control algorithms. A

waypoint consists of an altitude, airspeed, latitude, longitude, and radius. The radius is

the distance from the actual latitude and longitude of the waypoint that the UAV must be

before it considered to have reached the waypoint. To set the waypoint, a packet must be

sent to the UAV with this information, likewise when a waypoint is downloaded from the

UAV a request packet is sent to the UAV and a similar packet is returned from the UAV

containing the waypoint information.

5.4.3 Data Logging

Data logging is done for both the leader UAV and the follower UAV as well as for the

control algorithm when it is enabled. The standard telemetry packet that is sent twice per

second. An important note is that the polling mode must be used and not the broadcast

mode when more than one UAV is being controlled by the same ground station. In broad-

cast mode the autopilot broadcasts telemetry automatically at 6 Hz. In polling mode the

autopilot sends packets only when they are requested. This is necessary to avoid packet

collisions. When polling mode is enabled the Virtual Cockpit coordinates the polling. The

virtual cockpit by default polls each UAV’s telemetry at 2 Hz in polling mode.

The telemetry data is recorded in a file in ASCII format so that it can be easily

loaded into Matlab for analysis. Each file is given a unique name with the date included.

The same data is recorded for both leader and follower. Section C in fig. 5.5 shows the

graphical output of the leader and follower telemetry data log. A waypoint log file is also

created to log output from the controller. The waypoint log only applies to the follower and

only logs the waypoints sent to the follower from the cooperative control algorithm. The

waypoint log files are written in the same format as the telemetry log files and include the

altitude, airspeed, latitude, longitude, and radius of the waypoints.
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5.4.4 UAV Modes

The UAV modes in section D of fig. 5.5 are used to command the UAV to perform

specific functions. Take-off mode must be set in multiple steps. First a special waypoint

must be set for the UAV to go to when when take off is complete. Once the waypoint

has been successfully sent and an acknowledgment received from the autopilot, a command

packet can be sent to change the autopilot mode to take-off mode. Note that if the command

packet is sent before the acknowledgment packet is received, the mode will not change. Land

mode is very similar to take-off mode. The main difference being that more parameters are

required for the special landing waypoint to specify the landing parameters such as the

descent rate and the rally point or starting point for the landing sequence.

The other modes are less complicated and only require sending the command to change

the mode. Loiter mode causes the UAV to begin circling at its current location. Manual

mode turns control of the UAV over to the RC transmitter. And Navigation mode causes

the UAV to follow the flight plan, going from one waypoint to the next.

The button labeled “Enable Follower” enables the cooperative controller and sets the

UAV mode to Navigation. When the cooperative controller is enabled, first the Virtual

Cockpit begins polling the autopilots for their telemetry, and all of the data loggers are

initialized if they were not already. The cooperative controller is set to sample the leader

UAV’s telemetry every second and calculate a new waypoint for the follower UAV. Each time

a new waypoint is calculated by the controller, the follower UAV’s flight plan is modified by

the new waypoint. Since the follower UAV is in navigation mode, it will immediately begin

moving toward this new waypoint. However, care must be taken not to send a waypoint to a

UAV that is still in the process of uploading a previous waypoint. This can cause collisions

and packet errors. To avoid this each time the cooperative control algorithm begins, it

checks to see if an acknowledgment packet has been returned from the autopilot indicating

that it is ready to receive the next control input.

Also in section D of fig. 5.5, there is a radio button group labeled “RC Control”. This

is where the user can select which UAV the RC will control when in Manual Mode. The



63

destination of the RC controller is handled by the Virtual Cockpit. Each time one of these

radio buttons is pushed a packet is sent to the Virtual Cockpit with the address of the new

RC control destination. The addresses of the leader and follower are set by the “Leader

Add” and “Follower Add” fields.

5.5 Conclusion

The documentation for the development kit supplied by Kestrel is quite extensive in the

description of the more than 75 different packet commands available, but the usage of these

packets was at times difficult to decipher and at times required much guessing and trial

and error. The main difficulty encountered was the timing of the packet delivery. If packets

are sent too quickly in succession so that the first packet is not completely received by the

autopilot before the second packet is sent, the second packet will be lost. Our solution to this

was to wait for the acknowledgment packet from the autopilot before sending subsequent

packets. This required setting flags each time a packet was sent and resetting the flags

each time the packets were acknowledged. This does not apply to special packets that are

guaranteed by the Virtual Cockpit to be sent. Once these guaranteed packets are sent by

the user, the Virtual Cockpit will continue to attempt to send them until they are sent

successfully.

While it is possible to directly control the angle of the ailerons and the propeller speed,

the controller output is in the form of waypoints and not motor speed and aileron angles.

While this sort of low-level control may be done in the future, we were more interested in

achieving a proof of concept. The low-level control of the UAV would require a significant

amount of time to adequately model the UAV and then to test the controller for safety before

any kind of in flight test would be possible. From the point to which we have brought the

test bed now, it will be a much simpler task in the future to develop more complex control

algorithms.

With the current state of the test bed it should be a simple task to expand it to control

more UAVs as they are acquired using the existing code.
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Chapter 6

Conclusion

6.1 Summary of Results

The purpose of the research presented in this thesis is to implement and experimentally

validate new cooperative control schemes in a physical environment as well as to explore a

new technique for handling formation control in the presence of obstacles and the loss or

addition of members.

To facilitate the implementation and testing of the control schemes and others on the

AmigoBot testbed Chapter 2 details the design and implementation of a graphical user

interface. This GUI is a convenient means of storing and recalling experiment parameters.

An important feature of this GUI is the ability to distribute the execution of the testbed

programs across multiple computers. This ability not only lessens the processing load

required from each computer, but also provides a more realistic communication environment.

Because each AmigoBot has been fitted with a small on-board computer, the controller can

now be executed on each robot’s on-board computer; therefore, becoming a more realistic

implementation of a distributed system.

Formation control of multiple agents is a very active field of research. In Chapter 3

a new method for dynamically determining the shape of the formation is presented. That

is, this scheme allows the formation to change shape and size in order to avoid obstacles

or accommodate new mission objectives or terrain. This method also makes it possible for

members of the formation to leave and return, or for new members to be added and the

formation will adapt to accommodate these changes. As a result cooperative distributed

systems can have the ability adapt and change according to their environment and their

members.
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Coupled harmonic oscillators can be found in many places in nature. The repetitive

nature of harmonic oscillators makes them useful for many applications such mapping or

perimeter patrolling. Coupled harmonic oscillators lend themselves well to distributed con-

trol applications as demonstrated in Chapter 4. A coupled harmonic oscillator control

scheme is developed and implemented in both discrete-time and continuous-time. The re-

sults show that this method works well for systems with a sparse communication topology

and is robust in both continuous-time and discrete-time.

UAVs are gaining much popularity as batteries and other components become lighter

and smaller. Small, low-cost UAVs are beginning to become available in the same way that

small, low-cost wheeled robots became available years ago. As a result groups of small

UAVs can now be used to perform tasks much more efficiently and economically than single

monolithic UAVs are able. Chapter 5 describes the implementation of a cooperative multi-

UAV testbed for the Procerus Platform. This testbed provides a proof of concept for a

distributed multi-UAV controller.

6.2 Future Work

For all of the consensus algorithms discussed in this thesis, the leaders of the formation

only receive data from the path planner. An interesting topic of research would be to find

an efficient way provide feedback to the path planner. If one or more members of the

group were not able to keep in formation, the path planner would be able to adjust so that

all members of the formation would be able to follow. This could also be applied to the

dynamic formation algorithm in Chapter 3 to allow the members of the formation to act as

distributed sensors, and by feeding sensor data back to the path planner, the path planner

would be able to effect obstacle avoidance using the capabilities of the dynamic formation.

For the UAVs there is a great deal of interesting work to be done. The testbed can

be expanded to control more UAVs, as well as expanded to control UAVs with different

autopilots such as the XBow or Paparazzi. Much work still needs to be done to optimize

the controllers as well. Cooperative UAV control is such a relatively new area that the pos-

sibilities for new work are countless, and the testbed can serve as a base for implementation.
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6.3 Conclusion

We have developed and added on to testbeds for two different platforms, the AmigoBot

UGV and the Procerus UAV. These testbeds provide a valuable resource for implementing

and testing distributed cooperative control algorithms on physical systems. Using these

testbeds we have implemented two new cooperative control schemes and compared them

to simulations done in Matlab. A new dynamically changing formation algorithm for dis-

tributed cooperative systems was developed and shown to work on the AmigoBot testbed.

Also, a coupled harmonic oscillator control scheme was developed and experiments done on

the testbed showed it to be implementable and robust.
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Appendix A

Manual of Aria Usage

A.1 Introduction to the P3-DX and AmigoBot Platform

The robots in Mobile Robots Lab include two P3-DX and five AmigoBot mobile robots

from ActivMedia Robotics shown in fig. A.1. All of the robots in the lab are fundamentally

similar. The main differences between the P3-DX and AmigoBot are size and capacity. The

P3-DX is larger and has a larger capacity for sensor and actuator payload. Each robot has

a differential drive system with rear castor, high precision wheel encoders, and eight sonar

positioned around the frame of the robot. Finally, each robot is equipped with an 802.11b

wireless card for communication with the host PC.

The encoders can be used quite reliably for dead reckoning (or to keep track of the

absolute X, Y, θ position). The encoder provides 123 tics per millimeter. It is important

to remember that each time a wheel slips or skids the error in this measurement increases.

It is always important to keep in mind, when using any sensor, how that sensor interacts

with object that it senses.

Sonar is a very useful for finding the robot’s position relative to its surroundings. It

is, however, a little trickier to use than the encoders. The sonar on these robots have a

maximum range of 5000mm (5 meters) and a minimum range of 100mm (10 centimeters).

Although the sonar can sense objects in its path in this range, it is most accurate between

100mm and about 2000mm. The most common problem when using sonar is letting the

robot get too close to an object. Anything closer than 10cm cannot be seen because the

sonar ping echoes back to the robot before it begins listening for it. Other common issues

with sonar happen when the robot is in a tightly enclosed space where the sonar can echo

off multiple walls before returning to the robot, and thus giving a false reading. Also if the
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Fig. A.1: Two P3-DX and five AmigoBot mobile robots.

robot is in close proximity to another robot, it is possible for the robot to mistake a ping

from a nearby robot as its own.

All of the robots have 16-bit micro-controllers that supports all of the sensors, wheel

drives and other functionality of the robot. However, the actual control program is run

remotely. It is helpful to think of the PC as part of the robot. The PC executes the

programs and sends the control commands and receives the sensor data to and from the

robot’s micro-controller via the 802.11b wireless connection.

A.2 Overview of Aria

Aria is an open source Software Development Kit (SDK) that provides all the func-

tionality, sending and receiving commands and information to and from the robot. It is

written in C++ and compiled as a dll that can be included in other projects. There are

several fundamental classes that can be used to implement the majority of any Aria-based

program. I will go over each of them and give a description of what they do and how they

are used, but this will not be a complete listing of all the classes and functions in Aria.

There are many useful, more advanced, classes and functions included in the SDK.
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A.2.1 ArRobot Class

A logical starting point is with the ArRobot class. This is a very important class. It is

used to represent the actual robot in your program. The class handles all communication

between the PC and the robot. That means that you will never have to worry about

deciphering the command codes used to send and request data. This class also makes sure

that the most recent sensor data from the robot is always available for use. To add a

robot to your program, all that needs to be done is to declare a variable of type ArRobot.

Once the variable is declared, it can be used to send commands to, and receive sensor data

from, the robot. Multiple robots can be controlled by a single program simply by declaring

multiple instances of the ArRobot class.

A.2.2 ArFunctor Class

The ArFunctor class can be a bit difficult to understand, but it is really quite simple.

All it is, is a pointer to a function. Thus the name, FUNCtion poinTOR. The thing that

makes a functor different from a regular pointer to a function in C++ is that if a regular

pointer points to a class member function, it will not have access to the class’ “this” pointer.

A functor does have access to the “this” pointer. This is important. Functors very useful

for “callbacks.” This will be explained in detail in section 5 (Using ArNetworking Library).

ArFunctor is the base class for quite a few Functor implementations. This manual will

cover the most used and most important ones. To find a list of all functor classes, look in

the ArFunctor.h file, in the AriaDLL project of the SDK. The following are examples of

several different functor types.

� ArFunctorC<CallbackContainer> functor1(cb,&CallbackContainer::callback1);

� ArFunctor1C<CallbackContainer, int> functor2(cb,&CallbackContainer::callback2);

� ArRetFunctor1C<bool, CallbackContainer, const char *>

functor3(cb,&CallbackContainer::callback3);

In the first example, a functor named functor1 is declared. ArFunctorC functors point to

a class member function that returns no value and takes no arguments. Inside the angle
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brackets (<>), CallBackContainer is the name of the class that contains that function that

is being pointed to. The ArFunctorC constructor takes two arguments, cb, which is a

pointer to a variable whose “this” pointer will be used, and the address of the function that

it will point to.

The second example is very similar. ArFunctor1C points to a class member function

that takes one argument. The type of this argument is specified by the second parameter

in angle brackets.

Finally the last example is, again, very similar to the first two, with the only difference

being that it returns a value. The type of the return value is specified by the first argument

in angle brackets.

Once a functor is initialized, it can be used as an argument to other functions so that a

function can call another function. This is where they become very important for callbacks;

because we can create a list of functors, then whenever an event that is related to this list

of functors occurs, it is possible to iterate through this list invoking each of the functions

that the functors point to. The usefulness of this will become clearer in section 5.

A.2.3 ArAction Class

The ArAction class is very useful for designing specific sets of actions that the robot

can perform. As with any action in real life, each ArAction has a priority. For example,

in a car, the driver’s “Stop” action should have a higher priority than the “Go Forward”

action, so that the driver will stop if there is an obstacle blocking his path. This is, in

fact, how the ArAction class is used. An ArActionStop and an ArActionGo class can be

derived from the ArAction class. By giving the ArActionStop action a higher priority than

the ArActionGo action, the robot can go forward and stop before hitting an obstacle. The

code examples in this section are based on the Aria SDK actionExample code. Notice in

algorithm A.1 that there are three virtual functions declared. The only function that must

be overridden is “virtual ArActionDesired* fire(ArActionDesired currentDesired);”. This is

where the behavior for this action is implemented. To use this new class once it has been

implemented, all that needs to be done is to declare an instance of it and add that instance
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Algorithm A.1 ArActionGo definition.
classActionGo : public ArAction
{
public:

ActionGo(double maxSpeed, double stopDistance);
virtual ActionGo(void) ;
virtual ArActionDesired *fire(ArActionDesired currentDesired);
virtual void setRobot(ArRobot *robot);

protected:
ArRangeDevice *mySonar;
ArActionDesired myDesired;
double myMaxSpeed;
double myStopDistance;

};

to the robot’s actions.

The addAction function shown in algorithm A.2, is a member of ArRobot, and takes

two arguments. The first is the address of the instance of the action. The second argument is

a priority value from 0 to 100. The ArActionStallRecover, which is an action class included

in the SDK, is also used in this example. Another very useful ArAction subclass included

in the Aria SDK is ArActionInput. This class provides methods to set the velocity and

rotation velocity of a robot just as you would using ArRobot. The difference is that since

it is an ArAction subclass, it has a priority. This makes it possible to implement object

avoidance or other behaviors separately from the main control algorithm. In this way robot

will be protected from running into obstacles or ensured to perform other high priority

actions, no matter what the control algorithm says. For example, the algorithm A.3 shows

how this might be used.

In algorithm A.3, there are two ArActions. The stop action is given a higher priority

than ArActionInput. This ensures that robot will stop when it reaches a wall or obstacle.

The robot’s velocity is then set using the ArActionInput instance.

There are several other ArAction subclasses available in the Aria SDK, that will not

be mentioned here, but they can be found in the AriaDLL project of the SDK. Also for a
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Algorithm A.2 ArAction usage.
ActionGo go(500, 350);
ArActionStallRecover recover;

robot.addAction(&recover, 100);
robot.addAction(&go, 50);

Algorithm A.3 ArActionInput usage.
ArActionInput myActionInput;
ArActionStop myActionStop;

robot.addAction(&myActionInput,50);
robot.addAction(&myActionStop,99);

myActionInput.setVel(300);

deeper understanding of how to use ArActions, the actionExample in the examples folder

section of the SDK is very helpful.

A.3 Creating a New Project

Creating a new project using the Aria SDK is not difficult, but it can be for those who

don’t have a good understanding of how all the pieces of the project fit together. So before

doing any programming, it is important to know how to create a project. It is essentially

the same as creating a regular project in Microsoft Visual Studio.NET. The difficulties lie

in making sure that all the settings are correct. The following steps will result in a working

project. Note, the settings for the project need to be adjusted to match those required

to access the Aria platform code. Settings may also have to be modified based on where

you put the project. The following is assumes that the project folder is placed in the Aria

directory.

1. Start an instance of Microsoft Visual Studio.NET.

2. Open the New Project Wizard. File→New→Project.

3. Select “Win32 Console Project” from the available templates.
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4. Enter a project name in the appropriate field.

5. Select the Aria directory for the location field. The default Aria directory is “C:\Program

Files\MobileRobots\Aria”, but it may differ.

6. Click OK.

7. Add a new .cpp file to the project by right clicking the project name in the Solution

Explorer, then select Add→Add New Item, and follow the prompts to create a new

file.

8. Modify Settings.

(a) Right click on the new project name in the Solution Explorer.

(b) Select Properties from the context menu.

(c) Select the General tab in the properties dialog box.

(d) Enter ../bin in the Output Directory field.

(e) Enter ../obj/debug in the Intermediate Directory field.

(f) Select the General tab under the C/C++ folder.

(g) Enter ..\include in the Additional Include Directories field.

(h) Select the General tab under the Linker folder.

(i) Enter ../bin/$(ProjectName).exe in the Output File field.

(j) Enter ../lib in the Additional Library Directories field.

(k) Select the Input tab under the Linker folder.

(l) Enter the following libraries in the Additional Dependencies field: Aria.lib, Ar-

Networking.lib, wsock32.lib winmm.lib, and advapi32.lib. Note, that not all are

needed for every project.

(m) Click OK.
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Note that once your project is created using these steps, you still need to make sure that

the entire Aria solution has been built and that the Aria.dll and ArNetworking.dll are both

in the Additional Library Directories that you specified previously. A simple way to avoid

confusion for beginners is to copy the “demo” project from the “Aria/Examples” folder into

a new folder within the “Aria” directory. Then rename to project file and add it to the

Aria solution.

Once these steps are complete the project will be ready to compile and run.

A.4 Writing a Simple Program

The simplest way to begin a new program is to modify the contents of demo.cpp;

however, demo.cpp contains a lot of code that is not necessary for the AmigoBots or the

P3-DXs in the lab. Knowing what is necessary or not can result in smaller more efficient

code. This section will show a break-down of the demo.cpp code that is necessary for our

lab’s robots in algorithm A.4.

The first thing that has to be done in any program is to include the Aria.h header file.

Next, inside the main function, Aria must be initialized before using anything else from the

Aria SDK. Aria::init() initializes Aria’s thread layer and the signal handling methods. For

Windows it also initializes the socket layer.

After Aria has been initialized the variables can be declared and initialized. ArAr-

gument parser parses the command line arguments passed in through main(). ArSimple-

Connector is used to connect the PC to the robot or simulator. Notice ArRobot. This

means that demo will be controlling one robot. Finally, ArSonarDevice provides a means

of objectifying the robot’s sonar.

After the variables have been declared, the next step is to parse the command line

arguments and load any default arguments, so that they can be used in initialization.

Default arguments are not often used, so they will not be covered any further here. The

parser.checkHelpAndWarnUnparsed() function makes sure that all of the arguments are

valid. If there are any invalid command line arguments this function also prints out a

warning message and returns false.
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Following the parsing of the arguments a keyHandler is declared and initialized so that

if the user pushes the Esc key, the program will exit. This is not necessary for most code

to run, but it is good practice so that Aria can close down normally.

Next, our robot is given access to sonarDev. This just makes the robot start collecting

sonar readings and making them available to the rest of the program. After the robot has

been initialized, simpleConnector.connectRobot(&robot) will connect the PC to the actual

robot, and robot.runAsync() starts the robot ’s thread in an asynchronous mode. In other

words, its execution will not by synchronized with the main program thread of execution.

Finally, the last step is to initialize the robot’s motors with the robot.comInt( ArCom-

mands::ENABLE, 1) command, and add the behavioral code to control the robot. For

example the ArActionGo action could be activated here.

A.5 Using ArNetworking Library

The ArNetworking library is just another part of the Aria SDK. This portion of the

SDK makes it possible to create servers and clients in your program, so that multiple

programs on multiple computers can communicate with each other. This is useful in a

variety of situations, such as, to spread the work load over multiple computers if there are

a large number of robots to control. The most important use for ArNetworking is that it

gives the ability to simulate real life communication between robots. It is used extensively

this way in our research of consensus algorithms.

As with the Aria library, there are several classes within the ArNetworking library that

are more important than the others, and will be used in anything you might want to do

with ArNetworking. These classes are: ArServerBase, ArClientBase, and ArNetPacket.

To understand how to use these classes well, it is important to understand their re-

lationships with each other. ArServerBase represents a server. A server’s job is to open

a port, or line of communication. The server does not actively make a connection with

anything, but waits for a client to connect to it and request some sort of data or action

from it. For example, when a browser is opened and connects to a site on the internet, the
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Algorithm A.4 demo.cpp.
#include ”Aria.h”
int main(int argc, char** argv)
{

Aria::init();
ArArgumentParser parser(&argc, argv);
ArSimpleConnector simpleConnector(&parser);
ArRobot robot;
ArSonarDevice sonarDev;
parser.loadDefaultArguments();
if (!Aria::parseArgs() —— !parser.checkHelpAndWarnUnparsed())
{

Aria::logOptions();
exit(1);

}
ArKeyHandler keyHandler;
Aria::setKeyHandler(&keyHandler);
robot.attachKeyHandler(&keyHandler);
printf(”You may press escape to exit\n”);
robot.addRangeDevice(&sonarDev);
if (!simpleConnector.connectRobot(&robot))
{

printf(”Could not connect to robot... exiting\n”);
Aria::exit(1);

}
robot.runAsync(true);
robot.lock();
robot.comInt(ArCommands::ENABLE, 1);
// TODO Add behavior here
robot.unlock();
robot.waitForRunExit();
Aria::exit(0);
return 0;

}
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browser connects to a server that has the data for the page that the browser can request

from it.

ArClientBase represents the client. In the example of the internet above, the browser

is the client. The client must know where to find the server and which port the server is

listening on. Once the client is connected to the server, it can request data from the server.

A client can connect to only one server at a time, but a server can have multiple clients

connected to it at a time.

There must be a standard way to send data between the client and server. This is the

purpose of ArNetPacket. The packet holds the data that is to be transferred between the

server and client.

A.5.1 ArServerBase Example

In this example shown in algorithms A.5 and A.6 you will see how to implement a

server using ArServerBase. ArServerBase requires a class to handle the data output when

a client sends it a request. This is a special type of class commonly referred to as a handler

class. The handler class makes heavy use of callbacks and therefore functors. The idea of a

callback is important to understand. They allow both the client and server to process other

things while waiting for data to be sent or received.

Algorithm A.5 shows the handler class definition. It has a function called outputData

that has two arguments, an ArServerClient* and an ArNetPacket*. This function will

be used as the callback. Each time a client that is connected to the server requests the

server’s data (in this case the myData variable) this function will handle the request. The

OutputHandler class also has a functor called myOutputDataCB. Notice that the pointer

will point to a function that is a member of this class, and will take two arguments of type

ArServerClient* and ArNetpacket*.

The implementation of the OutputHandler class is shown in Algorithm A.6. The first

thing to notice is that the functor is initialized in the call to the constructor, and is set

to point to the outputData member function. Next, notice that there is a line in the

constructor that calls a function of the ArServerBase class, called addData. This function
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Algorithm A.5 Handler class definition.
classOutputHandler
{
public:

OutputHandler(ArServerBase *server, double* data);
virtual OutputHandler(void);
void outputData(ArServerClient *client, ArNetPacket *packet);

protected:
ArServerBase *myServer;
double *myData;
ArNetPacket myPacket;
ArFunctor2C¡OutputHandler, ArServerClient *, ArNetPacket *¿
myOutputDataCB;

};

adds our functor to a list of functors that will be invoked each time the server receives a

request for “getData”. The arguments are: the name used in the request for the data, a

description of the function that is pointed to by the functor, a pointer to the functor, a

description of the arguments that the callback function is expecting to be contained in the

request packet, and a description of the data that will be returned by the callback function

in the reply packet.

All the outputData function has to do in this example, add the myData variable to

the reply packet, and send it. The myPacket.empty() function is there simply to make sure

that there is no data already in the packet. If the client had sent data with the request

to the server, the server could retrieve the data with a line similar to this: clientData =

packet→bufToDouble();.

Algorithm A.7 shows the final steps for creating a server with the SDK. There should

not be anything very unexpected here. First, a variable of type ArServerBase is declared.

Then, ArServerSimpleOpener is used to open the port that the server will listen on. Ar-

ServerSimple Opener is a class that simplifies opening the server port when the port is

specified in the command line arguments. It is possible to use server.open(int port); to

open the server port. After the port has been opened, the runAsync() function tells server
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Algorithm A.6 Handler class implementation.
OutputHandler::OutputHandler(ArServerBase *server, double* data) :

myOutputDataCB(this, &OutputHandler::outputData)
{

myServer = server;
myData = data;
myServer-¿addData(”getData”, ””, &myOutputDataCB, ”none”, ”double”);

}

OutputHandler:: OutputHandler(void)
{}
void OutputHandler::outputData(ArServerClient *client, ArNetPacket *packet)
{

myPacket.empty();
myPacket.byteToBuf(*myData);
myPacket.finilize();
client→sendPacketTcp(&myPacket);

}

to begin listening for client connections. And lastly, an instance of the OutputHandler class

needs to be declared so that it can begin handling the requests to the server.

A.5.2 ArClientBase Example

There are very few differences in setting up a Server from a Client as you will see. As

with the server example, the client needs a handler to handle the sending requests to the

server and receiving the data. Algorithm A.8 shows the class definition of this handler. The

only difference between this class definition and the OutputHandler class definition for the

server is that the functor, instead of pointing to a function with two arguments, points to

a function with only one argument.

Algorithm A.9 shows the implementation of the client’s handler class. Again there are

very few changes from the server’s handler class. The most important change is in the

constructor. To send a request, the handler uses ArClientBase’s addHandler and Request

or RequestOnce functions. The addHandler function tells myClient what functor to invoke

each time myClient sends a request to the server for “getData”. The request function tells
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myClient to send a request to the server for “getData” every 100 milliseconds.

It will not be surprising that starting the client, shown in algorithm A.10 is nearly the

same as starting a server. In fact the only thing that is really noteworthy that you have not

seen yet is the way client is connected to the server. Instead of opening the client, the client

connects to the server, using the address where the server can be found and the port that

it is listening on. To learn more about the ArNetworking library look at Aria’s serverDemo

and clientDemo.

A.6 Running Code on the MobileSim Simulator

MobileSim is a very useful and very powerful simulator for the mobile robot platform.

It should be the starting point for testing new programs or algorithms for the robots.

To open MobileSim, first open a command prompt. Then, after changing to Mo-

bileSim’s directory (C:\Program Files\MobileRobots\MobileSim), type “mobilesim.” That

will run MobileSim with its default settings. You will see a dialog box that lets you choose

a map to load in MobileSim or to continue with no map. Maps can be created for Mo-

bileSim using Mapper3-basic. By default MobileSim opens with only one P3-DX available.

To open MobileSim with more than one robot or with multiple types of robots use the

following argument format in the command prompt: “mobilesim -r amigo-sh -r amigo-sh -r

p3dx -r p3dx.” This would open MobileSim with two AmigoBots and two P3-DXs.rectory

(C:\Program Files\MobileRobots\MobileSim), type “mobilesim.” That will run MobileSim

with its default settings. You will see a dialog box that lets you choose a map to load in

MobileSim or to continue with no map. Maps can be created for MobileSim using Mapper3-

basic. By default MobileSim opens with only one P3-DX available. To open MobileSim with

more than one robot or with multiple types of robots use the following argument format in

the command prompt: “mobilesim -r amigo-sh -r amigo-sh -r p3dx -r p3dx.” This would

open MobileSim with two AmigoBots and two P3-DXs.

To connect a program to the robots in MobileSim, the program needs to be executed

from the command prompt so that you can take advantage of the command line options.

When MobileSim loads a robot it makes that robot available on a certain port. The first
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robot to be loaded, is loaded on port 8101. Each additional robot is loaded on the next

consecutive port. So, if you wanted to run demo.exe on the first P3-DX that was loaded in

MobileSim, you would type the following in the command prompt: “demo -rrtp 8103.” For

a complete list of command line options for demo type: “demo -h.”

A.7 Running Code on the Robots

Running your program on a robot is very similar to running the code on MobileSim.

The difference is that instead of connecting to some port on MobileSim, you must connect

directly to the robot’s IP address. In the lab, the robots each have a static local IP address

assigned to them. To run demo.exe on one of the AmigoBots, whose IP address happens

to be 192.168.1.11, you would type “demo -rh 192.168.1.11” in the command prompt. For

each robot you wish to run the program on, you would repeat this process, changing the

address to the appropriate address for the robot.

It is also possible, with the robots in the lab, to use an external IP address to connect

to them. This is possible because each robot has a port forwarded to it. For example, the

following would connect to the robot whose port is 8101: “demo -rh 129.123.4.197 -rrtp

8101.”

Each of the five AmigoBots and one of the P3-DXs also have on board computers

installed on them. The AmigoBot computers run run Windows, and the P3-DX’s computer

runs a version of Debian LINUX. By logging onto the on board computer using Remote

Desktop Connection for the Windows computers or some remote access program such as

Putty for LINUX, you can also run programs on the robot from its own on board computer.

The computers are connected to the robot via serial connection. This means that wanted

to run demo.exe from the on board computer, you would only have to type: “demo” from

the command prompt. As long as MobileSim is not running when you do this, demo.exe

will connect to the robot over its serial connection. The IP addresses for the on board

computers are also listed in table A.1.
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Table A.1: Command line arguments for connecting to the lab robots.
Robot Internal Address External Address On board Computer IP Address

P3-DX 1 -rh 192.168.1.10 -rh 129.123.4.197 -rrtp 8106
AmigoBot 1 -rh 192.168.1.11 -rh 129.123.4.197 -rrtp 8101 192.168.1.41
AmigoBot 2 -rh 192.168.1.12 -rh 129.123.4.197 -rrtp 8102 192.168.1.42
AmigoBot 3 -rh 192.168.1.13 -rh 129.123.4.197 -rrtp 8103 192.168.1.43
AmigoBot 4 -rh 192.168.1.14 -rh 129.123.4.197 -rrtp 8104 192.168.1.44
AmigoBot 5 -rh 192.168.1.15 -rh 129.123.4.197 -rrtp 8105 192.168.1.45

P3-DX 2 -rh 129.123.4.197 -rrtp 8107 192.168.1.16

Algorithm A.7 ArServerBase initialization.
void main(int argc, char** argv)
{

Aria::init();
ArServerBase server;
double* data;
ArArgumentParser parser(&argc, argv);
ArSimpleConnector simpleConnector(&parser);
ArServerSimpleOpener simpleOpener(&parser);
parser.loadDefaultArguments();
if(!simpleConnector.parseArgs() || !simpleOpener.parseArgs() ||

!parser.checkHelpAndWarnUnparsed())
{

simpleConnector.logOptions();
simpleOpener.logOptions();
exit(1);

}
if(!simpleOpener.open(&server))
{

printf(”Could not open server port.\n”);
exit(1);

}
server.runAsync();
OutputHandler outputHandler(&server, &data);
while(1)
{

// It is possible to change the data variable here
Sleep(1);

}
Aria::exit(1)

}
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Algorithm A.8 Handler class definition.
classOutputHandler
{
public:

OutputHandler(ArClientBase *client, double* data);
void handleData(ArNetPacket *packet);
ArFunctor1C¡DriverOutputHandler, ArNetPacket *¿ myHandleDataCB;

protected:
ArClientBase *myClient;
double* myData;

};

Algorithm A.9 OutputHandler implementation.
OutputHandler:: OutputHandler(ArClientBase *client, double* data) :

myHandleDataCB(this, &OutputHandler::handleData)
{

myClient = client;
myData = data;
myClient→addHandler(”getData”, &myHandleDataCB);
myClient→request(”getData”, 100);

}

void OutputHandler::handleData(ArNetPacket *packet)
{

*myDriverOutput = packet→bufToDouble();
}
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Algorithm A.10 ArClientBase initialization.
void main(int argc, char **argv)
{

Aria::init();
ArArgumentParser parser(&argc, argv);
ArClientBase client;
double* data;
if(!client.blockingConnect(”localhost”, 7300))
{

printf(”Failed to connect to client server\n”);
exit(1);

}
printf(”Connected to client servers.\n”);
OutputHandler outputHandler(&client, &data);
client.runAsync();
while(client.isConnected())
{

// Do something with data
ArUtil::sleep(100);

}
}
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Appendix B

Overview of AmigoBot Testbed

B.1 Introduction to the Testbed

In order to research cooperative control systems, we have assembled a testbed for

multi-vehicle cooperative control. This testbed was used in all of the simulations and ex-

periments in this thesis. We will give an overview of this testbed as background for the

experiments. The testbed includes five AmigoBots with on board computers. The soft-

ware for the testbed is written in C++ using the Aria SDK. The full testbed software

package includes five different executables that will be explained in detail in the following

appendix. Three programs comprise the core of the testbed software, “DriverServer.exe”,

“ClientTest.exe”, and “ServerTest.exe”. These three programs work together to form a

distributed communication network between the AmigoBots shown in fig. B.1, where the

communication topology as well as many other control parameters are time varying. One

program is the GUI that is used developed in Chapter 2, and the last program, “Rex-

ecService.exe” is a windows service that allows “DriverServer.exe”, “ClientTest.exe” and

“ServerTest.exe” to be executed on remote computers from the GUI. This appendix will

focus only on the three core programs, as the other two are covered in detail in Chapter 2.

B.2 Testbed Design

In network topology illustrated in fig. B.1, the top level, “DriverServer.exe”, represents

a path planner. The communication between the path planner and other robots can be

limited to as few as one or as many as all of the robots. The robots with communication links

to the path planner are the leaders. Those with communication links only to other robots

are followers. The communication between individual robots can also be time varying. This
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Fig. B.1: Network topology implemented in testbed to simulate communication between
robots.

simulates a limited or even changing communication topology.

“DriverServer.exe” implements an ArNetworking server object (See Appendix A for

details on ArNetworking and the ArServerBase class). As clients connect to the server

data is made available to them through request. “DriverServer.exe” implements a timer

that updates the path and time varying data that is made available to the robots. The

communication matrix and leader array, as well as the dynamic formation parameters for

dynamic formation experiments, are updated at ten second intervals. This is how the time

varying communication topology and formation parameters are implemented.

B.2.1 Connection Matrix

The communication matrix is what determines the communication topology between

robots. Every robot, leader or follower, must continuously request the communication

matrix from the server. The values of the communication matrix cells can be 1’s or 0’s. A

1 in cell (2,3) means that robot 2 receives data from robot 3. A 0 means that it does not.

B.2.2 Virtual Center

The path planner has several built in functions to plot the desired path of formation.

The position that the path planner plots for the formation is called the virtual center and

includes the (x, y) position as well as the heading, θ. Only leaders are allowed to use this
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data. Currently the path plotting functions provide linear, circular, and figure 8 paths, as

well as a stationary rotating path.

B.2.3 Leader Array

The leader array serves two purposes. First, the leader array indicates which of the

robots are leaders, or have access to the virtual center and other mission information other

than the connection matrix from the path planner. Second, it determines which control

algorithm will be used for the experiment. This and the communication matrix are the

only two things available to all robots from “DriverServer.exe”. At the time that this

appendix was written, the available leader array cell values are those shown in table B.1.

B.2.4 Dynamic Formation Parameters

The four time varying formation parameters a, b, poe, and shift, are made available

to the leaders. “DriverServer.exe” also implements an algorithm to limit the rate at which

these parameters can change. Chapter 3 explains these parameters and the algorithm in

detail.

B.3 ClientTest

The principle purpose of “ClientTest.exe” is to implement the control algorithms. As

per the definition of a distributed control system, each robot implements its own controller.

Therefore, each robot has its own individual instance of “ClientTest.exe”. In fig. B.1

“ClientTest.exe” is represented by the middle layer. “ClientTest.exe” implements the Ar-

Networking client (see Appendix A for details on ArNetworking and ArClientBase class).

To achieve communication with “DriverServer.exe”, “ClientTest.exe” must have a client ob-

ject for that connection. There must also be a client object for each of the “ServerTest.exe”

server to handle communication between robots.

Each of the controllers shown in table B.1 is implemented in “ClientTest.exe” as a C++

class. The program runs an infinite loop that cycles at 100 ms intervals. At the beginning

of each interval the client to “DriverServer.exe” requests the communication matrix and



91

Table B.1: Leader array.
Value Description

0 No connection.
1 Simple follower for consensus controller.
2 Intelligent follower for consensus controller.
3 Leader for consensus controller.
4 Velocity consensus controller.
5 Simple attitude controller.
6 Attitude 1 follower controller.
7 Attitude 1 leader controller.
8 Attitude 2 follower controller.
9 Attitude 2 leader controller.
10 Attitude 3 follower controller.
11 Attitude 3 leader controller.
12 Dynamic formation simple follower controller.
13 Dynamic formation intelligent follower controller.
14 Dynamic formation leader controller.
15 Couple harmonic oscillator follower controller.
16 Coupled harmonic oscillator leader controller.

leader array. The leader array is used to determine which controller class implementation

to use, and the communication matrix is used in the control algorithm. “ClientTest.exe”

also collects data from each of the “ServerTest.exe” instances and makes it available to the

controller class.

B.4 ServerTest.exe

The purpose of the “ServerTest.exe” is to act as a software representation of an

AmigoBot. It is represented by the bottom layer in fig. B.1. “ServerTest.exe” handles

all of the communication with the physical robot by sending control commands to, and sen-

sor feedback from, the robot. Another ArNetwork server is implemented here and a client

from each of the “ClientTest.exe” instances will connect to it to request sensor feedback

from the robot. Only the client that corresponds to the particular robot will send control

commands, however.
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