

56

Fig. 5.1: Procerus UAVs.

Fig. 5.2: CommBox.

such as propeller speed control and aileron angle. Mid-level control is also handled by the

autopilot. This mid-level control includes numerous modes, such as, take-off, land, loiter,

and navigation modes. The navigation mode is the mode that we will be using in this chapter

to implement our high-level control algorithms. In navigation mode the autopilot flies the

UAV toward waypoints that are sent from the virtual cockpit. Our control algorithms will

generate these waypoints based on the positions of other UAVs. The waypoints are then

sent to the appropriate UAVs.

57

Fig. 5.3: Kestrel autopilot.

5.2.4 Virtual Cockpit

The Virtual Cockpit, shown in fig. 5.4, is a Windows-based GUI for the Kestrel au-

topilot, and is very easy to use. It is able to control and monitor multiple UAVs. However,

each UAV is controlled individually simply by setting lists of waypoints for each UAV. The

UAVs do not communicate to each other through the Virtual Cockpit. Our goal is to imple-

ment cooperative control algorithms for UAVs using these tools. This goal is made possible

through the software development kit supplied by Kestrel. This kit allows the developer to

develop software that extends the Virtual Cockpit’s functionality.

5.3 Design Requirements

The objective of the research in this chapter is to develop multi-UAV cooperative

control algorithms and the software for the testbed similar to the testbed designed for the

AmigoBots in Chapter 2. This UAV test bed will aid in much future research.

Specific design goals include:

� Implement pre-flight checks and settings.

– Zero pressure - sets the current air pressure as the reference. Speed and altitude

is then calculated us the difference measured from this reference.

– Check sensors - verifies that all sensor readings are within reasonable bounds and

working properly.

58

Fig. 5.4: Kestrel virtual cockpit.

– Fail safe - uploads predetermined actions for the UAV to take in the case of

catastrophic errors or loss of communication.

– Set GPS home - Sets the current GPS coordinates as the home position where

it will return and land.

� Set UAV autopilot modes.

– Take-off mode - uploads a waypoint that the UAV will go to upon successful

take-off and initiates the take-off sequence.

– Land mode - uploads the specific landing parameters and initiates the landing

sequence on the autopilot.

– Loiter mode - tells the autopilot to begin circling its current position.

– Navigation mode - causes the autopilot to follow a flight plan or list of waypoints.

– Manual mode - allows the UAV to be controlled manually by RC transmitter.

– Follower mode - causes the leader follower algorithm developed later on in this

chapter to be enabled.

59

� Upload/Download waypoints - used to manually enter waypoints and send them to

the UAV as well as to find out what waypoints are currently on the UAV’s flight plan.

� Data logging - logs all telemetry data for both the leader and follower, as well as all

waypoints supplied to the follower by the follower mode controller.

5.4 GUI Design and Functionality

The GUI and all of its functionality are implemented using Visual C++. The GUI

design, shown in fig. 5.5, is implemented using only a single dialog box. At the time of this

writing, the GUI is used mainly to implement the control algorithm and control the single

follower UAV, but will easily be extended to include more UAVs. The reason for this design

is that we wanted to get a proof of concept as quickly as possible, and also the fact that

we had only two Procerus UAVs available. The leader UAV simply follows a flight path

from the Virtual Cockpit. The controller will take telemetry data from the leader and plot

waypoints for the follower.

5.4.1 Preflight

The preflight functionality is grouped together in section A of fig. 5.5. The “Zero

Pressure” button sends a packet of data to the autopilot containing the command to set the

differential and absolute pressures to zero to calibrate them. The “Check Sensors” button

sends a packet to the autopilot requesting a sensor check.

A reading from each of the sensors, the 3-axis gyros and accelerometers, the differential

and absolute pressure sensors, GPS, temperature and the pitch and roll estimates, is taken

and a bitmask is returned that indicates a good or bad status for each of the sensors’

readings. When the return packet arrives from the autopilot a message box opens alerting

the user of any sensor values that were found to be out of range. Note, the pressures must

have been zeroed before checking the sensors.

The “Failsafe” button causes a set of important failsafe functions to be be enabled on

the autopilot. There are a large number of failsafes available on the Kestrel autopilot, but

60

Fig. 5.5: GUI designed for the cooperative UAV testbed.

not all of them need to be set. The “Failsafe” button sets the failsafe actions for loss of

GPS, low battery, critical battery, loss of communication, and altitude. A packet is built

containing a bitmask that indicates which failsafe functions are being enabled by the packet.

Failure values for each failsafe are also added to the packet. For example, to set the low

battery failsafe, the “Low Battery” bit must be set in the bitmask, and a minimum battery

voltage value must be specified in the packet. When this failsafe is set on the autopilot,

the autopilot will execute a predefined action when the battery voltage drops below the

minimum voltage. This action will override all other actions in order to avoid damage due

to a low battery.

The “Set UAV Home” button sets the UAV’s GPS home position. The GPS home

position is a reference for several functions including many failsafe functions, so that the

UAV can attempt to return home. GPS home is also used as a reference point for calculating

distances. This function uses the UAV’s current GPS location to set the GPS home when

this button is pushed. Note that for this reason the GPS must have a signal for GPS home

to be set. If the GPS home is set successfully, the checkbox next to the “Set GPS Home”

button will be checked.

61

5.4.2 Waypoints

The purpose of the waypoints section, section B in fig. 5.5, is to allow the user to

upload waypoints manually to the follower UAV while the cooperative control algorithm is

disabled, and also to allow the user to download the UAV’s current waypoint. Downloading

the UAV’s current waypoint is mainly for convenience in debugging control algorithms. A

waypoint consists of an altitude, airspeed, latitude, longitude, and radius. The radius is

the distance from the actual latitude and longitude of the waypoint that the UAV must be

before it considered to have reached the waypoint. To set the waypoint, a packet must be

sent to the UAV with this information, likewise when a waypoint is downloaded from the

UAV a request packet is sent to the UAV and a similar packet is returned from the UAV

containing the waypoint information.

5.4.3 Data Logging

Data logging is done for both the leader UAV and the follower UAV as well as for the

control algorithm when it is enabled. The standard telemetry packet that is sent twice per

second. An important note is that the polling mode must be used and not the broadcast

mode when more than one UAV is being controlled by the same ground station. In broad-

cast mode the autopilot broadcasts telemetry automatically at 6 Hz. In polling mode the

autopilot sends packets only when they are requested. This is necessary to avoid packet

collisions. When polling mode is enabled the Virtual Cockpit coordinates the polling. The

virtual cockpit by default polls each UAV’s telemetry at 2 Hz in polling mode.

The telemetry data is recorded in a file in ASCII format so that it can be easily

loaded into Matlab for analysis. Each file is given a unique name with the date included.

The same data is recorded for both leader and follower. Section C in fig. 5.5 shows the

graphical output of the leader and follower telemetry data log. A waypoint log file is also

created to log output from the controller. The waypoint log only applies to the follower and

only logs the waypoints sent to the follower from the cooperative control algorithm. The

waypoint log files are written in the same format as the telemetry log files and include the

altitude, airspeed, latitude, longitude, and radius of the waypoints.

62

5.4.4 UAV Modes

The UAV modes in section D of fig. 5.5 are used to command the UAV to perform

specific functions. Take-off mode must be set in multiple steps. First a special waypoint

must be set for the UAV to go to when when take off is complete. Once the waypoint

has been successfully sent and an acknowledgment received from the autopilot, a command

packet can be sent to change the autopilot mode to take-off mode. Note that if the command

packet is sent before the acknowledgment packet is received, the mode will not change. Land

mode is very similar to take-off mode. The main difference being that more parameters are

required for the special landing waypoint to specify the landing parameters such as the

descent rate and the rally point or starting point for the landing sequence.

The other modes are less complicated and only require sending the command to change

the mode. Loiter mode causes the UAV to begin circling at its current location. Manual

mode turns control of the UAV over to the RC transmitter. And Navigation mode causes

the UAV to follow the flight plan, going from one waypoint to the next.

The button labeled “Enable Follower” enables the cooperative controller and sets the

UAV mode to Navigation. When the cooperative controller is enabled, first the Virtual

Cockpit begins polling the autopilots for their telemetry, and all of the data loggers are

initialized if they were not already. The cooperative controller is set to sample the leader

UAV’s telemetry every second and calculate a new waypoint for the follower UAV. Each time

a new waypoint is calculated by the controller, the follower UAV’s flight plan is modified by

the new waypoint. Since the follower UAV is in navigation mode, it will immediately begin

moving toward this new waypoint. However, care must be taken not to send a waypoint to a

UAV that is still in the process of uploading a previous waypoint. This can cause collisions

and packet errors. To avoid this each time the cooperative control algorithm begins, it

checks to see if an acknowledgment packet has been returned from the autopilot indicating

that it is ready to receive the next control input.

Also in section D of fig. 5.5, there is a radio button group labeled “RC Control”. This

is where the user can select which UAV the RC will control when in Manual Mode. The

63

destination of the RC controller is handled by the Virtual Cockpit. Each time one of these

radio buttons is pushed a packet is sent to the Virtual Cockpit with the address of the new

RC control destination. The addresses of the leader and follower are set by the “Leader

Add” and “Follower Add” fields.

5.5 Conclusion

The documentation for the development kit supplied by Kestrel is quite extensive in the

description of the more than 75 different packet commands available, but the usage of these

packets was at times difficult to decipher and at times required much guessing and trial

and error. The main difficulty encountered was the timing of the packet delivery. If packets

are sent too quickly in succession so that the first packet is not completely received by the

autopilot before the second packet is sent, the second packet will be lost. Our solution to this

was to wait for the acknowledgment packet from the autopilot before sending subsequent

packets. This required setting flags each time a packet was sent and resetting the flags

each time the packets were acknowledged. This does not apply to special packets that are

guaranteed by the Virtual Cockpit to be sent. Once these guaranteed packets are sent by

the user, the Virtual Cockpit will continue to attempt to send them until they are sent

successfully.

While it is possible to directly control the angle of the ailerons and the propeller speed,

the controller output is in the form of waypoints and not motor speed and aileron angles.

While this sort of low-level control may be done in the future, we were more interested in

achieving a proof of concept. The low-level control of the UAV would require a significant

amount of time to adequately model the UAV and then to test the controller for safety before

any kind of in flight test would be possible. From the point to which we have brought the

test bed now, it will be a much simpler task in the future to develop more complex control

algorithms.

With the current state of the test bed it should be a simple task to expand it to control

more UAVs as they are acquired using the existing code.

64

Chapter 6

Conclusion

6.1 Summary of Results

The purpose of the research presented in this thesis is to implement and experimentally

validate new cooperative control schemes in a physical environment as well as to explore a

new technique for handling formation control in the presence of obstacles and the loss or

addition of members.

To facilitate the implementation and testing of the control schemes and others on the

AmigoBot testbed Chapter 2 details the design and implementation of a graphical user

interface. This GUI is a convenient means of storing and recalling experiment parameters.

An important feature of this GUI is the ability to distribute the execution of the testbed

programs across multiple computers. This ability not only lessens the processing load

required from each computer, but also provides a more realistic communication environment.

Because each AmigoBot has been fitted with a small on-board computer, the controller can

now be executed on each robot’s on-board computer; therefore, becoming a more realistic

implementation of a distributed system.

Formation control of multiple agents is a very active field of research. In Chapter 3

a new method for dynamically determining the shape of the formation is presented. That

is, this scheme allows the formation to change shape and size in order to avoid obstacles

or accommodate new mission objectives or terrain. This method also makes it possible for

members of the formation to leave and return, or for new members to be added and the

formation will adapt to accommodate these changes. As a result cooperative distributed

systems can have the ability adapt and change according to their environment and their

members.

65

Coupled harmonic oscillators can be found in many places in nature. The repetitive

nature of harmonic oscillators makes them useful for many applications such mapping or

perimeter patrolling. Coupled harmonic oscillators lend themselves well to distributed con-

trol applications as demonstrated in Chapter 4. A coupled harmonic oscillator control

scheme is developed and implemented in both discrete-time and continuous-time. The re-

sults show that this method works well for systems with a sparse communication topology

and is robust in both continuous-time and discrete-time.

UAVs are gaining much popularity as batteries and other components become lighter

and smaller. Small, low-cost UAVs are beginning to become available in the same way that

small, low-cost wheeled robots became available years ago. As a result groups of small

UAVs can now be used to perform tasks much more efficiently and economically than single

monolithic UAVs are able. Chapter 5 describes the implementation of a cooperative multi-

UAV testbed for the Procerus Platform. This testbed provides a proof of concept for a

distributed multi-UAV controller.

6.2 Future Work

For all of the consensus algorithms discussed in this thesis, the leaders of the formation

only receive data from the path planner. An interesting topic of research would be to find

an efficient way provide feedback to the path planner. If one or more members of the

group were not able to keep in formation, the path planner would be able to adjust so that

all members of the formation would be able to follow. This could also be applied to the

dynamic formation algorithm in Chapter 3 to allow the members of the formation to act as

distributed sensors, and by feeding sensor data back to the path planner, the path planner

would be able to effect obstacle avoidance using the capabilities of the dynamic formation.

For the UAVs there is a great deal of interesting work to be done. The testbed can

be expanded to control more UAVs, as well as expanded to control UAVs with different

autopilots such as the XBow or Paparazzi. Much work still needs to be done to optimize

the controllers as well. Cooperative UAV control is such a relatively new area that the pos-

sibilities for new work are countless, and the testbed can serve as a base for implementation.

66

6.3 Conclusion

We have developed and added on to testbeds for two different platforms, the AmigoBot

UGV and the Procerus UAV. These testbeds provide a valuable resource for implementing

and testing distributed cooperative control algorithms on physical systems. Using these

testbeds we have implemented two new cooperative control schemes and compared them

to simulations done in Matlab. A new dynamically changing formation algorithm for dis-

tributed cooperative systems was developed and shown to work on the AmigoBot testbed.

Also, a coupled harmonic oscillator control scheme was developed and experiments done on

the testbed showed it to be implementable and robust.

67

References

[1] B. D. Anderson, C. Yu, S. Dasgupta, and A. S. Morse, “Control of a three-coleader
formation in the plane,” Science and Control Letters, vol. 56, no. 9–10, pp. 573–578,
2007.

[2] M. Arcak, “Passivity as a design tool for group coordination,” IEEE Transactions on
Automatic Control, vol. 52, no. 8, pp. 1380–1390, Aug. 2007.

[3] P. K. C. Wang, “Navigation strategies for multiple autonomous mobile robots moving
in formation,” IEEE/RSJ International Workshop on Intelligent Robots and Systems,
pp. 486–493, 1989.

[4] K. H. Tan and M. A. Lewis, “High-precision formation control of mobile robots using
virtual stuctures,” Autonomous Robots, vol. 4, no. 4, pp. 387–403, Oct. 1997.

[5] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control,
ser. Communications and Control Engineering Series. London: Springer-Verlag, 2008.

[6] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle co-
operative control: Collective group behavior through local interaction,” IEEE Control
Systems Magazine, vol. 27, no. 2, pp. 71–82, Apr. 2007.

[7] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in net-
worked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233,
Jan. 2007.

[8] W. Ren and N. Sorensen, “Distributed coordination architecture for multi-robot for-
mation control,” Robotics and Autonomous Systems, vol. 56, no. 4, pp. 324–333, Apr.
2008.

[9] W. Ren and R. W. Beard, “Virtual structure based spacecraft formation control with
formation feedback,” in AIAA Guidance, Navigation, and Control Conference, Mon-
terey, CA, Aug. 2002, AIAA Paper No. AIAA-2002-4963.

[10] Y. Li and X. Chen, “Leader-formation navigation using dynamic formation pattern,”
in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.
1494–1499, Jul. 2005.

[11] S. Mastellone, D. M. Stipanovic, and M. W. Spong, “Remote formation control and
collision avoidance for multi-agent nonholonomic systems,” IEEE International Con-
ference on Robotics and Automation, pp. 1062–1067, 2007.

[12] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence. Springer: Berlin, 1984.

[13] A. Jadbabaie, N. Motee, and M. Barahona, “On the stability of the Kuramoto model of
coupled nonlinear oscillators,” in American Control Conference, vol. 5, pp. 4296–4301,
Boston, MA, Jul. 2004.

68

[14] N. Chopra and M. W. Spong, “On synchronization of Kuramoto oscillators,” in Con-
ference on Decision and Control and European Control Conference, pp. 3916–3922,
Seville, Spain, Dec. 2005.

[15] A. Papachristodoulou and A. Jadbabaie, “Synchronization in oscillator networks:
Switching topologies and non-homogeneous delays,” in Conference on Decision and
Control and European Control Conference, pp. 5692–5697, Seville, Spain, Dec. 2005.

[16] D. A. Paley, N. E. Leonard, and R. Sepulchre, “Oscillator models and collective motion:
Splay state stabilization of self-propelled particles,” in Conference on Decision and
Control and European Control Conference, pp. 3935–3940, Seville, Spain, Dec. 2005.

[17] D. A. Paley, N. E. Leonard, and R. Sepulchre, “Collective motion of self-propelled par-
ticles: Stabilizing symmetric formations on closed curves,” in Conference on Decision
and Control, pp. 5067–5072, San Diego, CA, Dec. 2006.

[18] N. Chopra and M. W. Spong, “Passivity-based control of multi-agent systems,” in Ad-
vances in Robot Control: From Everyday Physics to Human-Like Movements, S. Kawa-
mura and M. Svinin, Eds., pp. 107–134. Berlin: Springer-Verlag, 2006.

[19] W. Ren, “Synchronization of coupled harmonic oscillators with application to motion
coordination,” in Automatica, 2008, (to appear).

[20] W. Ren and E. M. Atkins, “Distributed multi-vehicle coordinated control via local
information exchange,” International Journal of Robust and Nonlinear Control, vol. 17,
no. 10–11, pp. 1002–1033, Jul. 2007.

[21] G. Xie and L. Wang, “Consensus control for a class of networks of dynamic agents,”
International Journal of Robust and Nonlinear Control, vol. 17, no. 10-11, pp. 941–959,
Jul. 2007.

[22] D. Cruz, J. McClintock, B. Perteet, O. Orqueda, Y. Cao, and R. Fierro, “Decentral-
ized cooperative control: A multivehicle platform for research in networked embedded
systems,” IEEE Control System Magazine, vol. 27, no. 3, pp. 58–78, Jun. 2007.

[23] Z. Qu, J. Wang, and C. E. Plaisted, “A new analytical solution to mobile robot trajec-
tory generation in the presence of moving obstacles,” IEEE Transactions on Robotics,
vol. 20, no. 6, pp. 978–993, Dec. 2004.

[24] Kestrel Autopilot System, Communication Protocol for Virtual Cockpit and
Kestrel Autopilot Firmware, Procerus Technologies [Online]. Available: http:
//www.procerusuav.com.

69

Appendices

70

Appendix A

Manual of Aria Usage

A.1 Introduction to the P3-DX and AmigoBot Platform

The robots in Mobile Robots Lab include two P3-DX and five AmigoBot mobile robots

from ActivMedia Robotics shown in fig. A.1. All of the robots in the lab are fundamentally

similar. The main differences between the P3-DX and AmigoBot are size and capacity. The

P3-DX is larger and has a larger capacity for sensor and actuator payload. Each robot has

a differential drive system with rear castor, high precision wheel encoders, and eight sonar

positioned around the frame of the robot. Finally, each robot is equipped with an 802.11b

wireless card for communication with the host PC.

The encoders can be used quite reliably for dead reckoning (or to keep track of the

absolute X, Y, θ position). The encoder provides 123 tics per millimeter. It is important

to remember that each time a wheel slips or skids the error in this measurement increases.

It is always important to keep in mind, when using any sensor, how that sensor interacts

with object that it senses.

Sonar is a very useful for finding the robot’s position relative to its surroundings. It

is, however, a little trickier to use than the encoders. The sonar on these robots have a

maximum range of 5000mm (5 meters) and a minimum range of 100mm (10 centimeters).

Although the sonar can sense objects in its path in this range, it is most accurate between

100mm and about 2000mm. The most common problem when using sonar is letting the

robot get too close to an object. Anything closer than 10cm cannot be seen because the

sonar ping echoes back to the robot before it begins listening for it. Other common issues

with sonar happen when the robot is in a tightly enclosed space where the sonar can echo

off multiple walls before returning to the robot, and thus giving a false reading. Also if the

71

Fig. A.1: Two P3-DX and five AmigoBot mobile robots.

robot is in close proximity to another robot, it is possible for the robot to mistake a ping

from a nearby robot as its own.

All of the robots have 16-bit micro-controllers that supports all of the sensors, wheel

drives and other functionality of the robot. However, the actual control program is run

remotely. It is helpful to think of the PC as part of the robot. The PC executes the

programs and sends the control commands and receives the sensor data to and from the

robot’s micro-controller via the 802.11b wireless connection.

A.2 Overview of Aria

Aria is an open source Software Development Kit (SDK) that provides all the func-

tionality, sending and receiving commands and information to and from the robot. It is

written in C++ and compiled as a dll that can be included in other projects. There are

several fundamental classes that can be used to implement the majority of any Aria-based

program. I will go over each of them and give a description of what they do and how they

are used, but this will not be a complete listing of all the classes and functions in Aria.

There are many useful, more advanced, classes and functions included in the SDK.

72

A.2.1 ArRobot Class

A logical starting point is with the ArRobot class. This is a very important class. It is

used to represent the actual robot in your program. The class handles all communication

between the PC and the robot. That means that you will never have to worry about

deciphering the command codes used to send and request data. This class also makes sure

that the most recent sensor data from the robot is always available for use. To add a

robot to your program, all that needs to be done is to declare a variable of type ArRobot.

Once the variable is declared, it can be used to send commands to, and receive sensor data

from, the robot. Multiple robots can be controlled by a single program simply by declaring

multiple instances of the ArRobot class.

A.2.2 ArFunctor Class

The ArFunctor class can be a bit difficult to understand, but it is really quite simple.

All it is, is a pointer to a function. Thus the name, FUNCtion poinTOR. The thing that

makes a functor different from a regular pointer to a function in C++ is that if a regular

pointer points to a class member function, it will not have access to the class’ “this” pointer.

A functor does have access to the “this” pointer. This is important. Functors very useful

for “callbacks.” This will be explained in detail in section 5 (Using ArNetworking Library).

ArFunctor is the base class for quite a few Functor implementations. This manual will

cover the most used and most important ones. To find a list of all functor classes, look in

the ArFunctor.h file, in the AriaDLL project of the SDK. The following are examples of

several different functor types.

� ArFunctorC<CallbackContainer> functor1(cb,&CallbackContainer::callback1);

� ArFunctor1C<CallbackContainer, int> functor2(cb,&CallbackContainer::callback2);

� ArRetFunctor1C<bool, CallbackContainer, const char *>

functor3(cb,&CallbackContainer::callback3);

In the first example, a functor named functor1 is declared. ArFunctorC functors point to

a class member function that returns no value and takes no arguments. Inside the angle

73

brackets (<>), CallBackContainer is the name of the class that contains that function that

is being pointed to. The ArFunctorC constructor takes two arguments, cb, which is a

pointer to a variable whose “this” pointer will be used, and the address of the function that

it will point to.

The second example is very similar. ArFunctor1C points to a class member function

that takes one argument. The type of this argument is specified by the second parameter

in angle brackets.

Finally the last example is, again, very similar to the first two, with the only difference

being that it returns a value. The type of the return value is specified by the first argument

in angle brackets.

Once a functor is initialized, it can be used as an argument to other functions so that a

function can call another function. This is where they become very important for callbacks;

because we can create a list of functors, then whenever an event that is related to this list

of functors occurs, it is possible to iterate through this list invoking each of the functions

that the functors point to. The usefulness of this will become clearer in section 5.

A.2.3 ArAction Class

The ArAction class is very useful for designing specific sets of actions that the robot

can perform. As with any action in real life, each ArAction has a priority. For example,

in a car, the driver’s “Stop” action should have a higher priority than the “Go Forward”

action, so that the driver will stop if there is an obstacle blocking his path. This is, in

fact, how the ArAction class is used. An ArActionStop and an ArActionGo class can be

derived from the ArAction class. By giving the ArActionStop action a higher priority than

the ArActionGo action, the robot can go forward and stop before hitting an obstacle. The

code examples in this section are based on the Aria SDK actionExample code. Notice in

algorithm A.1 that there are three virtual functions declared. The only function that must

be overridden is “virtual ArActionDesired* fire(ArActionDesired currentDesired);”. This is

where the behavior for this action is implemented. To use this new class once it has been

implemented, all that needs to be done is to declare an instance of it and add that instance

74

Algorithm A.1 ArActionGo definition.
classActionGo : public ArAction
{
public:

ActionGo(double maxSpeed, double stopDistance);
virtual ActionGo(void) ;
virtual ArActionDesired *fire(ArActionDesired currentDesired);
virtual void setRobot(ArRobot *robot);

protected:
ArRangeDevice *mySonar;
ArActionDesired myDesired;
double myMaxSpeed;
double myStopDistance;

};

to the robot’s actions.

The addAction function shown in algorithm A.2, is a member of ArRobot, and takes

two arguments. The first is the address of the instance of the action. The second argument is

a priority value from 0 to 100. The ArActionStallRecover, which is an action class included

in the SDK, is also used in this example. Another very useful ArAction subclass included

in the Aria SDK is ArActionInput. This class provides methods to set the velocity and

rotation velocity of a robot just as you would using ArRobot. The difference is that since

it is an ArAction subclass, it has a priority. This makes it possible to implement object

avoidance or other behaviors separately from the main control algorithm. In this way robot

will be protected from running into obstacles or ensured to perform other high priority

actions, no matter what the control algorithm says. For example, the algorithm A.3 shows

how this might be used.

In algorithm A.3, there are two ArActions. The stop action is given a higher priority

than ArActionInput. This ensures that robot will stop when it reaches a wall or obstacle.

The robot’s velocity is then set using the ArActionInput instance.

There are several other ArAction subclasses available in the Aria SDK, that will not

be mentioned here, but they can be found in the AriaDLL project of the SDK. Also for a

75

Algorithm A.2 ArAction usage.
ActionGo go(500, 350);
ArActionStallRecover recover;

robot.addAction(&recover, 100);
robot.addAction(&go, 50);

Algorithm A.3 ArActionInput usage.
ArActionInput myActionInput;
ArActionStop myActionStop;

robot.addAction(&myActionInput,50);
robot.addAction(&myActionStop,99);

myActionInput.setVel(300);

deeper understanding of how to use ArActions, the actionExample in the examples folder

section of the SDK is very helpful.

A.3 Creating a New Project

Creating a new project using the Aria SDK is not difficult, but it can be for those who

don’t have a good understanding of how all the pieces of the project fit together. So before

doing any programming, it is important to know how to create a project. It is essentially

the same as creating a regular project in Microsoft Visual Studio.NET. The difficulties lie

in making sure that all the settings are correct. The following steps will result in a working

project. Note, the settings for the project need to be adjusted to match those required

to access the Aria platform code. Settings may also have to be modified based on where

you put the project. The following is assumes that the project folder is placed in the Aria

directory.

1. Start an instance of Microsoft Visual Studio.NET.

2. Open the New Project Wizard. File→New→Project.

3. Select “Win32 Console Project” from the available templates.

76

4. Enter a project name in the appropriate field.

5. Select the Aria directory for the location field. The default Aria directory is “C:\Program

Files\MobileRobots\Aria”, but it may differ.

6. Click OK.

7. Add a new .cpp file to the project by right clicking the project name in the Solution

Explorer, then select Add→Add New Item, and follow the prompts to create a new

file.

8. Modify Settings.

(a) Right click on the new project name in the Solution Explorer.

(b) Select Properties from the context menu.

(c) Select the General tab in the properties dialog box.

(d) Enter ../bin in the Output Directory field.

(e) Enter ../obj/debug in the Intermediate Directory field.

(f) Select the General tab under the C/C++ folder.

(g) Enter ..\include in the Additional Include Directories field.

(h) Select the General tab under the Linker folder.

(i) Enter ../bin/$(ProjectName).exe in the Output File field.

(j) Enter ../lib in the Additional Library Directories field.

(k) Select the Input tab under the Linker folder.

(l) Enter the following libraries in the Additional Dependencies field: Aria.lib, Ar-

Networking.lib, wsock32.lib winmm.lib, and advapi32.lib. Note, that not all are

needed for every project.

(m) Click OK.

77

Note that once your project is created using these steps, you still need to make sure that

the entire Aria solution has been built and that the Aria.dll and ArNetworking.dll are both

in the Additional Library Directories that you specified previously. A simple way to avoid

confusion for beginners is to copy the “demo” project from the “Aria/Examples” folder into

a new folder within the “Aria” directory. Then rename to project file and add it to the

Aria solution.

Once these steps are complete the project will be ready to compile and run.

A.4 Writing a Simple Program

The simplest way to begin a new program is to modify the contents of demo.cpp;

however, demo.cpp contains a lot of code that is not necessary for the AmigoBots or the

P3-DXs in the lab. Knowing what is necessary or not can result in smaller more efficient

code. This section will show a break-down of the demo.cpp code that is necessary for our

lab’s robots in algorithm A.4.

The first thing that has to be done in any program is to include the Aria.h header file.

Next, inside the main function, Aria must be initialized before using anything else from the

Aria SDK. Aria::init() initializes Aria’s thread layer and the signal handling methods. For

Windows it also initializes the socket layer.

After Aria has been initialized the variables can be declared and initialized. ArAr-

gument parser parses the command line arguments passed in through main(). ArSimple-

Connector is used to connect the PC to the robot or simulator. Notice ArRobot. This

means that demo will be controlling one robot. Finally, ArSonarDevice provides a means

of objectifying the robot’s sonar.

After the variables have been declared, the next step is to parse the command line

arguments and load any default arguments, so that they can be used in initialization.

Default arguments are not often used, so they will not be covered any further here. The

parser.checkHelpAndWarnUnparsed() function makes sure that all of the arguments are

valid. If there are any invalid command line arguments this function also prints out a

warning message and returns false.

78

Following the parsing of the arguments a keyHandler is declared and initialized so that

if the user pushes the Esc key, the program will exit. This is not necessary for most code

to run, but it is good practice so that Aria can close down normally.

Next, our robot is given access to sonarDev. This just makes the robot start collecting

sonar readings and making them available to the rest of the program. After the robot has

been initialized, simpleConnector.connectRobot(&robot) will connect the PC to the actual

robot, and robot.runAsync() starts the robot ’s thread in an asynchronous mode. In other

words, its execution will not by synchronized with the main program thread of execution.

Finally, the last step is to initialize the robot’s motors with the robot.comInt(ArCom-

mands::ENABLE, 1) command, and add the behavioral code to control the robot. For

example the ArActionGo action could be activated here.

A.5 Using ArNetworking Library

The ArNetworking library is just another part of the Aria SDK. This portion of the

SDK makes it possible to create servers and clients in your program, so that multiple

programs on multiple computers can communicate with each other. This is useful in a

variety of situations, such as, to spread the work load over multiple computers if there are

a large number of robots to control. The most important use for ArNetworking is that it

gives the ability to simulate real life communication between robots. It is used extensively

this way in our research of consensus algorithms.

As with the Aria library, there are several classes within the ArNetworking library that

are more important than the others, and will be used in anything you might want to do

with ArNetworking. These classes are: ArServerBase, ArClientBase, and ArNetPacket.

To understand how to use these classes well, it is important to understand their re-

lationships with each other. ArServerBase represents a server. A server’s job is to open

a port, or line of communication. The server does not actively make a connection with

anything, but waits for a client to connect to it and request some sort of data or action

from it. For example, when a browser is opened and connects to a site on the internet, the

79

Algorithm A.4 demo.cpp.
#include ”Aria.h”
int main(int argc, char** argv)
{

Aria::init();
ArArgumentParser parser(&argc, argv);
ArSimpleConnector simpleConnector(&parser);
ArRobot robot;
ArSonarDevice sonarDev;
parser.loadDefaultArguments();
if (!Aria::parseArgs() —— !parser.checkHelpAndWarnUnparsed())
{

Aria::logOptions();
exit(1);

}
ArKeyHandler keyHandler;
Aria::setKeyHandler(&keyHandler);
robot.attachKeyHandler(&keyHandler);
printf(”You may press escape to exit\n”);
robot.addRangeDevice(&sonarDev);
if (!simpleConnector.connectRobot(&robot))
{

printf(”Could not connect to robot... exiting\n”);
Aria::exit(1);

}
robot.runAsync(true);
robot.lock();
robot.comInt(ArCommands::ENABLE, 1);
// TODO Add behavior here
robot.unlock();
robot.waitForRunExit();
Aria::exit(0);
return 0;

}

80

browser connects to a server that has the data for the page that the browser can request

from it.

ArClientBase represents the client. In the example of the internet above, the browser

is the client. The client must know where to find the server and which port the server is

listening on. Once the client is connected to the server, it can request data from the server.

A client can connect to only one server at a time, but a server can have multiple clients

connected to it at a time.

There must be a standard way to send data between the client and server. This is the

purpose of ArNetPacket. The packet holds the data that is to be transferred between the

server and client.

A.5.1 ArServerBase Example

In this example shown in algorithms A.5 and A.6 you will see how to implement a

server using ArServerBase. ArServerBase requires a class to handle the data output when

a client sends it a request. This is a special type of class commonly referred to as a handler

class. The handler class makes heavy use of callbacks and therefore functors. The idea of a

callback is important to understand. They allow both the client and server to process other

things while waiting for data to be sent or received.

Algorithm A.5 shows the handler class definition. It has a function called outputData

that has two arguments, an ArServerClient* and an ArNetPacket*. This function will

be used as the callback. Each time a client that is connected to the server requests the

server’s data (in this case the myData variable) this function will handle the request. The

OutputHandler class also has a functor called myOutputDataCB. Notice that the pointer

will point to a function that is a member of this class, and will take two arguments of type

ArServerClient* and ArNetpacket*.

The implementation of the OutputHandler class is shown in Algorithm A.6. The first

thing to notice is that the functor is initialized in the call to the constructor, and is set

to point to the outputData member function. Next, notice that there is a line in the

constructor that calls a function of the ArServerBase class, called addData. This function

81

Algorithm A.5 Handler class definition.
classOutputHandler
{
public:

OutputHandler(ArServerBase *server, double* data);
virtual OutputHandler(void);
void outputData(ArServerClient *client, ArNetPacket *packet);

protected:
ArServerBase *myServer;
double *myData;
ArNetPacket myPacket;
ArFunctor2C¡OutputHandler, ArServerClient *, ArNetPacket *¿
myOutputDataCB;

};

adds our functor to a list of functors that will be invoked each time the server receives a

request for “getData”. The arguments are: the name used in the request for the data, a

description of the function that is pointed to by the functor, a pointer to the functor, a

description of the arguments that the callback function is expecting to be contained in the

request packet, and a description of the data that will be returned by the callback function

in the reply packet.

All the outputData function has to do in this example, add the myData variable to

the reply packet, and send it. The myPacket.empty() function is there simply to make sure

that there is no data already in the packet. If the client had sent data with the request

to the server, the server could retrieve the data with a line similar to this: clientData =

packet→bufToDouble();.

Algorithm A.7 shows the final steps for creating a server with the SDK. There should

not be anything very unexpected here. First, a variable of type ArServerBase is declared.

Then, ArServerSimpleOpener is used to open the port that the server will listen on. Ar-

ServerSimple Opener is a class that simplifies opening the server port when the port is

specified in the command line arguments. It is possible to use server.open(int port); to

open the server port. After the port has been opened, the runAsync() function tells server

82

Algorithm A.6 Handler class implementation.
OutputHandler::OutputHandler(ArServerBase *server, double* data) :

myOutputDataCB(this, &OutputHandler::outputData)
{

myServer = server;
myData = data;
myServer-¿addData(”getData”, ””, &myOutputDataCB, ”none”, ”double”);

}

OutputHandler:: OutputHandler(void)
{}
void OutputHandler::outputData(ArServerClient *client, ArNetPacket *packet)
{

myPacket.empty();
myPacket.byteToBuf(*myData);
myPacket.finilize();
client→sendPacketTcp(&myPacket);

}

to begin listening for client connections. And lastly, an instance of the OutputHandler class

needs to be declared so that it can begin handling the requests to the server.

A.5.2 ArClientBase Example

There are very few differences in setting up a Server from a Client as you will see. As

with the server example, the client needs a handler to handle the sending requests to the

server and receiving the data. Algorithm A.8 shows the class definition of this handler. The

only difference between this class definition and the OutputHandler class definition for the

server is that the functor, instead of pointing to a function with two arguments, points to

a function with only one argument.

Algorithm A.9 shows the implementation of the client’s handler class. Again there are

very few changes from the server’s handler class. The most important change is in the

constructor. To send a request, the handler uses ArClientBase’s addHandler and Request

or RequestOnce functions. The addHandler function tells myClient what functor to invoke

each time myClient sends a request to the server for “getData”. The request function tells

83

myClient to send a request to the server for “getData” every 100 milliseconds.

It will not be surprising that starting the client, shown in algorithm A.10 is nearly the

same as starting a server. In fact the only thing that is really noteworthy that you have not

seen yet is the way client is connected to the server. Instead of opening the client, the client

connects to the server, using the address where the server can be found and the port that

it is listening on. To learn more about the ArNetworking library look at Aria’s serverDemo

and clientDemo.

A.6 Running Code on the MobileSim Simulator

MobileSim is a very useful and very powerful simulator for the mobile robot platform.

It should be the starting point for testing new programs or algorithms for the robots.

To open MobileSim, first open a command prompt. Then, after changing to Mo-

bileSim’s directory (C:\Program Files\MobileRobots\MobileSim), type “mobilesim.” That

will run MobileSim with its default settings. You will see a dialog box that lets you choose

a map to load in MobileSim or to continue with no map. Maps can be created for Mo-

bileSim using Mapper3-basic. By default MobileSim opens with only one P3-DX available.

To open MobileSim with more than one robot or with multiple types of robots use the

following argument format in the command prompt: “mobilesim -r amigo-sh -r amigo-sh -r

p3dx -r p3dx.” This would open MobileSim with two AmigoBots and two P3-DXs.rectory

(C:\Program Files\MobileRobots\MobileSim), type “mobilesim.” That will run MobileSim

with its default settings. You will see a dialog box that lets you choose a map to load in

MobileSim or to continue with no map. Maps can be created for MobileSim using Mapper3-

basic. By default MobileSim opens with only one P3-DX available. To open MobileSim with

more than one robot or with multiple types of robots use the following argument format in

the command prompt: “mobilesim -r amigo-sh -r amigo-sh -r p3dx -r p3dx.” This would

open MobileSim with two AmigoBots and two P3-DXs.

To connect a program to the robots in MobileSim, the program needs to be executed

from the command prompt so that you can take advantage of the command line options.

When MobileSim loads a robot it makes that robot available on a certain port. The first

84

robot to be loaded, is loaded on port 8101. Each additional robot is loaded on the next

consecutive port. So, if you wanted to run demo.exe on the first P3-DX that was loaded in

MobileSim, you would type the following in the command prompt: “demo -rrtp 8103.” For

a complete list of command line options for demo type: “demo -h.”

A.7 Running Code on the Robots

Running your program on a robot is very similar to running the code on MobileSim.

The difference is that instead of connecting to some port on MobileSim, you must connect

directly to the robot’s IP address. In the lab, the robots each have a static local IP address

assigned to them. To run demo.exe on one of the AmigoBots, whose IP address happens

to be 192.168.1.11, you would type “demo -rh 192.168.1.11” in the command prompt. For

each robot you wish to run the program on, you would repeat this process, changing the

address to the appropriate address for the robot.

It is also possible, with the robots in the lab, to use an external IP address to connect

to them. This is possible because each robot has a port forwarded to it. For example, the

following would connect to the robot whose port is 8101: “demo -rh 129.123.4.197 -rrtp

8101.”

Each of the five AmigoBots and one of the P3-DXs also have on board computers

installed on them. The AmigoBot computers run run Windows, and the P3-DX’s computer

runs a version of Debian LINUX. By logging onto the on board computer using Remote

Desktop Connection for the Windows computers or some remote access program such as

Putty for LINUX, you can also run programs on the robot from its own on board computer.

The computers are connected to the robot via serial connection. This means that wanted

to run demo.exe from the on board computer, you would only have to type: “demo” from

the command prompt. As long as MobileSim is not running when you do this, demo.exe

will connect to the robot over its serial connection. The IP addresses for the on board

computers are also listed in table A.1.

85

Table A.1: Command line arguments for connecting to the lab robots.
Robot Internal Address External Address On board Computer IP Address

P3-DX 1 -rh 192.168.1.10 -rh 129.123.4.197 -rrtp 8106
AmigoBot 1 -rh 192.168.1.11 -rh 129.123.4.197 -rrtp 8101 192.168.1.41
AmigoBot 2 -rh 192.168.1.12 -rh 129.123.4.197 -rrtp 8102 192.168.1.42
AmigoBot 3 -rh 192.168.1.13 -rh 129.123.4.197 -rrtp 8103 192.168.1.43
AmigoBot 4 -rh 192.168.1.14 -rh 129.123.4.197 -rrtp 8104 192.168.1.44
AmigoBot 5 -rh 192.168.1.15 -rh 129.123.4.197 -rrtp 8105 192.168.1.45

P3-DX 2 -rh 129.123.4.197 -rrtp 8107 192.168.1.16

Algorithm A.7 ArServerBase initialization.
void main(int argc, char** argv)
{

Aria::init();
ArServerBase server;
double* data;
ArArgumentParser parser(&argc, argv);
ArSimpleConnector simpleConnector(&parser);
ArServerSimpleOpener simpleOpener(&parser);
parser.loadDefaultArguments();
if(!simpleConnector.parseArgs() || !simpleOpener.parseArgs() ||

!parser.checkHelpAndWarnUnparsed())
{

simpleConnector.logOptions();
simpleOpener.logOptions();
exit(1);

}
if(!simpleOpener.open(&server))
{

printf(”Could not open server port.\n”);
exit(1);

}
server.runAsync();
OutputHandler outputHandler(&server, &data);
while(1)
{

// It is possible to change the data variable here
Sleep(1);

}
Aria::exit(1)

}

86

Algorithm A.8 Handler class definition.
classOutputHandler
{
public:

OutputHandler(ArClientBase *client, double* data);
void handleData(ArNetPacket *packet);
ArFunctor1C¡DriverOutputHandler, ArNetPacket *¿ myHandleDataCB;

protected:
ArClientBase *myClient;
double* myData;

};

Algorithm A.9 OutputHandler implementation.
OutputHandler:: OutputHandler(ArClientBase *client, double* data) :

myHandleDataCB(this, &OutputHandler::handleData)
{

myClient = client;
myData = data;
myClient→addHandler(”getData”, &myHandleDataCB);
myClient→request(”getData”, 100);

}

void OutputHandler::handleData(ArNetPacket *packet)
{

*myDriverOutput = packet→bufToDouble();
}

87

Algorithm A.10 ArClientBase initialization.
void main(int argc, char **argv)
{

Aria::init();
ArArgumentParser parser(&argc, argv);
ArClientBase client;
double* data;
if(!client.blockingConnect(”localhost”, 7300))
{

printf(”Failed to connect to client server\n”);
exit(1);

}
printf(”Connected to client servers.\n”);
OutputHandler outputHandler(&client, &data);
client.runAsync();
while(client.isConnected())
{

// Do something with data
ArUtil::sleep(100);

}
}

88

Appendix B

Overview of AmigoBot Testbed

B.1 Introduction to the Testbed

In order to research cooperative control systems, we have assembled a testbed for

multi-vehicle cooperative control. This testbed was used in all of the simulations and ex-

periments in this thesis. We will give an overview of this testbed as background for the

experiments. The testbed includes five AmigoBots with on board computers. The soft-

ware for the testbed is written in C++ using the Aria SDK. The full testbed software

package includes five different executables that will be explained in detail in the following

appendix. Three programs comprise the core of the testbed software, “DriverServer.exe”,

“ClientTest.exe”, and “ServerTest.exe”. These three programs work together to form a

distributed communication network between the AmigoBots shown in fig. B.1, where the

communication topology as well as many other control parameters are time varying. One

program is the GUI that is used developed in Chapter 2, and the last program, “Rex-

ecService.exe” is a windows service that allows “DriverServer.exe”, “ClientTest.exe” and

“ServerTest.exe” to be executed on remote computers from the GUI. This appendix will

focus only on the three core programs, as the other two are covered in detail in Chapter 2.

B.2 Testbed Design

In network topology illustrated in fig. B.1, the top level, “DriverServer.exe”, represents

a path planner. The communication between the path planner and other robots can be

limited to as few as one or as many as all of the robots. The robots with communication links

to the path planner are the leaders. Those with communication links only to other robots

are followers. The communication between individual robots can also be time varying. This

89

Fig. B.1: Network topology implemented in testbed to simulate communication between
robots.

simulates a limited or even changing communication topology.

“DriverServer.exe” implements an ArNetworking server object (See Appendix A for

details on ArNetworking and the ArServerBase class). As clients connect to the server

data is made available to them through request. “DriverServer.exe” implements a timer

that updates the path and time varying data that is made available to the robots. The

communication matrix and leader array, as well as the dynamic formation parameters for

dynamic formation experiments, are updated at ten second intervals. This is how the time

varying communication topology and formation parameters are implemented.

B.2.1 Connection Matrix

The communication matrix is what determines the communication topology between

robots. Every robot, leader or follower, must continuously request the communication

matrix from the server. The values of the communication matrix cells can be 1’s or 0’s. A

1 in cell (2,3) means that robot 2 receives data from robot 3. A 0 means that it does not.

B.2.2 Virtual Center

The path planner has several built in functions to plot the desired path of formation.

The position that the path planner plots for the formation is called the virtual center and

includes the (x, y) position as well as the heading, θ. Only leaders are allowed to use this

90

data. Currently the path plotting functions provide linear, circular, and figure 8 paths, as

well as a stationary rotating path.

B.2.3 Leader Array

The leader array serves two purposes. First, the leader array indicates which of the

robots are leaders, or have access to the virtual center and other mission information other

than the connection matrix from the path planner. Second, it determines which control

algorithm will be used for the experiment. This and the communication matrix are the

only two things available to all robots from “DriverServer.exe”. At the time that this

appendix was written, the available leader array cell values are those shown in table B.1.

B.2.4 Dynamic Formation Parameters

The four time varying formation parameters a, b, poe, and shift, are made available

to the leaders. “DriverServer.exe” also implements an algorithm to limit the rate at which

these parameters can change. Chapter 3 explains these parameters and the algorithm in

detail.

B.3 ClientTest

The principle purpose of “ClientTest.exe” is to implement the control algorithms. As

per the definition of a distributed control system, each robot implements its own controller.

Therefore, each robot has its own individual instance of “ClientTest.exe”. In fig. B.1

“ClientTest.exe” is represented by the middle layer. “ClientTest.exe” implements the Ar-

Networking client (see Appendix A for details on ArNetworking and ArClientBase class).

To achieve communication with “DriverServer.exe”, “ClientTest.exe” must have a client ob-

ject for that connection. There must also be a client object for each of the “ServerTest.exe”

server to handle communication between robots.

Each of the controllers shown in table B.1 is implemented in “ClientTest.exe” as a C++

class. The program runs an infinite loop that cycles at 100 ms intervals. At the beginning

of each interval the client to “DriverServer.exe” requests the communication matrix and

91

Table B.1: Leader array.
Value Description

0 No connection.
1 Simple follower for consensus controller.
2 Intelligent follower for consensus controller.
3 Leader for consensus controller.
4 Velocity consensus controller.
5 Simple attitude controller.
6 Attitude 1 follower controller.
7 Attitude 1 leader controller.
8 Attitude 2 follower controller.
9 Attitude 2 leader controller.
10 Attitude 3 follower controller.
11 Attitude 3 leader controller.
12 Dynamic formation simple follower controller.
13 Dynamic formation intelligent follower controller.
14 Dynamic formation leader controller.
15 Couple harmonic oscillator follower controller.
16 Coupled harmonic oscillator leader controller.

leader array. The leader array is used to determine which controller class implementation

to use, and the communication matrix is used in the control algorithm. “ClientTest.exe”

also collects data from each of the “ServerTest.exe” instances and makes it available to the

controller class.

B.4 ServerTest.exe

The purpose of the “ServerTest.exe” is to act as a software representation of an

AmigoBot. It is represented by the bottom layer in fig. B.1. “ServerTest.exe” handles

all of the communication with the physical robot by sending control commands to, and sen-

sor feedback from, the robot. Another ArNetwork server is implemented here and a client

from each of the “ClientTest.exe” instances will connect to it to request sensor feedback

from the robot. Only the client that corresponds to the particular robot will send control

commands, however.

