[Food Structure](https://digitalcommons.usu.edu/foodmicrostructure)

[Volume 7](https://digitalcommons.usu.edu/foodmicrostructure/vol7) | [Number 1](https://digitalcommons.usu.edu/foodmicrostructure/vol7/iss1) Article 5

1988

The Retention of Contractility of Rabbit Myofibrils During Storage at 25 C

Makoto Nakamura

Michio Muguruma

Toshiyuki Fukazawa

Mamoru Yamaguchi

Follow this and additional works at: [https://digitalcommons.usu.edu/foodmicrostructure](https://digitalcommons.usu.edu/foodmicrostructure?utm_source=digitalcommons.usu.edu%2Ffoodmicrostructure%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Food Science Commons](http://network.bepress.com/hgg/discipline/84?utm_source=digitalcommons.usu.edu%2Ffoodmicrostructure%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Nakamura, Makoto; Muguruma, Michio; Fukazawa, Toshiyuki; and Yamaguchi, Mamoru (1988) "The Retention of Contractility of Rabbit Myofibrils During Storage at 25 C," Food Structure: Vol. 7 : No. 1, Article 5.

Available at: [https://digitalcommons.usu.edu/foodmicrostructure/vol7/iss1/5](https://digitalcommons.usu.edu/foodmicrostructure/vol7/iss1/5?utm_source=digitalcommons.usu.edu%2Ffoodmicrostructure%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact [digitalcommons@usu.edu.](mailto:digitalcommons@usu.edu)

THE RETENTION OF CONTRACTILITY OF RABBIT MYOFIBRILS DURING STORAGE AT 25 · c

Makoto NAKAMURA, Michio MUGURUMA, Toshiyuki FUKAZAWA and Mamoru YAMAGUCHI•

Department of Animal Science, Faculty of Agriculture,
Kyushu University 46-06, Fukuoka 812, and The Ishikawa
Agricultural College, Nonoichi-machi, Ishikawa 921, Japan

Abstract

During postmortem storage of muscle at 250C, myofibrils retained the ability to contract for more than 400 hours under experimental conditions used to prevent
bacterial contamination of the meat
surface. During this time, rapid breakdown of troponin T was observed. Storage
beyond 500 hours resulted in rapid loss of
contractility correlating with proteolysis of
the heavy chain of myosin, and in this
stage some granules were observed along
the whole A-band w

Initial paper received November 04, 1987 Manuscript received May 06, 1988 Direct inquiries to M. Yamaguchi Telephone number: 614-292-2091

Key words: myofibril, contraction, myosin

Direct inquiries to M. Yamaguchi,
Dept. Vet. Anatomy, College Vet. Med.,
The Ohio State Univ. 1900 Coffey Rd.,
Columbus, Ohio 43210, USA
Phone No. 614-292-2091

Introduction

It has not been clearly defined how long the biological activity of muscle can be retained during postmortem storage. Sung et al. (1976) reported that the contractility of IJORC of IJORCINE measured at 24 h postmortem depends on the pH of muscle and indicated that the myofibrils
from muscles whose pH was 5.45 or above
exhibited 100% contractility. Addition of
Mg²⁺-ATP to intact myofibrils brings
about their contraction, resulting in the
formation of the s

1980).
The present study was conducted to
clarif<u>y</u> the changes in contractile function of myofibrils during prolonged postmortem storage at room temperature under expenmental conditions designed to prevent degradation by bacterial proteases.

Materials and Methods

Materials
Rabbits were euthanized with sodium pentobarbital (90 mg) prior to exsanguination, and the carcasses were soaked in 50 mM NaN3 solution for a few seconds to prevent bacterial growth on the surface. Three replications with a total of 15 rabbits were used for the present experiment. Fresh longissimus thoracis muscles were cut approximately 2.5 cm
thick and 5 cm in length, soaked in 50 mM NaN3, then individual pieces were wrapped
separately in a double layer of polyethylene
bags, with toluene between the layers to
prevent penetration of the inner polyethylene layer surrounding the meat by exogenous bacteria, and stored at 25ºC.
Contractility of myofibrils
Contractility of myofibrils
The longissimus thoracis muscles were
minced with scissors. Approximately 0.2 g

of 0.1 M KCl, 0.039 M borate buffer
solution (pH 7.0) with a Waring blender for
30 sec. A drop of the muscle suspension
was placed on a glass slide and then a

cover glass placed on it. Thereafter, a drop
of Mg2+-ATP solut<u>io</u>n (1 mM MgCl2, 1 mM ATP, 10 mM Tris-maleate, pH 7.0)
was placed at one edge of a cover glass.
The appearance of myofibrils in the
suspension before and after the addition of
the Mg²⁺-ATP solution was observed at
the Mg²⁺-ATP solution w and uncontracted myofibrils in the
suspension after the addition of Mg2+-ATP solution were counted. Contractility of
myofibrils in the muscle suspension was myofibrils in the muscle suspension was expressed as percentage of the contracted myofibrils to the total myofibrils counted in

six different experiments. In each case,
more than 200 myofibrils were counted.

pH determinations
 $\frac{1}{2}$ Minced muscle (3 g) was homogenized

in 10 ml of distilled water with a Waring

blender for 3 min. The pH of the Hitachi-Horiba pH meter at 20ºC. Protein concentrations

Protein concentrations were determined
by the biuret method (Gornall et al., 1949). by the biuret method (Gornall et al., 1949) .

Sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis
SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) was carried out on gradient
slab gel (7.5-20% acrylamide) at 30 mA
employing the discontinuous buffer syste

EXECUTE THE 1 .3% osmium tetroxide for 2 hr was followed by dehydration through graded ethanols (50%, 75%, then 100% 3 graded ethanols (50%, 75%, then 100% 3 times), alcohol was replaced with propylene oxide, and the samples were embedded in an epon mixture. Thin sections, approximately 60 nm thick, were stained
with uranyl acetate and lead citrate
according to the procedure of Reynolds
(1963). Specimens were examined with a
Hitachi H-300S electron microscope
operated at 75 kV.

Results and Discussion

The pH of muscle, 6.8-7.0 antemortem,
remained at the minimum value of 5.6 for a
relatively long period during postmortem storage, approached the neutral pH region
at 400 h storage, and finally neared pH 8.0
at 600 h storage. These pH changes follow
the usual pattern observed in muscle that
shows normal rigor mortis (Bendall, 1973).
The contr

Fig. 2 shows the effect of storage time
on the electrophoretic pattern of
myofibrillar proteins. A 30,000-dalton component, presumably due to the
degradation of troponin T (Olson et al.,
1977) was observed after 30 h storage.

Fig. 1. Contractility of myofibrils prepared from fresh muscle and from muscle stored at 25°C. The contractility was expressed as percentage of myofibrils
forming contraction bands, including single
forming contraction bands, including single
sarcomeres lacking H-zone, relative to the total myofibrils observed after addition of
Mg²⁺-ATP solution (1 mM MgCl₂, 1 mM
ATP and 10 mM Tris-maleate, pH 7.0) under the phase contrast microscope. In each case, about 500 sarcomeres
representing 200 myofibrils were evaluated.
Each value is the mean SD of six preparations from individual rabbits.

This component was often degradated
further, and therefore the gel band was not
observed in muscle after 150 hrs storage.
Degradation products having molecular
weights of 130,000-150,000 daltons
appeared after 408 h storag attributed to endogenous proteases,
because bacterial contamination was
prevented. After 584 h of postmortem storage, the myosin heavy cham could not be observed on the gel. A loss of contractility accompanied the disappearance of myosin heavy chain . The other major component of myofibrils, actin, was degraded only after almost 584 h of postmortem storage. Tropomyosin
appeared more stable, than α -actinin. Mline protein and C-protein could not be
determined, because the molecular weights act the myosin heavy chain breakdown products were very close to the molecular weights of the former proteins.

Under the electron microscope,
myofibrils prepared from fresh muscle
showed the typical sarcomere pattern of
interdigitating thick and thin myofilaments
(Yamaguchi et al., 1985), whereas
myofibrils prepared from muscle sto shows a single sarcomere obtained from
muscle stored for 584 h at 250C. The thick
filaments were not distinct but appeared to
be associated with the thin filaments. The

Retention of Myofibril Contractility

Fig. 2. Effect of storage
on the electrophoretic
pattern of myofibrils. pattern.
Myofibrillar suspensions (5 mg/ml
diluted with equal volumes
of 0.5 M Tris-HCl, pH 6.8,
1% SDS, 30% glycerol,
1% SDS, 30% glycerol,
0.01% bromophenol blue
and boiled for 3 min.
Aliquots (70 ug protein)
were subjected to 50.87 gradient PAGE (7.5-20%)
linear acrylamide gradient).
The number under each gel
indicates postmortem storage time. MHC,
myosin_heavy_chain;_Tn-T,
troponin-T;____________TM, tropomyosin; LC, myosin
light chain.

Fig. 3. Amount of myosin heavy chain , actin and 130,000-150,000 dalton component during postmortem storage.
Coomassie blue-stained gels were scanned
using an LKB 2202 Ultroscan Laser
Densitometer. The amounts of the proteins
were estimated from the areas of peaks in
the densitograms. Myosin h

myosin molecules may have been degraded
already at this stage, as shown in Fig. 2, but perhaps some heavy meromyosin degradation products remamed within the **sarcomeres. Some granules were observed** throughout the A-band after 584 h of

storage. Recently, Bechtel and Parrish (1983) reported that the myosin heavy chain was

Fig. 4. Electron micrograph of a single
sarcomere obtained from muscle stored at
250C for 584 h. The scale indicates 1 um.
A; A-band, H; H-zone, Z; Z-line.

degraded to a series of polypeptides having molecular weights between 145,000 and 125,000 when the muscles were stored at
370C. for 7 days. Ikeuchi et al., (1980) also
demonstrated some degradation of rabbit
skeletal muscle myosin during storage for
the 12 h at 370C. A number of studies of
the structura protein during postmortem storage have
been performed (Arakawa et al., 1976;
Olson et al., 1977; Ikeuchi et al., 1980;
Bechtel & Parrish, 1983). The structural
changes observed in various studies may be due to endogenous proteinases, including
the calcium-activated proteinase (Reddy et
al., 1975; Dayton et al., 1976; Ishiura et al.,
1979), various catheptic proteinases
(Schwartz & Bird, 1977; Matsukura et al.,
1981; Zeece proteinases (Yasogawa et al., 1978;
Murakami:& Uchida, 1979).
. Our results show that myofibrils retain

the contractile function for a long period at 250C in spite of partial degradation of myosin heavy chains. Further studies on
chemical changes in myosin molecules of myofibrils during long-term storage are in progress.

Acknowledgements

We thank Alissa Winnard and Mary Jo Blevins in assistance for preparing the
manuscript. This work was supported in
part by grants from the Ito Memorial
Foundation and a Grant-in-Aid (No.
56480071) from the Ministry of Education,
Science.and Culture.of Japan.

References

Arakawa N, lnagaki C Kitamura T , Rujiki l, Fuiimaki M (1976) A catheptic protease active in ultimate pH of muscle.
Agric. Biol. Chem. 40, 1445-1447.
Bechtel PJ, Parrish FC (1983) Effects of

postmortem storage and temperature on
muscle protein degradation: Analysis by
SDS gel electrophoresis. J. Food Sci. <u>48,</u>
294-297.
. Bendall JR (1973) Post-mortem changes

in muscle. In 'The Structure and Functoon of Muscle" IGH Bourne, ed). Academic Press, New York and london; ll:_l. 243 - 309.

Dayton WR, Goll DE, Zeece MG, Robson
RM (1976) A. Ca²⁺-activated protease
possibly involved in myofibrillar protein
turnover. Purification from porcine muscle.
Biochemistry 15, 2150-2158.
Gornall AG, Bardawill CJ, David

(1949) Determination of serum proteins by means of the biuret reaction. J. Bioi.

means on the buttle that cattion.

Chem. 177, 751–766.

Hanson J (1952) Changes in cross-

Hanson J (1952) Changes in the straight contraction

induced by adenosine triphosphate. Nature

169, 530–533.

Ikeuchi Y, Ito T, Fu

Laemmli UK (1970) Cleavage of
structural proteins during the assembly of
the head of bacteriophage T4. Nature 227,

680-685. Matsukura U, Okitani A, Nishimura T,

Kato H (1981) Mode of degradation of
myofibrillar proteins by an endogenous
protease, cathepsin L. Biochim. Biophys.
Acta 662, 41-47.
T (1980) Contribution of Z-line
contraction bangs of chicken myofibrils on
contraction b

145-149.
145-149. Murakami U, Uchida K (1979)
Degradation of rat cardiac myofibrils and

myofibrillar proteins by a myosin-cleaving
protease. J. Biochem. 86, 553-562.
Olson DG, Parrish FC, Dayton WR, Goll
DE (1977) Studies of a calcium-activated
muscle. J. Food Sci. 42, 117-124.
Reddy MR, Etlinger JD, Rabinow

citrate at high pH as an electron opaque
stain in electron microscopy. J. Cell Biol.

17, 208-212.
- Robbins F, Walker J, Cohen S, Suprabhat C (1979} Action of Proteolytic Enzymes on Bovine Myofibrils. J. Food Sci.

 $\frac{44}{3672}$ -1677, 1680.

Schwartz W, Bird JC (1977)

Degradation of myofibrillar proteins by

cathepsin B and D. Biochem. J. 167, 811-
820.

Sung SK, Ito T, Fukazawa T (1976)
Relationship between contractility and
some biochemical properties of myofibrils
prepared from normal and PSE porcine
muscle. J. Food Sci. 41, 102-107.
Thinger R, Fennema 0, Marsh B (1979)

Rate of pH Decline in Beef Muscle Stored at Above- and Below- Freezing Temperatures.

J. Food Sci. 44, 1681-1685. Yamaguchi M, lzumimoto M. Robson RM, Stromer MH (1985) Fine structure of wide and narrow Z- lines: A proposed model and computer simulation of Z-line
architecture. J. Mol. Biol. 184, 621-643.
Yasogawa N, Sandad Y, Katsunuma N.

(1978) Susceptibilities of various
myofibrillar proteins to muscle serine
protease. J. Biochem. 83, 1355-1360.
Zeece MG, Katoh K, Robson RM, Parrish
FC (1986) Effect of cathepsin D on bovine

myofibrils under different conditions of pH
and temperature. J. Food Sci. 51, 769-773.

Discussion with Reviewers

<u>C. A. Voyle</u>: Does loss of contractility
precede the loss of myosin heavy chains?
<u>Authors</u>: Several of our results indicate
that degradation of myosin heavy chain is often preceded by the loss of myofibril contractility.

P. J. Bechtel: How does change of pH
Authors: The pH of muscle was measured
Authors: The pH of muscle was measured
at pH 6.9-7.0 at death and then the pH
dropped to 5.5-5.6 after 24 hours. The muscle maintained a pH of 5.5-5.6 for a prolonged period of about 3 weeks until myosin heavy chain started degradation.
Then the pH of muscle gradually increased up to pH 7 .0, although there are some variations among individual rabbits. (See Winger et al. , 1979)

P. J. Bechtel: On average, how long after death were the muscles excised?

Authors: Immediately after death the whole carcass was cooled by ice and after a 15-20 min period from the time of death, the muscles were excised.

P. J. Bechtel: What do the electron micrographs from the other storage days **reveal?**

Authors: Unfortunately we have not yet examined any of the electron micrographs
from other storage days, however we
predict that there was some occurrence of structural changes prior to the electron
micrograph shown here.

P. J. Bechtel: Would you speculate on why muscle proteins are not rapidly degraded at temperature below 37° C?

Authors: We have performed some
experiments at 15 and 20°C in which the
muscle retained contractility for more than muscle retained contractility for more than
two months. However, we have not
conducted the experiment at temperatures
between 25 and 37 °C. It may be possible
then, that the observed phenomenon is
related to enzyme reactiv certain temperatures.

P. J. Bechtel: How stable are the different muscle proteolytic enzymes under the conditions used in these experiments?
Authors: We have no idea of the stability
of other enzymes under these conditions,
however, we feel that we will obtain similar
results using mammalian skeletal muscle.

S. H. Cohen: Results shown in Fig. 2 do
not appear to support breakdown of TN-T
to a 30K dalton fragment which increases
in context after 30 hours of storage.
Although the 30K dalton fragment is seen
after 30 hours, I woul this fragment is from TN-T as reported by Olson et al. {1977) Will the authors please

comment?
<u>Authors</u>: We assume that a 25K
component, after 150 hrs of storage, may
be the result of the breakdown of the components of the 30K dalton fragment
from TN-T. We understand the comments
noted by Dr. Bechtel and Dr. Cohen,
however, TN-T seems to be the initial
protein targeted by endogenous protease
after death. Although the specif breakdown, we often observe a complete
disappearance of TN-T. A complete
disappearance may often be disappearance may often be
indistinguishable from other breakdown
products of higher molecular weight products of higher molecular weight proteins.

S. H. Cohen: In a paper by Robbins et al.
(1979) the authors described SDS gel
electrophoresis of bovine myofibrils and show the breakdown of the major myofibrillar components. How do these results compare to those in your results? Authors: Any enzymes obtained from
spleen are often contaminated with a
countless number of proteases. In our
experience, even purified DN-ase I from
spleen contains several kinds of protease.
Therefore, it is often diffic in the case of Robbins et al. Some serine
proteases are active at a neutral pH and digest myosin heavy chains and also possibly the light chains. Myosin heavy **chain seems to be sensitive to a serine _type** of enzyme, whether the optimum pH is acidic (as in Robbin 's experiments) or neutral (as in our experiments) with the presence of multiple proteases during a
period of long storage. We feel that in the
Robbins experiments the possible linker
protein between. **C**-actinin and actin of the
Z-line was probably digested by cathepsin
D and othe proteases existing in muscle because the myofibril was not isolated from the muscle during treatment.

D. E. Goll: The authors are somewhat vague in the last paragraph about what
causes the chemical changes that occur
during long-term postmortem storage in
the myosin molecules. The SDS-
polygerylamide gels clearly show that the
polygeptide chains of the myosin in addition to proteolysis is causing this
change?
Authors: We do not have a definite answer

Authors: We do not have a definite answer
for this question, however, it is possible
that some organic elements may become
radical due to protein breakdown. The
increase in radicals may accelerate the

degradation of proteins.

<u>D. E. Goll</u>: There is a progressive increase
in the protein band at the very top of the SDS-polyacrylamide gels with increasing
time of postmortem storage. Titin and
nebulin, two proteins that might be
expected to be located at the top of these polyacrylamide gels, are very labile to
proteolysis and have been reported to be degraded during postmortem storage.
What explanation do the authors have for
the increase in this protein band at the top the increase in this protein band at the top
of the SDS-polyacrylamide gels?
Authors: During the SDS gel preparation,
we used a 4.5% stacking gel, which is not
shown in figure 2. In the stacking gel, we
noticed that there with a storage time of up to 150 hrs. The increase of the protein at the top of the gel is probably an increase in fragmented
components of the high molecular weight
proteins, titin and nebulin, which as you mentioned, are reportedly degraded during
postmortem storage. In addition, it is
possible that the high molecular weight of membrane associated and/or structural
proteins may be degraded during postmortem storage and are difficult to
remove completely when the myofibril is
prepared. While in fresh samples, these membrane proteins can be more easily removed .

D. E. Goll: The authors indicate that the
pH of postmortem muscle after 400 hrs of postmortem storage is near neutrality, a pH
at which most catheptic proteases are not
active. Although the Ca²⁺- dependent
proteinase is active at pH 7, it has been reported many times that this proteinase
does not degrade myosin heavy chains. If
the loss of the myosin heavy chain
beginning at 408 hrs of postmortem storage
is due to proteolysis, what proteases do the
authors believe a

proteolysis?

Authors: This is an excellent question and

Authors: This is an excellent question and

is related to the response given for the

Robbins et al. paper. Although this cannot

Robbins et al. paper. Although thi serine types of proteases, such as PMSF,
directly into the muscle (or by making a
muscle homogenate with PMSF) after 150 hrs at which time the myosin heavy chain is still intact.