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additional 30% in summer [Torr et al., 1980]. It can be seen
that the neutral atmosphere plays a very large role in determin-
ing the annual variation in plasmaspheric density, not directly
through H* density levels, but indirectly by controlling O*
densities. In addition, neutral wind profiles and photoioniza-
tion rates also have a role in determining the annual variation.

6. Conclusions

We have shown that for a field line whose geomagnetic
longitude is 300°, the modeled plasmaspheric density in
December is greater than that in June, and the December to
June ratio is in rough agreement with observations (for L = 2).
For this longitude the field line tilt is such that the southern
end of a flux tube is farther from the geographic equator than
the northern end, and the ionospheres are exposed to sunlight
longer in December than in June. In contrast, for a field line
whose geomagnetic longitude is 120°, the modeled plasma-
spheric density in June is greater than that in December. For
this longitude the field line tilt is reversed, so that the iono-
spheres are exposed to sunlight longer in June than in
December.

While our results might seem to support the hypothesis that
annual variations are caused by solar flux variations which are
due to the tilt of the magnetic dipole axis, it should be noted
that for both longitudes, diurnally averaged O* levels in the
upper ionosphere vary in the same sense as plasmaspheric
densities. This, together with the theoretical analysis given
above, would suggest that plasmaspheric densities are sensi-
tive to O* levels in the upper ionosphere. This was tested by
raising O* levels with a vertical neutral wind and seeing the
rise in plasmaspheric density. It should also be noted that
interchanging the photoionization rates between hemispheres
did not change the December to June ratio significantly.
Furthermore, observational results [Clilverd et al., 1991] and
previous modeling work [Clilverd et al., 1991; Rippeth et al.,
1992] have shown that the annual variation of plasmaspheric
density is correlated with the annual variation of F2 peak
density. Therefore we conclude that annual variations in
plasmaspheric density are due to similar variations in iono-
spheric O*.
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