

cal

con

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

> Conference on Characterization and Radiometric Calibration for Remote Sensing

A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor

Hao Zhang¹, Haiwei Li¹, Benyong Yang², Zhengchao Chen¹

- 1. Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS)
- 2. Hefei Institutes of Physical Science, CAS

24rd CALCON Technical Conference, August 24 to 27, 2015, Logan, Utah, USA

Outline

- 1. Background
- 2. Method
- 3. Experiment and Result
- 4. Discussion
- 5. Summary

1. Backgrounds

Many applications from UAV:

agriculture, forest, water, disaster monitoring, environment protection

The necessary of vicarious calibration for UAV's:

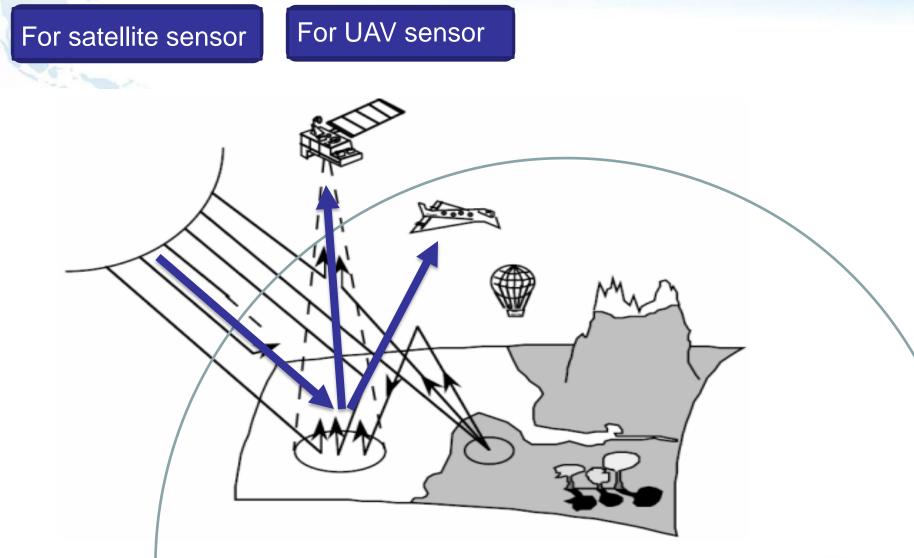
- > The conditions of vicarious calibration are real ones
- Vicarious calibration results are valuable supplements to the laboratory's
- UAV's sensor is vulnerable to vibrations and wind current

2.Method

Vicarious Calibration:

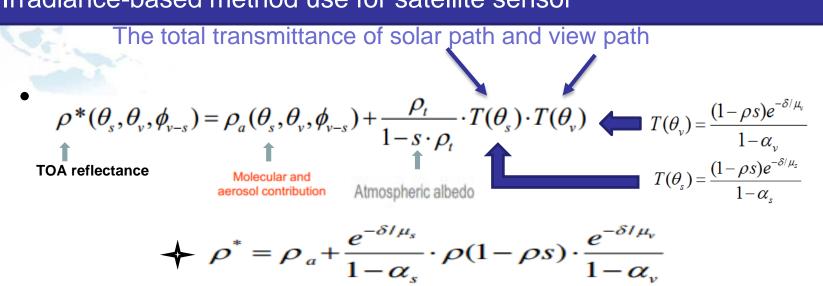
The reflectance-based method

- Ground reflectance, AOD, water vapor abundance
- Widely used in vicarious calibration
- mostly used to calibrate airborne sensors in the case of highly visibility (low aerosol burden), like AVIRIS, HYDICE, Hymap


The irradiance-based method

- + diffuse-to-global irradiance ratios
- Reduce the uncertainty caused by aerosol type assumption

2.Method


Improvement :

2. Method

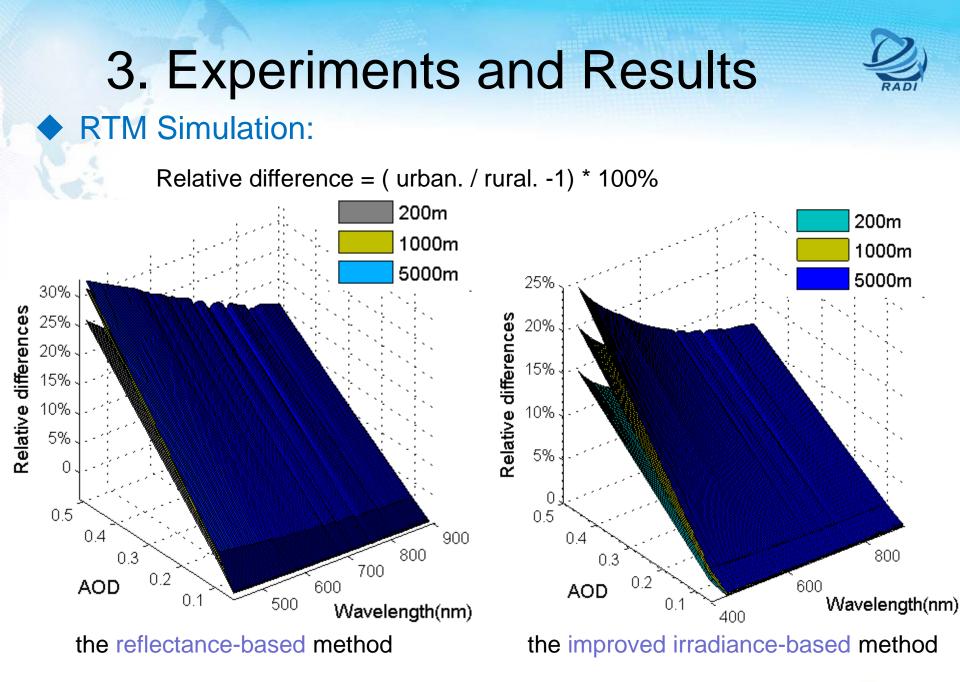
Improvement : Irradiance-based method use for satellite sensor

Irradiance-based method use for UAV sensor

$$\rho^* = \rho_a + \frac{\rho}{1 - \rho S} \cdot \frac{(1 - \rho_c S)e^{-\delta/\mu_s}}{1 - \alpha_s} \cdot T(\theta_v)$$

- Only the total transmittance in the solar direction was substituted,
- The total transmittance in the view path was not change.

RTM Simulation:


Apparent reflectance difference due to aerosol type assumptions

✓ $diff. = 1 - \frac{\rho^*(urban \ aerosol)}{\rho^*(rural \ aerosol)}$

- ✓ diff. changes with AOT & UAV's height
- Reflectance-based method
- ✓ Irradiance-based method

diffuse-to-global ratios were computed under the rural aerosol assumption

Para.	Value
Atmosphere model	MLS
CO ₂	360ppmv
H ₂ O	0.776 g/cm ²
Ozone column density	0.315atm-cm
Solar zenith	44.02°
Viewing zenith	0°
Relative azimuth	90°
AOT@550nm	0.05, 0.1, 0.5
Heights (km)	0.2, 1.0 and 5.0
Ground Refl.	0.6
	Atmosphere model CO ₂ H ₂ O Ozone column density Solar zenith Viewing zenith Relative azimuth AOT@550nm Heights (km)

RTM Simulation:

The average relative differences between two aerosol types for each case of all bands

+ ²				Improved method		↓(%)¢
- AOD - (0.55um)	5000m₽	1000m40	200m₽	5000m₽	1000m~	200m.º (
AOD 0.05₽	0.79₽	0. 68₽	0.57₽	0. 29₽	0.19₽	0.10
AOD 0.14	4. 06~	3. 480	2.93₽	1.57₽	1.030	0.560
AOD 0.5₽	28 . 78₽	26.09₽	21.720	16. 32 <i>₽</i>	12.92₽	8.940

The improved method has lower uncertainty

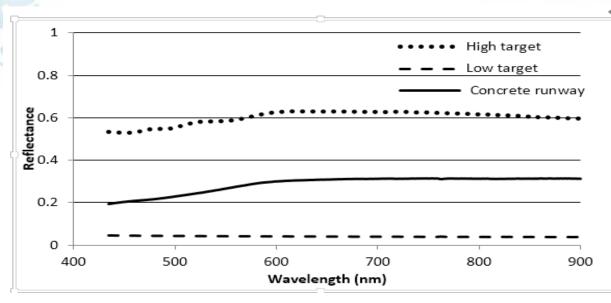
The advantage is more evident with height and AOD

Field Experiment I: fair weather

On the Sept 25th, 2013

 The civilian airport of Suizhong in the Chinese province of Liaoning. (40.23N, 120.21E)

RunwayLong: 200m Wide:12m



Headwall's Micro-Hyperspec				
Wavelength Range(nm)	380-1000nm			
Spectral Resolution (nm)	<10nm			
Spectral Bands	125			
The most spectral line bending	0.1%			
The biggest trapezoidal distortion	0.1%			
Focal Length	17.0mm			
Weight (without lens)	0.9kg			
Height	1300m			

Hyperspectral UAV(Integrated by Goldwn way Scientific, Inc. China,<u>www.goldway.com.cn</u>)

ASD

Tarp: reflectance of 60%

Tarp: reflectance of 5%

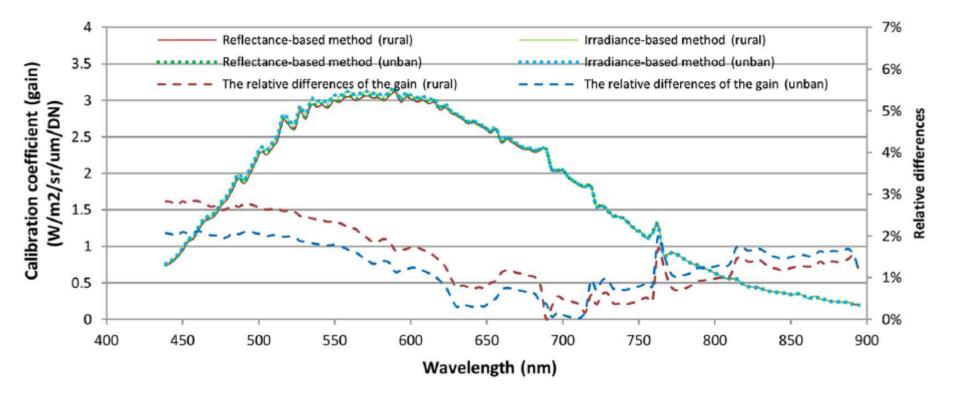
Cement runway www.radi.cas.cn

The measurement of atmospheric characteristics :

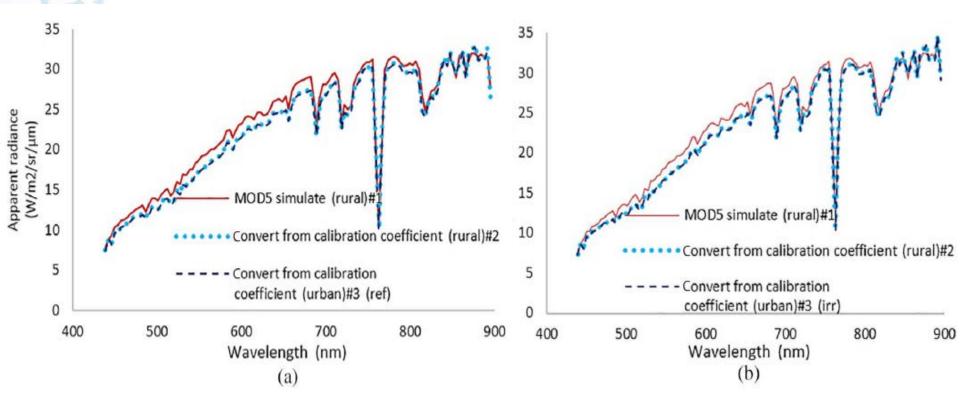
Diffuse-to-global irradiance ratios

AOT@550 nm	0.052
H2O(g/cm ²)	0.776
Aerosol Type	Rural
Atmospheric Model	MLS
Ozone density (cm-atm)	0.310

Image Pre-Processing:

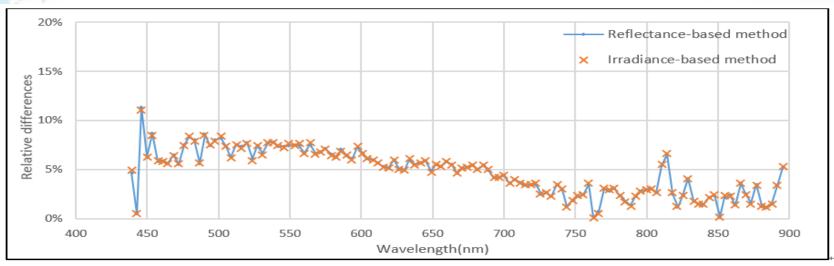

Raw image

Geo-rectification


Calibration_coefficients_:

The calibration coefficients (gain) for the reflectance-based and the irradiance-based methods and their relative difference

The radiances of the runway cement:



(a) Comparison of results from reflectance-based method

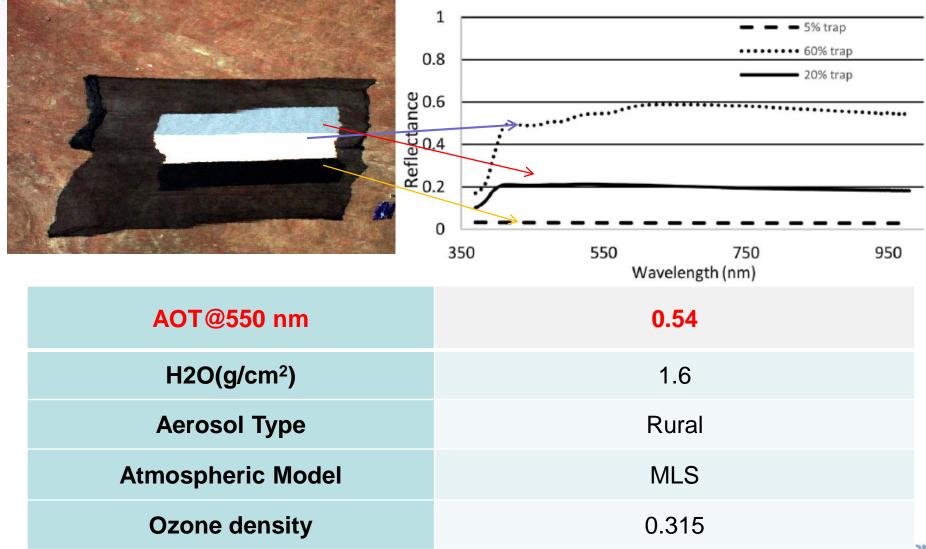
(b) Comparison of results from irradiance-based method

The different wavelength ranges:

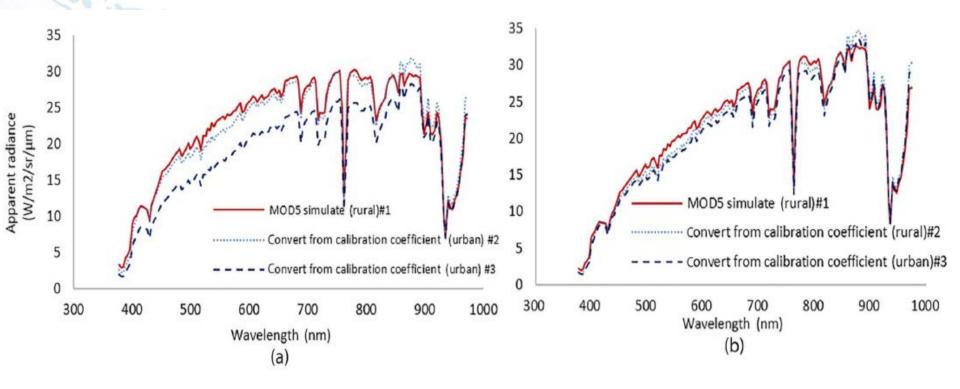
The relative differences for the reflectance-based and the irradiance-based method

The average relative differences (Imagery /MOD5 -1) wavelength ranges

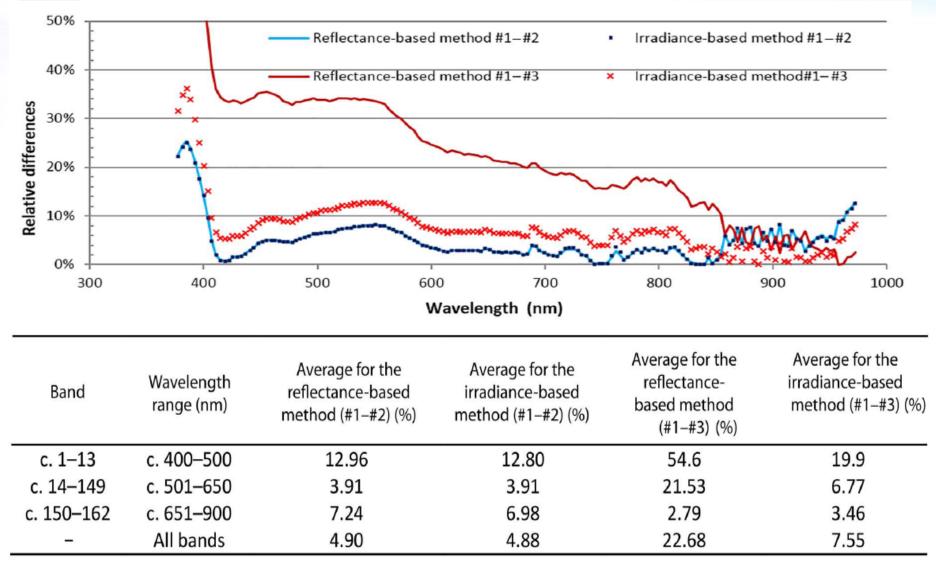
Band	Wavelength range (nm)	Average for the reflectance-based method (#1-#2) (%)	Average for the irradiance-based method (#1–#2) (%)	Average for the reflectance- based method (#1-#3) (%)	Average for the irradiance-based method (#1–#3) (%)
c. 1–7	c. 400–500	6.80	6.70	7.68	7.05
c. 18–58	c. 501–650	6.55	6.58	7.39	6.89
c. 60–125	c. 651–900	3.09	3.10	3.47	3.27
-	Total bands	4.73	4.73	5.34	4.97


Field Experiment II: unIdeal weather

- On June 28th, 2014
 - Aviation School of Baoding, Hebei, China (38.87N, 115.33E)
 - Headwall's Micro-Hyperspectral airborne sensor: 377-972nm (162bands)
 - Flight: 120m


In-situ measurements and images

vvvvv.iaui.cas.ch

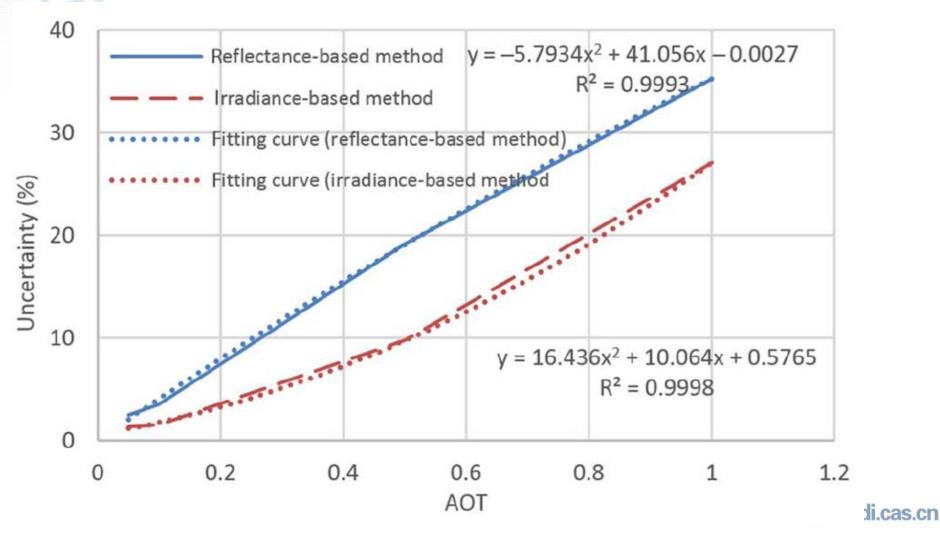

The radiances of the gray tarp (20%)

- (a) Comparison of results from reflectance-based method
- (b) Comparison of results from irradiance-based method

The relative differences for the reflectance-based and the irradiance-based method

4. Discussion

Uncertainty due to aerosol type assumption


The average relative differences for the different experiments

	Field experiment I (Suizhong)		Field experiment II (Baoding)	
	Rural and maritime	Rural and urban	Rural and maritime	Rural and urban
Reflectance -based method	0.4%	0.68%	15.75%	18.69%
Improved irradiance-based method	0.25%	0.23	3.49%	8.01%

4. Discussion

Uncertainty v.s. AOT

5. Conclusion

- We present an improved irradiance-based method which consider the different imaging paths between airborne RS and satellite RS.
- Two typical experiments with lower and higher aerosol burden were carried out and validated our new method.
- The improved irradiance-based method is more suitable for UAV sensor vicarious calibration and is more accuarate

Thanks!

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Add: No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China Tel: 86–10–82178008 Fax: 86–10–82178009 E-mail: office@radi.ac.cn Web: www.radi.cas.cn