A New NIST FT-IR Spectral Detector Comparator

Solomon I. Woods^a, Jorge Neira^b, James E. Proctor^b, Slava Podobedov^a, Simon G. Kaplan^a ^aNational Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, USA 20899; ^bJung Research and Development Corp., 3807 Porter St. NW #304, Washington, DC, USA 20016

Talk Outline

Overview of the FT-IR Spectral Detector Comparator
Details of the Comparator Components
 Modes of operation, types of measurements Spectral Comparator Spatial Scanning Chopper Measurements Electrical Substitution Measurements
Results of detector characterization and calibration
Future tests and and plans for design improvements

FT-IR Spectral Calibration Schematic

FT Spectrometer Characteristics

Resolution: 0.125 cm⁻¹ to 128 cm⁻¹; 32 cm⁻¹ (typical), 128 cm⁻¹ (centering)

Spectral Coverage: 1 μ m to 50 μ m

Sources: tungsten-halogen, globar, mercury vapor

Beamsplitters: quartz, KBr, CsI

Scan Speeds: 50 Hz to 20000 Hz (HeNe laser modulation frequency)

Acquisition Mode: A/D card collected at 200 kHz

Calibrated Pyroelectric Reference Detector

** Thanks to George Eppeldauer for providing the reference detector

Helium Cryostat for Cryogenic Detectors

Base Temperature: 4.2 K at cold plate ~ 5 K at sample

Hold Time: 26 hours

Mounting Area: 140 mm diameter

Detectors: BIB, BIB-trap, CNTR

Cryostat Window and Filter Transmittances

Stage and Actuator Specifications

Mode 1: Spectral Comparator

FTS: scanning Paraboloid: cycled (comparator), fixed ("stare")

Technology Administration, U.S. Department of Commerce

Mode 2: Chopped Measurements with FTS Source

FTS: fixed for use as DC source

Paraboloid: cycled (comparator), fixed (spatial uniformity scan, centering)

Mode 3 & Mode 4: Under Development

Mode 3: Chopper measurements with narrowband sources

Sources: LEDs and lasers from 3 µm to 8 µm Paraboloid: cycled (comparator), fixed (spatial uniformity scan, centering)

Mode 4: Electrical substitution measurements

DC Measurement: Shutter modulation Feedback = DC heating

AC Measurement: Chopper modulation Feedback = AC heating

Spectral Measurement: FTS modulation Feedback = heat pulse from D/A card to null A/D card signal

Detectors Tested: Carbon Nanotube Radiometer (CNTR)

Planar ACR with Vertically-Aligned Carbon NanoTubes (VACNT) for the absorber. The VACNT material has reflectivity less than 0.2 % out to 18 µm, and less than 1 % out to 50 µm.

Detectors Tested: BIB trapping detector (BIB-trap)

Trapping detector composed of two BIB (blocked impurity band) detectors, which exhibit significant responsivity from 2 μ m to 28 μ m.

Results 1: Detector Centering

FTS Mode y-Centering

Chopper Mode x-Centering

Center determined from midpoint of selected cursor positions.

Results 2a: Detector Spatial Uniformity

Cuts taken along x and y directions, showing extra plateau along y-scan.

Results 2b: Detector Spatial Uniformity

Results 3: Spectral Comparator

Spectral dependence of the quantum efficiency of a BIB-trap detector from calibration against the pyroelectric reference detector.

Results 4: High Resolution Scans

Spectral dependence of the response of a BIB detector taken with resolution of 0.5 cm⁻¹, 1 cm⁻¹ and 2 cm⁻¹. Shows etalon associated with interference effects from parallel planes of the detector.

Future Plans and Design Developments

- FT-IR detector comparator will be upgraded with narrowband sources (lasers and LEDs from 3 μm to 8 μm) as tie-points for spectral calibrations.
- Developing spectral electrical substitution technique for spectral calibrations against ACR-type detectors.
- Will develop cryostat system with ACR reference detector for the comparator.
- Analyze component uncertainties and develop uncertainty budget for FT-IR spectral comparator system; perform inter-comparisons with monochromator-based system
- Make cryogenic detector spectral calibrations for customers with spectral coverage initially from 1.6 μm to 24 μm.

