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ABSTRACT 
 
 

Enhancing the Proportions of Healthy Fatty Acids in Milk from Dairy Cows 

by 

Korie A.S. Nelson, Master of Science 

Utah State University, 2008 

Major Professor: Randy Wiedmeier 
Department: Animal, Dairy, and Veterinary Sciences 

 Twenty cows were used in a repeated measures, block design experiment for 9 wk 

to determine the effects of feeding partially ruminally inert calcium salts (Ca-salts) of fish 

oil (FO) and a general fatty acid (FA) supplement (EnerGII) at varying levels. The effects 

on cow health, milk components, composition of milk FA, and sensory evaluation of milk 

were evaluated. Cows in the 4 treatments were fed either a control diet of 57% forage and 

43% concentrate mix with EnerGII fat supplement at 1.65% of diet DM (CTL) or 

EnerGII in basal diet was partially replaced with (a) 0.21% partially ruminally inert 

calcium salts (Ca-salts) of 71% fish oil (Ca-FO71) given at 0.41% DM (FH41); (b) 

0.41% inert Ca-FO71 given at 0.83% DM (FH83); or (c) 0.83% inert Ca-FO 43% fish oil 

(Ca-FO43)  given at 0.83% DM (FL). Cow health was not negatively affected by 

treatment diets. Treatment only significantly affected dry matter intake (DMI) and net 

energy of lactation (NEL), with FH83 having the lowest DMI. Week of trial significantly 

affected all milk components except protein percent, which did not change. Dry matter 

intake, milk yield, fat yield, fat percent, and protein yield demonstrated a net decrease 

over time. Lactose, solids, and somatic cell count all shared a net increase over time. 
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Milk urea displayed no definitive trend over time. Content of conjugated linoleic acid 

(CLA) isomers C18:2 cis-9, trans-11 and trans-10, cis-12 combined over time was 0.54, 

0.68, 1.18, and 0.82 g/100 g FA for CTL, FH41, FH83, and FL, respectively. Vaccenic 

acid (VA) C18:1 trans-11 content over time was 1.04, 1.51, 2.28, and 1.68 g/100 g FA; and 

total omega-3 FA content over time was 0.52, 0.76, 0.82, and 0.80 g/100 g FA for CTL, 

FH41, FH83, and FL, respectively. Eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA) levels increased by as much as 6- and 2.7-fold, respectively, over CTL for 

the duration of the experiment. Although levels of EPA, DHA, VA, and CLA increased 

for treatments FH41, FH83, and FL over CTL, a trained sensory panel detected no 

difference in milk flavor between treatments with little or no intensity of off-flavors. 

Results suggest that feeding FO and EnerGII at varying levels enhanced CLA, VA, EPA, 

DHA, and total omega-3 FA in milk over the length of the experiment without negatively 

affecting cow health, milk composition, or flavor of milk.  

                   (84 pages) 
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INTRODUCTION 

  

It has been demonstrated that omega-3 fatty acids (FA), specifically 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can significantly 

decrease the risks of cardiovascular disease, hypertension, certain autoimmune and 

inflammatory diseases, behavior problems, and cancer (Simopoulos, 1991; Ruxton, 

2004). They are also essential to the development of the brain and retinas, and to normal 

cell function and growth (Simopoulos, 1991). The possible health benefits of conjugated 

linoleic acid (CLA) are anticarcinogenicity, antiatherogenicity, growth promotion, 

antiobesity, and immunomodulation, with the anticarcinogenic properties among the most 

desirable and pertinent (Chouinard et al., 1999; Baer et al., 2001; Hughes and Dhiman, 

2002).  

While the aforementioned FA carry the potential to be beneficial to humans, the 

difficulty lies in determining the vehicle that will provide all of these FA. Dairy products, 

along with ruminant meat, are the greatest source of CLA in human diets (Hughes and 

Dhiman, 2002; Dhiman et al., 2005). Simple diet manipulation in cows can increase CLA 

and subsequently the benefits of dairy products (Chouinard et al., 2001). While fish oil 

(FO) has been recognized as the best supplemental source for omega-3 FA, it is 

inconducive to fortification in respect to sensory evaluations, especially when added to 

dairy products with low fat content, such as milk (Simopoulos, 1991; Kolanowski and 

Wieβbrodt, 2007). Fortification of dairy products with FO can result in a host of 

problems including the following: it is hard to get levels high enough to be effective 
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without causing fishy or other off-flavors, high susceptibility to oxidation of FO can 

cause further formation of off-flavors, and masking of off-flavors with desirable flavoring 

(e.g. strawberry or garlic) creates potential health risks (Kolanowski and Wieβbrodt, 

2007). Since fortification of dairy products with FO appears to be an undesirable mode of 

consuming combined beneficial doses of omega-3 FA and CLA, eating dairy products 

from animals fed a diet including FO and linoleic acid-rich feed seems to be the best 

alternative. This provides the consumer with a more healthful and acceptable product 

while aiding in meeting the suggested beneficial levels of intake for omega-3 FA and 

CLA without significantly altering the consumer’s diet. 

The objective of this experiment was to enhance the CLA and omega-3 FA 

content of milk through diet manipulation, while maintaining milk fat content, feed 

intake, overall health of the cow, the flavor quality of the milk, and observing the effect 

of time on the aforementioned characteristics.  
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LITERATURE REVIEW 

 

 
Introduction 

 

The demand for, and interest in functional, or nutraceutical, foods is increasing in 

the U.S., with beverages on the forefront (Campbell et al., 2003). Although diet 

manipulation for product improvement is commonplace in the food-animal world, it is 

becoming more so in the human realm. With new research exposing the potential health 

benefits of an array of foodstuffs each day, people are seeking functional foods in lieu of, 

or before turning to, conventional methods such as medicine to treat or prevent certain 

diseases. The vast benefits of omega-3 FA have taken a stronghold in the consumer 

market. Food sources consisting of adequate omega-3 FA levels, however, are extremely 

limited to only a few food items, the majority of which are marine-based, such as algae 

and fish. Although green leafy plants (Simopoulos, 1991) and flaxseed do provide 

omega-3 FA, they provide only α-linolenic acid (ALA) the precursor to EPA and DHA. 

The problem is that, although marine-based foods contain the highly desirable omega-3 

FA, the foods themselves are minimally consumed due to undesirable flavor. Thus, 

researchers are continuing to explore various ways for consumers to increase their intake 

of omega-3 FA without significantly changing their diets, which ultimately requires 

manipulating existing foodstuffs. Milk is already widely consumed and a natural source 

of CLA thus, it is an obvious choice for further nutritional improvement by increasing 

levels of CLA and adding the desired omega-3 FA via FO. In general, omega-3 FA and 

FO do not lend themselves to fortification. Kolanowski and Wieβbrodt (2007) found that 

fortification at beneficial levels creates the same problem as the natural sources of 
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omega-3 FA themselves – a fishy and undesirable flavor. Thus, manipulation of food 

animal diets is the most feasible way of achieving the aforementioned improvements. 

Dhiman et al. (2005) showed that while other sources of FA, such as extruded 

soybeans, sunflower oil, and linseed, provided more CLA than FO, only FO could 

provide both CLA and omega-3 FA at levels that could be potentially beneficial. This 

makes FO highly desirable as a fat supplement. It can, however, cause milk fat 

depression and off-flavors in byproducts. Ramaswamy et al. (2001), however, found that 

a combination of high CLA feed and FO yielded significant amounts of CLA and omega-

3 FA, as well as lessened the milk fat depression often seen with FO alone. 

Conjugated linoleic acid also has marked health benefits and is highly desired by 

the consumer. Although CLA, specifically, is less well known to the consumer than 

omega-3 FA, consumers seek out increased CLA by looking for products under the guise 

of pasture-fed animals and their byproducts. Achieving increased consumer consumption 

of CLA is much easier than for omega-3 because it already occurs in red meat and dairy 

products (Dhiman et al., 2005). The goal then, is to increase levels of CLA without 

changing consumer acceptability of the product or jeopardizing the health of the animal. 

Greatly increasing the levels of omega-3 FA and CLA in dairy products, 

specifically milk, will create a more healthful product, increase consumption of these FA, 

and potentially stimulate the dairy industry. Diet manipulation of food animals is a means 

to achieve increased levels of both CLA and omega-3 FA. The poultry industry has 

already marketed eggs from chickens fed sources of omega-3 FA. Milk, however, can 

offer CLA in addition to omega-3 FA and may increase consumption of dairy products. 
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Current research is now looking at how to achieve the desirable and beneficial levels of 

omega-3 and CLA FA without negatively affecting the flavor or content of the product. 

 
Fish Oil 

Compound Background. Omega-3 FA (as well as omega-6 FA) are essential FA 

since they cannot be synthesized by mammals in adequate amounts (Simopoulos, 1991). 

There are 3 isomers that make up the omega-3 FA: ALA (α-C18:3), EPA (C20:5), and DHA 

(C22:6) (Ramaswamy et al., 2001; see Figure 1). Although EPA and DHA are synthesized  
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Figure 1. Structures of parent omega fatty acids (FA). Adapted from Simopoulos (1991). 
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from ALA (Petit et al., 2002), FO allows this to be bypassed by providing significant 

amounts of EPA and DHA. This is advantageous since the synthesis of DHA from EPA 

in humans is minimal due to poorly understood and inefficient peroxisomal oxidation 

(Attar-Bashi et al., 2007). α-linolenic acid is naturally found in the chloroplasts of green 

leafy vegetables (Simopoulos, 1991). Although humans can synthesize EPA from ALA 

and DHA from EPA, albeit poorly, the omega-6 FA compete with the omega-3 FA for 

the desaturase enzymes (Simopoulos, 1991; see Figure 2). People with medical 

conditions such as diabetes and hypertension, as well as premature infants lack complete 

synthesis of EPA and DHA from ALA (Simopoulos, 1991). Attar-Bashi et al. (2007) 

have shown that although humans can synthesize DHA from ALA via peroxisomal 

oxidation, this process is inadequate and fails to yield significant levels of DHA. Certain 

medical conditions, competition from the omega-6 FA for common enzymes, and failure 

of peroxisomal oxidation result in the need for dietary intake of EPA and DHA. 

Benefits for Humans. The health benefits of omega-3 FA for humans are 

widespread and significant; most notable are its potential to prevent cardiovascular 

disease, preterm labor, and cancer, and its essentiality for proper growth and function in 

infants (Simopoulos, 1991; Ruxton, 2004; Oh, 2005). Ruxton (2004) noted that a 

decreased level of omega-3 FA consumption can cause mental illnesses such as 

depression, severity of symptoms linked with depression, dementia, and increased risk of  

Alzheimer’s disease. Oh (2005) noted that the most compelling reason for the use of FO 

in primary care is its cardiovascular benefits. Oh (2005) reviewed several cardiovascular  
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   Omega-6 FA        Omega-3 FA 

              ↓                           ↓ 

Linoleate Series     Linolenate Series 
    

C18:2 ω6  linoleic acid                          C18:3 ω3  α-linolenic acid (ALA) 

       ↓          ∆6 -desaturase                  ↓        ∆6 -desaturase 

C18:3 ω6  γ-linoleic acid               C18:4 ω3  

     ↓                  ↓  

C20:3 ω6  dihomo-γ-linoleic acid              C20:4 ω3 

     ↓        ∆5-desaturase               ↓        ∆5-desaturase 

   C20:4 ω6  arachidonic acid              C20:5 ω3 eicosapentaenoic acid (EPA) 

          ↓                       ↓ 

   C22:4 ω6                             C22:5 ω3 docosapentaenoic acid 

        ↓        ∆4-desaturase*                    ↓        ∆4-desaturase 

   C22:5 ω6 docosapentaenoic acid             C22:6 ω3 docosahexaenoic acid (DHA)     

                      

* The presence of ∆4-desaturase is unconfirmed in humans. 

 Figure 2. Elongation of omega-3 and omega-6 fatty acids (FA) from parent FA. Adapted 
from Simopoulos (1991).  
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studies and found the overall consensus to be that FO greatest benefit was the reduction 

of cardiovascular deaths, by as much as 30% in only 3 months. 

Dosing. While the benefits of consuming omega-3 FA are clear, the dosing to 

achieve these benefits is not. Wistuba et al. (2005) stated that the estimated intake of 

DHA and EPA by humans in general is only 0.1 to 0.2 g/d. The FDA has not officially 

stated a minimum daily value or whether it should be based off of EPA and DHA 

specifically or of a product, such as FO; it has stated, however, that no more than 3 g/d of 

FO should be consumed via diet or supplement (Kolanowski and Wieβbrodt, 2007). 

Despite the remarkable safety and benefits of omega-3 FA, an upper limit has been set 

due to the potential of increased bleeding time and low-density lipoprotein (LDL), as 

well as worsening of glycemic profile in diabetics (Oh, 2005). Research has suggested 

various levels as being beneficial. Ruxton (2004) stated that 1 to 4 fish meals a week (450 

mg to 900 mg EPA and DHA, or 0.45 g to 0.9 g) is adequate, whereas Oh (2005) found 

that a minimum of 1 fish meal a week was sufficient enough to reduce sudden cardiac 

death by 52%. The American Heart Association suggests 1 g of FO a day for patients 

with coronary artery disease, while one study demonstrated that 2 to 4 g/day can 

significantly reduce hypertriglyceridemia (Oh, 2005). Lastly, Wistuba et al. (2005) 

reported that 0.15 to 0.65 g/d is required to achieve desired benefits. 

Whatever the recommended dose, Western-style diets in general contain an 

average of 0.15 g/d of omega-3 FA, a level that is below the majority of the suggested 

doses that would be beneficial (Kolanowski and Weiβbrodt, 2007). In addition, intake of 

omega-3 FA has been decreasing while omega-6 intake has been increasing, creating an 
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unhealthy ratio of omega-6 to omega-3 FA of 10:1, in general, and 17:1 in the U.S. 

(Ruxton, 2004; Kolanowski and Weiβbrodt, 2007). Because omega-6 FA do not possess 

the same health benefits as omega-3 FA, as well as compete for the same enzymes, it has 

been recommended that this ratio should not exceed 4:1 (Ruxton, 2004; Oh, 2005; 

Kolanowski and Weiβbrodt, 2007). Simply increasing daily fish intake proves to be more 

difficult than thought for several reasons. First, the amount of fish needed to reach the 

recommended levels is well above that normally consumed and would require large 

dietary changes, which are difficult (Kolanowski et al., 1999). Additionally, levels of 

EPA and DHA vary greatly among fish and methods of preparation. Fresh salmon 

contains 1.2 g DHA and 0.5 g EPA per serving, while canned salmon has 0.06 g DHA 

and 0.09 g EPA per serving (average serving size of 80-120 g; Ruxton, 2004). Lastly, 

certain fish, such as mackerel, can contain significant levels of mercury, thereby creating 

a potential health risk outweighing the benefits of the omega-3 FA (Oh, 2005). 

Effects on Cows. Although the health benefits of omega-3 FA for humans are 

clear, the possible negative or positive effects on food animals whose byproducts serve as 

vehicles for these FA are not. Ideally, animals would not be negatively affected, the 

efficiency of transfer of the omega-3 FA would be high, and the byproduct itself would 

also not be negatively affected. Wistuba et al. (2005) noted that when supplementing FO 

to cattle that are on a corn-based diet, their average daily feed intake and average daily 

gain decreased, but had no effect on a wheat-midd based diet. Additionally, Giesy et al. 

(2002) noted that the milk fat depression often caused by FO supplementation can 
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actually be beneficial in that it can be used as a management tool to reduce energy 

requirements for lactating cows due to the high costs associated with milk fat secretion. 

One potential benefit of omega-3 FA is their effect on the immune system. 

Although other studies in humans and rats have shown a decrease in immune activity via 

interleukin-1 and tumor necrosis factor-α production (both are types of cytokines 

activated in immune response and are made by leukocytes, and macrophages and T-cells, 

respectively), it was found that immune activity was actually stimulated in cattle when 

presented with concanavalin A, phytohemmagglutinin, and pokeweed mitogen (Wistuba 

et al., 2005). Conversely, Petit et al. (2002) found that feeding FO did not decrease DMI. 

They also found that supplementing FO decreased prostaglandins (specifically PGF2α) 

and increased corpora lutea thereby improving gestation rates in cows. 

Calcium Salts. Calcium salts are a form of protection for supplemental FA. 

Lacasse et al. (2002) and Jenkins and Palmquist (1984) stated that unprotected FO causes 

decreased DMI, fiber digestibility, milk fat content, and animal performance. Fatty acids 

tend to inhibit rumen microbes and, therefore, decrease fiber digestion causing milk fat 

depression by lowering the ratio of acetic to propionic acids (Jenkins and Palmquist, 

1984). The addition of minerals to supplemented fats counteract the decreased fiber 

digestibility by creating a salt formed from the FA and divalent cations of the minerals 

(Jenkins and Palmquist, 1984). This process occurs naturally when fats and minerals are 

fed separately, but is unreliable due to type and amount of minerals, type of fat, rumen 

pH, and turnover rate of solids (Jenkins and Palmquist, 1984). Thus, preformed calcium 

salts were created and designed to completely bypass the rumen and completely 
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dissociate post-ruminally (Jenkins and Palmquist, 1984). Castañeda-Gutiérrez et al. 

(2007) emphasize, however, that calcium salts render unsaturated FA inert only to their 

effects on the rumen microbial population, not rumen biohydrogenation. Jenkins and 

Palmquist (1984) noted that the processes required for proper utilization of calcium salts 

are as follows: dissociation in abomasum acid, absorption of calcium in the duodenum, 

and absorption of FA in the jejunum and ileum. In addition, if calcium is improperly 

absorbed or in excess, insoluble salts will reform in the large intestine and then be 

excreted via feces (Jenkins and Palmquist, 1984). 

Protected FO, while still causing milk fat depression, did not cause decreased 

DMI or milk production as noted by Lacasse et al. (2002) with unprotected FO. 

Interestingly, regardless of protection, protein content was variable. Although Lacasse et 

al. (2002) found protein to decrease when compared to a control while supplementing 

with either protected or unprotected FO, both Baer et al. (2001) and Ramaswamy et al. 

(2001) found that it was unaffected when using a protected source. Recent research by 

Castañeda-Gutiérrez et al. (2007) found that the protection calcium salts provided was 

correlated to rumen pH and FA pKd. In addition, as unsaturation increased, ruminal 

biohydrogenation also increased, while the difference between protected and unprotected 

FO decreased. While calcium salts do not protect against ruminal biohydrogenation, 

specifically of EPA and DHA, they still prevent decreased DMI and milk yield that is 

seen when using unprotected unsaturated FA supplements (Castañeda-Gutiérrez et al., 

2007). Thus, protected supplemental FA are currently used, despite incomplete 
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protection, due to their ability to lessen or negate some of the effects that unprotected 

sources create. 

 
Conjugated Linoleic Acid 

 Compound Background.  Conjugated linoleic acid has 17 identified isomers 

(Dhiman et al., 2005), but the cis-9, trans-11 isomer is not only the most prevalent, 

making up 80% of the isomers, but also the most biologically active, with its potential to 

be anticarcinogenic the most notable of these activities (Donovan et al., 2000). While not 

as substantial in quantity, the isomer trans-10, cis-12 of CLA has also shown anticancer 

effects in animals, and is thought to be a cause for milk fat depression (Dhiman et al., 

2005; see Figure 3). Conjugated linoleic acid is naturally synthesized via 2 processes. 

Biohydrogenation in the rumen creates CLA as an intermediate from linoleic acid. When 

this process is incomplete, CLA is left as a byproduct. The majority of CLA, however, is 

made endogenously in adipose tissues and the mammary gland from trans-11 C18:1, or 

vaccenic acid (VA) (Donovan et al., 2000; Abu-Ghazaleh et al., 2002). These 2 syntheses 

are illustrated in Figure 4. This latter synthesis involves the ∆9-desaturase enzyme (Lynch  

et al., 2005). Interestingly, VA is also an intermediate in biohydrogenation. It is thought 

that FO can stimulate CLA production from other components in the diet, despite FO 

itself having very little linoleic or linolenic acids itself (Abu-Ghazaleh et al., 2002).  

 Although CLA is stable under normal cooking and storage conditions, several 

factors influence the amount of CLA in the consumer product, including animal age, 
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 Figure 3. Abridged structures of conjugated linoleic acid (CLA) and its isomers. (A) 
linoleic acid, C18:2 (B) the most prevalent CLA isomer, C18:2 cis-9, trans-11 (C) the 
second most potentially healthful isomer, C18:2 trans-10, cis-12. Adapted from Dhiman et 
al. (2005). 
 
 

 

 
 
 

 Figure 4. Two forms of synthesis of conjugated linoleic acid (CLA). VA = vaccenic 
acid; I = isomerization; H = hydrogenation. Adapted from Dhiman et al. (2005). 
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animal breed, animal diet, and management of feed supplements that affect the diet 

(Dhiman et al., 2005). Dhiman et al. (2005) note that the following yielded the most CLA 

in their group: pasture versus other diets, sunflower oil (5.3%) versus other plant seed 

oils, full fat extruded soybean (1.65 kg) versus other intact oil seeds, FO (1 to 3%) versus 

other marine sources, combination of 5.3% soybean and 1% FO versus other 

combinations, summer versus other seasons, higher elevations (1275-2120 m) versus 

lower, restricted feeding versus free, Montebeliarde cows (on pasture) versus other dairy 

breeds on TMR or pasture, older cows (4 lactations or more) versus younger, and a 

mixture of synthetic CLA supplements given post-ruminally versus other types and 

combinations given post-ruminally or fed. In summary, pasture feeding at high elevations 

in the summer is the best type of diet, although immature forage harvested as silage also 

yields high CLA. Holstein cows, particularly those that are older, yield the second most 

CLA among breeds (Dhiman et al., 2005). Lastly, despite the availability of synthetic 

CLA supplements, those naturally occurring are better, specifically those naturally 

occurring from FO (Dhiman et al., 2005; Jones et al., 2005). 

Benefits for Humans. Conjugated linoleic acid has demonstrated clear health 

benefits including prevention of atherosclerosis and thrombosis (Dhiman et al., 2005). 

While these benefits are significant, other positive effects, such as decrease in body fat 

while increasing lean body mass, enhancement of immune function, and antidiabetic 

properties, have also been noted (Hughes and Dhiman, 2002; Dhiman et al., 2005; Jones 

et al., 2005). Among the most significant and promising is the potential for CLA to 

prevent or slow cancer. Hughes and Dhiman (2002) reported that these effects occur by 
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feeding CLA at certain levels and durations which inhibit cell growth pre-cancer, 

suppress tumors pre-cancer, suppress cancerous tumors, and block both local growth and 

systemic spread of human breast cancer in mice. It should be noted, however, that many 

of these benefits have been extrapolated from animal studies and have yet to be 

researched in humans. Human studies would account for the different (higher) fat content 

of our diets and would potentially change the significance of the noted benefits (Jones et 

al., 2005).  

Dosing. The main source of CLA in the consumer’s diet is from ruminant meat 

and dairy products (Dhiman et al., 2005; Jones et al., 2005). Hughes and Dhiman (2002) 

stated that dairy products naturally have CLA levels ranging from 2.9 to 8.9 mg/g of fat, 

with 73 to 93% of that the cis-9, trans-11 isomer. Similarly, Khanal et al. (2005) reported 

levels of CLA as 0.30 to 0.55 g/100 g FA in whole milk. In general, Chilliard et al. 

(2001) noted that milk from ruminants is only about 1 to 5% linoleic acid when looking 

at all FA. Despite these natural levels of CLA in dairy products, more is needed to attain 

health benefits from CLA. To achieve significant effects, Jones et al. (2005) state that one 

would need >1.2 g/d of CLA to see decreased lymphocyte activation and lowered LDL-

to-HDL and total cholesterol-to-HDL ratios. Additionally, only 0.8 g/d of CLA would be 

needed to inhibit tumor growth (Jones et al., 2005). Dhiman et al. (2005) reported that 1 

serving of whole milk (227 mL) and 1 serving of cheese (30 g) a day can provide up to 

90 mg of CLA. This would only represent, however, 25% of the lowest effective dose of 

CLA, based on a 600 g diet (Dhiman et al., 2005). Campbell et al. (2003) suggest that 3 

g/d of CLA would yield beneficial results. Animal studies have shown that increasing 
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levels in dairy products would achieve desired health benefits with little or no risk to 

humans (Hughes and Dhiman, 2005). 

Effects on Cows. Conjugated linoleic acid is clearly favorable for human health, 

but the effects of providing feeds high in CLA to cows must be considered. Abu-

Ghazaleh et al. (2002) reported that somatic cell counts (SCC) were similar among all 

treatments where fish meal, extruded soybeans, or a combination thereof were fed. It was 

also found that treatment did not affect DMI; in fact, those cows fed a source of CLA 

(extruded soybean) alone or in combination with FO actually had higher milk yields 

(Abu-Ghazaleh et al., 2002). Even though Dhiman et al. (2005) found that cows grazed 

on pasture yielded more CLA in their milk, Khanal et al. (2005) found that those cows on 

pasture actually had lowered DMI and, therefore, decreased milk yields. In contrast, both 

Abu-Ghazaleh et al. (2002) and Whitlock et al. (2006) found that feeding a source of 

CLA did not change the DMI among treatments. Hughes and Dhiman (2005) noted that 

feeding CLA, even at increased levels, has little or no negative effects on the cow herself. 

∆
9
-desaturase Enzyme. Conjugated linoleic acid can be synthesized in the 

mammary gland or adipose tissue from VA via the ∆9-desaturase enzyme (see Figure 4). 

This enzyme is part of a multienzyme complex that is made of reduced nicotinamide 

adenine dinucleotide (NADPH)-cytochrome b5 reductase, cytochrome b5, acyl-coenzyme 

A (CoA) synthase, and ∆9-desaturase enzyme on the terminus (Hughes and Dhiman,  

2005). Although many saturated and unsaturated acyl-CoA units can serve as a substrate 

to ∆9-desaturase, stearoyl-CoA and palmitoyl-CoA are the main substrates (Hughes and  
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Dhiman, 2005). Figure 5 shows the general reaction between a FA and a desaturase 

enzyme. 

There are also differences among species and tissues in regards to ∆9-desaturase 

activity and level. Hughes and Dhiman (2005) stated that mRNA levels and activity are  

 

 

 

 

 

 

 Figure 5. A representative reaction of a fatty acid (FA) and a desaturase enzyme. 
Adapted from Fox et al. (2004). HR = hydrogen and main substrate. 
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highest in the liver for rodents, while the same is true for adipose tissue in growing cattle 

and sheep. Diet, hormone balance, physiological state, and other inhibiting and activating 

factors also affect the activity of ∆9-desaturase and mRNA amounts in either a negative 

or positive manner (Hughes and Dhiman, 2005). 

 
Fortification 

Achievement of nutraceutical, or functional foods, is typically sought through 

fortification initially due to ease and speed. Flavor, stability, composition, and cost of the 

product must be considered. Campbell et al. (2003) confirmed the demand for these foods 

in the consumer market with a survey that revealed that taste (78%) and nutrition (70%) 

are the main reasons for consumption and purchase of milk. Adding 2% CLA to milk 

would increase the cost by $0.20 to $0.25 per 8 oz. serving, but certain consumers, such 

as women, those with a family history of cancer, and those over the age of 25, would be 

willing to pay more (Campbell et al., 2003). Acceptability, however, of products fortified 

with CLA and omega-3 FA is low (Campbell et al., 2003; Kolanowski and Weiβbrodt, 

2007). Fish oil tends to yield a fishy flavor and is susceptible to oxidation, causing more 

off-flavor if oxidation occurs. A study by Campbell et al. (2003) found that, although 

most consumers bought 2% milk, the milk which contained 1 or 2 % CLA in place of 

normal milk fats contained low intensities of “grassy/vegetable oil” off-flavors and 

lowered consumer acceptability and perceived freshness. Campbell et al. (2003) also 

found that CLA changed the color of milk slightly when fortified, negatively affecting the 

perceived taste. Although flavoring can often mask slight off-flavors and colors, 

Campbell et al. (2003) found that chocolate flavoring helped acceptability scores for 
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lower levels of fortified CLA (1%), but had little impact on the 2% CLA milk. The most 

frequently purchased chocolate milk was 2%, thus negating the benefits of flavoring 

(Campbell et al., 2003). An additional problem with flavored milk is that although it is 

liked, it is bought and consumed less frequently than regular milk (Campbell et al., 2003). 

Lynch et al. (2005) stated that, despite all the benefits of fortification with CLA, it is 

expensive and may not contain the same isomers or isomer ratios that are found in milk 

when CLA is naturally obtained through diet. 

Fortification of products with FO has even more problems than fortification with 

CLA. Kolanowski and Weiβbrodt (2007) stated that the natural off-flavor of FO and its 

susceptibility to oxidation, which enhances the off-flavor if it occurs, greatly limits its use 

in fortification. In a study by Kolanowski and Weiβbrodt (2007), several dairy products 

were fortified with FO and then subjected to sensory analysis. Solid products and those 

high in fat, like butter and cheese, were able to be fortified without adverse sensory 

evaluations, but the level of FO in these products was limited to achieve acceptability 

(Kolanowski et al., 1999; Kolanowski and Weiβbrodt, 2007). Although flavoring can 

mask off-flavors (Kolanowski et al., 1999; Campbell et al., 2003; Kolanowski and 

Weiβbrodt, 2007), Kolanowski and Weiβbrodt (2007) found that masking off-flavors 

caused by oxidation could jeopardize the safety of foods fortified with FO. Antioxidants 

can be added to lessen the effects of oxidation in foods fortified with FO and CLA, but 

this is not always effective (Campbell et al., 2003) and is restricted by food law in many 

countries, including the U.S., as to the types of antioxidants used in what products 

(Kolanowski et al., 1999; Jacobsen et al., 2008). Limited levels of beneficial FA, 
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increased risk of oxidation, lowered acceptability, and higher costs clearly eliminate 

fortification of CLA and omega-3 FA in milk as a viable option.  

Interestingly, only minimal research exists looking at the effects of supplemented 

CLA and FO on dairy cows and their byproducts over an extended period of time. The 

present study attempted to enhance the CLA and omega-3 FA content of milk through 

diet manipulation while maintaining milk fat content, feed intake, overall health of the 

cow, and flavor quality of the milk. The hypothesis for this study was that desired FA 

contents would be enhanced, milk fat content would be maintained or only slightly 

decreased, and feed intake, cow health, and the flavor of the milk would be maintained, if 

not improved, over time. 
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MATERIALS AND METHODS 
 
 
Experimental Design and Treatments 

Twenty multiparous Holstein cows averaging 156 + 45 DIM were selected from 

the general herd at Utah State University’s Caine Dairy. Cows were blocked into 5 

different groups according to average milk yield 10 d prior to the start of the experiment. 

Cows had an average BW of 750.5 + 58.6 kg at the start of the experiment. Cows within 

each group were randomly assigned to 1 of 4 treatments. Experimental duration was 9 

wk, including a 3-wk diet adaptation at the beginning of the experiment. The experiment 

ran from late May until the end of July, 2007. Cows were fed non-experimental TMR in a 

tie-stall barn 1 wk prior to start of the experiment for adjustment to the barn. 

Measurements were made during the last 6 wk of the experiment. Cows in the 4 

treatments were fed either a control diet of 57% forage and 43% concentrate mix with 

EnerGII fat supplement at 1.65% of diet DM (CTL) or EnerGII in basal diet was partially 

replaced with (a) 0.21% partially ruminally inert calcium salts (Ca-salts) of 71% fish oil 

(Ca-FO71) given at 0.41% DM (FH41); (b) 0.41% inert Ca-FO71 given at 0.83% DM 

(FH83); or (c) 0.83% inert Ca-FO 43% fish oil (Ca-FO43)  given at 0.83% DM (FL).  

Virtus Nutrition Inc. (Corcoran, CA) supplied all FA supplements. Diets were formulated 

to meet the nutrient requirements of cows producing 48 kg of 3.5% FCM/d according to 

NRC (2001) recommendations and fed as TMR. Composition of diets for each treatment 

are given in Table 1. Fresh water was available at all times. Cows were fed twice daily 
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Table 1. Ingredient and chemical composition of diets 
                    Treatment1 

Composition CTL FH41 FH83 FL 

              ------------- g/100 g of DM ----------- 

Ingredient    

 Alfalfa hay 25.72 25.72 25.72 25.72 

Corn silage 31.08 31.08 31.08 31.08 

Steam rolled corn 13.38 13.38 13.38 13.38 

Almond hulls 1.60 1.60 1.60 1.60 

Corn dried distillers grain 1.83 1.83 1.83 1.83 

Corn, hominy 3.65 3.65 3.65 3.65 

Canola meal Mech. Extr. 1.37 1.37 1.37 1.37 

Whole-linted cottonseed 5.28 5.28 5.28 5.28 

Soybean meal expeller 1.10 1.10 1.10 1.10 

 Blood meal, ring dried 0.73 0.73 0.73 0.73 

Ca-salts of palm oil (EnerGII) 1.65 1.24 0.82 0.82  

 Ca-salts of fish oil - 71% 0.00 0.41 0.83 0.00 

   Ca-salts of fish oil - 43%        0.00        0.00              0.00   0.83 

 Molasses, sugar beet 2.14 2.14 2.14 2.14 

Minerals & vitamin mix 1.39 1.39 1.39 1.39 

 

Chemical, g/100 g of DM 

 NEL, Mcal/kg of DM 1.30 1.30 1.30 1.30 

   CP 17.70 17.70 17.70 17.70 

Total fatty acids 5.31 5.31 5.31 5.31 

NDF 29.60 29.60 29.60 29.60 

ADF 18.70 18.70 18.70 18.70 
1Cows in the 4 treatments were fed either a control diet of 57% forage and 43% concentrate mix with EnerGII fat 
supplement at 1.65% of diet DM (CTL) or EnerGII in basal diet was partially replaced with (a) 0.21% partially 
ruminally inert calcium salts (Ca-salts) of 71% fish oil (Ca-FO71) given at 0.41% DM (FH41); (b) 0.41% inert Ca-
FO71 given at 0.83% DM (FH83); or (c) 0.83% inert Ca-FO 43% fish oil (Ca-FO43)  given at 0.83% DM (FL). 
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 (0430 h and 1530 h) ad libitum with amounts fed and orts recorded daily. Orts were 

targeted to 5 to 10% of daily intake as-fed. Supplements were weighed according to each 

treatment for each feeding 

and added to TMR, then promptly fed. Animal care and procedures were approved and 

conducted under established standards of the Utah State University Institutional Animal 

Care and Use Committee.  

Daily TMR samples were frozen at -20°C for subsequent analysis. Orts from each 

cow (1 to 1 ½ cups each) were composited by treatment to create a representative sample 

for that treatment each day. These samples were also frozen at -20°C for subsequent 

analysis. Daily samples of both TMR and orts were then composited by treatment to 

create weekly samples that were then analyzed for DM content. The DM content of the 

feed ingredients was determined by oven-drying at 60°C for 48 h. 

Dried feed samples were ground through a Wiley Mill (1 mm screen, Arthur H. 

Thomas, Philadelphia, PA). Samples from every 3 wk were dried at 60°C for 48 h 

individually, composited (creating Periods A, B, and C), ground, then analyzed for CP, 

NDF, ADF, FA content, and FA profile. The CP contents of the dietary ingredients and 

orts samples were determined using an elemental analyzer (LECO TruSpec N, St. Joseph, 

MI, USA) and AOAC (2000) procedure number 990.03. The NDF and ADF contents 

were determined with the ANKOM200 Fiber Analyzer (ANKOM Technology 

Corporation, Fairport, NY, USA), using the basic procedure of Van Soest et al. (1991). 

Sodium sulfite was not used in the procedure for NDF determination, but pre-treatment 

with heat stable amylase (Type XI-A from Bacillus subtilis; Sigma-Aldrich Corporation, 
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St. Louis, MO, USA) was included. Total FA content and FA profile analysis was 

determined by using the procedure described by Sukhija and Palmquist (1988). During 

analysis the samples were further dried at 105°C for 8 h to determine the absolute DM, 

and chemical analyses were expressed on the basis of absolute DM. 

The chemical composition of the TMR was calculated from the chemical 

composition of individual ingredients of the diet. Daily DMI for individual cows was 

calculated by subtracting the weekly mean for orts from the weekly mean for feed 

offered. The NEL content of the diet was calculated by using the NEL table values (NRC, 

2001) for the individual dietary ingredients (Table 1). Weekly mean NEL intakes were 

calculated by multiplying the NEL values of the diet by the mean DMI of the individual 

cows for that week. The CP, NDF, and FA intakes were calculated by subtracting CP, 

NDF, and FA amounts in orts from feed offered. The amount of CP, NDF, and FA in orts 

were calculated by multiplying weekly mean orts for individual cows by treatment 

average CP, NDF, and FA content in orts during that week. Chemical composition of the 

treatment diets are in Table 1. The metabolizable protein contents of the diets were 

calculated using the NRC (2001) model. Diets were formulated to be iso-energetic and 

iso-nitrogenous. 

 
Milk Collection and Processing 

 
 Milk yields were recorded daily on an individual cow basis.  Weekly milk 

samples were collected from each cow from 4 consecutive a.m. and p.m. milkings (0445 

h and 1645 h) at the end of each week during wk 4 through 9. A Broad Spectrum 
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Microtabs II (D & F Control Systems Inc., San Ramon, CA) preservative was added to 

each sample in tablet or liquid form and then stored at 4°C until analyzed for FA content. 

Analysis was conducted within 1 wk of collection. Leftover milk was stored at -20°C for 

future reference. 

During wk 5 and 8, milk from 2 consecutive milkings for each cow was collected 

in vacuum-sealed milking cans. Milk was collected during these weeks to evaluate the 

effect and possible differences created by time. The milk was transferred into plastic 20-L 

buckets, labeled by treatment and cow, and transported within 45 min of cessation of 

milk collection from the dairy to the Gary H. Richardson Dairy Products Laboratory at 

Utah State University. Upon arrival at the Dairy Laboratory, the milk was cooled to 4°C 

within 2 h after collection. Approximately 8 kg of milk/cow per milking was combined 

for each treatment. Each treatment was homogenized using a Gaulin model CGC 2-stage 

homogenizer (Gaulin, Everette, MA) at 787 and 196 per square centimeter, and then 

pasteurized at 73°C for 16 s using an APV Model SR15-S (APV Equipment Inc., 

Tonawanda, NY). Approximately 19 kg of homogenized and pasteurized milk for each 

treatment was stored in 10-gallon stainless steel milking cans. Sensory evaluation of milk 

was conducted within 72 h of procurement and 36 h of processing the milk without 

standardizing for fat content. An additional sensory evaluation of the same milk for each 

indicated week was conducted 7 d after the initial 72 h (10 d of storage) to simulate aging 

of milk in consumer’s fridge and the effects time has on flavor. 

 

 

 



 
 
    

 
 
 
   
   
  26 

Compositional Analysis of Milk 

 
Individual milk samples from each cow for each week were analyzed for fat 

percent, true protein percent, lactose percent, solids, SCC, and urea by the Rocky 

Mountain Dairy Herd Improvement Association Laboratory (Logan, UT) with mid-

infrared wave-bands (2 to 15 µm) procedures using a Bentley 2000 (Bentley Instruments, 

Chaska, MN). The infrared instrument was calibrated weekly using raw milk standards 

based on chemistry analysis (Eastern Laboratory Services Limited, Fairlawn, OH, USA). 

The fat measurement channel used was a combination of Fat A and Fat B. An enzymatic 

procedure was used to determine milk urea nitrogen using a Chemspec 150 instrument 

(Bentley Instruments, Chaska, MN). Final milk composition for each week was expressed 

on weighted milk yield of a.m. and p.m. samples. Average fat and protein yields was 

calculated by multiplying milk yield from the respective week by fat and protein content 

of the milk on an individual cow basis. Energy corrected milk (ECM) was calculated on 

an individual cow basis using milk yield, fat and protein content (Tyrrell and Reid, 1965). 

Gross feed efficiency was calculated by dividing daily ECM by feed DMI on an 

individual cow basis. 

Weekly weighted composite milk samples from individual cows were analyzed 

for FA composition, including CLA, VA, and omega-3 FA. Milk fat was extracted by 

boiling the milk in a detergent solution (Hurley et al., 1987). Extracted fat was derived to 

methyl esters using an alkaline methylation procedure by mixing 40 mg of fat with 

sodium methoxide methylation reagent (NaOCH3/MeOH) as described by Chouinard et 

al. (1999) with minor modifications. After FA methyl esters were formed, anhydrous 
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calcium chloride pellets were added and the samples were allowed to stand for 1 h to 

remove water. Samples were then centrifuged at 2600 g at 5°C for 5 min. 

Separation of individual FA was achieved by using a gas chromatograph (Model 

QP2010, Shimadzu Co., Columbia, MD) fitted with a flame ionization detector. Samples 

containing methyl esters in hexane (1 µl) were injected onto an HP-88 fused silica 100 m 

x 0.25 mm column, 0.20 µm film (Agilent Technologies, Palo Alto, CA). The injection 

port was maintained at 250ºC in the split mode, and the sample was split at a 100:1 ratio 

with a 3.0 ml/min purge flow. Hydrogen was used as the carrier gas at a flow rate with a 

linear velocity of 41.1 cm/s. The temperature program was as follows: initial temperature 

50°C and hold for 1 min, ramp at 40°C/min to 175ºC and hold for 4 min, ramp at 3.5 

ºC/min to 250ºC and hold for 3 min. The detector was operated at 250ºC and makeup gas 

was nitrogen 30 ml/min. Air and hydrogen flow to the detector was 450 ml/min and 40 

ml/min, respectively. Total run time was 32.55 min/sample.  

 Each peak was identified using FA and FA methyl esters (Nu-Chek Prep, 

Elysian, MN; Matreya, Pleasant Gap, PA and SupelcoTM 37 Component fatty acid methyl 

ester mix, Supelco, Bellefonte, PA). Heptadecanoic acid was added as an internal 

standard. Percentage of each FA was calculated by dividing the area under the FA peak 

(minus the area under the peak for heptadecanoic acid) by the sum of the areas under the 

total reported FA peaks. Fatty acids are reported as g/100 g of FA methyl esters. The 

CLA yield was calculated by multiplying CLA content with total fat yield corrected for 

glycerol content (Chouinard et al., 2001) on an individual cow basis. The VA is 

converted to CLA in the mammary gland (Corl et al., 2001) via the ∆9-desaturase 
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enzyme. The ∆9-desaturase index was calculated for selected milk FA using product-to-

substrate ratios of FA. The FA ratios to determine the ∆9-desaturase index were 

C14:1:C14:0, C16:1:C16:0, C18:1 cis-9:C18:0, and CLA cis-9, trans-11:C18:1 trans-11(VA). 

Fatty acids can promote or prevent atherosclerosis and coronary thrombosis based 

on their effects on serum cholesterol and LDL cholesterol concentrations (Ulbright and 

Southgate, 1991). The equations proposed by Ulbright and Southgate (1991) for the 

atherogenic and thrombogenic indices indicate that the C12:0, C14:0, and C16:0 FA are 

atherogenic, and C14:0, C16:0, and C18:0 are thrombogenic, while the omega-3, omega-6, 

and monounsaturated FA are antiatherogenic and antithrombogenic. The ratio between 

the 2 is used to calculate the atherogenic index (AI) and thrombogenic index (TI). The AI 

and TI indices were calculated in the present study using the equations described by 

Ulbright and Southgate (1991). In these equations, the C14:0 FA is considered to be 4 

times more atherogenic than the other FA, thus the coefficient “4” was assigned to it. The 

C18:1 omega-6 and monounsaturated FA was assigned coefficients of 0.5 because they are 

less antiatherogenic than the omega-3 FA, which were assigned a coefficient of 3. 

 
Sensory Evaluation of Milk 

 
A trained panel of judges evaluated pasteurized and homogenized fluid milk 

samples from wk 5 and 8 for each treatment on 3 and 10 d of storage for grassy (feedy), 

fishy, oily, oxidized, and rancid flavors. Data was collected using an electronic data 

collection system (SIMS2000) and analyzed using SAS 9.1.3 (1999-2000). Judges were 

trained for the proposed study, but many were already familiar with the scoring  
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process for fluid milk flavor. Panelists were trained for a total of 5 h and training 

procedures followed the guidelines described by Meilgaard et al. (2007). The training 

began 1 wk prior to sensory evaluation and continued once weekly until the last 

evaluation (10 d of refrigeration) for wk 8 samples. When a training session occurred on 

the same day as an evaluation, a 20 min break was given before testing. Training was 

performed at a round table enabling the interaction of the judges. The sensory evaluation 

was conducted using a continuous 5-point scale for flavor characteristics with the 

following categories: highly pronounced flavor, moderate, slight, barely perceptible, and 

no flavor. For statistical analysis, numerical scores were given to the categories where 5 = 

highly pronounced flavor and 1 = no flavor. Whole milk fortified with vitamin D in a 

clear plastic container was purchased from the store with at least 14 d shelf life remaining 

and was used as a positive control. Reference samples for specific attributes were 

provided for all flavor characteristics during sampling in training (see Table 2).  

 Refrigerated (22.0 ± 1.0°C) fluid milk from each treatment and control were 

served in plastic cups to the trained panel. Random code numbers were assigned for 

identification to each sample. Samples were also presented in a randomized and balanced 

way among panelists. Sample tasting was performed in individual booths under 

fluorescent white light. Water and spittoons were provided to panelists to cleanse the 

palate between samples.  
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Table 2. Preparation of off-flavor reference samples 
Off-flavor                Preparation    

Rancid Mix 1 part raw milk with 3 parts homogenized milk and  
                                store at 40°F (~4.4°C) for 2 days 

 
Oxidation   Dissolve 1 g copper sulfate (blue vitriol, CuSO4 5H2O) in  
    99 ml of water. Add 0.2 ml of this 1% solution to 1 quart 

pasteurized non-homogenized milk. Store at 40°F (~4.4°C) 
for 2 days. Since cream line milk varies in susceptibility 
toward oxidation with the season, more or less of the 1% 
solution may be used    

 
 Grassy   Add 20 mg of hexanal to 1L of milk    
 
 Oily    Add 1 drop (0.02 g) soybean oil to 50 ml of milk  
 
 Fishy    Add 2, 5 or 7 drops of DHA oil to 900 ml of milk 
  

 

 
 

 

Statistical Analyses 

 
The design of the experiment was a repeated measures, randomized block design 

with 4 treatments in 5 blocks. Blocks were defined by average daily milk yield of each 

cow 10 d prior to the experiment. Block 1 held the 4 cows with the highest average milk 

yield of the 20 cows selected, block 2 the second highest, and so on. Assignment of 

treatments was randomized among blocks such that each treatment had a representative 

cow from each block. Statistical analyses were performed using the PROC MIXED 

procedure of SAS (1999-2000). Significance level was declared at P < 0.05, unless 

otherwise noted. Trends for significance were declared at 0.05 < P < 1.0. Analysis of 

intake data, milk yield, milk composition, FA composition, ∆9-desaturase enzyme index, 
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atherogenic index, and thrombogenic index were determined using PROC MIXED in a 

repeated measures design. Treatment, block, week, and treatment × week were included 

in the model as fixed effects with week as the repeated measure on the cows. Covariance 

structure was autoregressive (1) [AR(1)].  

For the sensory panel, PROC MIXED was also used under the same significance 

levels. Covariance structure was diagonal. Design for analysis was a split-plot where 

week was the whole plot, storage day the sub-plot, and treatment (to include store-bought 

control) the block. Treatment, week, storage day, treatment × week, storage day × week 

were included in the model. 
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RESULTS AND DISCUSSION 
 

 

Intake, Milk Yield, and Milk Composition 

 
There was no week × treatment interaction for any production variable. The effect 

of treatment and week on milk yield, fat yield, protein yield, fat percent, protein percent, 

lactose, urea, solids, and SCC were then analyzed separately. Treatment was significant 

only for DMI (P = 0.0076; see Figure 6) and consequently NEL (P <0.001; see Table 3).  

The DMI for FL was significantly different from FH41 over the length of the experiment 

(40.6 kg versus 38.3 kg, respectively) and, most notably, the DMI for FH83 was 

significantly lower than the other treatments (32.0 kg versus 38.9 kg, 38.3 kg, and 40.6 

kg for CTL, FH41, and FL, respectively). FH83 having a significantly lower DMI than 

the rest is interesting but not surprising because, although FH41 and FH83 contained the 

same percent of FO (71%), FH41 contained less FO than FH83 (0.41% versus 0.83% 

DM, respectively); therefore, one would expect FH83 to have a lower DMI, versus FH41, 

if higher levels of FO are the cause for lower DMI. The lower DMI in FH83 disagrees 

with the findings of Whitlock et al. (2006), who saw no difference in DMI when feeding 

FO at 0.33%, 0.67%, and 1.0% DM and Allred et al. (2006) who saw no difference when 

feeding calcium salts of palm and FO alone or in combination with soybeans. Giesy et al. 

(2002) also found no difference in DMI among treatments when feeding calcium salt 

CLA supplement at 0, 12.5, 25, 50, and 100 g. One possible contribution to the differing 

DMI may be the cows themselves. This experiment ran through the summer months. It 
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Figure 6. Dry matter intake (DMI) for treatments over time. Values equal mean for each 
treatment. P <0.0001 for week and P = 0.008 for treatment. 
 

 

 

 

 

 

 

was observed that on a daily basis 3 out of the 5 cows in treatment FH83 splashed water 

from their drinking vessels in such large amounts that their feed troughs contained up to 

about 1 1/2 inches of water. This occurred for at least 2 wk, most notably wk 6 and 7. 

During this time period, ambient temperatures in the area were higher than normal; 

therefore, it is assumed temperatures in the barn were also higher. Excessive panting for 

the same 3 cows was also observed. Although the cause of these behaviors is 

undetermined, the possible increased water consumption and excessive panting are 
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Table 3. Nutrient intake and milk production of cows fed varying amounts of 
 calcium salts of fish oil (FO) and EnerGII 
   Treatment1 

Item CTL         FH41        FH83
3
         FL          P4 

           SEM6 

              
Intake, kg/d    

 DM 38.91a      38.29a        31.98b      40.62a       ***    1.49  

NEL (Mcal/d) 50.58a      49.78b        41.57b      52.81b       ***    1.94 

CP 5.44         5.57            4.07         6.14        -----5      

   NDF 8.57         8.39          10.14         6.94        ----- 

Fat 2.07         2.03            1.70         2.16        ----- 

Production, kg/d     

Milk yield                                 35.15        34.07          31.14       35.47        0.389     0.05 

ECM2                                                       34.78        33.01          27.68       33.17        0.139     2.08 

ECM/DMI                                  0.88          0.86            0.87         0.81        0.605     0.04 

 Fat yield                                      1.21          1.12            0.82        1.08        0.086     0.10 

Protein yield                               1.06           1.03           0.96         1.05        0.472     0.05 

Milk Composition, % 

 Fat 3.41           3.28                2.75         3.15        0.068     0.20 

   Protein 3.02           3.04           3.02        3.01        0.898     0.08 

Lactose 4.67           4.65           4.61        4.72        0.531     0.05 

Milk urea N (mg/dL) 14.38         13.38         12.34      12.92        0.448      0.54 

 
a,b,cMeans in the same row with different superscripts differ significantly for treatment effect with P value as mentioned 
in column for significance.

 

1Cows in the 4 treatments were fed either a control diet of 57% forage and 43% concentrate mix with EnerGII fat 
supplement at 1.65% of diet DM (CTL) or EnerGII in basal diet was partially replaced with (a) 0.21% partially 
ruminally inert calcium salts (Ca-salts) of 71% fish oil (Ca-FO71) given at 0.41% DM (FH41); (b) 0.41% inert Ca-
FO71 given at 0.83% DM (FH83); or (c) 0.83% inert Ca-FO 43% fish oil (Ca-FO43)  given at 0.83% DM (FL). 
2ECM = 0.327 x milk(kg) + 12.95 x fat(kg) +7.20 x protein(kg); equation derived from Table 4 of Tyrrell and Reid 
(1965). 
3Data for cow 9968 still included despite erroneous blocking. Did not change statistical significance.  
4Significance of effects of treatments. 
5Unable to statistically analyze because laboratory analysis was done in periods of 3 weeks instead of by week. 
6SEM = standard error of least square means. 
*** P  <0.001 
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indicative of heat stress (West et al., 2003). Additionally, the excess water in the troughs 

alone is another possibility as to what may have caused the lowered DMI. Consequently, 

regardless of the cause, FH83 exhibited a significantly lower NEL, CP intake, and 

increased NDF intake in conjunction to the lowered DMI.  

 The lack of effect of treatment on milk yield, protein yield, protein percent, solids, 

and SCC is in agreement with Abu-Ghazaleh et al. (2003). The unaltered fat yield and fat 

percent by treatment, however, contrasts with the findings of Abu-Ghazaleh et al. (2003) 

when they fed various fat supplements at 2% DM and FO at 1% DM (a total of 3%), but 

agrees with Allred et al. (2006), who fed various levels of soybean products with 2.7%  

FO or FO alone (2.7%). Although milk fat depression is typical of cows fed FO, as 

demonstrated in Ramaswamy et al. (2001), findings in this experiment did not indicate a 

significant difference between treatments (see Figure 7 and 8). Despite the lack of 

significance for the overall treatment effect for fat yield and percent, a trend was present 

for both (P = 0.086 + 0.10 for fat yield and P = 0.068 + 0.20 for fat percent). Means 

comparison for treatment shows that CTL had a higher fat yield than FH83. In fact, CTL 

had the highest fat yield of all treatments (1.21 kg versus 1.12 kg, 0.82 kg, and 1.08 kg 

for FH41, FH83, and FL, respectively). Additionally, CTL also had the highest fat 

percent when compared to the other treatments (3.41% versus 3.28%, 2.63%, and 3.15% 

for FH41, FH83, and FL, respectively). This supports common findings that milk fat 

depression can be caused by FO.  

 Week significantly affected (P <0.0001) all of the components tested except for 

protein percent, which was unaffected by treatment or week (P = 0.898 for treatment and  
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Figure 7. Fat percent for treatments over time. Values equal mean for each treatment.     
P <0.0001 for week and P = 0.068 for treatment. 
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Figure 8. Fat yield for treatments over time. Values equal mean for each treatment.  
P <0.0001 for week and P = 0.086 for treatment. 
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P = 0.140 for week; see Figure 9). This disagrees with Shingfield et al. (2006), who 

found protein yield, not percent, unaffected by time. Milk yield values required a log 

transformation when statistically analyzed because the data did not meet the assumption 

of normality. As time continued, milk yield decreased until it hit nadir on wk 7 for CTL 

and FL and wk 8 for FH41 and FH83 (see Figure 10). After hitting nadir, all treatments 

seemed to increase slightly. The general decrease in milk yield may be attributed to the 

stage of lactation that the cows were in (mid-lactation at the start of the experiment), and 

not FO, because CTL also decreased, but DMI for CTL did not significantly change. In 
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Figure 9. Protein percent for treatments over time. Values equal mean for each treatment. 
P = 0.140 for week and P = 0.898 for treatment. 
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Figure 10. Milk yield for treatments over time. Values equal mean for each treatment.  
P <0.0001 for week and P = 0.389 for treatment. 
 

 

 

accordance with the lowered DMI, means comparisons of treatment showed FH83 had a 

lower milk yield than the other treatments (31.1 kg versus 35.2 kg, 34.1 kg, and 35.5 kg 

for CTL, FH41, and FL, respectively). 

 There was also a time-dependent decrease in protein yield (P <0.0001), displaying 

a similar pattern as milk yield. Again, nadir was on wk 7 for CTL and FL and wk 8 for 

FH41 and FH83 (see Figure 11).  

 Over time DMI did significantly differ (P <0.0001; see Figure 6) for all 

treatments. FH41 and FH83 had a significant decrease in DMI on wk 7. Both treatments 

had 71% FO. The higher level of FO, which is known to cause decreased DMI, may 
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Figure 11. Protein yield for treatments over time. Values equal mean for each treatment. 
P <0.0001 for week and P = 0.452 for treatment. 
 

 

 

explain this decrease because CTL and FL did not display a similar drop. In fact, both 

CTL and FL increased slightly on wk 6 and then drop back to previous intake values on 

wk 7. All treatments increased slightly after wk 7. 

While wk 4 had the greatest amount of fat yield (see Figure 8) and fat percent (see 

Figure 7), and wk 8 the least, wk 5, 6, 7, and 9 were variable for all the treatments. There 

was, however, a general trend of decreased fat yield and percent as time went on. Means 

comparison of treatment showed that fat percent was lower for FH83 when compared to 

the other treatments (2.63% versus 3.41%, 3.28%, and 3.15% for CTL, FH41, and FL, 

respectively) and that FL and CTL differed. Fat and protein percents usually increase as 
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the DIM increase, but this was not observed in this experiment. As expected, the general 

decrease of fat yield follows that of milk yield, but the high variability between weeks is 

curious and could be attributed to the changing of lactation stages and possible heat 

stress. 

 The findings for lactose were the inverse of those for fat: wk 4 had the lowest 

amount of lactose while wk 8 had the greatest (see Figure 12). Weeks 5 and 6, and wk 7 

and 9 shared similar values (4.71% and 4.7%, and 4.63% and 4.62%, respectively). The 

spike between wk 4 and 5, 7 and 8, and generally the high variability seen in this 
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Figure 12. Lactose for treatments over time. Values equal mean for each treatment.  
P <0.0001 for week and P = 0.531 for treatment. 



 
 
    

 
 
 
   
   
  41 

experiment for lactose do not correlate with the time-dependent decrease of milk yield 

and also disagree with Cant et al. (1997), who note that the majority of milk volume is 

determined by lactose. This is also inconsistent with the findings of Baer et al. (2001) and 

Ramaswamy et al. (2001), who note that lactose is generally unaffected when compared 

to the control, regardless of FO or other fat supplement fed. It does, however, agree with 

Giesy et al. (2002), who note that as lactose changes, solids follow a similar pattern. This 

is demonstrated in the current experiment with both having a slight net increase. 

 Milk urea was generally consistent over time with the exception of wk 5 holding 

nadir and wk 7 the highest point (see Figure 13). In general, there was no 

discernible pattern. Week 7 had the most significant difference in milk urea, with its 

levels being the highest at this point for all treatments. Means comparison of treatment 

showed that CTL displayed urea levels above treatments FH83 and FL (14.4% versus 

12.3% and 12.9% for FH83 and FL, respectively). It should be noted that there were 3 

samples from this week (7) that could not be analyzed by the Rocky Mountain DHIA 

because they were rotten. Interestingly, they were all from FH41 at the same milking. 

After consultation with the DHIA, contamination was determined to be the most likely 

cause. The experiment cows, however, were milked randomly amongst each other. The 

collection bottles were assigned randomly, as well as the sample containers that were sent 

to the DHIA. Samples from all 20 experimental cows were exposed to the same 

temperatures and conditions. The possibility of it being treatment-based is unlikely as 
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Figure 13. Milk urea for treatments over time. Values equal mean for each treatment.  
P <0.0001 for week and P = 0.448 for treatment. 

 

 

 

only 3 of the 5 cows in that treatment were affected and for only 1 milking. The fact that 

all the samples came from FH41 may be simple coincidence.  

 Solids and SCC were also significantly affected by week (P <0.0001 and 0.020, 

respectively). Week 4 held nadir and wk 8 the highest values for solids. Although there 

was substantial variation between each week, there was a general net increase (see Figure 

14). Expectedly, this trend corresponds to that of lactose and follows that of fat percent. 

Not surprisingly, values for SCC were highly variable and required a log transformation 

when statistically analyzed to meet the assumption of normality (see Figure 15). There 

was a slight net increase over time while all treatments experienced a significant spike in  
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Figure 14. Solids for treatments over time. Values equal mean for each treatment.  
P <0.0001 for week and P = 0.931 for treatment. 
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Figure 15. Somatic cell count (SCC) for treatments over time. Values equal mean for 
each treatment. P = 0.020 for week and P = 0.765 for treatment. 
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SCC values on wk 7. This spike is most likely from increased oxidative stress caused by 

heat stress. 

 It should be noted that cow 9968 belonging to block 1 and treatment FH83 was 

improperly blocked. This error occurred due to incorrect preliminary data. Although her 

average daily milk yield 10 d prior to the project met the criterion to be blocked into 

block 1 (the block with the highest milk yield), for unknown reasons her actual average 

daily milk yield during the project was significantly lower, and was better fit for block 4. 

Despite this discrepancy, her data remains in the pool since removing it negatively 

affected the statistical analysis by unbalancing the experimental design and did not 

change significance for any measurements. It would have been more advantageous to 

look at a prior lactation in its completeness, rather than 10 d prior, for a more accurate 

determinant of milk yield. 

 
Fatty Acid Composition of Milk 

 Short-chain FA concentrations did not significantly decrease with FO 

supplementation. Some medium-chain FA decreased and the majority of long-chain FA 

concentrations were increased when compared to CTL. In general, levels of CLA, EPA, 

and DHA increased over CTL when FO was fed. Total saturated FA did not decrease and 

total unsaturated FA did not increase when fed FO, unlike similar research. There was no 

statistically significant interaction between week and treatment for any of the FA. Fatty 

acid concentrations averaged for each treatment over time are presented in Table 4.  
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Table 4. Fatty acid composition of milk from cows fed varying amounts of 
 calcium salts of fish oil (FO) and EnerGII 

             Treatment1 
 

Fatty Acid2
                                   CTL              FH41            FH83              FL               P3              SEM4

 

              --------- g/100 g of fatty acids reported ------- 

C4:0
5    1.94         2.02 1.49       1.88             0.20    0.18 

C6:0    1.20         1.19 0.89       1.18             0.32    0.13  
C8:0    0.71         0.68 0.53       0.70             0.42    0.08 
C10:0    1.65         1.54 1.24       1.67              0.37     0.18         
C12:0    2.02         1.92 1.72       2.07             0.44     0.16                                               
C14:0    8.75         8.50 8.47       8.95             0.86    0.45                                                   
C14:1    0.76ab         0.58a 1.00b       0.77ab           **       0.07                                             
C15:0    0.84         0.78 0.85       0.85             0.23    0.02                                                    
C16:0                32.9ab            31.5a              33.5b            32.2ab             *         0.45                                       
C16:1    1.29         1.30 2.00       1.51             0.10     0.21                                                    
C17:0    0.42         0.45 0.45       0.44              0.26    0.01                                                    
C18:0                12.3ab       12.9a  9.46b     11.4ab             *     0.72 
C18:1 t-11 (VA)   1.04a         1.51a 2.28b                  1.68ab           **    0.18 
C18:1 c-9                25.6a       25.4ab            23.5b    24.1ab              *        0.50                                                               
C18:2    2.68a         3.17b 2.82ab      3.08b              **         0.08                                              
C18:3 c-6,9,12   0.04a         0.02ac 0.01b      0.02bc            ***    0.003 
C18:3 c-9,12,15   0.42         0.50 0.46      0.50             0.05    0.02 
CLA c-9,t-11   0.52a         0.67ab 1.15c      0.80b             ***    0.08 
CLA t-10,c-12   0.02ab         0.00a 0.02b      0.01ab            *     0.30 
Total CLA    0.54a         0.68a 1.18b      0.82a             ***    0.08 
C20:2    0.03         0.03 0.04      0.03             0.06    0.002 
C20:3 c-8,11,14   0.13ab         0.11b 0.06c      0.09abc           **    0.11 
C20:3 c-11,14,17   0.01a         0.01ab 0.04b      0.02ab            ***    0.12         
C20:4     0.12a         0.11ab 0.08b      0.09ab            **    0.006 
C20:5 (EPA)   0.03a         0.07b 0.08b      0.08b             *     0.01 
C22:4    0.02         0.02 0.02      0.02             0.09    0.001         
C22:5    0.04a         0.09b 0.11b      0.10b             **    0.01     
C22:6 (DHA)   0.02a         0.09b 0.12b      0.11b             **    0.02 
Total n-36

   0.52a         0.76b 0.82b      0.80b             **    0.04 
Total n-67   2.99a         3.43b 2.98a      3.30ab            *                  0.10 
n-3:n-6    0.17a         0.20b 0.27c      0.24bc            ***    0.01 

Saturated fatty acids              62.8       61.5              58.6    61.3             0.17    1.23 
Unsaturated fatty acids              32.8       33.7              33.7    33.0                0.70    0.68  
 a,b,cMeans in the same row with different superscripts differ significantly for treatment effect with P value as 
mentioned in column for significance. 
1Cows in the 4 treatments were fed either a control diet of 57% forage and 43% concentrate mix with EnerGII fat 
supplement at 1.65% of diet DM (CTL) or EnerGII in basal diet was partially replaced with (a) 0.21% partially 
ruminally inert calcium salts (Ca-salts) of 71% fish oil (Ca-FO71) given at 0.41% DM (FH41); (b) 0.41% inert Ca-
FO71 given at 0.83% DM (FH83); or (c) 0.83% inert Ca-FO 43% fish oil (Ca-FO43)  given at 0.83% DM (FL). 
2Expressed as number of carbons: number of double bonds; c = cis, t = trans. 
3Significance of effects of treatments. 
4SEM = standard error of least square means. 
5C4:0 to C15:0 may have significant response factors to convert relative area to relative percent. C16:0 to C22:6 are generally 
close to 1 and do not statistically differ from recorded values. See appendix for transformed values. 
6Sum of C18:3 c-9,12,15; C20:3 c-11,14,17; C20:5 (EPA); and C22:6 (DHA). 
7Sum of C18:2; C18:3 c-6,9,12; C20:3 c-8,11,14; C20:4; and C22:4. 
*P <.05; **P <0.01; ***P <0.001. 
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 There was no treatment effect for the short-chain FA (C4:0 to C12:0). Week, 

however, was significant for C4:0 and C6:0, when both decreased after wk 5. Treatment 

effect for medium-chain FA (C14:0 to C17:0) was present in only C14:1 and C16:0 with 

treatment FH41 having much smaller concentrations than FH83 for both FA. A decrease 

in short- and medium-chain FA is common in diets supplemented with FO, with a greater 

decrease seen with larger amounts of FO, as shown by FH41 and FH83 for C14:1 and 

C16:0. The lack of decreased short- and overall medium-chain FA with FO 

supplementation are unlike those found by Baer et al. (2001), Donovan et al. (2000), and 

Allred et al. (2006), who found short-and medium-chain FA concentrations to decrease 

when FO was added to the diet. The effect of week on medium-chain FA was seen in 

C14:1, C16:1, and C17:0 with high variation between weeks creating no discernible pattern.  

 The effect of treatment was seen in all the long-chain FA (C18:0 and longer) except 

for C18:3 cis-9,12,15 (omega-3); C20:2; and C22:4, although these had trends of significance. 

Fatty acids CLA trans-10,cis-12; C20:3 cis-11,14,17 (omega-3); and EPA required a log 

transformation when statistically analyzed to meet the assumption of normality. All 

treatments showed an increase in VA, C18:2, C22:5, EPA, and DHA when compared to 

CTL. Specifically, FH41, FH83, and FL showed a 1.5-, 2.2-, and 1.6-fold increase over 

CTL when evaluating VA. When compared separately, all omega-6 FA decreased, as 

desired. Treatment FH41 had increased levels of stearic and oleic acids, while FH83 and 

FL had decreased levels when compared to CTL. CTL and FH41 shared similar 

concentrations of C20:3 cis-11,14,17 (omega-3) while FH83 and FL displayed increased 

levels. Week was significant for most of these FA, excluding C18:1 trans-11(VA); C18:1 
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cis-9; C18:3 cis-6,9,12 (omega-6); CLA cis-9,trans-11; C20:3 cis-8,11,14 (omega-6); C20:4; 

and C22:5. Those long-chain FA that were affected by time displayed a significant change 

after wk 4, either decreasing or increasing to wk 5 from their lowest or highest point. 

Week 6 was also notable in that, except for C22:4, it was the inverse of wk 4. In general, 

however, long-chain FA displayed relatively unremarkable variation. 

 Although the levels of VA were unaffected by time, differences among treatments 

were apparent. Treatment FH83 had significantly higher (P <0.01) concentrations of VA 

when compared to CTL and FH41 (2.28 versus 1.04 and 1.51 g/100 g, respectively). This 

agrees with Allred et al. (2006) who saw increased levels of VA when FO was fed. Fish  

oil increases levels of VA by inhibiting the enzyme that converts VA to stearic acid in 

ruminal biohydrogenation, in turn creating an accumulation of VA (Allred et al., 2006). 

Therefore, it would follow that more FO would create more accumulation. This was 

observed in this experiment. Treatment FH83 had a greater concentration of VA than any 

of the other treatments.  

 Both CLA isomers were affected by treatment, but week affected only CLA 

trans-10,cis-12 with wk 4 (0.010 g/100 g) being significantly lower than wk 6 (0.011 

g/100 g; P <0.01). In general, CLA levels did not vary significantly over time (P = 0.066 

+ 0.08), but did demonstrate a trend of significance. Means comparison revealed that total 

CLA levels increased over time until wk 7 when they hit nadir. Week 8 showed an 

increase with levels reaching their highest at this point and then dropped again wk 9. 

Treatment FH83 had more of the trans-10,cis-12 isomer when compared to FH41 (0.022 

and 0.003 g/100 g, respectively). FH83 also had significantly greater levels (P <0.001) of 
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the cis-9,trans-11 isomer when compared to the other treatments (1.16 versus 0.517, 

0.674, and 0.805 g/100 g for CTL, FH41, and FL, respectively), as well as total CLA (see 

Table 4). Treatments FH41, FH83, and FL displayed a 1.3-, 2.2-, and 1.5-fold increase of 

total CLA when compared to CTL. These higher levels of CLA can be partially attributed 

to the higher level of VA found in FH83 and the activity of the ∆9-desaturase enzyme 

(Allred et al., 2006; Whitlock et al., 2006). Whitlock et al. (2006) noted that FO is needed 

to maximize CLA cis-9,trans-11 in milk, even if it is provided in small amounts. This is 

supported by the finding that all treatments fed FO in this experiment had greater 

concentrations of CLA than CTL.   

 Because the majority of CLA is made endogenously in the mammary gland from 

VA via the ∆9-desaturase enzyme, it is important to estimate the index of this enzyme 

(Corl et al., 2001; Allred et al., 2006). This is done by estimating the ratios of FA 

products and substrates requiring ∆9-desaturase, as presented in Table 5. There was no 

week × treatment interaction and week was not a significant effect. Treatment effect was 

significant for only the C14:1:C14:0 ratio. This differs from Allred et al. (2006) who saw 

effect of treatment only in C18:2 cis-9, trans-11:C18:1 trans-11. This difference, however, 

may be due to composition of diet and FA supplements because Allred et al. (2006) fed 

FO at 2.7% DM with varying levels of soybean meal. While CTL and FL were similar for 

C14:1:C14:0, they had a significantly higher index of the ∆9-desaturase enzyme than FH41 

and less index than FH83. Although not statistically significant, means comparison 

showed that CTL and FH41 had similar enzyme index for C16:1:C16:0, while both FH83  
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Table 5. Estimated ∆9-desaturase index of selected fatty acid ratios in the mammary 
gland of cows fed varying levels of calcium salts of fish oil (FO) and EnerGII 

            Treatment1 
 

Fatty Acid Ratios2
                            CTL             FH41             FH83              FL               P3               SEM4     

 
C14:1:C14:0   0.09a        0.07b              0.12c       0.09a             **    0.01 
C16:1:C16:0   0.04        0.04  0.06       0.05             0.14    0.01 

C18:1 c-9:C18:0   2.11        2.04  2.55       2.18             0.16    0.16 
C18:2 c-9,t-11:C18:1 t-11  0.50        0.45  0.51       0.48             0.44    0.03 
                                                                    
a,b,cMeans in the same row with different superscripts differ significantly for treatment effect with P value as mentioned 
in column for significance.

 

1Cows in the 4 treatments were fed either a control diet of 57% forage and 43% concentrate mix with EnerGII fat 
supplement at 1.65% of diet DM (CTL) or EnerGII in basal diet was partially replaced with (a) 0.21% partially 
ruminally inert calcium salts (Ca-salts) of 71% fish oil (Ca-FO71) given at 0.41% DM (FH41); (b) 0.41% inert Ca-
FO71 given at 0.83% DM (FH83); or (c) 0.83% inert Ca-FO 43% fish oil (Ca-FO43)  given at 0.83% DM (FL). 
2Expressed as number of carbons: number of double bonds; c = cis, t = trans. 
3Significance of effects of treatments. 
4SEM = standard error of least square means. 
 **P <0.01. 

 

 

 

and FL had a slightly higher index. FH83 had the highest index than the other treatments 

when comparing means for C18:1 cis-9:C18:0. Means comparison showed that FH41 had a 

lower index when compared to CTL and FH83 for C18:2 cis-9, trans-11;C18:1 trans-11, 

while FH83 had a higher index when compared to FL, although not statistically 

significant. The activity of the ∆9-desaturase enzyme seemed to be greatest in FH83 

overall and may account for the discrepancies seen between the long-chain FA for FH83 

and, FH41 and FL. This is especially evident when comparing stearic and oleic acid 

concentrations. FH83 had, numerically, the greatest amount of both these FA in the 

supplements when compared to the other treatments. Most importantly, however, FH83 

had the most of stearic acid, which is converted to oleic acid via the ∆9-desaturase 

enzyme; therefore, the index of ∆9-desaturase was greatest for FH83 when evaluating the 
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C18:1 cis-9:C18:0 ratio. These higher levels of FA are most likely due to the type of FA 

supplement (71% FO) and the level at which it was fed (0.83% DM). It is possible that 

the majority of the ∆9-desaturase enzyme was bound converting the larger amounts of 

oleic acid from stearic acid, thus decreasing the availability of ∆9-desaturase to convert 

VA to CLA.  

 Both EPA and DHA were affected by treatment (P = 0.014 for EPA and P = 

0.003 for DHA), but only DHA was affected by week (P <0.0001). There was an increase 

in concentration of DHA after wk 4 followed by a plateau at wk 5. As expected, EPA was 

significantly lower for CTL when compared to the other treatments due to the absence of 

FO. Because FO provides both EPA and DHA, it isn’t surprising that DHA follows the 

same pattern with CTL having a significantly smaller amount than the other treatments. 

DHA was increased as much as 6-fold when fed FO and EPA by 2.7-fold when compared 

to CTL.  Interestingly, means comparison reveals that EPA and DHA levels did not 

significantly differ among the different concentrations (43% and 71%; see Table 4) and 

amounts of FO fed (FH41, FH83 and FL). These observations for EPA counter those 

Donovan et al. (2000) found when feeding FO at 1, 2 or 3% DM. They observed that 

EPA levels increased as the amount of FO increased. In agreement  

with our findings, however, Ramaswamy et al. (2001) found that varying levels of FO (1 

and 2% DM) and soybean meal produced similar levels of EPA. 

 Time affected only total omega-3 FA concentrations (P <0.0001), not total 

omega-6 FA (P = 0.078), with wk 4 having significantly lower values than wk 5 and 6. 

Not surprisingly, CTL contained significantly lower levels of total omega-3 FA when  
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compared to the other treatments and supports other research that demonstrates similar 

findings when feeding FO. Curiously, treatment FH41 exhibited significantly higher 

levels of total omega-6 FA when compared to CTL and FH83 (3.43 versus 2.99 and 2.98 

g/100 g for CTL and FH83, respectively). The ratio of omega-3-to-omega-6 FA was 

affected by both time and treatment (P = 0.0002 for treatment and P <0.0001 for week). 

Weeks 8 and 9 contained lower values when compared to wk 5 and 6 (0.217 and 0.216 

versus 0.241 and 0.233, respectively). Treatment CTL had significantly lower values for 

the ratio when compared to the other treatments, and treatments FH41 and FH83  

significantly differed (see Table 4). In general, the ratio improved with the 

supplementation of FO when compared to the control. 

 As stated previously, AI and TI indices indicate the healthfulness of foodstuffs in 

regards to FA and their potential to prevent or cause atherosclerosis and thrombosis. As 

demonstrated by FH41, FH83, and FL, although not statistically different, supplemental 

FO seemed to slightly improve the TI when compared to CTL (see Table 6). The values 

obtained from treatment diets are similar to those indicated by Ulbright and Southgate 

(1991) (lower values indicate a more healthful product).  

 A recommended intake of EPA and DHA to obtain healthful benefits is proposed 

to be 650 mg/d (Allred et al., 2006). While the concentrations of EPA and DHA in the 

milk from the cows in this experiment are only 3.1% of this requirement, based on a 480 

mL serving (or about 2 cups) of 2% milk, levels were significantly improved over the 

CTL. Additionally, CLA levels were increased and the omega-3-to-omega-6 FA ratio 

improved. Treatment FL, when considering health of the cow, DMI, milk yield, and  
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Table 6. Influence of treatment diet fed to dairy cows on the atherogenic and 
thrombogenic indices of milk 

 Treatment1 
 

Index                                                 CTL               FH41              FH83              FL              P2             SEM3     

Atherogenic    2.19           2.06     2.14           2.19           0.65      0.08 
Thrombogenic    1.54           1.44     1.40           1.44           0.16      0.04   
                                                                 
1Cows in the 4 treatments were fed either a control diet of 57% forage and 43% concentrate mix with EnerGII fat 
supplement at 1.65% of diet DM (CTL) or EnerGII in basal diet was partially replaced with (a) 0.21% partially 
ruminally inert calcium salts (Ca-salts) of 71% fish oil (Ca-FO71) given at 0.41% DM (FH41); (b) 0.41% inert Ca-
FO71 given at 0.83% DM (FH83); or (c) 0.83% inert Ca-FO 43% fish oil (Ca-FO43)  given at 0.83% DM (FL). 
2Significance of effects of treatments.  
3SEM = standard error of least square means. 
 

 

 

production variables, seems to be the most viable diet for actual use in production. 

Enhanced milk like that created in this experiment could prove to be an important factor 

and benefit to a balanced and healthy diet. 

 

Sensory Evaluation 

There was no statistical significance between treatments or days of storage alone 

for any of the off-flavors. Only week made a difference for fishy off-flavor (P = 0.001). 

Week 5 contained no intensity of this off-flavor (1.03 + 0.07) while wk 8 displayed a 

higher average intensity of 1.33 (+ 0.07). Note, however, that although these are 

statistically different, both weeks had ratings close to 1, which indicates no off-flavor. 

There was a week × storage day interaction only for oxidative off-flavor (P = 0.044). 

This occurred during wk 8, with d 10 having the more intense off-flavor of oxidation (1.6 

+ 0.11) when compared to 3 d of storage (1.36 + 0.10) of the same week. Again, both are 

rated as having no off-flavor despite statistical differences. There was also a significant 

interaction between week and treatment, occurring only for rancid off-flavor (P = 0.023). 
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Both FH83 and FL displayed significantly higher intensities in wk 8 versus wk 5 (1.35 + 

0.10 and 1.81 + 0.01 for wk 5 versus 2.08 + 0.10 and 2.36 + 0.10 for wk 8, respectively), 

thus wk 5 ratings indicated no off-flavor detected, while the rancid off-flavor  increased 

to slight detection in wk 8. This interaction probably occurred in only these 2 treatments 

because they both yielded the highest amounts of CLA, EPA, and DHA. Polyunsaturated 

FA, such as these, are susceptible to rancid off-flavor. It should be noted that, although 

CTL served as our control for the diets, the store-bought whole milk (STORE) served as 

our control for the sensory evaluation and should not be confused with the control of the 

diets.  

 Sensory evaluation for wk 5 milk after 3 d of storage yielded generally favorable 

results. Of the 5 flavor characteristics tested (oxidative, fishy, oily, grassy, and rancid), 

FL was the only treatment that seemed to yield a fishy flavor when compared to the other 

treatments, but this difference was not statistically significant (P = 0.674) for treatment 

effect. This difference, however, was found to be at an intensity between 1 (no off-flavor 

detected) and 1.5 (see Figure 16). The mean intensity for fishy off-flavor for all 

treatments combined during this period was 1.04 (+ 0.10). FL also displayed a grassy 

flavor when compared to CTL and STORE in the same testing period (P = 0.093), but, 

again, this was not statistically significant for the overall treatment effect. The intensity 

was rated between 1 and 2 with a mean intensity for grassy off-flavor of 1.29 (+ 0.07), no 

off-flavor detected. Treatments FH41, FL, and STORE all had intensities for both  
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Figure 16. Descriptive analysis of milk for week 5, 3 days of storage. 1 = no flavor, 2 = 
slight, 3 = moderate, 4 = strong, and 5 = extremely strong. Treatment effect was P = 
0.329, 0.785, 0.093, 0.245, and 0.674 for oxidized, oily, grassy, rancid, and fishy, 
respectively.  

 

 
 
 
 
 
 

 



 
 
    

 
 
 
   
   
  55 

Table 7. Average intensities of off-flavors between treatments detected in milk from 
cows fed calcium salts of fish oil (FO) and EnerGII at varying levels during certain 
periods of sampling and storage 

                      Off-flavor1 

Time Period             Oxidized3              Fishy4                Grassy              Rancid               Oily 

Week 5 

 3 days2     1.62 (0.10)5      1.04 (0.10)     1.29 (0.07)      1.73 (0.13)       1.22 (0.06)   

10 days     1.45 (0.11)       1.00 (0.11)      1.15 (0.07)       1.73 (0.14)       1.15 (0.06) 

Average     1.54 (0.07)       1.03 (0.07)      1.22 (0.05)       1.73 (0.10)       1.19 (0.04) 

Week 8 

 3 days     1.36 (0.10)      1.33 (0.10)      1.20 (0.07)       1.84 (0.13)       1.27 (0.06) 

10 days     1.60 (0.11)       1.30 (0.11)      1.14 (0.08)       2.00 (0.14)       1.10 (0.06) 

Average     1.47 (0.07)       1.32 (0.07)      1.18 (0.05)       1.92 (0.10)       1.19 (0.04) 
1Values represent means of intensities of treatments combined for each off-flavor. Evaluated on a 5-point scale where 1 
= no flavor, 2 = slight, 3 = moderate, 4 = strong, and 5 = extremely strong.

 

2Days milk was stored before evaluated. 
3Off-flavor that yielded significant difference for week and storage day interaction (P = 0.044). 
4Off-flavor that yielded significant difference between weeks (P = 0.005). 
5Values in parentheses equal standard error of least square means (SEM). 
 

  

 

oxidized and rancid off-flavors that were above an intensity of 1.5. Nothing in the 

production variables or FA composition clearly indicated why only these 2 diet 

treatments, versus FH83 and CTL, had intensities close to barely perceptible for only 

oxidized and rancid after 3 d of storage during wk 5. The mean intensities for oxidation, 

rancid, and oily during this week and day of storage, as well as the other off-flavors for 

both weeks and both days of storage, are presented in Table 7. 
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In the evaluation 7 d later (10 d of storage) of the same milk (wk 5), CTL and the 

STORE seemed to have a lower intensity of grassy off-flavor flavor when compared to 

the means of the other samples (see Figure 17). The slightly more intense grassy off-  

flavor in the other treatments could be attributed to the CLA in the EnerGII or the CLA 

synthesized endogenously from the FA supplied by EnerGII, as well as the enhancement 

of CLA production by the FO. This is supported by the fact that FH41, FH83, and FL all 

had more total CLA that CTL, which had no FO supplement. Again, treatments FH41,  

FL, CTL, and STORE had intensities above 1.5 for rancid off-flavor. As with 3 d of 

storage, this cannot be explained by production variables or FA composition. 

Additionally, CTL was the only treatment to rate above 1.5 for oxidized off-flavor with 

no production variable or FA composition indicating any possible discrepancies among 

treatments. 

 The first evaluations show that there is little to no perceptibility of off-flavors, 

specifically fishy, when cows have been fed varying levels of FO supplement through 

their diet for 5 wk. This holds true for the same milk that has been stored for an 

additional 7 d (simulation of shelf life of consumer’s milk). The average intensities for  

both days of storage during wk 5 for oxidation, rancid, oily, fishy, and grassy were 1.54, 

1.73, 1.19, 1.03, and 1.22, respectively. Note that although some come close, no off-

flavor reached an intensity of 2 (barely perceptible); therefore, there was essentially no 

off-flavor detected. It should also be noted, however, that all the milk, even STORE, 

contained some rancid off-flavor.  
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Figure 17. Descriptive analysis of milk for week 5, 10 days of storage. 1 = no flavor, 2 = 
slight, 3 = moderate, 4 = strong, and 5 = extremely strong. Treatment effect was P = 
0.329, 0.785, 0.093, 0.245, and 0.674 for oxidized, oily, grassy, rancid, and fishy, 
respectively.  
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Sensory evaluations for wk 8 milk demonstrated more detectable off-flavors than 

for wk 5. The 3 d storage evaluation showed that FL and FH41 had noteworthy rancid 

flavor when compared to the other samples (both at 2.22; see Figure 18). Additionally, 

FL and CTL had intensities of rancid off-flavor above 1.5. The fact that all  

of the diet treatments had at least slight perceptibly of rancid off-flavor may be due to 

increased levels of unsaturated FA compared to STORE. The other off-flavors yielded 

similar intensities among treatments.  

 After 7 d of storage, greater intensities of off-flavors were present, although none 

above 2.5. Despite the lack of overall effect of treatment, STORE seemed to have a more 

intense oxidative flavor (2.13) when compared to the other treatments (1.38 for CTL, 

FH41, FH83 and 1.75 for FL). This may be due to packaging, as it was in a clear plastic 

jug. CTL also seemed to have a more intense oily flavor (1.38) when compared to the 

other treatments (1.13 for FH41 and 1 for FH83, FL, and STORE). Although all 

treatments displayed intensities of rancid off-flavor, FL showed the most intense at 2.36, 

although not statistically significant (see Figure 19). 

The second evaluations show that FL seems to yield low-intensity rancid flavors 

after cows have been fed FO for 8 wk and the milk has been stored for 3 d. This off-

flavor in FL seems to intensify after an additional 7 d of storage. This is interesting since 

FL contained the lowest amount of FO and was the most ruminally inert. These off- 

flavors, however, cannot be atttributed to simply the amount of EnerGII because FH83 

contained the same amount of EnerGII as FL; nor can it be attributed to FO  
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Figure 18. Descriptive analysis of milk for week 8, 3 days of storage. 1 = no flavor, 2 = 
slight, 3 = moderate, 4 = strong, and 5 = extremely strong. Treatment effect was P = 
0.329, 0.785, 0.093, 0.245, and 0.674 for oxidized, oily, grassy, rancid, and fishy, 
respectively.  
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Figure 19. Descriptive analysis of milk for week 8, 10 days of storage. 1 = no flavor, 2 = 
slight, 3 = moderate, 4 = strong, and 5 = extremely strong. Treatment effect was P = 
0.329, 0.785, 0.093, 0.245, and 0.674 for oxidized, oily, grassy, rancid, and fishy, 
respectively.  
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supplementation because STORE had higher intensities of rancid off-flavor in wk 5 than 

in wk 8. 

While FL seemed to remain slightly rancid after 8 wk, regardless of storage, other 

treatments (CTL and FH83) displayed the rancid off-flavor after the additional 7 d of 

storage. In contrast, rancid off-flavor for FH41 actually went down from 3 d to 10 d  

 (from 2.2 to 1.5). As in wk 5, these findings cannot be correlated to FA composition or 

any production variables. Interestingly, only CTL was found to have gained an oily off-  

flavor after 8 wk of FO and 10 d of storage. The oily off-flavor detected in CTL is 

probably due to the fact that this treatment contained no FO; therefore there was less milk 

fat depression, which FO tends to cause, thus creating excess fat after 8 wk and 10 d of 

storage to the point of detection. This seems to be supported by the fact that CTL 

contained the highest percentage of fat (3.41% versus 3.28%, 2.63%, and 3.25% for 

FH41, FH83, and FL, respectively, although not statistically significant), on average, 

when compared to the other treatments over the length of the experiment. Additionally, 

CTL had the lowest amounts of all omega-3 FA analyzed, as well as total omega-3 FA. 

The reason for the off-flavors detected in STORE is unknown. The source of this milk 

(dairy, type of cows, diet, etc.) is unknown and the possibilities for these off-flavors 

cannot be determined. 

While it was expected that there may be some off-flavors due to FA 

supplementation, especially FO, the treatments that actually yielded these off-flavors do 

not coincide with initial predictions. Fish oil, in general, tends to yield fishy off-flavor, 
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especially when supplemented at high levels. Conjugated linoleic acid tends to yield a 

grassy off-flavor. It is also noted that oxidation of polyunsaturated FA can cause rancid 

and oxidative off-flavors, especially when unprotected, but the other off-flavors tested, in 

addition to oily, were not predicted to be caused specifically due to project 

supplementation. First, STORE, our sensory evaluation control, was often found to have 

detectable off-flavors, albeit slight. Again, this may be due to packaging and exposure to 

light. Lacasse et al. (2002), however, noted that their control (milk from cows fed no FO) 

also yielded a slight off-flavor. Second, CTL yielded slight oily and rancid off-flavors. 

While the oily flavor seems to be explained by the lack of FO, the rancid flavor may be 

explained by spoilage since rancid off-flavor increased from 3 d to 10 d of storage during 

wk 8. This may be due to increased lactose since it was at its highest level at this point. 

Lastly, both FL and FH41 consistently yielded off-flavor intensities between 1.5 and 2 

(barely perceptible) for rancid. It was expected that perhaps FH83 would yield these 

results, especially fishy, since it had the most FO (71%) per DM (0.83%), but it generally 

tested favorably (no significant off-flavors). Jones et al. (2005) noted that off-flavor in 

milk from cows fed only 45 g/kg of FO and sunflower oil was detected the majority of 

the time when compared to milk from cows feds either FO or sunflower oil alone. A 

study by Ramaswamy et al. (2001) showed that milk from cows fed a diet with just FO 

supplemented yielded lower scores (less off-flavor) for detected oxidized flavor than for 

those fed only extruded soybeans. They also noted a higher score for cows fed both FO 

and extruded soybeans after 3 d of storage when compared to FO alone, but lower when 

compared to just extruded soybeans. Attributes Sensory Evaluations in these studies show 
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that even low levels of FO are detectable, these low levels can be affected by another FA 

source, and may explain why FL in our experiment contained a low-intensity rancid off-

flavor in wk 8. Although not statistically significant, grassy off-flavor showed a trend 

towards treatment (P = 0.093) with STORE rating lower than the other treatments. 

Additionally, a trend in storage day for oily off-flavor (P = 0.051) showed that intensities 

lessened from d 3 (1.2 + 0.06) to d 10 (1.1 + 0.06). Our results showed that a fishy off-

flavor is of least concern, while low-intensity off-flavors of mainly rancid is of the most.  

While there were off-flavors slightly detected in all the evaluated milk, especially 

FL overall and many of the other treatments during both evaluations in wk 8, none of 

these were rated above an intensity of 2.5 (2 = slight and 3 = moderate). Although a 

Consumer Acceptability Sensory Evaluation was not conducted, it could be possible that 

milk from cows fed these diets would be found generally acceptable and fit for sale. This 

seems to be supported by the fact that the store-bought milk in our experiment seemed to 

often possess an off-flavor. This shows that despite the presence of low-intensity off-

flavors, the quality and taste of milk would be comparable to that currently sold in the 

store, if not better, and any off-flavors detected in the milk from cows fed the diets in this 

experiment cannot necessarily be attributed to FO, EnerGII, or their combination.  

 

 

 

 

 



 
 
    

 
 
 
   
   
  64 

CONCLUSION 

 
 

There was no week × treatment interaction for any production variable. Treatment 

only affected DMI and subsequent NEL, but this cannot be conclusively attributed to diet. 

Week significantly affected milk yield and all milk components except for protein 

percent. Milk yield, protein yield, fat yield, fat percent, and DMI generally decreased 

over time. Lactose and solids shared a similar slight net increase with variability between 

weeks. Milk urea demonstrated no general trend over time, but was highly variable 

between weeks. Somatic cell count was also variable, but showed a slight net increase. 

There was a significant spike in wk 7 and 9 for SCC. Significant compositional 

differences in experimental milk may be due to heat stress, increasing DIM or the 

confounding of the two, but cannot necessarily be attributed to experimental diets. 

 Short-chain FA concentrations did not differ among treatments and only 2 

medium-chain FA were affected by treatment, demonstrating a decrease. The majority of 

the long-chain FA concentrations were increased when compared to the control. EPA and 

DHA levels were significantly improved over the control. Additionally, CLA levels were 

increased, the omega-3-to-omega-6 ratio improved, and AI and TI maintained.  

There were no detectable differences between milk samples from each of the 

treatments when looking at treatment as an effect alone. Only low intensity off-flavors 

(no higher than 2.5, where 1 = no off-flavor, 2 = barely perceptible, and 3 = moderate) 

were detected in any of the milk samples from any of the weeks and days of storage. 

Rancid, not fishy, off-flavors were the most detected and was the only off-flavor to 

contain a week × treatment interaction, with it being the greatest for FL in wk 8. FL, the 
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treatment with the lowest level of FO in the diet, contained most of the detected off-

flavors. Week only significantly affected fishy off-flavor, with it being slightly more 

intense for wk 8. Oxidized was the only off-flavor to contain a week × storage day 

interaction, with it increasing from d 3 to d 10 in wk 8. The store-bought control often 

had detectable off-flavors and, therefore, any detectable off-flavors in the experimental 

milk cannot necessarily be attributed to FO, EnerGII or their combination. 

 Cows fed varying levels of FO and EnerGII displayed no negative effects on their 

health or overall milk composition due to experimental diets. Concentrations of EPA, 

DHA, and CLA were all significantly enhanced when compared to the control. Milk from 

cows fed these FA supplements generally yielded little to no off-flavors. Treatment FL, 

when considering health of the cow, DMI, milk yield, production variables, and sensory 

evaluations, seems to be the most viable diet for actual use in production.  Enhanced milk 

like that created in this experiment would prove to be an important factor and benefit to a 

balanced and healthy diet. 
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Table 8. Altered fatty acid composition of milk from cows fed varying amounts of 
 calcium salts of fish oil (FO) and EnerGII due to response variables 

             Treatment1 
 

Fatty Acid2
                                   CTL              FH41            FH83              FL               P3              SEM4

 

              --------- g/100 g of fatty acids reported ------- 

C4:0
5    3.85         4.01 2.96       3.74             0.20    0.18 

C6:0    1.82         1.81 1.35       1.79             0.32    0.13  
C8:0    0.99         0.94 0.74       0.98             0.42    0.08 
C10:0    2.02         1.89 1.52       2.05              0.37     0.18         
C12:0    2.30         2.18 1.95       2.36             0.44     0.16                                               
C14:0    9.43         9.16 9.13       9.65             0.86    0.45                                                   
C14:1    0.86ab         0.65a 1.13b       0.87ab           **       0.07                                             
C15:0    0.91         0.85 0.92       0.92             0.23    0.02                                                
C16:0                33.0ab            31.6a              33.6b            32.3ab             *         0.45                                       
C16:1    1.38         1.39 2.14       1.62             0.10     0.21                                   
C17:0    0.44         0.47 0.47       0.46              0.26    0.01                                                    
C18:0                12.3ab       12.9a  9.46b     11.4ab             *     0.72 
C18:1 t-11 (VA)   1.13a         1.64a 2.48b                  1.82ab           **    0.18 
C18:1 c-9                25.2a       25.1ab            23.1b    23.7ab              *        0.50                                                               
C18:2    2.75a         3.25b 2.89ab      3.16b              **         0.08                                              
C18:3 c-6,9,12   0.04a         0.02ac 0.01b      0.02bc            ***    0.003 
C18:3 c-9,12,15   0.44         0.52 0.48      0.52             0.05    0.02 
CLA c-9,t-11   0.52a         0.67ab 1.15c      0.80b             ***    0.08 
CLA t-10,c-12   0.02ab         0.00a 0.02b      0.01ab            *     0.30 
Total CLA    0.54a         0.68a 1.18b      0.82a             ***    0.08 
C20:2    0.03         0.03 0.04      0.04             0.06    0.002 
C20:3 c-8,11,14   0.13ab         0.11b 0.06c      0.09abc           **    0.11 
C20:3 c-11,14,17   0.01a         0.01ab 0.04b      0.02ab            ***    0.12         
C20:4     0.12a         0.11ab 0.08b      0.09ab            **    0.006 
C20:5 (EPA)   0.03a         0.07b 0.08b      0.08b             *     0.01 
C22:4    0.02         0.02 0.02      0.02             0.09    0.001         
C22:5    0.05a         0.09b 0.11b      0.10b             **    0.01     
C22:6 (DHA)   0.02a         0.09b 0.12b      0.11b             **    0.02 
Total n-36

   0.49a         0.69b 0.73b      0.72b             **    0.04 
Total n-67   3.06a         3.51b 3.05a      3.38ab            *                  0.10 
n-3:n-6    0.16a         0.20b 0.24c      0.21bc            ***    0.01 

Saturated fatty acids              67.1       65.9              62.2    65.6             0.17    1.23 
Unsaturated fatty acids              31.9       33.1              32.8    32.2             0.70    0.68  
 a,b,cMeans in the same row with different superscripts differ significantly for treatment effect with P value as 
mentioned in column for significance. 
1Cows in the 4 treatments were fed either a control diet of 57% forage and 43% concentrate mix with EnerGII fat 
supplement at 1.65% of diet DM (CTL) or EnerGII in basal diet was partially replaced with (a) 0.21% partially 
ruminally inert calcium salts (Ca-salts) of 71% fish oil (Ca-FO71) given at 0.41% DM (FH41); (b) 0.41% inert Ca-
FO71 given at 0.83% DM (FH83); or (c) 0.83% inert Ca-FO 43% fish oil (Ca-FO43)  given at 0.83% DM (FL). 
2Expressed as number of carbons: number of double bonds; c = cis, t = trans. 
3Significance of effects of treatments. 
4SEM = standard error of least square means. 
5C4:0 to C15:0 may have significant response factors to convert relative area to relative percent. C16:0 to C22:6 are generally 
close to 1 and do not statistically differ from recorded values. See appendix for transformed values. 
6Sum of C18:3 c-9,12,15; C20:3 c-11,14,17; C20:5 (EPA); and C22:6 (DHA). 
7Sum of C18:2; C18:3 c-6,9,12; C20:3 c-8,11,14; C20:4; and C22:4. 
*P <.05; **P <0.01; ***P <0.001. 
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