[Food Structure](https://digitalcommons.usu.edu/foodmicrostructure)

[Volume 7](https://digitalcommons.usu.edu/foodmicrostructure/vol7) | [Number 1](https://digitalcommons.usu.edu/foodmicrostructure/vol7/iss1) Article 13

1988

Sample Holders for Solid and Viscous Foods Compatible with the Hexland Cryotrans CT 1000 Assembly

Miloslav Kalab

Paula Allan-Wojtas

Ann Fook Yang

Follow this and additional works at: [https://digitalcommons.usu.edu/foodmicrostructure](https://digitalcommons.usu.edu/foodmicrostructure?utm_source=digitalcommons.usu.edu%2Ffoodmicrostructure%2Fvol7%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Food Science Commons](http://network.bepress.com/hgg/discipline/84?utm_source=digitalcommons.usu.edu%2Ffoodmicrostructure%2Fvol7%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Kalab, Miloslav; Allan-Wojtas, Paula; and Yang, Ann Fook (1988) "Sample Holders for Solid and Viscous Foods Compatible with the Hexland Cryotrans CT 1000 Assembly," Food Structure: Vol. 7 : No. 1 , Article 13.

Available at: [https://digitalcommons.usu.edu/foodmicrostructure/vol7/iss1/13](https://digitalcommons.usu.edu/foodmicrostructure/vol7/iss1/13?utm_source=digitalcommons.usu.edu%2Ffoodmicrostructure%2Fvol7%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact [digitalcommons@usu.edu.](mailto:digitalcommons@usu.edu)

SAMPLE HOLDERS FOR SOLID AND VISCOUS FOODS COMPATIBLE WITH THE HEXLAND CRYOTRANS CT 1000 ASSEMBLY

Miloslav Kaláb, Paula Allan-Wojtas, and Ann Fook Yang*

Food Research Centre and *Plant Research Centre Research Branch, Agriculture Canada, Ottawa, Ontario, Canada KlA OC6

Abstract

A brass block, 3.7 mm high and 10 mm in diameter, which has three openings to accommodate rivet-type or plain tubular specimen holders for scanning electron microscopy at low temperature, has been designed to fit the Hexland Cryotrans CT 1000
assembly in place of the original aluminum disc.
Viscous food samples are placed in two-piece tubular
holders (0.9 mm inner diameter, 1.2 mm outer dia-
meter) made from st setscrews. A handle screwed into the central hole of
the block facilitates manipulation of the block. The
samples are fractured inside the Cryotrans CT 1000
assembly by knocking off the part of the sample
located in the up

oped for low-moisture foods, such as cheese, which
are resistant to ice crystal formation during freez-
ing. This holder consists of a Hexland aluminum
sample disc drilled with a single opening (4.0 mm in
diameter) tempora sample protruding from the disc. Thermal contact
between the sample, the disc, and a rivet that is used to cover the part of the sample protruding from the disc, is provided by Tissue Tek. The sample with the disc is rapidly frozen in nitrogen slush. mounted in the Hexland Cryotrans CT 1000 assembly, and inserted into the prechamber of the cold stage attachment where the rivet is knocked off. From that
point on, the regular procedure recommended by
Hexland is followed.

Initial paper received March 15, 1988 Manuscript received June 24, 1988 Direct inquiries to M. Kalab Telephone number: 613-995-3722 x7707

KEY WORDS: Cold-stage scanning electron microscopy,
Cryo-SEM, Hexland Cryotrans CT 1000 assembly, Sample
holders, Tubular sample holders, Viscous foods.

Introduction

Examination of biological samples by scanning electron microscopy performed at low temperature (cryo-SEM) [10, 15, 16] is convenient for several reasons. One of them is that no chemical fixation is required as the sample is physically fixed by rapid freezing and, therefore, artefacts associated with chemical fixation are avoided. This is particularly important with foods which contain ingredients such as fat or gelatinized starch that are difficult or impossible to fix [18]. Another reason is the rapid-
ity of specimen processing. Cryo-SEM allows for the sample to be frozen, inserted into the cryo-attach-
ment, fractured, etched if necessary, coated with
metal, and examined in the microscope within 15 min from the time the specimen is obtained [2].
Some samples are easier to prepare for examina-

tion than others. Whole small plant organs can serve as examples of superb preservation of structures by cryo-fixation [3, 4]. Microorganisms present in foods, such as fungi in mould-ripened cheeses and on surface-ripened salami, can also be preserved with-
out developing artefacts provided that appropriate
precautions are ta handling the samples in a high-humidity chamber
before freezing, rapid freezing, and sputter-coating
inside the cold-stage attachment in short bursts rather than in a single long interval [1]. Difficul-
ties may be encountered with high-moisture foods
(>65% moisture) such as cheese curd, soybean curd
(tofu) [9], yoghurt, and cream which are more sus-
ceptible to the dev products (<65% moisture), such as cream cheese and
other cheeses [21] or whipped cream [22]. With re-
gard to biological samples, Moor [17] concluded that
the lower the content of free water in living cells,
the narrower t crystallization of ice may take place. Apparently, this principle may also be applied to foods. Cryo-
protective agents such as glycerol or dimethyl sulfoxide reduce the interval that exists between the
freezing point and the recrystallization temperature
and diminish the risk of ice crystall development in
the sample during freezing, but incorporation of
these agents into

alters the original structure of the foods.
Ice crystal formation is related to the rate of
freezing [17], which, in turn, is affected by the
dimensions of the samples. The larger the sample,

the lower its freezing rate. Thus, the reduction in the size of the sample is one way of reducing the development of artefacts due to ice crystal forma-
tion [19, 20]. In practice, the size of the sample
tion [19, 20]. In depends, to a great extent, on the sample holder
used [8].
The objective of this paper is to describe the

design of a brass disc compatible with the Hexland
Cryotrans CT-1000 assembly which accommodates small
sample holders and to describe some sample prepara-
tion aids. The accessories can be employed when
using the Hexland s

Materials and Methods

Sample holder for high-moisture foods
Sets of two-piece open-ended tubes made from
sterling silver are used as holders for viscous
foods such as cream and stirred yoghurt. The lower
tube is longer (2.7 mm) than the upper mm). The outer diameter of both tubes is 1.2 mm and
the wall thickness is 0.15 mm. A brass block has
been designed to accommodate 3 samples (Fig. 1) and
to fit the standard specimen holder of the Hexland
Cryotrans CT-1000 radial direction. This design allows for longer
shafts, which provide a better anchoring system for
the setscrews than the shorter shafts that would
result from their drilling in the radial direction.
The setscrew shafts a

handle is screwed into the brass block and together
with a pair of insulated tweezers and the screw-
driver, which will be used to tighten the setscrews,
pre-cooled by immersion in liquid nitrogen.

A sample of the viscous food destined for ex-
amination by cryo-SEM is placed in the bottom silver
tube which is held with a pair of forceps. The tube
may be filled with the sample using a Pasteur pipet (which has been drawn out into a fine tip) until the sample protrudes at one end. Using a second pair of forceps, the shorter tube is placed over the pro-
truding sample. This operation may also be performed
truding sample using only one pair of special forceps designed by Sleytr and Umrath [22]. The filled tubes, held together in a vertical position by the sample, are individually frozen in Freon 12 cooled to its

freezing point of -150°C with liquid nitrogen and
transferred into liquid in itrogen in a shallow insu-
lated container, There, the tubes are mounted into
the pre-cooled brass block using the pre-cooled conto
tools. Each p (Fig. 5), which had been pre-cooled to -196° C, and is secured with a setscrew. The handle is then removed from the block and the Hexland assembly is
lifted out of liquid nitrogen and inserted into the
pre-chamber of the attachment.
Fracturing is effected by using the back edge

(not the blade) of the cooled scalpel to knock off
the top silver tube from the bottom one. After ex-

amining the fracture face in the microscope and
etching it if required, the sample may be withdrawn
into the pre-chamber, sputter-coated with gold,
returned into the microscope, and photographed.
A similar brass block acco into the rivet allowing the convex meniscus to pro-
trude onto the lip. Without covering it with another
rivet, the sample is rapidly frozen by plunging the
rivets individually into Freon 12 cooled to -150°C
as de

The original Hexland design of a central
being the original Hexland design of a central
being replaced with a more robust open-ended rivet
t(inner diameter of 4.0 mm, wall thickness of
1.0 mm), also sunken centrally in the filled with the sample (Fig. 6). The whole speciment
carrier, including the sample, is then plunged into
antropen slush in accordance with the instructions
by Hexland, inserted into the pre-chamerer of the
attachment wher

bottom rivet and the other rivet is placed on its

Sample Holders for Cryo-SEM of Foods

Fig. 1. Brass blocks (B) with concentric holes for three 2-piece silver tubes (S) with an outer diameter of 1.1 mm (Fig. 1A), or open-
ended rivets (R in Fig. 1B) with an outer
diameter of 1.5 mm, used as sample holders.
The central hole in the brass block accommodates the block handle which facilitates tightening of the setscrews (arrow). Numbers
on the ruler indicate centimeters.

2. Hexland standard aluminum sample disc (Sd) used as a holder in the Cryosystem *c:r* 1000 assembly. After insertion, the disc is tightened using a setscrew (arrow). Cap (Cp) is used to cover samples that are sensitive to moisture loss [1]. Numbers on the ruler indi-- asset of cover sampless blank of the pulser indicate centimeters.

<u>Fig. 3.</u> Diagram of the brass block. Dimensions

<u>Fig. 3.</u> Diagram of the brass block. Dimensions moisture loss [1]. Numbers on the ruler indi-
cate centimeters.

 \overline{are} shown in millimeters. OS = openings for sample holders, OH = opening for block handle, SS - setscrews (the shafts have been drilled at an angle α of 122° from the radial direction).

Fig. 4. Mounting of the silver tubes with the sample frozen inside into the brass block. The brass block is manipulated by its handle (Bh). In this demonstration, liquid nitrogen was not used in order to obtain clear photographs of and in order to obtain clear photographs of
the block.
<u>Fig. 5.</u> Insertion of the brass block with the
 $\frac{Fig.5}{Fig.5}$ Insertion of the brass block with the the block.

samples in place into the Hexland assembly * A rives in place into the Hexland assembly

(Ha).

Samples in place into the Hexland assembly

<u>Fig. 6.</u> A rivet (R, 4.0 mm inner diameter)

sunken in a hole drilled in the original (Ha) .

aluminum disc (D) is used as a holder for lowmoisture samples. Another rivet (arrow) is placed on top of the sunken rivet.

top. The solid food is sampled using a #1 cork borer
(inner diameter of 4.0 mm) with the plunger raised.
Then, using the plunger, the sample is extruded into
the rivets, frozen in nitrogen slush, and fractured
as describe

Results

High-moisture food samples be analyse and in
the relation in size of the samples held in small tubular silver holders makes it possible to
freeze viscous food samples, such as cream (Fig. 7), mood micrographs by using cry

direct contact with the cryogen upon freezing, had
negligible ice crystal development at the sample
surface. Casein micelle chains and clusters seen in
the sample (Fig. 8) are similar to those seen in
yoghurt by conventio

The reason for using the more robust (4.0 mm in)
diameter) sample holders for low-monisture foods is a
diameter passistance of low-monisture foods to ice
crystal formation during freezing. Thus, the freez-
ing rate is no

Discussion

Many of the specimen holders available for
cold-stage work today, including those available for
from Hexland, are patterned on the basic design by
Echlin and Burgess [6]. These authors have demon-
strated a support for 4 s

aqueous phase in most milk products, particularly
freshly coagulated curd and yoghurt, contains
varying concentrations of solutes such as lactose,
mineral salts, and whey proteins. These substances
appear as a fine efflore

Sample Holders for Cryo-SEM of Foods

Fig. 7. Cryo-SEM of a whipping cream sample (35% fat) individually frozen in tubular sil-ver holders in Freon 12 at - 150°C . After fracturing at -150°C, the temperature was gradually increased to -83 *oc* for freeze-etching at

lxlo-Storr; 15 min after fracturing, the temperatuxe was decreased to -150°C and the sample was coated with gold and examined at sample and counter ains exposed fat globules
(arrows).
Fig. 8. A stirred yoghurt sample placed in a
mass ningt is diameter up comming (arrows).

Fig. 8. A stirred yoghurt sample placed in a brass rivet. 1. 5 *mm* in diameter, was examined by cryo-SEM without fracturing following freeze-etching of the superficial layer. Casein particle chains and clusters (arrows) are in agreement with the microstructure of

yoghurt as seen by conventional SEM [14].

Fig. 9. Cryo-SEM of a commercial saled dress-
 $\frac{1}{100}$ algoed in the single niver holder newels yoghuxt as seen *by* conventional SEM [14}.

 $Fig.$ 9. Cryo-SEM of a commercial salad dressing placed in the single rivet holder reveals numerous fat globules (F) of various dimensions.

Fig. 10. Cryo-SEM of another salad dressing sample shows fat globules (F) and starch (St).

e.g., low-moisture foods, an examination of the freshly freeze-fractured but unetched surface may provide the required information.

Acknowledgements

The authors thank Mr. Al Bingham, SEMOptics,
Ltd., Nepean, Ontario, Canada, for assistance with the design and manufacture of the brass blocks, the
holders, and the handle. Appreciation is expressed
to Dr. G. H. Haggis for userul suggestions. Electron
Microscope Unit, Plant Research Centre, Agriculture
Canada in Otta

References

- 1. Allan-Wojtas P, Yang AF. (1987). Solutions to SEM of some frozen hydrated specimens: Exami-
nation of *Penicillium nalglovense* cultures. J.
Electron Microsc. Tech. $\underline{6}$, 325-333.
- 2. Beckett A, Read ND. (1986). Low-temperature
scanning electron microscopy. In: Ultrastructure Techniques for Microorganisms. HC Ald-
rich, WJ Todd (eds.), Plenum Press, New York, NY, 45-86.
- 3. Brookes B, Small E. (1988). Enhanced floral analysis by low temperature scanning electron
microscopy. Scanning Microsc. 2(1), 247-256.
4. Cavdek V, Lott JNA, Kerr P. (1987). Cell wall
wrinkling and solute leakage in imbibing
- squash and carrot seeds. Scanning Microsc.
1(3), 1413-1421.
- 5. Cross RHM, Hodgson AN. (1986). The role of SEM tion. Proc. XIth Int. Cong. Electron Microsc., Kyoto, Japan. Jap. Soc. Electron Microsc., Tokyo, Japan, 2229-2230.
- 6. Echlin P, Burgess A. (1977). Cryofracturing and
low-temperature scanning electron microscopy of plant material. Scanning Electron Microsc. 1977;I: 491-500.
- 7. Echlin, P. (1973). Scanning microscopy at low Applications. EL Benedetti, P Favard (eds.),
Soc. Franc. Microsc. Electr., Paris, 211-222.
- 8. Fuchs W, Fuchs H. (1980). The use of frozen-
hydrated bulk specimens for X-ray microanalysis. Scanning Electron Microsc. 1980;II:
- 371-3B2, 296. 9. Gallant OJ, Saio K, Ogura K. (1976). The observation of high-moisture foods with a scanning
electron microscope using the cryotechnique.
JEOL News 14(2), 6-10.
10. Gilkey JC, Staehelin LA. (1986). Advances in
- ultrarapid freezing for the preservation of cellular structure. J. Electron Microsc. Tech.
- $\frac{3}{2}$, 177-210.
11. Kaláb M. (1983). Electron microscopy of foods.
11. Physical Properties of Foods. M Peleq. EB Bagley (eds.), AVI Publ. Co., Inc., Westport, CT, 43-104.
- 12. Kalab M. (1981). Electron microscopy of milk products: A review of techniques. Scanning Electron Microsc. 1981 ;!II: 453-472.
- 13. Kalab M. (1984) . Artefacts in conventional scan-
- ning electron microscopy of some milk pro-
ducts. Food Microstruc. 3, 95-111.
14. Kaláb M, Allan-Wojtas P, Phipps-Todd BE. (1983).
Development of microstructure in yoghurt A
- Preview. Food Microstructure in yoghurt A
15. Lott JNA, Carson J, Kerr P. (1985). Cryogenic
preparation of samples for scanning electron microscopy. Microsc. Soc. Can. Bull. $13(3)$, 5-
9.
- 16. Lett JNA, Kerr P. (19B6). Use of cryogenically prepared samples in the scanning electron microscopic study of dry-to-wet transitions.
Scanning Electron Microsc. 1986;1II:979-986.
17. Moor H. (1973). Cryotechnology for the structur-
al analysis of biological material. I
- Freeze-Etching Techniques and Applications. El.
Benedetti, P Favard (eds.), Soc. Franc. Mi-
crosc. Electr., Paris, 11-19.
18. Plattner H, Bachmann L. (1982). Cryofixation: A
tool in biological ultrastructural research.
- tool in biological ultrastructural research.
Int. Review Cytol., Vol. 79, GH Bourne, JF
Danielli (eds.), Acad. Press, Inc., New York, NY, 237-304.
- 19. Robards AW, Sleytr UB. (1985). Low Temperature Methods in Biological Electron Microscopy. Elsevier Science Publishers B. V. (Biomedical Division). Amsterdam, the Netherlands, 324- 326.
- 20. Schmidt DG, Henstra S, Thiel F. (1g79) . A simple

low-temperature technique for SEM of cheese.
Mikroskopie (Vienna) 35, 50-55.

- 21. Schmidt DG, Van Hooydonk ACM. (1980). A scanning electron microscopical investigation of the whipping of cream. Scanning Electron Microsc.
1980;III:653-658, 644.
- 22. Sleytr UB, Umrath W. (1974). A simple fracturing device for obtaining complementary replicas of freeze-tched suspensions of freeze-fractured and tissue fragments. J. Microsc. 101(2), 177-186.

Discussion with Reviewers

J. A. Sargent: It would be helpful to give the ad-
dress of the supplier of the sterling silver tubes. <u>Authors:</u> The tubes were obtained from local jewel-
lers' supplies and findings stores. In Canada, they
may be ordered from Imperial Smelting and Refining
Co., Ltd., 451 Denison, Markham, Ontario.

J. A. Sargent: Is there not a possibility of alter-
ing the structure of the sample through shearing
effects at the neck of a drawn pipette?
Authors: The only samples which are handled with a
drawn pipette are the ones wh particles in suspension and so shearing effects in this kind of high-moisture samples should not be a
this kind of high-moisture samples should not be a
problem.

J. N. A. Lott: The filling of small diameter tubes
without getting air bubbles is often a problem. The
discussion could probably be extended as to how this
vas done.
Numbers: The fact that the tubes are open-ended, we
bel

 $\underline{0}$. J. Gallant: In my experience, samples are not
always completely preserved even by rapid freezing.
I observed, e.g., that potato cells which did not
show ice crystals immediately after freezing, sud-
denly develo

also, e.g., with celery and parsnip (but not with
processed foods such as yoghurt) following the in-
crease of their temperature to -85°C. The temperature
ture profile of the vegetables and the processed
foods was identic