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@7'(55)/n (11)

2 (07— )/n
i=1
A check for bias in these estimators shows that C is unbiased
while T * can be made unbiased by multiplying Equation 12
by the quantity n/(n—1).

(12)

HYPOTHESIS TESTING CONCERNING n.g.d. q(s)

In certain instances it may be required to test hypotheses
concerning g(s). For example, to test H,: q(s) = gls), where
q'(s) is a specified form of g(s), against an appropriate
alternative, amounts to testing H,: { = £’ and Hy: 18 =

** against the chosen alternatives. Such tests can be
performed by observing that C given by Equatlon 11 is
normally distributed while (n—1) 1?/t* is chi-square
distributed with n—1 d.f. The estimate T* is calculated
from Equation 12 and corrected for bias. The observations
$1, 82, . . . , § must, of course, be independent for these dis-
tributions to hold.

The distributions of ¢ and T*
which can be written:

follow from Equation 5

Hx =0 O7(s) (13)
Since p, is by definition normally distributed, Equation 13
implies the same for ®-'(s). Therefore from Equations 11
and 12, ;; and the unbiased form of T? are normally and
chi-square distributed, respectively.

MODEL PARAMETER DEPENDENCE

Measures of mean survival and the probability of survival
less than a specified level s* are of interest to population
control. The dependence of each upon the model
parameters [, 0, and 0, is examined in the following.

Using £ = (u./0,) and T* = (0,/0,)%, the mean

survival E(s) given by Equation 9 can be reformulated as
E@s) =® [/ V(0,2 + 0] (14)

It follows from the sigmoid relation @ (-) that, for a given
o,? and o,%, E(s) increases with mean extensity {,, the
greatest rate of increase occurring where p, = 0.0.
Conversely, holding u, constant and varying o0,* or o,*
changes E(s) according to the value assumed by p,. If p, <
0, E(s) increases with increasing o, or 0% if u, =0, E(s)
does not change with 0 ,* or 0, if p, >0, E(s) decreases
with increasing o ,* or o,%

A second measure is the probability a realized value for
survival less than a specified level s* occurs. The concern is
that a low value of s in a given year reduces the population
size to a point where its resource value vanishes or, at the
extreme, becomes nonsustaining. The condition imposed is

Q(s*) = (15)

O/ T) (@ (") — &) <p

where Q(s*), as given by Equation 8, is restricted to being
less than a specified value p. The objective is to determine
the parameter space satisfying Equation 15. With some
algebra this translates to:

- (s°)

Ox—d)"(p) 0, € H (16)

Of general interest to extinction are small values of s* and p
such that s*, p < 0.5. This implies ®'(s*), ®~'(p) < 0. With
this understanding, if Equation 16 is satisfied for any
set of values 0,, o, w,, it will remain satisfied if
o and/or W, are made arbitrarily large or 0, is reduced to
zero.

Habitat manipulation which raises the mean strength p,,
by making food more abundant, or decreases the mean
stress U, by creating an improved shelter complex, leads to
increased mean extensity u,. From the above it follows that
increasing W, increases the mean survival E(s) and reduces
the probability of extinction Q(s*). Habitat control,
however, would likely alter ¢,?, and it is conceivable,
although unconfirmed, that manipulation might raise p, but
alter o,* so that survival s actually decreases. Ideally, the
strategy for a maximal increase in E(s), in addition to
increasing W, is to increase ¢,”if p, < 0 and decrease a,’
if 4, > 0. Whether u, is positive or negative can be decided
by estimating { from data using Equation 11 and testing
H,: ¢ = 0 against the appropriate alternative.

It does not follow, however, that increased mean survival
E(s) implies a reduced probability of extinction. If u, > 0
and 0,* is decreased, then E(s) will increase but Q(s*) will
also increase. This can be explained by reference to Figure
1, curves 7 and 9. If p, >0, then { > 0, and if ** <1,
then decreasing o ,* will at some point cause T* > 1. This
process results in an increase not only in E(s) but in Var(s) as
well, and an increase in the probability contained in the
lower tail of the g(s) curve.

Equation 16 makes explicit the relationship between
climatic variation among years and variation in extensity
exhibited by the organism in its environment, 0,* and 0 *
respectively. The two are opposed; when great variation in
climatic stress exists among years ( 0,* large), the probability
of extinction is minimized by making o, as large as possible
by habitat manipulation. Also, the organisms’ behavior may
be relevant in changing o,” through the dependence of o’
upon the strength-stress correlation p (Equation 3). If
strong animals occupy low-stress microhabitats and weak
animals occupy a high-stress area, p < 0 and o, is
increased compared to that for random habitat occupancy.
It follows that the optimal behavioral strategy to minimize
extinction over the stress period is for nature to prescribe

p< 0.

CONSEQUENCES OF NONNORMALITY

The assumption of normality appears in Axiom 5 where
extensity i, is taken as normally distributed as g(u )- The
transforming function, of general form s = h(u,), is the
cumulative normal distribution given by Equation 5. The



sigmoid curve s h( ), in Figure 2 is purposely skewed
to represent a nonnormally distributed extensity, and g( Ko
is also skewed. The transformation (Equation 6) can be
evaluated graphically by drawing g(s) so that any bounded
areca under the g(s) curve equals the corresponding area
under the g( u ) curve, as indicated by the shading in Figure
9. Under conditions where p, is varied and where s
h( u ) remains sigmoid and g( u ) bell-shaped, although both
are quite skewed, the transformed curve can be adequately
fit by g(s) (Equation 1); the resulting shapes are well
characterized by those shown in Figure 1. Thus, exact
normality is not important. However, severe nonnormality
which departs from being bell-shaped, such as multimodal
distributions, yields striking cases which are ill fit by the
n.g.d. q(s).

EXAMPLES OF ESTIMATED ¢(s) CURVES

Figure 1 gives typical g(s) curves for a partition of the ¢
and T? parameter space. In practice, ¢ and 1% can be
calculated from the observations s, s, . . . , s, using
Equations 11 and 12 and Figure 1, used to identify the
general form of the survival density. The specific form can
be obtained from Equation 1 and probability statements
concerning survival from Equation 8.

Nine sets of population survival data taken from the
literature were used to generate g(s) curves: 1) grouse brood
survival, Connecticut Hill study area (Darrow 1947a, p.
315); 2) grouse brood survival, Adirondack study area
(Darrow 1947a, p. 315); 3) adult grouse over-winter survival,
Connecticut Hill study area (Darrow 1947b, p. 531); 4)
adult grouse over-winter survival, Adirondack study area
(Darrow 1947b, p. 531; 5) juvenile partridge over-winter
survival (Severtzoff 1934, p. 419); 6) great tit summer-to-
spring survival (Lack 1968, pp. 60-61); 7) bobwhite
over-winter survival (Errington 1945, p. 13); 8) bobwhite
over-winter survival (Kozicky and Hendrickson 1952, p.
484); 9) yearly survival of young roe deer (Severtzoff 1934,
p. 422). Page references give location of tabular data as
shown in Figure 3 and Table 1; none is bimodal as in
curves 3, 6 and 9 in Figure 1. Bimodal curves result when
the variance of p, among years exceeds the variance of the
extensity, that is (¢./0,)* = 1* > 1. Referring to the
graphical transformation (Figure 2) for given u, and o,’
the larger o, becomes, the greater is the spread of
realizations of u, along the abscissa and hence the

1:g<0,12<1
2: £E<0, 12 =1
3:£<0,T2>1

3.0

qlsl

91

Data Processing

probability of s being near 0 or 1 increases. The effect is
most conspicuous when the mean of g(u ), or u,, is zero, so
that g(s) is symmetric. If 1?2 1, g(s) is the uniform
distribution; if t* < 1, g(s) is unimodal with mode at s
0.5; if T > 1, there are modes at s = 0 and 1 and an
antimode at s = 0.5 (Figure 1, cases 5, 4, 6).

Thus, as o¢,* becomes larger than o0,° g(s) becomes
bimodal and there is an increase in the probability of low
(and high) survival. Hence bimodal forms may be rare or
nonexistant in nature. This behavior can also explain the
end of range for a population of animals or plants. For
example, the terminus of a forest occurs where 0,* begins to
exceed o0,° even though u, remains constant as the
boundary is approached.

SUMMARY

Given a set of independent survival data s, s,, . . . , sy
for a given population obtained over n years, the normal
generated distribution (n.g.d.; Equation 1) developed by
Chiu (1974) can be used to obtain the distribution of
survival proportions. Maximum likelihood estimates of the
parameters ¢ and T* can be found from Equations 11 and
12 and the cumulative distribution function Q(s) (Equation
8) used to give probability estimates of survival. Hypothesis
tests concerning the distribution of survival can be
performed based upon the distributions of the parameter
estimates ¢ and T°®.

The axioms leading to the n.g.d. depend upon
assumptions of normality regarding the abstract concept of
extensity. These cannot be subjected to empirical study.
However, the model is robust for departures from normality
that retain the bell-shaped feature. In any application, the
researcher has knowledge of the survival process beyond the
observations si, s, . . . , 8. Comparison of this knowledge
with probability statements derived from the model is the
most practical way to judge model validity.

The relationships among the parameters y,, 0,* and o,’
concisely describe how man- or self-regulating controls
affect survival. These relationships hold in an idealized
setting given by the model axioms. Still, they raise useful
questions regarding the concepts of habitat management
and population self-regulation strategies.

7: E>»0, 12 <1

4: E=0, 12 <1
5:5-0,1'2-1
6: E=0, 12 >1

1.0 0

Figure 1. Typical probability densities of survival proportions, g(s) by the normal generated
distribution (Equation 1) for parameter space ranges: { <, =, >0; t* <, =, > 1.
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Figure 2. Graphical method for transforming g(u ,) using s = h(u,) to obtain g(s). The
transformation preserves corresponding shaded areas under the g(u,) and g(s) curves.
g(u ) and s = h{u ,) are not normal, but g(s) is still approximately n.g.d. distributed.

o] 0.1 0.2 0.3 0.4 0.5 0.6 _0.7 0.8 0.9 1.0
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Figure 3. Normal generated distribution g(s) fitted to sur-
vival realization sy, s, . . . , 5, taken from the literature.
Case numbers identify curves; references to data used are
given in text.
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