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ABSTRACT 

 
 

A STUDY OF THE BIOHERMS OF THE EARLY ORDOVICIAN GARDEN CITY FORMATION AND A 
  

LITERATURE REVIEW OF EARLY ORDOVICIAN ORGANIC BUILDUPS 
 

by 
 

Heidi Pearce, Master’s of Science 
 

Utah State University, 2012 
 
 

Major Professor: Dr. W. David Liddell 
Department: Geology 
 
 
 During the Early Ordovician organic buildups formed in shallow seas across the world.  

This project contains a literature review on these organic buildups with a focus on those 

occurring in the warm, shallow seas of North America, but also includes a study on organic 

buildups formed in the cold water region of Russia.  The goal of the study was to characterize 

these Early Ordovician organic buildups in order to identify similarities and differences in their 

occurrence.  The second part of this project is a preliminary study on organic buildups occurring 

in the Early Ordovician Garden City Formation in Boss Canyon, Utah. 

This project found that warm, shallow-water organic buildups of the Early Ordovician 

were small scale structures that were typically 1-3 meters in height and several meters in width, 

with the length variable depending on location.  The organic buildups were biotically relatively 

simple structures formed by algae, lithistid sponges and Calathium with accessory organisms of 

brachiopods, cephalopods, trilobites, echinoderms, gastropods, ostracods, algal remains and 

conodonts.  The organic buildups are composed of massive to faintly-laminated mudstone to 

wackestone to packstone to boundstone.  Large in situ organisms are found on the organic 



iv 
 
buildups, while internally they are found as skeletal components.  Rock surrounding the organic 

buildups includes limestone and shale.  Channels dissect the organic buildups and some organic 

buildups show evidence of subaerial exposure.  Formation of the organic buildups was 

dependent on local conditions. 

Cold water organic buildups are several meters long and generally less than a meter 

high.  These organic buildups have a calcareous-clay composition.  The mound core is composed 

of clay topped by a carbonate cap and overlain by a hardground surface.  Formation of the 

organic buildups was by dense concentrations of sessile siliceous sponges.  Accessory organisms 

include brachiopods, echinoderms, ostracods, pelmatozoans, bryozoans and conodonts.    
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INTRODUCTION 
 
 

In  the Early Ordovician (488-478 Ma) waters, where conditions were right, organic 

buildups formed adjacent to the continents of Siberia and Laurentia.  Adjacent to Laurentia, 

organic buildups formed throughout a broad belt of carbonate rocks at least 153 kilometers 

wide and extending some 610 kilometers from present day Texas up into Newfoundland 

(Toomey and Nitecki, 1979).  These organic buildups were deposited in a shallow, passive-

margin sea with an environment similar to that of the present day Bahama Bank (Toomey and 

Nitecki, 1979).   Early Ordovician time also saw the formation of organic buildups in cold water 

regions of the world adjacent to the Siberia continent near present day Russia (Fedorov, 2003). 

 The following pages are a compilation of studies conducted on Early Ordovician organic 

buildups conducted by various authors.  In addition, the results of a preliminary study on the 

organic buildups of the northern Utah Garden City Formation found in Boss Canyon, Utah are 

presented.  This study attempted to place the Garden City Formation organic buildups within 

the context of present day North American Early Ordovician organic buildups  by  answering 

three main questions; 1) Where in the sequence do these organic buildups occur?  2) What 

organisms built these structures? and 3) What was the paleoecological setting of these organic 

buildups?   
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ORDOVICIAN ORGANIC BUILDUPS 
 

Western Utah 
 

Rigby (1965a, 1971) and Church (1974) conducted studies on organic buildups of the 

Fillmore Formation in Western, Utah (Figure 1). 

 
Figure 1. General study location of Western Utah organic buildup studies (From Church, 
1974). 
 
 
Rigby (1965a, 1971) found that, within the lowest organic buildup horizon, lithistid 

sponges played a minor role while stromatolitic algae were dominant early in development.  In 

the upper part of the formation there are four well-developed organic buildup horizons on 

average 1- 2 meters in height and up to 9 meters in diameter composed of stromatolitic algal 

heads with abundant lithistid sponges in the upper two buildups, as well as an association of 

lithistid sponges with Calathium.  Calathium is an organism that is possibly a sponge or possibly 

a receptaculitid (Church, 1991).   

Church (1974) made the most detailed study of the lowest organic buildup horizon in 

the Fillmore Formation.  This horizon occurs in the shaly siltstone member 198 meters above the 

base of the formation (Figure 2). 
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Figure 2.  Stratigraphic column giving location of reef horizon (From Church, 1974). 
 
 

Within the reef horizon there are two distinct facies, a reef core facies and an interreef 

or bioclastic facies.  The reef core facies consists of individual sausage-shaped reef cores  1-1.5 

meters high, 2-3 meters wide and up to 30 meters long composed of a medium gray, dense, 

micritic, porcelaneous-weathering limestone (Figure 3).  The interreef facies is laterally adjacent 

to and has a sharp contact with the reef core facies (Figure 3).  Interreef rocks are composed of 

bioclastic limestone and intraformational conglomerate.  Bioclastic limestones are adjacent to 

the reef cores and are composed mainly of abundant algal material, echinoderm debris, trilobite 

hash and varying amounts of intraclasts.  Abraded fragments of sponges and Calathium are 

found near the reef cores.  Bedding planes of bioclastic limestone are ripple marked and grain 

size coarsens downward into intraformational conglomerate beds that underlie the reef cores.  

Some reef cores contain intraclasts in their lower portions.  Shales lie above and below the reef 
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horizon (Figure 3).  The lower shale unit is an approximately 2 meters thick, medium light gray to 

light olive green, thin-bebbed, calcareous shale with thin calcareous silty layers. The shale lies 

immediately under the intraformational conglomerate.  Dendroid graptolites, asaphid trilobites, 

repichnid burrows and occasional shaly pebbles occur in the lower shale unit.  The upper shale 

unit is an approximately 1.5 meter thick, thin-bedded, medium gray to medium-dark gray, 

calcareous shale that lies immediately on top of the reef core facies and overlaps reef cores until 

it buries the cores.  Trilobite fragments, brachiopods and burrows occur in the upper shale unit.  

 
 

 
Figure 3.  Idealized cross-section of a reef core 1.5 meters high, showing its relationship 

to adjacent rocks (From Church, 1974). 
 
 
The reef trends on average N 31˚ E and reef cores occur regularly for 900 meters across 

the width of the exposed reef horizon normal to this reef trend (Figure 4).  The modal 

separation distance between reef cores is approximately 10 meters.  Reef cores become less 

distinguished to the northwest and grade into biostromal units where waters were likely 

becoming deeper and quieter in the Early Ordovician.  The actual extent of the reef field was 

probably greater during Early Ordovician time and probably would have extended to the 

southeast and south of the study area.   
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Figure 4.  Conceptual block diagram of reef occurrences on the reef horizon.  Reefs are 
1-1.5 meters high and 10 meters apart (From Church, 1974). 

 

Ripple marks from the interreef beds reveal a dominant ripple trend, and therefore 

current direction, of N 31˚ W.  This current direction was likely affected by the reefs.  Currents 

that controlled reef lineaments in the Early Ordovician may have resulted from prevailing winds 

and shoreline configuration.  Figure 5 shows the possible geographic relationship that existed 

during the Early Ordovician time.  The zero isopach line of Early Ordovician rocks may reflect the 

gross shoreline trend indicated on the map by the dotted line.     
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Figure 5.  Possible paleogeographic relationships existing during Early Ordovician time 
(From Church, 1974). 

 
 

Organisms that occupy the reef can be divided into two categories: frame building 

organisms and accessory organisms.  Sponges, algae and Calathium are the principal frame 

builders.  Sponges found on the reef cores are lithistid sponges of the family Anthaspidellidea.  

Tubular forms are often found in growth position as well as abraded pieces on the interreef 

beds.  Large saucer shaped sponges are occasionally found in growth position, but generally are 

found as plates in depressions of reef surfaces.  Calathium is often found in growth position with 

a cone shape and vertical orientation.  Calathium specimens reach heights of 12-15 centimeters, 

5- 6 centimeters diameters at the top and 1-2 centimeters at the base.  Attachment systems 

flare out and some developed into a rootlike system often seen attached to tubular sponges.  

Calathium specimens are largest in size and number in the upper areas and flanks of the reefs.  
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Stromatolitic algae acted as substrate stabilizers, allowing for initial reef growth and, as the reef 

developed, the algae continued to be important, acting as binding organisms.   

Accessory organisms found on the reef cores indicate the diversity of the reef in the 

Early Ordovician.  Specimens found include one crinoid associated with crinoid debris, of which 

less than a half-dozen occurrences of such crinoids were know from rocks of this age when the 

study was conducted in 1974.  Crinoids are found in an erosional depression on the reef crest, 

indicating their appearance in a late phase of reef growth.  Brachiopods are found within the 

reef mass, concentrated as pockets around the lower peripheries of reef bodies and overgrown 

with stromatolitic algae.  Asaphid and pliomerid trilobites, gastropods 5 centimeters in 

diameter, and orthoconic nautiloids up to 40 centimeters long occur randomly in the reef.  Reef 

cores contain fecal pellets, echinoderm debris and ostracods.         

During Early Ordovician times a period of low-energy waters charged with terrigenous 

material occurred just prior to reef development as indicated by the lower shale unit.  The 

abrupt change from shale to intraformational conglomerate indicates an increase in energy, 

clearing the water of terrigenous material and allowing carbonates to dominate.  Stromatolitic 

algae moved into the harsh environment and stabilized the substrate allowing sponges to attach 

to the matted or pebble surface.  The sponges began acting as baffles, trapping carbonate mud 

and establishing a framework for continued reef growth.  Calathium then attached to tubular 

sponges and other firm objects projecting upwards into zones of higher energy and, in turn, 

acted as baffles, trapping increasing amounts of sediment and providing a favorable 

environment for the stromatolitic algae and sponges.  Ripple-marked surfaces, the presence of 

algae and the small size of the reefs indicate formation in a shallow-water environment.  The 

increased current and occasional storms scattered reef debris and other bioclastic material 
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between reef structures creating the interreef unit.  Over a few decades these growing reef 

structures acted as baffles, trapping sediment and increasing reef height until it reached a 

maximum elevation of 1.5 meters above the substrate.  Calathium is considered the climax 

community of the reef.  At the height of reef development energy conditions changed to a low-

energy state and terrigenous sediment filled the water column chocking out reef growth and 

forming the upper shale unit. 

West Newfoundland 

Stevens and James (1976) conducted a study of the cyclic shelf carbonate deposits of 

the St. George Group.  Within a subtidal facies of the Group they discovered a 20-70 meter thick 

series of large carbonate mounds whose formation they attribute to sponges.  The mound facies 

contains rounded heads 1-2 meters in diameter and 1 meter in height.  The heads are composed 

of a series of upward-opening cups.  The cup walls are dolomitized and the interiors are filled 

with burrowed lime mudstone.  Surrounding the mound rock are burrowed skeletal grainstones 

and packstones containing oncolites.     

Alberta Canada 
 

Rigby (1965b) conducted a study of the Early to Middle Ordovician formations in the 

Columbia Icefields, Jasper National Park, Alberta (Figure 6).  The Early Ordovician Canadian 

system of Alberta contains the Mons and Sarbach Formations (Figure 7).    
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Figure 6.  Location of the Columbia Icefield Section (From Rigby, 1965b). 

 

The Mons Formation in the Columbia Icefield section is a 178 meter thick section of 

interbedded, micaceous shale, argillaceous limestone and a limestone intraformational 

conglomerate.  The Sarbach Formation of the Columbia Icefield section is a 408 meter thick 

section of thick-bedded, siliceous gray limestone, shale and argillaceous limestone.  Small algal 

and sponge bioherms occur 38 meters above the base of the formation in a 19.5 meter thick 

section.  The reefs are 0.6-1.2 meters thick and 0.9-3 meters long.  Reef rock is a medium to dark 

blue-gray, fine-grained porcellaneous, pure limestone.  Interreef rock is a coarse to medium-

grained, medium-gray to dark-gray, hashy, thin-bedded to medium-bedded limestone.  Rock 

above and below the bioherm section is a dark to medium gray limestone.  The upper limestone 

contains minor streaking and is medium-bedded.  The sponge bioherms are composed of 

anthaspidellid sponges which are among the oldest know lithistid sponges.    
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Figure 7.  Stratigraphic Section of the Columbia Icefield Section (From Rigby, 1965b). 
 

Texas and Oklahoma 

Toomey and Nitecki (1979) conducted a very thorough study of organic buildups in 

Texas and Oklahoma.  Carbonate deposition of the Early Ordovician time in the present day 

Texas and Oklahoma region is represented by the El Paso Group, Ellenburger Group, Arbuckle 

Group and the Marathon Formation (Figure 8).   
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Figure 8.  Occurrence of algal-sponge organic buildups and biostromal horizons in the Early 
Ordovician from West Texas to southeastern Oklahoma (From Toomey and Nitecki, 1979)   
 
 

The study was conducted in the Franklin Mountains of Western Texas and Southern 

New Mexico, the Marathon Area and the Llano region of Texas, and the Wichita and Arbuckle 

Mountain of Oklahoma (Figure 9).  Organic buildups and biostromal horizons are found within 

these rocks.  The lithistid sponge Archaeoscyphia, Calathium sponge (but possible receptaculitid) 

and probable coelenterate Pulchrilamina began to flourish during the Early Ordovician and 

locally built biostromal horizons or low, mounded organic buildups in the shallow sea.   
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Figure 9.  Diagram of Early Ordovician facies belt in the southwestern United States in 
relationship to outcrop area of the Arbuckle, Wichita, and Franklin Mountains and the Marathon 
and Llano region (From Toomey and Nitecki, 1979).   
 
 

Within the El Paso Group the majority of the organic buildups are found in the lower 

portion of the McKellingon Canyon Formation although there are some organic buildups that 

occur above and below the formation.  The organic buildups are about 0.9-1.5 meters in length 

and 1.8 meters in height.  The largest mound is named Lechuguilla Mound and it is 13.7 meters 

long and 5.8 meters high.  The organic buildups are composed principally of mud with relatively 

common skeletal components.  The skeletal framework is dominated by 1) Pulchrilamina 

spinosa, 2) siliceous lithistid sponge Archaeoscyphia annulata and 3) upright Calathium.  Clusters 

of relatively small digitate stromatolites are found at the base of the mounds.  Individual fingers 

average 7.6 centimeters in height and 1.3 centimeters in diameter.  These stromatolites appear 

to encrust tumbled fragments of Archaeoscyphia annulata and Calathium.  Halos that are 

composed of coarse skeletal packstones and grainstones are found around the organic buildups.  

The mound rock is primarily a skeletal wackestone, but in some instances the rock grades into a 

skeletal packstone and boundstone.  Intraclasts and organism burrows are common.  Skeletal 
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grains compose up to 25% of the rock with ossicles, spicules and spines of pelmatozoans, 

gastropods, brachiopod and trilobite debris and algal or problematical remains being the most 

common.  Spicules and spines from Pulchrilamina, Archaeoscyphia, and Calathium are found as 

well, usually in growth position.  Intraclasts are the most common non skeletal grains.   

Boundstone is found mainly near the top of the organic buildups where there is abundant 

Pulchrilamina.  Patchy areas of algal binding occur throughout the mound rock.    

Large organic buildups of the McKellingon Canyon Formation are cut by channels filled 

with coarse calcarinitic debris predominantly of echinoderm ossicles and intraclasts but also 

cephalopod siphuncles, trilobite debris, broken and abraded sponges, broken and abraded 

Calathium and orthid brachiopods.  Some channels show crossbedded structures.  The channels 

are no more than 0.6 meters wide and the deepest cut into the mound rock is 3.7 meters.  

Intraclasts are very abundant and well rounded.  Channels are dark in color and have a sharp 

contact with the light-colored mound rock.  Channel rock is classified as an intraclastic, skeletal 

grainstone.   

The organic buildups of the McKellingon Canyon Formation rest on an intensely 

burrowed, dolomitized, skeletal wackestone that contains skeletal debris of echinoderm 

ossicles, spicules, trilobite fragments and Nuia, a problematic codiacean algae.  Rock sequences 

occurring between organic buildups consist of a possibly cyclic series of thin, well-bedded 

carbonates that can be described as 1) dolomitized, skeletal wackestone, 2) intraclastic, 

gastropod packstone, and 3) intraclastic, echinoderm wackstone/packstone/grainstone.  Fossils 

in the intermound rock are primarily small, turbinate-shaped gastropods and echinoderm 

debris.   
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The occurrence and role of Pulchrilamina appears to have paleoecological significance 

on mounds within the McKellingon Canyon Formation.  Colonies of Pulchrilamina were only 

abundant and dominant at the tops of organic buildups.  Pulchrilamina only appeared once 

organic buildups reached their maximum stage of development.  With the occurrence and 

abundance of Pulchrilamina, organic buildups ceased to grow.  Organic buildups of the 

McKellingon Canyon Formation are believed to have grown and developed in relatively shallow 

waters of the vast epicontinental sea that covered the region during Early Ordovician time.  

From study of Lechuguilla Mound at least six stages of growth occurred in the deposition of 

these organic buildups (Figure 10).   

Stage I 

 On a foundational substrate of burrowed mud that has been dolomitized, a pioneer 

colony of scattered clusters or clumps of organic growth began to develop.  The initial biotic 

community consisted of rooted echinoderms, occasional Archaeoscyphia sponges, scattered 

Calathium growth, clustered orthid brachiopods and sparse trilobites. 

Stage II    

 The organic buildups enlarged and grew upward and the initial pioneer community 

evolved into a more diverse, biotically-mature community.  Biotic associations become more 

varied: digitate stromatolitic colonies, algae, Archaeoscyphia, Calathium, rooted echinoderms, 

orthid brachiopods and problematica Girvanella and Nuia.  Significantly, scattered colonies of 

Pulchrilamina entered the assemblage.   
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Stage III 

 This stage is the development of the climax community.   This stage is characterized by 

the abundance and rise to dominance of Pulchrilamina.  Some scattered sponges and algae are 

found.   

During stages I to III, skeletal debris was concurrently being shed within and around the 

mounds.  Relief of the mounds only reached a meter or less above the surrounding material.    

Stage IV 

 Sea level changed and the mounds were subaerially exposed along their upper surfaces, 

terminating mound growth.   This stage is only found at Lechuguilla Mound.  

Stage V 

 Subaerial exposure as well as intertidal erosion caused cessation of mound growth and 

hardening of the mound surface.  Intertidal erosion also created the channels.   

Stage VI 

 A general rise in sea level resubmerged the eroded mound masses within shallow 

intertidal-to-subtidal waters.  Deposition of skeletal calcarinite of mostly echinoderm debris and 

intraclasts occurred.  Adjacent sediments filled in erosion-induced irregularities on and around 

the mounds.     
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Figure 10.  Diagrammatic sequence of growth stages and burial of typical McKellingon Canyon 
Formation organic buildups (From Toomey and Nitecki, 1979). 
 
 

The Monument Spring Member is part of the Marathon Formation.  The Monument 

Spring Member has a strong lithologic resemblance to the lower half of the El Paso Group.  No 

organic buildups have been identified, but the member is lithologically and faunally similar to 

the sponge-bearing horizons common in the McKelligon Canyon Formation.  The rock is a 

slightly silty, burrowed, intraclastic, skeletal wackestone.  Dominant components are fragments 

of lithistid sponges and Nuia siberica.  Other skeletal grains include sponge spicules, echinoderm 
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osssicles, orthid brachiopod fragments, small turbinate-shaped gastropods and trilobite 

fragments.  Stromatolitic algal structures are also found.    

 Within the Ellenburger Group there are the Gorman (older) and the Honeycut (younger) 

Formations.  No bioherms have been found, but these two formations contain persistent, thin, 

biostromal units that have an algal-sponge biota.  The Gorman Formation has sparse remains of 

Archaeoscyphia that occur in a 0.9-1.5 meter stratigraphic interval.  No whole specimens of 

Archaeoscyphia have been found.  The mound rock is an intraclastic, pelletal, skeletal 

wackestone to packstone that may locally be oolitic.  Associated fossils include brachiopods, 

gastropods and cephalopods.   

 The Honeycut Formation contains abundant specimens of Archaeoscyphia annulata that 

are found in many thin stratigraphic horizons within the lower one third of the formation.  

Sponge beds are skeletal limestones and dolomitic limestones intercalated with non-

fossiliferous limestones and dolomites.  The sponge beds are classified as intraclastic, pelletal, 

skeletal wackestones.  Archaeoscyphia are mostly found in the non dolomitic limestones in non 

growth position.  Some specimens are whole, but most are broken.  The average size of the 

sponges is 12.7-15.2 centimeters in length and 5 centimeters in diameter.  Associated biota 

includes Girvanella, pelmatozoan fragments, orthid brachiopods, gastropods, cephalopod 

siphuncles, trilobites and conodonts.     

 The Ellenburger Group contains limestones that are distinctly stromatolitic.  Ripple 

marks, intraformational conglomerates and breccias are also found in the Ellenburger Group.  All 

of these characteristics indicate a shallow subtidal to supratidal setting.  As none of the sponges 

are found in growth position the sponges were probably derived from relatively shallow 
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offshore waters and later deposited within the shallow intertidal water of the Ellenburger group 

by breaking off of their original attachments and becoming rollers.   

 Within the Arbuckle Group organic buildups are common in two stratigraphic horizons.  

Mounds in both horizons are generally low-relief, domical features which offered refuge and 

sanctuary to a unique biota dominated by algae and sponges.  These mounds are believed to 

have developed entirely within shallow marine, subtidal waters with no subaerial exposure.  The 

lower horizon occurs 4.5-9 meters from the base of the formation and the upper horizon 137-

152 meters from the base of the formation.  The lower mound horizon is characterized by small 

mounds less than 1.5 meters in height although the largest mounds are up to 7.6 meters in 

height and extend laterally for more than 30 meters.  The mounds have an abundance of 

Archaeoscyphia annulata associated with a few Calathium and stromatolitic algae.  Adjacent to 

the mounds, on ripple-marked bedding plane surfaces, are clusters of small algal mounds 

termed miniherms.  These miniherms are composed of laminated stromatolitic-algal material 

with highly burrowed surfaces up to 56 centimeters in diameter and 36 centimeters in height.   

The moundrock is a silty, intraclastic, skeletal wackestone to boundstone.  Archaeoscyphia is the 

dominant faunal component with Calathium rare to absent.  Archaeoscyphia have some 

coatings of encrusting problematical Renalcis.  Other fauna include brachiopods, pelmatozoans, 

conodonts, cephalopods, Girvanella tubules, trilobite debris, small gastropods and a unique 

sponge spicule assemblage of monoxan, octaine, triactine, and lithistid spicules.  The mounds 

are highly burrowed and contain some intraclasts, ropey chert, chert nodules and places of algal 

binding.   

 The upper mound horizon is characterized by massive organic buildups with an 

abundance of Calathium and Archaeoscyphia.   Average dimensions of the organic buildups are 
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3 meters in height and 4.5 meters in length with the largest organic buildup 20 meters in height 

and 53 meters in length.  The mound rock is massive with large in situ biotic components of 

stromatolitic structures, Calathium, Archaeoscyphia annulata and Pulchrilamina spinosa.  

Calathium specimens are often encrusted and joined to other skeletal fragments by the binding 

action of Renalcis and Epiphyton.  Other faunal components include pelmatozoan debris with 

algal borings, Girvanella tubules, bryozoans, chiton plates, gastropods, brachiopods, trilobites, 

cephalopods, conodonts and a unique sponge spicule assemblage.  Mound rock is a silty, 

burrowed, intraclastic skeletal wackestone/packstone to boundstone.  When Pulchrilamina is 

the largest component, the rock is a boundstone.  Stromatolitic structures are individual vertical 

stromatolite colonies up to 0.9 meters high, and in part, laterally linked.  The stromatolite 

colonies are laminated with lamina of quartz silt grains intertwined with Girvanella tubules.  

Mounds are separated from one another by mound-shed intermound skeletal debris or well-

defined channels.  Channels that separate the mounds are up to 0.3 meters wide and are 

classified as grainstone/packstone filled mud intraclasts and varied skeletal debris.  Miniherms 

occur on some bedding planes as in the lower mound horizon.   The off mound rock is a thin-

bedded limestone that lacks skeletal debris apart from scattered sponge fragments and pods of 

digitate stromatolite colonies.  The dominant rock type is a pelletal mudstone with burrow 

structures.  Off mound rock terminates abruptly against the organic buildups.      

 Northwestern Russia 

Fedorov (2003) studied mud mounds of the St. Petersburg region in Russia (Figure 11).  

These mud mounds represent organic buildups that formed in cold water conditions.  All 

previously described mounds have been formed in warm, shallow waters.   
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Figure 11.  Schematic geological map of the St. Petersburg Region with locations of the studied 
Hecker-type mud mounds (From Fedorov, 2003).  
 
 

The mud mounds found in this region have a calcareous-clay composition and are 

thought to represent a new type of mud mound termed a Hecker-type mud mound (Figure 12).  

Hecker-type mud mounds probably represent the oldest know Phanerozoic organic buildups in 

Europe.   

One to two hundred meters of Early Ordovician strata accumulated in a broad structure 

called the Baltic monocline and rest unconformably on the eroded Precambrian shield.  Early 

Ordovician time is represented by the Billingen Regional Stage.  This stage is represented by clay 

in the lowermost part and, successively, glauconitic sand, calcareous sandstone and mottled, 
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argillaceous, glauconitic limestone.  Limestone strata vary from mudstone to bioclastic 

grainstone in the middle and upper parts of the stage and several hardgrounds are found.  

 

 
Figure 12.  Schematic cross-sections of two types of the individual Hecker-type mud mounds: a 
lens (1) and a bulge (2) (From Fedorov, 2003). 

 
 
Heker-type mud mounds can be either simple individual mounds or complex multi-story 

buildups. Individual mounds are subdivided by their size into small and intermediate mounds.   

Small mounds are round or slightly elongated in plan view, are 20-60 centimeters to several 

meters in diameter and have a height of 15-20 centimeters.  Intermediate mounds are lens-

shaped to elongated bodies that are 10s of meters in diameter and have heights of 3-5 and 10-

15 centimeters.  Horizontal chains of two to three small and intermediate mounds are found 

locally within the outcrop. Multi-story buildups are termed large mounds.  These mounds may 

be more than 350 meters long, reach up to 2 meters in height and often completely or partially 

overlap in plan view.     

  Hecker-type mud mounds are composed of a calcareous-clay core and a fine-crystalline 

carbonate cap of microsparitic wackestone or mudstone covered by a hardground surface. 

Underlying the mounds is a limestone hardground surface.  The mounds laterally thin out into 
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beds within the surrounding succession marked by the hardground surface.  The mound core is 

a lens-shaped body or bulge made of clay and marl with limestone lenses and nodules.  Fauna of 

the core is dominated by small articulated brachiopods, ostracods and pelmatozoans.  The 

carbonate caps for small and intermediate mounds, as well as the marginal parts of the large 

mounds are composed of microsparite wackestone.  The upper carbonate caps of the large 

mounds are composed of microsparite mudstone.  Carbonate caps on the small and 

intermediate mounds are 1-5 centimeters thick.  Bulges, termed pseudobioherms, are 3-5 

meters long and formed on top of the large mounds.  Microsparite layers under the 

pseudobioherms are up to 65 centimeters thick and carbonate caps on the pseudobioherms are 

10-15 centimeters thick.   Fauna of the microsparite includes spicules of hexactinellid sponges, 

small ostracods, brachiopods, bryozoans and conodonts.  Stromatolites occur occasionally in the 

microsparite of the pseudobioherms.      

 In the Billingen Stage three stratigraphic levels of mud mounds are recognized (L1, L2, 

L3) (Figure 13).  Small and intermediate mounds dominate in these three stages, but large 

mounds are found in L2.  These Hecker-type mud mounds are thought to have formed in a cold-

water shield environment by dense concentrations of sessile siliceous sponges that grew on the 

hardground surfaces.  In situ automicrite formation by the sponges gradually built up the 

mounds.  Changes in sedimentation rate might have suppressed the growth of the sponge 

mounds.  The small and intermediate mounds would have been buried by a new layer of 

carbonate material while the tops of the large mounds would have survived burial and 

continued to build, resulting in multi-story mounds.  Recrystallization of the micrite resulted in 

the formation of the carbonate caps, which was then topped by a hardground surface.   
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Figure 13.  Schematic cross-section of complex multi-story and simple individual Hecker-type 
mud mounds and where they occur stratigraphically (From Fedorov, 2003).   
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GARDEN CITY FORMATION 

 
 
Previous Work  

Previous work on the Garden City Formation’s paleontology, stratigraphy, and digenesis 

has been conducted, but little work has been done on the bioherms.  Studies of the 

paleontology of the formation include identifying species of gastropods (Hansen, 1949), 

graptolites (Clark, 1935; Hansen, 1949), brachiopods (Hansen, 1949; Ross, 1951), trilobites 

(Hansen, 1949; Ross, 1951), conodonts (Landing, 1981; Taylor and Landing, 1981), sponges 

(Church, 1991), echinoderms (Gahn, 2006; Sprinkle, 2007), molluscs, bryozoans and various 

algae and bacteria (Berry, 1962; Stokes, 1986; Morgan, 1988).  Studies of the stratigraphy have 

been conducted by Hansen (1949), Ross (1951), Hintze (1951, 1959, 1973), Taylor and Landing 

(1981), Taylor et. al. (1981a), Taylor et. al. (1981b) and Morgan (1988).  Morgan (1988) also 

studied the diagenesis of the Formation.     

Stratigraphy 
 

The Early Ordovician time period in Utah is represented by the deposition of thick 

packages of limestone in a broad, shallow, passive-margin sea which deepened westward 

(Figure 14) (Hintze, 1973; Morgan, 1988).  
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Figure 14.  Positon of the slope break between deep-water and shallow-water deposition. 
Shoreline is at its maximum transgression.  Paleolatitude and paleonorth are indicated.  (From 
Morgan, 1988; modified form Eardley, 1964; Hintze, 1973; Scotese et. al., 1979). 
 
 

The limestone that was deposited includes the Garden City Formation in Northen Utah, 

the Opohonga Formation in the Southern Oquirrh Mountains, and the Pogonip Group in 

Western Utah, which includes the House, Fillmore, Wahwah, and Juab Formations (Hansen, 

1949; Ross, 1951; Morris, 1957; Rigby, 1958; Bissell, 1959; Schaeffer, 1960; Hintze, 1973; 

Morgan, 1988).  These limestones are fossiliferous, have abundant patches and lenses of 

intraformational conglomerate, contain high proportions of fine, silty particles and have a high 



26 
 
percentage of chert (Stokes, 1986).  Pogonip Group terminology is used for the Ibex Basin of 

southwestern Utah and Garden City Formation terminology for the Northern Utah Basin (Hintze 

1959, 1973).  In the Early Ordovician the orthogeosyncline of Cambrian time was beginning to 

subside into the miogeosyncline and shelf on the east and the eugeosyncline farther west 

(Bissell, 1959).  The miogeosyncline was divided into two subbasins by the positive feature of 

the Tooele Arch (Figure 15). 

 

 
Figure 15.  Garden City-Pogonip Group thickness in 100’s of meters.  Utah is widened to pre 
Cretaceous thrust faulting (From Morgan, 1988; modified from Hintze, 1973). 
 
 

The deposition of the limestone was controlled by the gradually subsiding Northern 

Utah Basin and Ibex Basin and the gentle uplifting of the Tooele Arch (Figure 16) (Hintze, 1959, 

1973; Morgan, 1988).  The limestones thin to the southeast and thicken to the northwest, 

suggesting that the shoreline was to the south and east and that the area lay to the east of the 

axis of the Cordilleran geosyncline (Ross, 1951; Morgan, 1988).  
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Figure 16.  Ordovician cross-sections across the Tooele Arch (From Hintze, 1959). 

The Garden City Formation lies disconformably on the St. Charles Formation (Taylor and 

Landing, 1981; Taylor et. al., 1981a; Taylor et. al., 1981b) and has an abrupt upper contact with 

the Swan Peak Formation (Morgan, 1988). The Garden City Formation outcrops from north-

central and western Utah to southeastern Idaho (Morgan, 1988) (Figure 17) and ranges in 

thickness from 322 meters in the east to 549 meters in the west (Hansen, 1949).  
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Figure 17.  Outcrop pattern of the Early Ordovician Garden City Formation in north-central Utah.  
Circled numbers show locations of Morgan’s measured sections.  Numbers in parentheses are 
thicknesses in meters (From Morgan, 1988; modified from Ross, 1951). 
 
 

The Formation terminates to the east at the Green River Basin, which represents the 

location of the craton (Hintze, 1951; Williams, 1955).  The Garden City Formation is informally 

divided into two members, the Lower Member and the Upper Cherty Member (Figure 18).  The 

Lower Member is dominantly composed of intraformational conglomerate while the Upper 

Cherty Member is dominantly composed of irregularly-laminated, very cherty limestone 

(Hansen, 1949; Ross, 1951; Rigby, 1958; Schaeffer, 1960).   
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Figure 18.  Stratigraphic Column of the Bear River Range (after Ross, 1951 and Hintze, 1973). 

 
In general, the first 20 centimeters to 5 meters of the Lower Member is dolomitized 

(Taylor et. al., 1981a).  The dolomite is an argillaceous, arenaceous, calcareous dolomite 

(Schaeffer, 1960).  The top boundary with the Swan Peak Formation is commonly marked by a 

dolomitized limestone above which lies 46 meters of silty and shaly beds (Ross, 1951).   

Morgan (1988) measured five sections of the Garden City Formation.  The measured 

sections are located in Blacksmith Fork Canyon, Green Canyon, High Creek Trail, Mantua, and 

Cottonwood Canyon.  Figure 19 shows a stratigraphic section compiled from the five measured 

stratigraphic sections of Morgan’s (1988) study.  Morgan (1988) divided the formation into nine 

different lithofacies as described in the following paragraphs. 
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Figure 19. Stratigraphic Column of the Garden City Formation (modified from Morgan, 1988). 
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Nodular Wackestone/Mudstone with Packstone Lenses 

The ‘nodular wackestone/mudstone’ lithofacies is composed of a very quartz-rich silty 

limestone, sedimentary boudinage, nodular limestone punctuated with lenses of planar-

laminated hummocky cross-stratified and occasionally ripple-laminated limestone.  Minor fossils 

of trilobites, pelmatozoans, sponge spicules, lingulid brachiopods and peloids, both whole and 

fragmented, occur as lag deposits.  Horizontal and vertical burrows are found filled with pellets.  

This rock type is interpreted to be deposited within a shallow subtidal, low energy environment 

that was affected by hurricane-velocity storms.  No evidence suggests subaerial exposure.  

Intraclastic Packstone/Grainstone 
 

Intraclasts are the dominant allochem in the ‘fossiliferous packstone/grainstone’ 

lithofacies matrix.  Intraclasts are composed of micrite, fossiliferous quartz-laminated 

packstone, fossiliferous packstone/wackestone, peloid-laminated packstone and are bladed to 

blocky and well rounded to subangular.  The matrix is composed of brachiopods, pelmatozoans, 

gastropods, mollusc shells, trilobite debris, Nuia and peloids.  This lithofacies is a storm-

influenced deposit affected by a strong current followed by a waning current. 

Green Shale 
 

The ‘green shale’ lithofacies is a calcareous to clayey grayish, olive-green shale 

interbedded in layers of 1-30 centimeters within nodular limestone. This shale is interpreted to 

be deposited in a near-costal shallow sea environment with a terrigenous source. 

Laminated Packstone/Grainstone 
 

Well sorted pelmatozoan fragments and peloids comprise the rock.  Minor amounts of 

intraclasts, lingulid brachiopods and trilobite fragments are found scattered throughout.  The 

rock is very thin to thin bedded, planar-laminated to hummocky cross-stratified, graded and 
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forms as either lenses within nodular limestone or as a separate unit. Deposition has been 

interpreted to be by waning storm currents. 

Cryptalgalaminite 
 

‘Cryptalgalaminites’ are a rare lithofacies that form within nodular limestones.  The 

lithofacies is recognized only in the High Creek Trail section.  This lithofacies forms successive 

cryptalgally-laminated layers 2.5-16 centimeters thick.  ‘Cryptalgalaminites’ are interbedded 

with unaltered intraformational conglomerates.  The lithofacies contains stromatolites which 

are dissected by vertical burrows.  A possible teepee structure and a clastic dike are present. 

Deposition is interpreted to be due to sediment binding by algae and bacteria as intertidal 

shoals within the subtidal zone. 

Fragmented Fossiliferous Packstone and Whole Fossil Fossiliferous Packstone 
 

Biota includes pelmatozoans, trilobites, Nuia, gastropods and other molluscs, 

brachiopods and bryozoan fragments.  The ‘fragmented fossiliferous packstone’ lithofacies is 

composed of fragmented skeletal material and intraclasts with local planer laminations and 

hummocky cross-stratification.  The ‘whole fossil fossiliferous packstone’ lithofacies is composed 

of primarily whole, unsorted fossils and uncommon intraclasts. The ‘fragmented fossiliferous 

packstone’ lithofacies was deposited in a shallow subtidal environment and represents local 

agitated shoal conditions on the shelf.  The ‘whole fossil fossiliferous packstone’ lithofacies 

separates the inner and outer shelf and occurred below normal wave-base, but was still affected 

by storm wave-base. 

Boundstone 

 The ‘boundstone’ lithofacies is comprised of mud mounds and stromatolites that recur 

vertically with varying thickness.  The mud mounds are mushroom to domal shaped, 15-76 
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centimeters in diameter and 13-71 centimeters in height.  Differential weathering reveals their 

three-dimensional shape as tubular.  Some are coalesced to form sheets and the mounds are 

generally grouped along the same horizon.  The mud mounds have a massive to rare, faintly-

laminated fabric.  Internally the mud mounds contain very few, scattered fossils that include 

Nuia, sponge spicules and pelmatozoan fragments in a micrite matrix.  A lower algal mat layer is 

overlain by spongiform and clotted fabrics.  This colonization sequence is similar to that of 

Ordovician mounds elsewhere in Utah (Church, 1974).  A nodular limestone pinches out against, 

and drapes over most of the mud mounds.  The mud mounds may have grown from a nodular 

limestone or an intraclastic substrate.  A small portion of the mounds are surrounded by the 

‘fragmented fossiliferous packstone’ lithofacies.  At each location a horizon of mud mounds is 

cut by channels filled with fossiliferous packstone.  There is a sharp boundary between the mud 

mounds and the channel rock.  The mud mounds do not display much lateral continuity. From 

the five sections measured two to five mud mound horizons were found in each section. The 

horizons occurred within the first 55-120 meters of the formation except for one that occurred 

16.7 meters from the base of the formation in the Blacksmith Fork Canyon section.   

Float associated with the mud mounds includes isolated, stacked-hemispheroidal 

stromatolites.  Stromatolite morphology suggests that they may have grown on top of the mud 

mounds and extended into shallower, more turbulent water.  Stromatolites also occur at the 

base of the Mantua section and are associated with cryptalaglaminites in the High Creek Trail 

section.  Stromatolites and mud mounds are interpreted to have grown in shoal conditions 

within the shallow subtidal zone.  Their patchy distribution indicates that their formation is 

dependent on local conditions.  Tabular mound shapes indicates that they formed parallel to the 

shore.  Mounds cut by channels may indicate a relative drop in sea level.  
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Calathium/Sponge 

‘Calathium’ are associated with lithistid sponges.  ‘Calathium’ are rare and scattered 

randomly throughout sections and increase in abundance just below the chert zones in the 

upper part of the formation. In the High Creek Trail section this lithofacies forms a prominent 

unit 3.3 meters thick.  Deposition of this “Calathium-sponge’ lithofacies occurred seaward of 

skeletal accumulation in a low energy, deeper, below normal wave-base environment. 

Burrowed Fossiliferous Wackestone/Packstone with Chert 
 

Whole and fragmented fossils, rare intraclasts and peloids are disseminated throughout 

a stylolitic wackestone by bioturbation.  The fossil assemblage is high in variability and low in 

abundance of types.  The upper 33-45 meters are dolostone with bands and blebs of sparite.  

This lithofacies comprises the entire upper informal cherty member with black, gray and white 

chert comprising a maximum of 40-50% of the rock with nodular, banded and anastomosing 

chert.  This lithofacies was deposited in a deeper subtidal environment below normal and most 

storm wave-bases and in local reducing conditions. 

  These lithofacies represent a strom-influenced sequence that was deposited in both 

intershelf shallow subtidal and outershelf deep subtidal enviornments, below mean wave base 

but above stom wave base (Morgan, 1988).  The base of the formation, above the dolostone, 

contains reworked material of the ‘laminated packstone/grainstone’, ‘intraclastic 

packstone/grainstone’ and ‘nodular wackestone/packstone’ lithofacies approximatly 30 meters 

thick.  These lithofacies are not developed extensivly nor do they appear to have a specific 

sequence relationship to each other.  The ‘nodular limestone’ lithofacies was deposited on the 

reworked material and outcrops for approximatly 18-42 meters.  Above the ‘nodular limestone’ 

lithofacies the ‘fragmented fossil packstone’ lithofacies was deposited for 18-48 meters and 
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bioherms were formed after which the ‘nodular limestone’ lithofacies was deposited for 140-

200 meters.  The ‘whole fossil packstone’ lithofacies was deposited for 18-36 meters and in the 

north the ‘Calathium’ lithofacies formed.  On top of this, the ‘burrowed wackestone’ lithofacies 

was deposited for 70-90 meters and a high percentage of chert formed.  The upper 15-50 

meters of the Garden City Formation are dolomitized before an abrupt contact with the Swan 

Peak Formation.  Figure 20 shows a diagram of  the lithofacies relationships and Figure 21 shows 

lithofacies relationships and environments.  

 

Figure 20.  Generalized north-south cross-section of the Garden City Formation using Morgan’s 
measured sections (From Morgan, 1988). 
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Figure 21.  Schematic diagram of the Garden City lithofacies relationships and environments.  
Symbols used are: W-wackestone, M-mudstone, P-packstone, G-grainstone, NWB-normal wave 
base (From Morgan, 1988). 
 
   
Biota 

Gahn (2006) and Sprinkle (2007) have conducted studies of echinoderm evolution and 

ecology in which at least 33 species of crinoids, eocrinoids, edrioasteroids, rhombiferans, 

asteroids, mitrates and cornutes have been found in the Garden City Formation on bioherms in 

Boss Canyon, Utah.  These species add significantly to the known diversity of earliest Ordovician 

echinoderms and have the potential to revel important information about their evolutionary 

and ecological history, making the Garden City Formation an important point in time for the 

evolution of echinoderms.    

The enigmatic Calathium sponge, but possibly receptaculitid (Church, 1991), is found 

scattered throughout the formation and is often associated with lithistid sponges (Morgan, 

1988).   Church (1991) conducted a study of calithids found in the Fillmore Formation where he 
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found that calithids had holdfasts and an open upper end leading to the central cavity; they had 

porous inner and outer walls and the merom outer plates had not been preserved.  In the same 

study Church (1991) stated that the morphology of the calithids studied indicates a structure 

suitable for water circulation similar to that found in filter-feeding organisms such as sponges.   

Clark (1935), Williams (1948) and Ross (1951) identified graptolites from sections of the 

Garden City Formation in Logan Canyon.  Graptolites were found mostly from the lower part of 

the formation.  Seven genera were identified with dendroid graptolites being the most common.  

Ross (1951) identified more than eighty species of trilobites, representing twenty-four 

genera.  The trilobites and brachiopods were used to identify twelve faunal zones (A-L) within 

the formation and were arranged according to their geologic age.  As defined by these faunal 

zones the upper part of the formation is assigned to the Chazyan Epoch; the Canadian-Chazyan 

boundary occurs between Zones K and L; lower beds (zones A-D) are Gasconade in age  

Landing (1981) studied conodonts of the Upper Cambrian St. Charles Formation and 

Early Ordovician Garden City Formation.  The study incorporated conodont and trilobite faunal 

zones which allowed the contact between the two formations to be defined as a disconformity. 

Up to 12 meters of erosion of the St. Charles Formation occurred before deposition of the 

Garden City Formation.   

Other biota in the formation includes ostracods, gastropods, cephalopods, bivalves, 

bryozoans and various algae and bacteria (Stokes, 1986). 
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BIOHERMS OF BOSS CANYON 

 
Location of Study Area 
 

The Garden City Formation bioherms are best exposed in Boss Canyon (UTM: 445559 m 

E, 4649849 m N WGS84).  Boss Canyon is located on the western flank of the Bear River Range in 

T16S, R41E, Egan Basin, ID 7.5’ quadrangle, 1969, Sec. 26, T16S, R41E, Mapleton, ID 7.5’ 

quadrangle, 1969, and T15 N R41E, Naomi Peak, UT 7.5’ quadrangle, 1969 (Figure 22).   

 
Figure 22.  Location of Study Area in Naomi Peak quadrangle (U.S. Geological Survey, 1969). 

 
 

The lower 55 meters of the Garden City Formation are not exposed in Boss Canyon and 

the lowest observable part of the Formation present starts at the bioherm horizon.  This unit 

occurs 55-120 meters from the base of the formation (Morgan, 1988).  This lower bioherm 

horizon lies in the Naomi Peak quadrangle while the Garden City Formation also outcrops in the 

Mapleton, Idaho quadrangle.  Up section at least two other bioherm horizons occur, although 

these bioherms are not as large as those found in the lower bioherm horizon.   In the lower 
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bioherm horizon, the bioherms are weathering out in relief and their topography is similar to 

what it would have been on the sea floor during the Early Ordovician (Figure 23).   

 

 
Figure 23.  Field study site in Boss Canyon, Utah.  Individual bioherms can be distinguished. 

 

Methods 

In order to study the bioherms, measurements, samples and pictures were taken from 

the bioherm horizon of the Garden City Formation in Boss Canyon.  Weather was a limiting 

factor on fieldwork and data collection.   Height, length, width and orientation data were taken 

on twenty-six mounds.  The bioherms were chosen randomly to avoid bias toward certain 

bioherm shapes and dimensions.  Measurements were taken with a BOSCH DLR130 Distance 

Measurer.  Orientations were taken on the long axis of the mounds using a Brunton compass.  

Pictures were taken to characterize the bioherms and the fossils contained on and near the 
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bioherms.  Sample collection was aimed toward characterizing the five rock types associated 

with the bioherms horizon.  These rock types include the rock the bioherms were established 

on, two different rock types that onlap onto the bioherms, the bioherms themselves and the 

overlying rock.  Samples were taken of the first four of these five rock types as well as from the 

top, middle and bottom of the bioherms to characterize how the bioherms changed over time.  

Samples were collected randomly within these lithologies.  Samples were used to better 

describe the rock types in the bioherm horizon and to make 30 thin sections.  Thin sections were 

point counted with 300 points which were used to characterize the biota and sediment 

contained in the bioherms.     

Bioherm Characteristics 
 

The bioherms are in general 0.5-1.5 meter in height, 1-8 meters in width, and 2-16 

meters in length.  Orientation of the bioherms is on average 45˚ relative to north, which is 

similar to the 31˚ orientation of the bioherms in Western Utah (Church, 1974). These bioherms 

were likely oriented parallel to the trend of the Early Ordovician shoreline.  The five distinct rock 

unit types that occur in the bioherm horizon are termed the basal unit, the onlap unit, the 

intraclastic unit, the bioherm unit and the overlying unit (Figure 24). 
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Rock Unit Types 

 
Basal Unit 

This rock type is a light gray, bioturbated, highly dolomitized, pelletal wackestone with 

sparse trilobite fragments, Nuia and quartz silt grains (Figure 25).  The rock is highly stylolitic 

with the stylolites weathering out tan.  During deposition the stylolites were thin layers that 

were probably higher in silt content.  The stylolites have been replaced with dolomite.  This unit 

may have been deposited in a deeper water setting as indicated by the low diversity of fossils 

and lack of Intraclasts.   

 

 
Figure 25.  Basal unit overlain by bioherm unit. 
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Onlap Unit 
 

The onlap unit is composed of a dark gray, partially crystalline, dolomitized mudstone 

with pellets, intraclasts and quartz silt grains (Figure 26).   Fossils can be seen in thin section and 

in hand specimen.  Fossils include brachiopod and trilobite fragments, crinoid stems, 

gastropods, nautiloids, ostracods, sponges, Calathium, algae and Nuia.  This unit is deposited on 

the basal unit and onlaps up onto the bioherm unit.  This unit also occurs in channels between 

the bioherm unit (Figure 27).  This unit was deposited in a shallow water environment, above 

normal wave base, as indicated by the high diversity of fossils and intraclasts.   

 

 
Figure 26.  Onlap unit deposited up against bioherm unit. 
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Figure 27.  Channels between the bioherm unit filled with the onlap unit. 

 
 
Intraclastic Unit 
 

The intraclastic unit occurs within the onlap unit.  The matrix is a dark gray while the 

intraclasts are a light gray.  The unit is a partially dolomitized, intraclastic wackestone with 

sparse trilobite fragments, Nuia and quartz silt grains (Figure 28).  Intraclasts are elongate, 

rounded to sub-rounded, composed of pelletal micrite and have dimensions of 3-15 millimeters 

and 2-7 millimeters.  This unit was deposited in a shallow water environment, above normal 

wave base, as indicated by the high percentage of Intraclasts.   
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Figure 28.  Intraclastic unit deposited within onlap unit. 

 
 
Bioherm Unit 
 

This unit consists of light gray mudstone and algal wackestone with a pelletal micrite 

matrix (Figure 29).  Some of the unit is partially to highly dolomitized and can be partially 

crystalline.  Biota in the bioherm unit includes sponges, Calathium, trilobite fragments, 

brachiopods, gastropods, ostracods, echinoderms, algae and Nuia.  Nuia may be the source of 

some of the pellets (Morgan, 1988).  The unit is weathering out in relief.  Bioherms include 

thrombolites and stromatolites.  The bottom of the bioherm unit contains the algal wackestone 

while the top of the bioherm unit contains sponges and Calathium.  Fossils of sponges, 

Calathium, echinoderms, trilobite fragments and gastropods can be seen on the bioherm 

surfaces.  This unit was deposited in a shallow water environment, above normal wave base, as 

indicated by the formation of the bioherms themselves. 
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Figure 29. Top surface of the bioherm unit. 

 
 
Overlying Unit 
 

The overlying unit was not studied in detail with thin sections but the unit was studied in 

the field.  This unit is a medium gray limestone and has strong evidence for being deposited in a 

high-energy environment, proximal to the shore, as it contains intraclasts, ripple marks and 

dune features (Figure 30).   
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Figure 30.  A sink hole displaying some of the rock unit types. The bioherm unit is the light gray 

rock in the picture and the overlying unit is the medium gray limestone on top.  Notice the dune 
shape of the overlying rock indicating a high-energy, shallow environment.   

 
     
Stratigraphy 
 
 From the five rock unit types and their spatial relationships, relative sea level can be 

determined (Figure 24).  The basal rock unit represents a time of moderate sea level, with the 

top surface of the basal rock unit signifying a transgressive surface.  The bioherm unit 

corresponds to a time of rising sea level.  Within the bioherm unit a maximum flooding surface 

occurs signaling the shift from a transgression to a regression.  This regression is represented by 

a shallowing upward package from the bioherm unit through the overlying unit.  Together these 

five rock unit types most-likely represent a few tens of thousands of years.  

Paleoecological Setting 
 

When the basal unit was deposited trilobites and algae dominated the biota.  As sea 

level transgressed conditions allowed for the formation of the bioherm unit.  The main frame 

builders of these bioherms were algae (Figure 31), Calathium (Figures 32, 33, 34) and sponges 

(Figures 35, 36).   
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Figure 31.  Two stromatolites within the bioherm unit. 

 
 

 
Figure 32.  Longitudinal view of Calathium on the bioherm unit.  Notice how the Calathium is 

narrower at the bottom then the top. 
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Figure 33.  Surface view of Calathium growing on the onlap unit. 

 
 

 
Figure 34.  Longitudinal view of part of a Calathium specimen on the bioherm unit.  Notice the 

mesh network.   
 
 



50 
 

 
Figure 35.  Two sponges growing on the bioherm unit. 

 
 

 
Figure 36.  A sponge growing on the bioherm unit. 

 
 

During the Early Ordovician, when the shallow, passive-margin sea covered the area, 

water conditions allowed algae to stabilize the substrate of the basal unit.  The algae began to 

trap and bind sediment making favorable conditions for other biota to live in the area.  Sponges 
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and Calathium joined the algae and, acting as baffles, trapped sediment, building up the 

bioherms.  Other organisms, such as trilobites, brachiopods, echinoderms, gastropods (Figure 

37), ostracods and nautiloids (Figure 38) found at the site, form the group of accessory 

organisms that found the bioherms a favorable environment to live on and around.  As the 

bioherms grew they shed sediment that was deposited adjacent to the bioherms, forming the 

onlap unit.  The environment was of a higher energy as observed by the intraclastic unit.   

 

 
Figure 37.  A gastropod on the onlap unit.  Several centimeters in diameter.    
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Figure 38.  Straight shelled nautiloids seen on the onlap unit.  

 
 

 Higher energy conditions and a shallower sea level caused the bioherms to cease  
 
growth as sea level continued to regress and the overlying unit was deposited.   
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DISCUSSION 
 
 

Warm, shallow-water organic buildups of the Early Ordovician were biotically relatively 

simple.  The main frame-building organisms were lithistid sponges, Calathium and algae.  

Lithistid sponges and Calathium acted as baffles, trapping sediment while algae acted as the 

binding organism.  Accessory organisms included brachiopods, cephalopods, trilobites, 

echinoderms, gastropods, ostracods, algal remains and conodonts.   

The organic buildups were relatively small-scale structures that never attained 

appreciable height above the sea floor substrate.  Formation of organic buildups was dependent 

on local conditions.  Organic buildups were typically 1-3 meters in height, several meters in 

width, with length variable, depending on location.  Some organic buildups did attain 

appreciable size.  The largest organic buildup, 20 meters in height and 53 meters in length, is 

found in the Arbuckle Group in Oklahoma.  Organic buildup extent was dependent on the local 

conditions where the organic buildups were formed.  Some organic buildup horizons extend for 

hundreds of meters, as in western Utah, while others had a limited lateral extent, a few 10s of 

meters, as in Northern Utah.   

Organic buildups are generally massive to faintly laminated and are composed of 

mudstone to wackestone to packstone and boundstone limestone.  Large in situ organisms are 

found on the organic buildups, while internally they are found as skeletal components.  Small 

stromatolite structures are found associated with the organic buildups.  Mound rock is generally 

light colored and has a sharp contact with off-mound, darker-colored limestone.  The 

intermound rock is generally thin bedded and is composed of skeletal packstone to grainstone, 

except in the Garden City Formation where it is a partially crystalline mudstone to intraclastic 

wackestone with skeletal components.   Intraclasts are the most common non skeletal 
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component.  Channels dissect the organic buildups.  Channels are less than a meter wide and 

can be several meters deep.  Packstones fill the channels in some formations and, in the Garden 

City Formation, partially crystalline mudstones fill the channels.  Limestones lie above and below 

the organic buildup horizons except in western Utah where shales lie above and below.  These 

organic buildups grew in shallow-water conditions, much like those of the present day Bahama 

Banks.   

       Cold-water organic buildups from Russia differ from warm-water organic buildups by their 

general morphology.  These cold-water organic buildups have a calcareous-clay composition.  

The mound core is composed of clay topped by a carbonate cap and overlain by a hardground 

surface.  The mounds are several meters long and generally less than half a meter in height.  

Formation of the organic buildups was by dense concentrations of sessile siliceous sponges.  

Accessory organisms included brachiopods, echinoderms, ostracods, pelmatozoans, bryozoans 

and conodonts.    
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SUGGESTIONS FOR FUTURE WORK 
 
 

 Additional studies that need to be conducted on Early Ordovician Organic buildups 

include identifying organic buildups on other parts of the Laurentia and Siberia continents as 

well as other land masses of the Early Ordovician to better characterize organic buildups of this 

time period.    

Additional studies that need to be conducted on the Garden City Formation and the 

bioherms include a study on the sequence stratigraphy of the formation.  A sequence 

stratigraphic study would identify other bioherm horizons and allow for the understanding of 

how the bioherms changed over time and what is controlling their formation and cessation of 

growth.  Further study needs to be conducted on the lower bioherm unit exposed in Boss 

Canyon.  Individual bioherms need to be mapped in order to understand their spatial 

distribution and extent.  Mapping could be conducted using an RTK unit or remotely-sensed 

imagery.  A more in-depth study on the biota contained in and on the bioherms needs to be 

conducted as this study was limited by field weather conditions.  
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CONCLUSIONS 
 
 

 Organic buildups of the Early Ordovician had very similar characteristics although some 

were formed in warm shallow waters and others in cold waters.  The main frame building 

organisms of organic buildups consisted of algae, lithistid sponges and Calathium in present day 

North American while in Russian they consisted of sessile sponges.  The organic buildups 

provided a favorable environment for a diverse assemblage of accessory organisms that 

included brachiopods, ostracods, echinoderms, gastropods, cephalopods and trilobites.  Most 

organic buildups were relatively small structures that never attained appreciable height above 

the sea floor.  Variations between organic buildups occurred between formations as organic 

buildup growth and development was dependent on local conditions.     
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APPENDIX A 
Bioherm Measurements 

Taken from randomly-chosen bioherms within the bioherm horizon in Boss Canyon. 
 

 
Height (m) Length (m) Width (m) Orientation (° relative 

to north) 
Type 

0.92 6.77 3.68 ~ Complex 
0.57 2.60 2.20 45 Single 
0.62 2.23 1.68 45 Single 
1.27 7.10 5.21 50 Complex 
1.27 3.54 2.46 40 Single 
0.72 2.79 1.36 55 Single 
1.62 16.3 7.98 ~ Complex 
1.30 5.17 2.74 45 Complex 
1.22 2.43 1.69 30 Single 
1.47 6.32 2.74 10 Single 
1.02 8.27 4.83 5 Complex 
1.20 2.35 1.53 50 Single 
1.62 11.24 5.35 55  Complex 
0.90 2.08 1.18 50 Single 
0.32 2.81 1.97 ~ Single 
0.62 2.66 1.51 40 Single 
1.12 3.1 1.59 40 Single 
0.92 1.66 1.15 45 Single 
0.82 2.13 1.56 40 Single 
1.02 1.74 1.17 45 Single 
0.79 2.48 1.50 35 Single 
1.52 2.37 1.94 50 Single 
1.07 2.89 2.04 40 Single 
0.52 2.58 1.43 55 Single 
0.57 1.94 0.90 50 Single 
1.42 12.7 3.12 35 Complex 
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APPENDIX B 
Point Count Data 

See Appendix C for the location within the bioherm horizon thin sections were collected from.  
 

Allochems BC 1 BC 2 BC 3 BC 4 BC 5 BC 6 
Matrix 105 141 235 199 207 287 

Stylolite 0 0 4 0 10 2 
Echinoderm 1 0 0 0 0 1 
Brachiopod 3 1 1 0 0 1 
Gastropod 3 2 0 0 0 0 
Trilobite 8 17 0 2 2 4 

Algae 0 1 0 0 0 0 
Intraclast 0 0 4 90 0 0 

Pellet 0 12 0 0 71 0 
Nuia 2 5 5 2 8 2 

Quartz Silt 1 1 0 2 2 1 
Sponge Spicule 0 0 0 0 0 0 

Sponge 0 0 15 0 0 0 
Ostracod 0 0 0 0 0 0 

Blocky Calcite Pore Fill 2 0 0 0 0 1 
Blocky Calcite Recrystallization 175 120 36 5 1 1 

 
Allochems BC 7 BC 8 BC 9 BC 10 BC 11 BC 12 

Matrix 289 287 267 264 292 293 
Stylolite 5 5 5 0 1 4 

Echinoderm 0 2 0 0 0 0 
Brachiopod 0 0 0 0 0 0 
Gastropod 0 0 0 0 0 1 
Trilobite 1 1 1 0 1 1 

Algae 0 0 0 31 0 0 
Intraclast 0 0 0 0 0 0 

Pellet 0 0 0 0 0 0 
Nuia 0 1 0 0 1 0 

Quartz Silt 2 3 1 5 2 1 
Sponge Spicule 0 0 0 0 0 0 

Sponge 0 0 0 0 0 0 
Ostracod 0 0 0 0 0 0 

Blocky Calcite Pore Fill 2 0 0 0 0 0 
Blocky Calcite Recrystallization 1 1 26 0 3 0 
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Allochems BC 13 BC 14 BC 15 BC 16 BC 17 BC 18 
Matrix 278 281 292 293 294 179 

Stylolite 5 7 4 3 0 0 
Echinoderm 2 1 0 1 1 0 
Brachiopod 0 0 0 0 0 1 
Gastropod 2 0 0 0 0 0 
Trilobite 1 2 1 2 1 1 

Algae 0 0 0 0 0 0 
Intraclast 0 0 0 0 0 0 

Pellet 0 0 0 0 0 0 
Nuia 2 0 0 0 1 0 

Quartz Silt 2 1 1 1 1 0 
Sponge Spicule 1 0 0 0 0 0 

Sponge 0 0 0 0 0 113 
Ostracod 2 0 1 0 0 0 

Blocky Calcite Pore Fill 0 0 0 0 0 0 
Blocky Calcite Recrystallization 5 2 1 0 2 6 

 
Allochems BC 19 BC 20 BC 21 BC 22 BC 23 BC 24 

Matrix 268 286 283 294 171 295 
Stylolite 1 8 1 0 4 0 

Echinoderm 0 1 0 0 1 0 
Brachiopod 0 0 0 0 5 0 
Gastropod 0 0 0 0 25 0 
Trilobite 2 1 1 1 3 1 

Algae 8 0 0 4 0 0 
Intraclast 0 0 0 0 0 0 

Pellet 0 0 0 0 0 0 
Nuia 0 1 0 0 2 0 

Quartz Silt 6 1 1 1 0 0 
Sponge Spicule 0 0 0 0 0 0 

Sponge 0 0 0 0 0 0 
Ostracod 0 0 1 0 0 0 

Blocky Calcite Pore Fill 0 0 0 0 0 0 
Blocky Calcite Recrystallization 15 2 13 0 89 4 
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Allochems BC 25 BC 26 BC 27 BC 28 BC 29 BC 30 
Matrix 283 287 297 289 297 135 

Stylolite 5 6 0 0 0 7 
Echinoderm 0 0 0 0 0 0 
Brachiopod 0 0 0 1 0 2 
Gastropod 0 0 0 0 0 4 
Trilobite 1 1 1 1 1 2 

Algae 0 0 0 0 0 0 
Intraclast 0 0 0 0 0 1 

Pellet 0 0 0 0 0 23 
Nuia 2 0 0 0 0 0 

Quartz Silt 0 1 1 0 1 0 
Sponge Spicule 0 0 0 1 1 0 

Sponge 0 0 0 0 0 0 
Ostracod 1 1 0 0 0 1 

Blocky Calcite Pore Fill 0 0 0 0 0 0 
Blocky Calcite Recrystallization 8 4 1 8 0 85 
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APPENDIX C 
Thin Section Descriptions 

Refer to Figure 24 for the location within the bioherm horizon of the units.  
 

BC1 
Onlap unit.  Partially crystalline and dolomitized mudstone with sparse echinoderm, brachiopod, 
gastropod and trilobite fragments, Nuia and quartz silt grains.  Matrix is pelletal. 
 
BC2 
Onlap unit.  Partially crystalline, highly dolomitized mudstone with sparse brachiopod and 
trilobite fragments, algae, Nuia, pellets and quartz silt grains.   
 
BC3 
Onlap unit.  Partially crystalline and dolomitized mudstone with sparse brachiopod fragments, 
Nuia, intraclasts and a sponge.  Sponge is 15x9 millimeters.   Matrix and intraclasts are pelletal. 
 
BC4 
Intraclastic unit.  Partially dolomitized, intraclastic wackestone with sparse trilobite fragments, 
Nuia and quartz silt grains.  Intraclasts are elongate, rounded to sub-rounded, composed of 
pelletal micrite and have dimensions of 3-15 millimeters and 2-7 millimeters. 
  
BC5 
Basal unit.  Highly dolomitized, pelletal wackestone with sparse trilobite fragments, Nuia and 
quartz silt grains.  Highly stylolitic.   
 
BC6 
Bioherm unit bottom.  Mudstone with sparse echinoderm, brachiopod and trilobite fragments, 
Nuia and quartz silt grains.  Matrix is pelletal.  
 
BC7 
Bioherm unit bottom.  Partially dolomitized mudstone with sparse trilobite fragments and 
quartz silt grains.  Matrix is pelletal. 
 
BC8 
Bioherm unit bottom.  Partially dolomitized mudstone with sparse echinoderm and trilobite 
fragments, Nuia and quartz silt grains.  Matrix is pelletal. 
 
BC9 
Bioherm unit bottom.  Mudstone with sparse trilobite fragments and quartz silt grains.  Matrix is 
pelletal.  
 
BC10 
Bioherm unit bottom.  Algal wackestone with sparse quartz silt grains.  Matrix is pelletal.   
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BC11 
Bioherm unit bottom.  Mudstone with sparse trilobite fragments, Nuia and quartz silt grains.   
Matrix is pelletal. 
 
BC12 
Bioherm unit middle.  Mudstone with sparse gastropod and trilobite fragments and quartz silt.  
Matrix is pelletal. 
 
BC13 
Bioherm unit middle.  Partially dolomitized mudstone with sparse echinoderm, gastropod, 
ostracod and trilobite fragments, sponge spicules, Nuia and quartz silt.  Matrix is pelletal. 
 
BC14 
Bioherm unit middle.  Partially dolomitized mudstone with sparse echinoderm and trilobite 
fragments and quartz silt grains. Matrix is pelletal. 
 
BC15 
Bioherm unit middle.  Mudstone with sparse ostracod and trilobite fragments, Nuia  and quartz 
silt grains.  Matrix is pelletal. 
 
BC16 
Bioherm unit top.  Mudstone with sparse echinoderm and trilobite fragments and quartz silt 
grains.  Matrix is pelletal. 
 
BC17 
Bioherm unit top.  Mudstone with sparse echinoderm and trilobite fragments, Nuia and quartz 
silt grains.  Matrix is pelletal. 
 
BC18 
Bioherm unit top.  Partially dolomitized sponge bafflestone with sparse brachiopod and trilobite 
fragments.  Matrix is pelletal.  Sponges are 16x22 millimeters and 5x10 millimeters. 
 
BC19 
Bioherm unit top.  Mudstone with sparse trilobite fragments, algae, Nuia and quartz silt grains.  
Matrix is pelletal. 
 
BC20 
Bioherm unit.  Mudstone with sparse echinoderm and trilobite fragments, Nuia and quartz silt 
grains.  Matrix is pelletal. 
 
BC21 
Bioherm unit.  Mudstone with sparse echinoderm, ostracod and trilobite fragments  and quartz 
silt grains.  Matrix is pelletal. 
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BC22 
Bioherm unit.  Partially dolomitized mudstone with sparse trilobite fragments, algae and quartz 
silt grains.  Matrix is pelletal.  
 
BC23 
Bioherm unit.  Partially crystalline wackestone with sparse echinoderm, brachiopod, gastropod 
and trilobite fragments and Nuia.   Matrix is pelletal. 
 
BC24 
Bioherm unit.  Highly dolomitized mudstone with sparse trilobite fragments.   Matrix is pelletal.  
 
BC25 
Bioherm unit.  Partially dolomitized mudstone with sparse ostracod and trilobite fragments and 
Nuia.   Matrix is pelletal. 
 
BC26 
Bioherm unit.  Mudstone with sparse ostracod and trilobite fragments and quartz silt.  Matrix is 
pelletal. 
 
BC27 
Bioherm unit.  Highly dolomitized mudstone with sparse trilobite fragments and quartz silt 
grains.  Matrix is pelletal. 
 
BC28 
Bioherm unit.  Mudstone with sparse brachiopod and trilobite fragments and sponge spicules.  
Matrix is pelletal. 
 
BC29 
Bioherm unit.  Mudstone with sparse trilobite fragments, Nuia and quartz silt grains.  Matrix is 
pelletal. 
 
BC30 
Bioherm unit.  Partially crystalline and highly dolomitized mudstone with sparse ostracod, 
gastropod and trilobite fragments and pellets.    
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