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A KERNEL QUANTILE FUNCTION ESTIMATOR FOR FLOOD 

FREQUENCY ANALYSIS 

Young-ll Moon and Upmanu Lall 

Utah Water Research Laboratory 

Utah State University, Logan, UT 84322-8200 

ABSTRACT 

A kernel estimator (KQ) of the quantile function is presented here. Boundary kernels 

are used for extrapolation of tail quantiles. The bandwidth of the estimator is chosen using 

an automatic, "plug-in" method. Confidence intervals for the estimated quantile are estimated 

by bootstrapping. Comparisons of the estimator with selected tail probability estimators are 

offered. The KQ estimator presented here is shown to be competitive with other estimators. 

INTRODUCTION 

An objective of flood frequency analysis is to obtain an estimator of flood quantile 

magnitude (QT) for one or more locations on a river system. Correspondingly, a flood 

magnitude may be specified and an estimate of its return period (T) desired. In this paper, 

our objective was to estimate the flood quantile relationship using data from a gaged site. 

Traditionally an annual maximum frequency model f(x;O) is proposed and calibrated from the 

N-year record of annual maximum flood peaks at a site. The quantile OT is then estimated as 
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(1) 

1\ 1\ 1\ 

where 8 1,82, and 83 are estimates of location, scale, and shape parameters of a selected 

distributional form f(x;8), and y,-{83) is a standardized variate value of return period T from 

f(x;8). 

Past and current research into methods of flood quantile estimation at a gaged site has 

concentrated mostly on the statistical aspects of the problem, based on the assumption that the 

sample of flood observations comes from a population with a known probability density 

function (pdf). However, no unique pdf or procedure is always best. Classical parametric 

estimation procedures are also most heavily weighted towards fitting the main body of the 

assumed probability density, and accord a negligible weight to the estimation of the tail of the 

distribution. Even if the parametric pdf fits well, considerable uncertainties for the magnitude 

of the floods at the frequencies of interest exist. Often, discriminating between different 

parametric probability models for the sample sizes available using standard tests such as the 

Chi-square and the Kolmogrov-Smimov (e.g., Kite 1977) is difficult. Such tests are rather 

insensitive to tail behavior. This is an onerous mismatch in objectives. 

Annual maximum flows at a site may be due to different causes (e.g., snowmelt, 

rainfall runoff, cyclonic activity). This leads to statistically heterogeneous populations or 

mixture distributions. The identification of finite mixtures of arbitrary or unknown 

populations from short records (typically n= 20-70) is not an attractive proposition and is not 

usually pursued. Webb and Betancourt (1992) tried to develop storm type classifications, 

separate events on that basis, fit a parametric pdf to each storm type, and fmally combine the 

estimates. While this is a good demonstration that floods may arise from a mixture of 

processes, such a procedure is not easily implemented by a field engineer. The tail behavior 

of a mixture is often dictated by the tail behavior corresponding to the distribution in the 

mixture having the heaviest tail and by the relative proportion of events that correspond to 

each component. Methods that are robust in such situations (mixtures), are parsimonious and 

can give reasonable answers for a limited extrapolation of the data (e.g., 1oo-year flood), are 
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THE KERNEL QUANTILE ESTIMATOR 

The Kernel Quantile estimator (KQ) is based on a kernel smoothing of the empirical 

quantile function of the data The empirical quantile function is prescribed through a standard 

"plotting position formula". Let Yi, i=l...n, be the observed sequence of n annual maximum 

flows, arranged in ascending order. Let Pi, i=l...n, be the corresponding plotting positions 

estimated using a standard formula (e.g., the Weibull, Beard or Adamowski formula). Here 

we use Adamowski's (1981) formula: 

i - 0.25 
Pi = n + 0.5 (2) 

The empirical quantile function x(pi) is defmed by the sample values Yi corresponding 

to each Pi. The quantile function x(p) to be estimated is defmed as the event magnitude 

corresponding to the pth quantile. 

For flood frequency analysis, we are interested in the upper quantiles, i.e., p between 

0.5 and 1, and in particular, for 0.9Sp<1. Typical sample sizes for flood frequency analysis 

range from 20 to 100. An extrapolation of the data to P>Pn is consequently needed. 

The KQ estimator is based on the Gasser-Miiller (1984) kernel regression estimator. It 

considers a convolution of the empirical quantile function with a kernel or weight function, as 

illustrated in Figure 1. 

where si is an interpolating sequence of the Pi, given as si=(Pi+Pi+l)12, i=l...n-l, sO=O, 

sn=l; h is a bandwidth associated with the point p; and K(.) is a kernel or weight function, 

and p e [0,1]. 

The kernel function K(.) is usually taken to satisfy the requirements, jK(t)dt = 1, K(t) = 
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- K(t), and iK2(t)dt < a, i.e., it is a symmetric probability density with finite variance; where 

t = (P-u)lh. Miiller(I988) points out that while different kernels pelfonn similarly in tenns of 

Mean Square Error (MSE), kernels of higher order lead to estimated functions with a higher 

degree of differentiability. A kernel of order p has finite moments up to order p, and 

vaDishing moments of order higher than p. 

. It is preferred that K(.) have comp~ct support to minimize the effect of the bounded 

domain (O<p<I) on the nonparametric estimate of the quantile function. A specialized 

boundary kernel that corresponds to the kernel used in the interior is needed within a 

bandwidth of the boundary to take care of the bias in the weighted convolution in the 

boundary region. The interior kernels provide a weight sequence that is suitable for 

interpolating the observed data, while the boundary kernels provide extrapolation. Milller 

(1991) develops boundary kernels corresponding to specific interior kernels. Here we use 

the Epanechnikov kernel in the interior (that is MSE optimal for order 2) and the 

corresponding Miiller boundary kernel. These kernels are: 

Epanechnikov kernel: K(t) = 0.75(1 - t2) (4) 

Boundary kernel corresponding to the Epanechnikov kernel: 

I 2 I 
K,.(q,l) = 6(l+t)(q-l) 1 {I + 5[:~j + 10 1-\ II 

(1+q)3 t (1+q) I (5) 

where t=(p-Pi)lh; KJO-p)lh,t} is the boundary kernel used for the right boundary, i.e., if 

pE [I-h,I1, and q=(I-p)lh; and ~(plh,t) is the boundary kernel used for the left boundary, 

Le. if pE [O,h], and q=plh; O<q<I and -IS; t S;1. 

Note that for q=I, the boundary kernel (5) is identical to the Epanechnikov kernel (4). 

The kernel quantile estimation process is illustrated through the following example. With y(i) 

given by the 71 year record of annual maximum floods for the Santa Cruz River from Webb 

and Betancourt (1992), (see Table 1), and p(i) given by equation 2, consider the estimation 

of a quantile at p = 0.8 using the Epanechnikov kernel function K(t) with the bandwidth 

h=O.064. The values of y(i) for 0.736Sps;Q.864 will contribute to the estimate. The kernel 
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estimate for x(0.8) is not in the boundary area in Figure 1. The curve in Figure 1 is the 

Epanechnikov kernel function, and the weight wi is the area under this kernel around the i th 

point (Le., from si-l to si)' The quantile estimate is: 

x(0.8)=0.144 y(53) + 0.071 y(54) + 0.116 y(55) + 0.146 y(56) + 0.161 y(57) + 0.160 

y(58) + 0.144 y(59) + 0.112 y(60) + 0.065 y (61) + 0.010 y(62)=282 m3/s. (6) 

20 

15 I.!. =ecbnikOV Kernel I 
y(i) 10 

5 

• • • • 
0 
0.70 0.75 0.80 0.85 0.90 

P 

Figure 1. Kernel estimate for x(0.8), y(i) in hundreds of cubic meter per second. 

However, if we are interested in x(O.99) then we are in the boundary region (0.936 

<p<l) ,since the point of estimate lies within a bandwidth (h=O.064) of the right boundary. 

In this case we are extrapolating the empirical quantile function, and the weight sequence or 

kernel used has to be modified. The interior (4) and the boundary kernel (5) are shown for 

q=O.15625 in Figure 2, corresponding to an h of 0.064 and p of 0.99. The quantile x(O.99) 

for Santa Cruz's River data with 71 data points without considering the boundary effect is: 

x(0.99)=O.OOOly(66) + 0.037y(67) + 0.092y(68) + 0.130y(69) + 0.154y(70) + 0.202y(71) 

= 524 m3/s. (7) 

This is a biased estimate since the kernel centered at p=O.99 extends past 1.0, outside 

the domain of interest, and the data values (i.e. p(i» are not symmetrically distributed around 
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the point of estimate. This situation is remedied by the boundary kernel, which is defmed 

over the domain of interest, and also accounts for the asymmetric data distribution relative to 

p. The resulting estimate is: 

x(O.99) = -O.OOly(66) - O.177y(67) - O.lOSy(68) + O.24Sy(69) + O.S4Sy(70) + 0.494y(71) 

= 1094 m3/s. (8) 

25 

15 

y(i) 5 

-5 

-15 
0.90 0.95 

/'-'\ 
/ \ 

I \ 
I .' 
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I \ 
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• Data 
- Interior Kernel 
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Figure 2. Kernel estimate for x(O.99), y(i) in hundreds of cubic meter per second. 

When using the interior kernel, the estimate x(O.99) is formed using a weighted 

moving average of the empirical quantile function, with a symmetric weighting scheme about 

the point of estimate. In the situation where extrapolation is needed, this yields an estimate 

that is effectively centered somewhere in the span of the observations, and not at p=O.99. 

Consequently, the estimate of x(O.99) is lower than the empirical quantile corresponding to 

p(i)=O.976. However, when the asymmetry is accounted for using the boundary kernel, a 

much more reasonable estimate is obtained. 

The kernel quantile estimate is sensitive to the choice of the kernel and the choice of the 

bandwidth.· Examination of an expansion of the MSE of the kernel estimator, in terms of a 
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Taylor series, suggests (see HardIe (1991» that sensitivity to the bandwidth is perhaps an 

order of magnitude more important than kernel choice. We observe from the example above 

that bandwidth variation has the effect of admitting a different number of upper order 

statistics into the KQ estimate. Note also that the KQ estimator differs from traditional tail 

probability estimators in that a sliding neighborhood around the desired point of estimate is 

used, rather than a preset number of upper order statistics. In the next section we discuss 

how an MSE optimal bandwidth can be estimated, once a kernel function has been specified. 

Bandwidth Estimation 

The bandwidth or smoothing parameter h determines the roughness or smoothness of 

the estimated function. Smaller bandwidths result in fewer data points contributing to the 

estimate at any point, and hence a rougher on more bumpy estimator. Larger bandwidths 

however allow averaging over a larger data space resulting in a smoother estimator. As 

bandwidth increases, bias increases and variance decreases. For pointwise consistency of 

the estimate, the bandwidth must get smaller as the sample size increases. Consider the 

estimation problem at the data points as : 

A 
x.(p.) = x(p.) + E. (9) 

1 1 1 1 

where Ej is a residual term. 

The asymptotic mean squared error (up to the leading terms in the Taylor series 

expansion) of KQ is seen to be (Miiller, 1991): 

where Kx(q,t) = ~(1,t) for interior, ~p::;l-h; and is given by equation 5 in the boundary 

" 2 regions, x (p) is the second derivative of x(P); cr =var(Ej). 
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The first term in equation 10 provides an estimate of the estimation variance, while the 

second term corresponds to the bias squared. Some methods to find an optimal bandwidth 

that balance bias and variance include the Generalised Cross Validation (GCV) method 

proposed by Craven and Wahba (1979) and the Plug-In method by Gasser et al. (1991) as 

well as local least absolute deviation and least squares cross validation aimed at minimizing 

the, mean square error of x(P). We found that Gasser et al.'s Plug-In method with an 

Epanechnikov kernel worked better than the others in our Monte Carlo tests. 

Ali optimal global bandwidth (Gasser et al., 1991) that minimizes the Average Integrated 

MSE over the domain (O<p<I), is given by: 

{ J
o.2 

1.~ ~ cJl 
n c2 1 2 

h = f{x"(p)} dt 

° 
(11) 

1 1 

where c
1 

= 2 f Kx(q,t)2 dt and c
2 

= 4 J K,.(q,t)~ dt 

-1 -1 

The Gasser et al. plug in method seeks to recursively estimate h through kernel estimates of 

1 2 
the a priori unknown term J {x"(p)} dp. Such an estimator ?ip; h2) for x"(p)is 

(12) 

where Dx{q,(p-u)/h2} is an optimal fourth order kernel suitable for estimating the second 

derivative of the target function (see Muller (1991», and h2 is a bandwidth appropriate for 

estimating the second derivative of the target function. 

Using asymptotic arguments, Gasser et al. (1991) specify the bandwidth h2 = h n-

1110. They show that this leads to convergence rates of the order of n-ll2. The residual 
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variance (12 is also unknown a priori. However, a number of nonparametric estimators for 

a2 are available. We used the following estimator given by Gasser et al. (1986): 

,,2 1 0-1 2_2 
(1 =-2LC. E. 

n- i=2 1 1 

where 

E. = a.x(p. 1) + b.x(p. 1) - x(p.) 
1 1 1- 1 1+ 1 

2 2 2 -1 
and a. = (P. I-pJ/(P. I-P. 1) ; b.=(p.- p. 1)1 (p. I-P. 1) ; c. = (a. +b. +1) 

1 1+ 1 1+ 1- 1 1 1- 1+ 1- 1 1 1 

The following procedure is followed to estimate the bandwidths h: 

i) Set hI = lIn. 

ii) Iterate i = 2, 3, ... until i=ll. 

{

1.5 

~i =6(~i_1 nlllO) = n 

Conjulence Intervals for KQ Estimates 

(13) 

(14) 

A strategy for the estimation of pointwise confidence intervals for KQ estimates is 

presented in this subsection. A difficulty with the construction of direct confidence intervals 

for KQ is the presence of bias in the estimates. Eliminating the bias is not possible, but on 

average the variance dominates the MSE. Two main ideas have been considered for 

constructing confidence intervals of kernel regression estimators. These are the use of an 

asymptotic distribution (typically Gaussian) for the residuals and bootstrap approximations of 

KQ. The asymptotic distribution of kernel regression estimates has been considered by 

Wahba (1983), Nychka (1988, 1990), and Hall and Titterington (1988). Wahba (1983) and 

Nychka (1988, 1990) considered confidence intervals based on Bayesian considerations and 
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smoothing spline estimators. Hall and Titterington (1988) described the construction of 

confidence bands based on interpolation formula in numerical differentiation. Bootstrap 

confidence bands based on kernel estimators have been studied by HardIe and Bowman 

(1988) and HardIe and Marron (1991). The method of construction of confidence bands in 

this paper is based on the bootstrap. The bootstrap (Efron (1979» is a technique for 

resampling the data with reolacement. The bootstrap resample is taken from the empirical 

quantile function. The resampling can be done from the data pairs {(Pi'Yi), i=I, .. ,n} 

according to the following algorithm. 

i) Given a sample {(Pi> Yi), i=I, .. ,n} 

ii) Generate {8j )=I •.. ,n} from a uniform distribution. 

iii) Construct a new sample Yj,j=l...n, where Yj=Yi such that si-l < 8j < si' 

iv) Find x(P) using the KQ estimator and the new data set 

v) Repeat (ii)-(iv) M times (e.g. M=lOOO) 

vi) From the estimates~(P), m=l...M, identify the (3 and (1-(3) confidence limits for ~(p). 

A bootstrap estimate of the sampling distribution of ~(P) is likewise obtained. Such 

estimates are presented for our running example in the applications section. Note that the 

bootstrap cannot address estimation bias, i.e. if a biased estimator is used, the bootstrap 

confidence intervals or sampling density will be likewise biased. This limits the utility of the 

bootstrap to compare results across methods with markedly different amounts of bias. The 

resulting bands reflect only the estimation variance. 

TAIL ESTIMATORS 

Many of the proposed estimators of tail probabilities (Hill 1975, and Breiman et al. 

1981) assume that a distribution function F(x) is in the domain of attraction of a known 

distribution function G(x) for all values greater than some predetermined value xPo' Hill 

(1975) and Hosking and Wallis (1987) developed tail probability estimators by forming an 

estimate of an extreme right tail quantile under the assumption that the behavior in the upper 

tail follows the Pareto distribution. Another method proposed by Breiman and Stone (1985) 

~es that the tail of the distribution is exponential or approximately linear in 10g(P). They 
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also considered a quadratic tail method in which xp is assumed to be a quadratic function of 

log(p). 

Since only the upper part of the data is used for estimating upper tail probabilities or 

upper tail quantiles, tail estimators do not care whether or not the lower data values follow the 

distribution. A disadvantage is that tail estimators still need to specify parametric family 

behavior and the place at which tail startS. Pickands (1975), Hill (1975), Hall (1982), and 

Hall and Welsh (1985) examined the problem of estimating the number of extreme values or 

the cutoff point for the tail to achieve optimal performance, and showed that, in general, this 

number depends on unknown properties of the tail. Therefore, the size of the extreme 

subsample used to construct the estimators must also be estimated from the sample. These 

methods are based on asymptotics and one must consIder whether or not asymptotics can be 

invoked for the small sample sizes available in practice. In our Monte Carlo simulations from 

known parent popUlations, using samples of size 20 and 100, we found a simple strategy of 

specifying 5 and 10 upper order statistics, respectively, outperformed the sophisticated 

asymptotic strategies presented by these authors. We suspect that this is due to the high 

variance associated with these methods for such small samples. 

For the sake of brevity, the reader is referred to Moon et al. (1993) for algorithms of 

selected tail probability estimators used in the comparisons that follow. Hill's method (PTl) 

is presented for historical reasons, and for comparison with a recent Pareto model due to 

Hosking and Wallis (1987) (PT2). The Exponential and Quadratic tail methods (ET, QT) 

due to Breiman and Stone are also presented. The Type I Extreme Value distribution (BVl) 

is also considered because EV 1 is often used as a model for annual maximum floods, and can 

be considered a tail estimation method. 

APPLICATIONS 

We conducted a Monte Carlo experiment similar to those reported in Lall et al. (1993) 

and Moon et al. (1993) to compare the performance of KQ with PTl, PTI, ET, QT, and EV1 

where the underlying population was assumed to be Normal (0,1), Pearson III with 

parameters (0,1,1), and a Normal location mixture (0.5N(0,1) + 0.5N(3,1)). One thousand 
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samples of size 20 and 100 were generated in each case.The perfonnance of the methods for 

the two sample sizes, and with the Nonnal and with the Pearson III data was qualitatively 

similar. The perfonnance ofPTl degraded substantially for the smaller sample size. Results 

for Bias and Root MSE (RMSE) of~ (p=O.9,0.95,0.98,.0.99,0.995), for samples of size . p 
20 and 100, for the nonnal, Pearson III, and mixture data are shown in figures 3 through 14. 

A perusal of these figures suggest ·that KQ and QT are the best methods in these 

situations, with consistent perfonnance in tenns of bias and nnse. There are cases in which 

one of the other estimators may do better, but typically the same estimator perfonns rather 

poorly in other situations. QT had a very high nnse for n=20, with Pearson III data, while 

the perfonnance of KQ was stable. In terms of bias, QT typically perfonned marginally better 

across the simulations. However, KQ was marginally superior in tenns of nnse. The nnse 

perfonnance of KQ is also somewhat superior to that of QT as the degree of extrapolation 

(i.e., (lInp)) increases. Both of these methods can be recommended on the basis of our 

Monte Carlo simulations. 

Santa Cruz River Annual Maximum Floods 

A comparison between KQ, tail estimators (PT1, PT2, ET, QT, EV1), and a kernel 

distribution function estimator (VK-C-AC) of the quantile function for the Santa Cruz River 

data is shown in Figure 15. Note that the largest recorded flood (1493 m3/s) is more than 

double the magnitude of the second largest flood (671 m3/s). Reported parametric estimates 

(see Table 2) of the 100-year flood range from 572 to 2,780 m3/s. Of interest is the first 

estimate computed by Webb and Betancourt (1992). They separated floods above base 

discharge (48 m3/s) by stonn type into three categories: monsoonal stonns (56 data points), 

frontal systems (18 data points), and dissipating tropical cyclones (19 data points). A log­

Pearson type III distribution using maximum-likelihood analysis was fit to each partition. 

The 100-year flood was then estimated by combining the three estimates as 1,050 m3/s. 

Note from figure 15 that the KQ (1094 m3/s) and QT (1102 m3/s) estimates of the 100 year 

flood are quite comparable to this estimate and are in the middle of the range of the parametric 

estimates. In both cases, the methods was applied to the full data set, and parameters were 
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chosen automatically. 

Note that KQ effectively interpolates the empirical quantile function for this data set for 

values of p up to approximately 0.92, and smooths it thereafter. Recall that the boundary 

region for the kernel estimator is 0.936<p<1. The behavior of the other estimators is also of 

interest PT2 clearly appears inconsistent with the empirical quantile function. VK-C-AC 

interpolates the empirical quantile function all the way to Pn' This leads one to suspect that it 

would be rather sensitive to extreme values in the data set. and also to the plotting position 

formula selected. The agreement of KQ and QT for p=0.99 appears fortuitous. QT's tail 

behavior appears to be closer to the empirical quantile function, than that of KQ. We also see 

that the other methods (BVI. ET and PTl) are more strongly influenced by the main body of 

the data, rather than the tails. 

Bootstrap confidence intervals with ~=O.05, and standard errors of estimate of the 100 

year flood for KQ, QT, PTI. and EVl, are reported in Table 4. Of the nonparametric 

methods QT has the smallest standard error, and the tightest confidence intervaL The 

standard error and confidence interval for EVI are considerably smaller, reflecting the 

reduced variance of estimation in using a parametric method. However, the bias issue 

remains unresolved. Bootstrap confidence intervals for KQ are also reported for a range of p 

values, in Table 4 and in Figure 16. The large width of the confidence intervals as p increases 

reflects the growing uncertainty in the estimate of the rarer events. Note that the confidence 

intervals obtained cover virtually all the methods of estimation considered with this data set at 

most values of p. This is partly because of the high uncertainty in the tail, and the local nature 

of KQ. It reflects also on the usual dilemma of choosing between models for tail behavior. 

Bootstrap estimates of the sampling densities of estimates at p=0.9 and 0.99, for KQ 

and QT are presented in Figure 17 and 18 respectively. There is little difference between the 

methods for p=O.9. For p =0.99, one can see three peaks in the distribution for KQ, but only 

two in that for QT. The bandwidth (and hence the number of upper order statistics) used by 

KQ varies by sample, and the peaks seem to reflect sensitivity to the inclusion (possibly 

repeated) or deletion of specific observations. On the other hand, QT is always fit using the 

upper 7 order statistics. and seems to be less sensitive to the inclusion or deletion of the 

largest observation. Note also that the QT estimate was closer to the empirical quantile 

function in the neighborhood of the largest sample value. These observations would suggest 
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that QT may be preferred as the estimator in this situation. Recall, however, that the bootstrap 

density of x(O.99) does not account for the different bias that KQ and QT estimates are likely 

to have. 

Sensitivity to Plotting Position Formula 

. The kernel quantile estimator needs prior estimates of the empirical quantile function 

based on plotting position formula. Many plotting position formula are special cases of the 

general formula: 

Pi = n + 1- 2a (15) 

where a is a constant that depends on the underlying distribution. For example, a = 0 for 

the uniform (Weibull's formula), 0.25 for Adamowski's formula, 0.44 for EVI and the 

exponential distribution, and 0.5 for Hazen's formula. We chose the extreme members of 

this set, i.e, Weibull's and Hazen's formulae to investigate the sensitivity of KQ to the choice 

of plotting position formulae. The results of this evaluation are presented in Table 4 and 

graphically in Figure 16. The 100 year flood estimate would now range from 947 to 1244 

m3Js, a range that is still substantially smaller than the variation in the parametric estimates 

reported for this data set. Recall that the KQ bootstrap confidence intervals at ~.05. using 

the Adamowski formula for Pi' range from 466 to 1658 m3/s. 

CONCLUSIONS 

KQ and QT performed similarly. They appeared relatively robust with respect to the 

other methods for the variety of situations tested. Results from KQ applied to log 

transformed data (not reported here) were similar. Both KQ and QT consider weighted linear 

combinations of order statistics to form the quantile function. The weight sequence and the 

number of order statistics used by the two methods differ. The analysis of the Santa Cruz 
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River data revealed that these methods can give reasonable results with data from mixed 

populations. However, they also illustrated the futility inherent in flood frequency estimation 

- it is easy to design innumerable schemes that are equally plausible within the range of the 

data and quite different under extrapolation. 

There is no shortage of methods for the frequency analysis of annual maximum flood 

data. A number of hydrologists have been concerned with the search for the "best" 

distributional model, and the best parameter estimation scheme for such models. Clearly, this 

philosophy can extend to a search for the best model for tail extrapolation, once a recognition 

sets in that the estimation of tail behavior may be a fundamentally different problem than that 

of estimating·a suitable density function for the main body of the data. This is exacerbated 

where the data represents a finite mixture of generating mechanisms. Parsimonious models 

are important in any estimation situation. Parametric approaches that attempt to model 

mixtures, or allow for more flexible curves (e.g. Wakeby) suffer from a lack of parsimony 

(and a corresponding increased estimation variance), and may still be inappropriate in a given 

situation. On the other hand, a simple parametric model may be quite inappropriate for the tail 

of the data distribution, even if it provides an adequate fit elsewhere and "wins" in terms of 

having lower variance. 

We feel that the search for the "best" tail distributional model is just as futile as the 

search for the best p.d.f., perhaps more so given the uncertainty induced by the small 

samples and complex mechanisms (is the process really stationary and statistically 

homogeneous 1). The comments above apply to at site as well as regional flood frequency 

estimation. Given these comments, we are comfortable recommending adaptive tail 

extrapolation methods such as KQ and QT, together with an understanding of the relatively 

large associated uncertainty of such estimates, as indicated by the large bootstrap standard 

errors. The primary assumptions here are differentiability of the quantile function, and the 

estimation of a weight sequence, that depends on one parameter for KQ, and on a fixed 

number of upper order statistics for QT. Tail behavior is assumed for QT while KQ is more 

adaptable. Both approaches sacrifice variance for reduced model bias relative to parametric 

methods. However, note that the variance (across site) of a procedure that includes the 

selection of an appropriate parametric model at each site may be no better. 

Robustness in performance across different situations is a desirable attribute. We feel 
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kernel quantile estimators can be developed that are superior to KQ. Such developments may 

require further theoretical analysis of tail properties to determine the bandwidth and the 

appropriate kernel functions. 
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Table 1. Annual flood data(m3/s), Santa Cruz River (1915-1986) at Tucson, Arizona from 

Webb and Betancourt (1992). 

-----._--------------------------------------------------------------------------------------------------. 
425 142 212 139 133 55 113 57 54 58 96 323 
55 45 295 50 261 119 173 170 292 153 93 255 
227 320 71 47 128 185 306 121 48 109 108 269 
142 108 IS7 271 309 74 86 180 125 174 470 141 

132 368 34 156 166 456 247 242 227 133 54 225 
70 201 671 142 382 78 76 283 1493 283 n.a. 54 

----------------------------------------------------------------------------------------------------------

Table 2. Estimates for the l00-year flood on the Santa Cruz River at Tucson, Arizona 
reported Webb and Betancourt (1992) 

Method or probability distribution 

Mixed-population analysis of floods cased by different storm types 

Curve comparison with floods in other watersheds 

Log-Pearson type ill with method of moments fitting 

Log-Pearson type ill with regression analysis 

Log-Pearson type ill with envelope curve 

Log-Boughton distribution with method of moments fitting 

Rain estimated from 100-year rainfall 

Log-Extreme Value distribution with method of moments fitting 

Model estimated from rainfall-runoff model with 1 ()()..year 

100-year flood(m3/s) 

1050 

1280 

575-1530 

640-1810 

572 

2180 

1420 

2730-2780 

1330-1900 
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Table 3. Sensitivity of KQ Estimates to Plotting Fonnula for Santa Cruz's River (1915-

1986). 

Return Period Expected Quantile Values (m3!s) 90% Confidence Interval 

Weibull For. Adamowski For. Hazen For. for Adamowski. FOl1TI. 

--------------------------------------------------------------------------------------------------------------

10 yrs (p=O.9) 364 360 356 300-451 

20 yrs (p=O.95) 611 571 534 373-947 

50 yrs (p=0.98) 1001 893 789 444-1527 

100 yrs (p=O:99) 1244 1094 947 466-1658 

200 yrs (p=O.995) 1403 1230 1053 470-1807 

Table 4. Comparison of 90% confidence intervals and standard errors for KQ, QT. and PTI 

at l00-year flood for Santa Cruz's River (1915-1986), cubic meter per second. 

Estimated 100-year flood Confidence Interval Standard Error 

KQ 1094 (466, 1658) 414 

or 1102 (467. 1530) 348 

PTI 873 (464, 1843) 451 

EVI 818 (499,1132) 210 

Lognonnal 826 (614,1111) 154 

Page 21 Wed, Oct 6, 1993 A Kernel Quantile Function Estimator 

iF 



2,---------------------------~~ 

1~-------,~----~--------------i iii PTI 

• PT2 
--c-- ET 

* QT 
II EVI 
0 KQ 

-1;-----~~----~------~-----r~ 

o 100 200 

Return Period in Years 

Figure 3 

Bias for Normal data N(O,l), n=20 
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Figure 4 

RMSE for Nonnal data N(O,l), n=20 
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Figure 5 

Bias for Pearson III (0,1,1) data, n = 20 

(PT1 is not shown, because its bias values are off the scale used) 
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Figure 6 

RMSE for Pearson ITI (0,1,1) data, n = 20 

(PTI is not shown, because its nnse values are off the scale used) 
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Figure 7 

Bias for Mixture data {O.5N(O.l) + 0.5N(3.I)}. n = 20 
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Figure 8 

RMSE for Mixture data {0.5N(0,1) + 0.5N(3,1)}, n = 20 

(PT2 is not shown, because its nnse values are off the scale used) 
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Figure 9 

Bias for Nonnal data N(O,l), n=lOO 
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RMSE for Normal data NCO,I), n=IOO 
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Figure 11 

Bias for Pearson III (0,1,1) data, n = 100 
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Figure 12 

RMSE for Pearson ill (0,1,1) data, n = 100 
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Figure 13 

Bias for Mixture data {O.5N(O,l) + O.5N(3,1)}, n = 100 
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Figure 14 

RMSE for Mixture data {O.5N(O,I) + O.5N(3,1)}, n = 100 
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Figure 15 

Quantile function estimates for Santa Cruz River annual maximum flood.data 
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Figure 16 

The 90% confidence band of KQ and the graphical comparison of KQ based on plotting 

formulas for Santa Cruz's River at Tucson, Arizona (1915-1986).The confidence band is 

constructed by bootstrap technique. 
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Figure 17 

PDF of KQ and QT for estimated values of Bootstrap at p=O.9 
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Figure 18 

PDF of KQ and QT, for estimated values of Bootstrap at p=O.99 

IF 

Page 37 Wed. Oct 6, 1993 A Kernel Quantile Function Estitnator 


	A Kernel Quantile Function Estimator For Flood Frequency Analysis
	Recommended Citation

	tmp.1330469728.pdf.twlHh

