A uniform calibration approach using multiple invariant Earth targets for the 35-year AVHRR visible record

D. Doelling, R. Bhatt, B. Scarino, A. Gopalan, C. Haney

2015 CALCON Technical Conference August 24-27, 2015 , *Logan, Utah*

Introduction / Calibration Strategy

- The 35-year AVHRR record is the longest series of overlapping consistent imager data with global coverage suitable for climate studies
 - Observed the Mt. Pinatubo (1993) and El Chichon (1982) eruptions
 - Observed the 1982 and 1998 El Ninos
 - These events occurred before the MODIS record in 2000, the MODIS record has been quiet climatologically
- The AVHRR instrument has no onboard visible calibration
- Use Earth invariant targets to transfer the Aqua-MODIS Collection 6 calibration
 - Use multiple invariant targets: Libya-4, Libya-1, Niger-1, Arabia-1, Dome-C, Greenland summit, and deep convective clouds (DCC)
 - Combine the individual invariant target calibration by the inverse of the variance about the trend to minimize the effect of invariant target reflectance drifts

AVHRR instrument

- NOAA orbits are at ~850 km altitude
- Swath width of 2600 km, scans the whole Earth daily
- Nominal pixel resolution of 1.1 km in the scan direction and 3km in the along track, available in the HRPT or LAC format, but does not provide continuous coverage
- The GAC format sub-samples every 4 out of every 15 LAC pixels and has a nominal pixel resolution of 4-km, and provides continuous coverage
- AVHRR/1 (1978-1991), 0.58-0.68 μm, 0.725-1.10 μm, 3.55-3.93 μm, 10.50-11.50 μm
- AVHRR/2 (1981-2002) and includes the 11.50-12.50µm
- AVHRR/3 (1998 to present) can switch between channel 3A 3.55-3.93 µm and channel 3B 1.58-1.64 µm
- AVHRR/3 has a dual gain sensor response in the visible bands

Calibration Strategy

- The calibration challenge is the NOAA degrading orbit, which culminates in to a terminator orbit
- Characterize the invariant target nadir reflectance with solar zenith angle using the NOAA-16 AVHRR sensor, which drifts completely into a terminator orbit
- First transfer the Aqua-MODIS calibration to the NOAA-16 AVHRR sensor using Simultaneous Nadir Overpass (SNO) radiance pairs over the poles

NOAA degrading orbits

- All NOAA orbits eventually drift into a terminator orbit
- NOAA-16 chosen as reference instrument, since it drifts completely into a terminator and then into a morning orbit, during the MODIS record

Libya-4 Aqua-MODIS and N16 AVHRR directional models

- \bullet Characterize the Libya-4 site by regressing TOA radiance and cosine SZA for near nadir (VZA< 10 $^\circ$)
- For desert sites there is a distinct radiance difference between forward and backscatter conditions

• The NOAA-16 model is not linear with cosine SZA for large SZA

• If the Aqua-MODIS model is extrapolated there will be a bias with the N16 model

Spectral Band Adjustment Factor

- The calibration advantage is that the AVHRR sensor spectral response function (SRF) are similar
- The spectral band adjustment factor (SBAF) between NOAA-16 and other AVHRR sensors are smaller than with Aqua-MODIS bands
- The SBAFs are computed over each invariant target using SCIAMACHY pseudo radiances

AVHRR Sensor Spectral Response Fuctions

- The AVHRR spectral bands are very similar, except for TIROS-N
- the MODIS spectral band is half of the width

Individual Invariant Target and Combined Trends

NOAA-18

Individual Invariant Target and Combined Trends

Error Analysis

- Aqua-MODIS band 1 absolute calibration uncertainty
 - 1.6% mostly from the uncertainty of the mirror BRDF
- Aqua-MODIS/NOAA-16 SNO calibration transfer uncertainty, based on the temporal standard error of the temporal fit
- The SZA radiance NOAA-16 model uncertainty, is the standard error of the regression
- The invariant target stability and temporal regression noise, is the standard error of the monthly gains about the trend
- SBAF uncertainty
- Band 1 combined fit uncertainty is between 1.5 to 2.5% (MODIS uncertainty not included), individual targets are larger
- The confidence of the trend is based on the time record, the magnitude of the trend, and the variability of the data

Validation Strategy

- Validate the combined invariant target calibration with Aqua-MODIS SNOs during the MODIS era
- Compare the consistency of the individual target calibration
- Compare the invariant target inter-sensor nadir reflectance (constant SZA) consistency

Calibration difference with the combined fit

Compute the mean gain over the sensor record from all the monthly gains
Compare the calibration difference with respect to the combined gain

Doelling et al. 2015

- The combined calibration is mostly within 0.5% of the MODIS SNO calibration
- NOAA-15 spent years in a near terminator orbit
- During the MODIS era most invariant target calibration are consistent within 0.5%
- During the pre-MODIS the invariant target calibration are consistent within 1%

Calibration trend compared with the combined fit

• Compute the RMS error from the monthly gains with respect to the combined gain after removing the mean timeline gain

- Most trends are within 0.5% of the combined trend
- The combined trend is within 0.25% with the SNO trend for afternoon sensors
- DCC is only reliable to 60° SZA under current approach

Invariant Target Inter-Sensor Consistency

• For each sensor observations, apply the combined calibration and convert the nadir reflectance to a common SZA using the invariant target characterization model and convert to the NOAA-16 SRF using the site SBAF

 Most sensors agree within 1 standard deviation with the 35-year average invariant target reflectance

NASA Langley Research Center / Atmospheric Sciences

CERES

Invariant Target Inter-Sensor Consistency Validation of the target SBAFs

- Note the improved consistency after applying SBAF
- Each invariant has its own unique SCIAMACHY based SBAF

GAC Format Product

The GAC formatted 15-km FOV product, simply averages 4 1-km nominal resolution pixel level counts
For AVHRR/3 dual gain sensors, pixel counts are averaged without accounting for low or high gain

• The GAC format sub-samples 4 out of every 15 pixels, this causes sampling noise

 However, does the GAC format bias the calibration, since it averages both high and low gain counts?

GAC sub-sampling noise for linear response sensors

• Using a tropical LAC image, compute the GAC count and compare to the 15km LAC equivalent count, no time or navigation miss-matches

• The GAC sub-sampling noise can easily be mitigated by either using the force fit through the space count or by using large FOV

GAC count bias for dual gain response sensors

- Using a tropical LAC image, compute the LAC and GAC 4-pixel count
- Does not contain the sub-sampling noise, no time or navigation miss-matches

- The resulting GAC count is always lower than the LAC count
- The LAC/GAC ratio is > 1

GAC format statistics

Dataset	FOV	Linear Regression			Force Fit	
		Slope	Offset	Stderr	Slope	Stderr
Sub-Sampled	15-km	0.9762	5.07	6.89	0.9996	7.04
	50-km	1.0005	-0.12	1.01	0.9999	1.01
Dual Gain	15-km	1.0037	0.67	2.53	1.0068	2.63
	50-km	1.0038	0.77	0.85	1.0074	1.14
Sub-Sampled Dual Gain	15-km	0.9803	5.62	7.07	1.0064	7.20
	50-km	1.0028	0.98	1.31	1.0075	1.31
	50-km, <σ15%	1.0006	0.34	0.82	1.0021	0.85
					Dee	lling at al 2015

Doelling et al. 2015

 The AVHRR invariant target calibration uses spatial homogeneity threshold to identify clear-sky desert and snow targets, and DCC cores

• When the GAC footprint has a uniform count, the GAC/LAC slope is nearly 1.

 However, when computing cloud properties over tropical conditions there is a 0.7% residual GAC/LAC slope bias, the GAC retrieved cloud properties are darker than for LAC

Compare MODIS and N18 AVHRR reflectances nearly SNO over the tropics

The GAC retrieved reflectances are darker than for MODIS
Need to increase the GAC dual gain calibration by 0.7% to mitigate effect

Conclusions

- The challenge of the NOAA degrading orbits was overcome by using NOAA-16 calibration as a reference
- Validation
 - The invariant target calibrations and MODIS SNOs agree within 0.5% during the MODIS era
 - The invariant target calibrations are consistent within 1.0% during the pre-MODIS era
 - The invariant inter-sensor consistency are within 1 sigma of the mean 35-year reflectance
- Non-uniform dual gain GAC pixels tropical reflectances maybe underestimated
- Future
 - Reassess the selection of the temporal trend
 - Validate with AVHRR AM/PM SNOs
 - Monitor the global mean optical depth

