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1. Background 5. Benefits of the new procedure 1
Visible Infrared Imaging Radiometer Suite (VIIRS) is a scanning The new procedure is straightforward. Solving for T is similar to Notice how individual data points
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and thermal bands (TEB). The RSB is calibrated (nm) at various radiance levels and look at the statistics.
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where L only affects ¢, (which is calibrated on-orbit). However, the . | | | . 16 HAM A HAM B
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Rewrite the two calibration equations into
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which is a quadratic equation of 7, with analytical solutions. -(0.566-0.014, 46585 data points, 215 bins)
Onc.e T is calculated aFrOSS all combma.tlons (_)f measurements, i is Fig 2. Each data point in the scatter plot (upper panel) corresponds Reference: li et al, A robust method for determining calibration coefficients for
the intercept, and h, is the slope of a linear fit. to a combination of measurements. VIIRS reflective solar bands, SPIE, 2015.
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