January 2003

Water Management: Partnerships for Future Directions (Research and Testing Education Support Outreach)

Mac McKee

Follow this and additional works at: http://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation
http://digitalcommons.usu.edu/water_rep/220

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
In its most recent evaluation of the 54 water resources research centers in the United States, the U.S. Department of the Interior, U.S. Geological Survey, declared the Utah Water Research Laboratory to be “... one of the top [water] Centers nationally with a very strong research, education, information transfer, and collaborative (intrastate) program. Extramural, state, and university discretionary support is very strong and commendable. The collaboration of the Center with state agencies and the role that the Center plays in water resource planning in the State exemplifies the kinds of arrangements which the authors of the Water Resources Research Act of 1964 envisioned. This is an exemplary Center in nearly every respect.” This evaluation is applicable for the period of July 1999 through June 2004 when the Center will be evaluated again.

UTAH WATER RESEARCH LABORATORY

WATER MANAGEMENT: PARTNERSHIPS FOR FUTURE DIRECTIONS

RESEARCH AND TESTING
EDUCATION SUPPORT
OUTREACH

July 1, 2001- June 30, 2003

Dr. Mac McKee - Interim Director
Dr. Ronald C. Sims - Interim Associate Director

UTAH STATE UNIVERSITY
COLLEGE OF ENGINEERING
LOGAN, UTAH 84322-8200
http://www.engineering.usu.edu/uwrl
Foreword

The Utah Water Research Laboratory (UWRL) is a stand-alone facility located at Utah State University (USU) on the Logan River, Logan, Utah. The UWRL operates within an academic environment and collaborates with government and private sectors to address technical and societal aspects of water-related issues, including quality, quantity, distribution, and conjunctive use. This is accomplished through providing more than 100,000 square feet of state-of-the-art laboratory, computer facilities, and office space. The research, education, and outreach efforts of the UWRL are currently funded at an annual rate of approximately $10 million with money obtained from the state and grants and contracts from federal and private sources. The accomplishments of associated faculty, students, staff, and collaborators are reported here in an effort to communicate to audiences external to USU, including clients, financial supporters, future potential supporters, alumni, and the public. The information presented illustrates the role of the UWRL in advancing and integrating water resources, hydraulics, and environmental engineering to improve the decision-making processes that will affect stewardship of water in a regional as well as global context. This report presents the UWRL program, including research, testing, education support, and outreach activities for the period from July 1, 2001 through June 30, 2003.

In the past year, the Utah Water Research Laboratory and Utah State University have seen the beginning of a number of changes with regard to water research and education. The UWRL, along with other water programs on campus, is in a transitional phase that will bring greater opportunities to faculty, staff, and students. At the time of publication of this report, the UWRL administration is in the process of changing, as our former Director, Dr. Ronald C. Sims, moves up to become the Head of the Department of Biological and Irrigation Engineering (BIE) and a search for new UWRL leadership gets underway. Some of the faculty at the UWRL will now have joint appointments in BIE and some will have appointments in the Department of Civil and Environmental Engineering (CEE). Also during the past year the President of USU called for a “Water Initiative” to review research and curriculum in the water area across campus and recommend changes that can produce greater coordination in both. The year just ending saw the creation of the Water Dynamics Laboratory (WDL), housed within the USU Research Foundation. The WDL will market in the private sector the results of applied research done at the UWRL and other units on campus. These changes are creating new opportunities to move water resources research and education into new and needed directions. These changes and this period of transition are reflected in many sections of this report. This year also saw a major fire at the UWRL, which caused substantial damage to the Environmental Quality Laboratory (EQL) wing. As this report goes to press, we have nearly completed our recovery from the fire and we are looking forward to occupying a newly remodeled—and improved—EQL. In much the same way, the UWRL looks forward to new
partnerships—with other departments and colleges at USU, with state and federal water resources agencies, and with private stakeholder groups—and will continue to play a role of leadership in the area of water resources research in the 21st Century.

This report is organized to illustrate the UWRL approach to conducting both fundamental and applied research and testing that supports higher education at the B.S., M.S., Ph.D., and post-doctoral levels. To accomplish this mission, the UWRL forms collaborations with private and government organizations that support UWRL participation through competitive financial awards, in-kind services, personnel exchange, contracts, etc. Typically a team of faculty members directs and coordinates a project in collaboration with the project sponsor. Student involvement takes the forms of graduate student research projects, senior design projects, and laboratory testing, with the majority of involvement at the graduate level. Products of research and testing projects typically include theses, dissertations, professional publications, technologies, patents, posters, presentations at professional meetings, and special reports formatted for clients.

If you are interested in obtaining more information or in sponsoring research or testing, please contact Dr. Mac McKee at mmckee@cc.usu.edu or one of our staff listed in the Current Personnel Listing section of this report. Additional information can also be found at the UWRL web address:

http://www.engineering.usu.edu/uwrl
Table of Contents

I. Introduction ... 1
Mission Statement ... 1
Strategy ... 2
Accomplishments .. 3
Benefits to the State of Utah ... 4
Future Directions ... 7

II. Background .. 11
Administration, Structure, and Function ... 12
 Administration ... 12
 Environmental Engineering Division ... 16
 Water Engineering Program ... 18
 International Program ... 20
Centers Affiliated with the Utah Water Research Laboratory 25
 Environmental Management Research Program 25
 Institute for Dam Safety Risk Management ... 26
 Institute for Natural Systems Engineering ... 27
 International Irrigation Center ... 27
 International Office for Water and Science Education 28
 Utah Center for Water Resources Research ... 28
 Utah On-Site Wastewater Treatment Training Program 29
 Water Dynamics Laboratory... 29

III. Facilities .. 31
Environmental Quality Laboratory ... 31
Hydraulics Laboratory .. 33

IV. Education Support .. 35
Environmental Engineering- and Water Engineering-
 Related Courses ... 35
 Theses and Dissertations Awarded .. 37
 Senior Design Projects ... 40
 Scholarships .. 41
 UWRL High School Summer Research Interns 41

V. Outreach ... 43
Public Service .. 43
Information Dissemination ... 43
Technology Transfer .. 44
Short Courses and Field Training .. 45

VI. Finances .. 49
Sources of Support ... 49
VII. Summary of Projects .. 55
VIII. Publications ... 59
IX. Current Personnel Listing .. 61

LIST OF FIGURES

1 Academic Programs and Research Areas Within the Biological and Irrigation Engineering Department .. 9
2 College of Engineering Organizational Structure ... 10
3 Utah Water Research Laboratory Administration and Organizational Structure .. 13
4 Utah Water Research Laboratory Environmental Engineering Division Organizational Structure ... 14
5 Utah Water Research Laboratory Water Engineering Program Organizational Structure .. 15
6 Environmental Engineering Division Subprograms 17
7 Water Engineering Program Subprograms .. 19
8 Revenues and Expenditures for Fiscal Year July 1, 2002-June 30, 2003 .. 51
9 History of UWRL Funding .. 52
I. Introduction

The UWRL is uniquely positioned to form collaborations with USU departments, other academic institutions and water centers, government, and private sector organizations involved in addressing water issues. The strong and consistent support of the State of Utah illustrates the importance of water and the creation of knowledge to manage water in Utah and the surrounding western states. The scope of projects ranges from multimillion dollar partnerships related to soil and groundwater remediation with national impacts, to small scale projects related to outreach to a specific city or county public sector audience. The UWRL mission, the strategy used to accomplish the mission, a summary of accomplishments, examples of benefits delivered to the state, and an overview of future directions for the UWRL follow.

Mission Statement

The mission of the Utah Water Research Laboratory includes the following activities that are related to stewardship of water quantity and quality:

- Facilitate research that supports education and teaching within a university environment.
- Conduct research that is directed at solving multimedia water-related problems of state, national, and international scopes.
- Cooperate with academic departments and other academic research units in generating, transmitting, applying, and preserving knowledge in ways that are consistent with the land grant university mission of Utah State University.
- Conduct research that provides for a technically informed water-related policy that can be used to ensure and improve human health and environmental assets in Utah, the United States, and the world.
- Facilitate research, testing, and design activities that involve training university students to provide services to audiences that are external to the university.
- Provide research-based training on water-related subjects to governmental and private organizations and to the general public.

The UWRL Mission Statement is based on the philosophy that activities related to water science and engineering be organized to integrate research, testing, and design components with university and public education. The context for water includes multimedia aspects that incorporate atmosphere and surface and subsurface earth components, and that address environmental as well as public health issues.
Strategy

The strategy utilized by the Utah Water Research Laboratory to accomplish the mission stated above involves a commitment to support the following activities:

- Facilitate state-of-the-art research and testing that encompass multimedia water-related issues addressing state, national, and international challenges.

- Provide research-based academic experiences in water-related topics for undergraduate and graduate university students to enhance their theoretical and practical skills.

- Provide financial assistance for graduate students to facilitate recruitment of excellent students in academic departments.

- Provide an academic environment where water-related problems are addressed through the process of obtaining academic degrees.

- Form partnerships with public and private agencies to pursue important problems that can also be used to help train students.

- Provide outreach services for local, state, national, and international agencies, and for citizens desiring information on water-related issues.

- Provide facilities and services for physical model studies of hydraulic structures related to design, analysis, and field testing.

- Cooperate with the Departments of Civil and Environmental Engineering and Biological and Irrigation Engineering and other academic departments at USU to recruit and retain faculty.

- Work collaboratively as engineers with water-related scientists from other colleges and departments to address local, state, national, and international water problems.
Accomplishments

Accomplishments of the UWRL can be measured in part through its research products, the academic training to which it has contributed, and the outreach programs it supports. Its research products include research projects, dollars brought into USU for support of research and educational opportunities, and publications generated by its faculty to convey the benefits of research to potential users (see Section VII for listings of projects awarded, and Section VIII for publications).

The UWRL provides financial support to graduate students and research opportunities to undergraduate students as they work toward completion of their education. Fellowship award amounts vary, with the average at approximately $12,000 per year for M.S. students and $15,000 for Ph.D. students. Senior students in Civil and Environmental Engineering often provide technical services to private industry and local and state government agencies as a part of their required senior design project.

In addition to refereed journal publications, projects supported through the UWRL provide outreach information in the form of short courses, field training, newsletters, brochures, and videos.

The following table provides a numerical summary of the accomplishments of the UWRL for 2002 and 2003 in the areas of research, academic training facilitated, and outreach:

<table>
<thead>
<tr>
<th>Activity</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Projects Awarded</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>Dollar Value ($ Millions)</td>
<td>4.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Publications (Refereed)</td>
<td>11</td>
<td>N/A</td>
</tr>
<tr>
<td>Academic Training Facilitated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Research Fellowship Awards</td>
<td>64</td>
<td>69</td>
</tr>
<tr>
<td>Senior Design Projects (Number Students)</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Number Graduate Students (CEE Dept.)</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Number Undergraduate Students Supported</td>
<td>43</td>
<td>76</td>
</tr>
<tr>
<td>Outreach Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Courses and Field Training</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Newsletters, Brochures, Videos</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Benefits to the State of Utah

Research conducted by the UWRL benefits the citizens of the State of Utah in numerous ways. Current projects at the UWRL are found in every county of the state. Examples of current, past, and expected future benefits provided by the UWRL are:

• The UWRL is currently working with the Utah Department of Environmental Quality (UDEQ), Drinking Water Division, to address national regulations and requirements regarding Source Water Protection Plans in Utah. The assistance includes the development of new tools and methods for source water assessment of the risk of contamination of surface water supplies in Utah. This is especially important under drought conditions as they currently exist in Utah.

• On-site wastewater treatment training and technology transfer for State of Utah personnel in the Utah Department of Environmental Quality (UDEQ) and local health departments continued in FY 2002-2003. Undergraduate and graduate students participate through projects that involve hands-on, real-world activities. Utah health department staff and other Utah On-Site Wastewater Treatment professionals were trained in site characterization, treatment, and monitoring on-site systems and source water protection aspects of on-site systems. Additional information can be found at the UWRL web site: http://www.engineering.usu.edu/uwrl/training.

• A Utah on-site professional association was initiated in FY 2000 to provide a forum for on-site stakeholders to address problems and to identify on-site challenges and solutions within a professional organization. The professional association (Utah On-Site Wastewater Association [UOWA]) continued to grow in FY 2003 and to involve Utah businesses, citizens, local elected officials, and regulators in addressing on-site systems in Utah.

• UWRL faculty are currently assisting UDEQ personnel in the evaluation of state needs regarding Total Maximum Daily Loads (TMDLs) for Utah's lakes, rivers, and streams, and the impacts of proposed land use changes on water quality.

• Results of our laboratory investigations continue to provide cost-savings methods for improving the performance and safety of dams and of dam spillways in Utah, and can be expected to play an important role in future dam safety rehabilitation in the state. In addition, UWRL
faculty and staff continue to develop procedures that consider risks associated with the performance of dams. In FY 2003, we have been requested to assist the State of Utah to develop a plan and methods of management to minimize sediment release from dams during drawdown events. The UWRL has received U.S. EPA funding to assist the state.

- UWRL faculty serve on state and local advisory panels as part of our outreach and service activities, including the Utah Drinking Water Board (Dr. Laurie McNeill), Utah Water Quality Board (Dr. Ronald C. Sims), the Utah Solid and Hazardous Waste Board (Dr. William J. Doucette), Lake Powell Technical Advisory Committee (Dr. Darwin L. Sorensen), Salt Lake County Solid Waste Management Council (Dr. R. Ryan Dupont), and the Utah On-Site Wastewater Association (UOWA) (Dr. Ronald C. Sims, Ms. Judith L. Sims, and Dr. Darwin L. Sorensen).

- A geographic information system (GIS) approach is under current development by UWRL faculty to improve statewide water use estimations to forecast future water needs.

- Real-time management of irrigation systems in the Sevier River Basin is being implemented using computer (artificial neural network) models to increase the efficiency of basin-wide water management. This is especially useful when the total quantity of water decreases as in the current drought in Utah.

- Computer models for managing the quality of streamflows and improving the operational efficiency of Weber Basin water treatment plants continue to be developed and are expected to be transferable to other river systems in Utah.

- UWRL faculty are currently involved in improving drinking water treatment and plant performance in Utah with regard to coagulation and arsenic removal processes. We are also working closely with the Utah Water Quality Alliance through Dr. Laurie McNeill.

- Monitoring of fish populations within the Sevier River drainage is a cooperative project with the State of Utah Division of Wildlife Resources and the Sevier River Bridge Canal Company to guide long-term water allocation and enhancement of native fish in the Sevier River Basin. Similar assistance is being provided for the Virgin River Basin.
Future Directions

Water Problems in the Future: The relative scarcity of water is growing due to population and economic growth, pollution, and diversification of the types of demands that humans place on the available water resource (e.g., water quality maintenance, endangered species protection). With increasing scarcity comes a greater need to more intensively manage the resource and a widening interest on the part of an ever more diverse set of stakeholders to have a seat at the water resources decision-making table. These things—a need for more intensive management and a diversifying decision-making public—require that we be able to generate and deliver better information about the current and future states—both quantity and quality—of our water resources.

Paramount among water quality maintenance and improvement management issues is crafting the policy and regulations necessary to protect the quality of drinking water sources. Should managers of drinking water supply watersheds have authority to prohibit certain activities in these watersheds when current water quality is substantially better than drinking water source criteria? Improvements in measurement technology and mathematical models of pollutant transport are needed to allow improved accuracy of risk assessments for current or proposed future land uses in environmentally sensitive watersheds. With better risk assessments the uncertainty in setting policy and making decisions that affect property values, recreational opportunities, and ecosystem protection can be reduced to levels more acceptable to a broader spectrum of stakeholders.

In spite of an increasing need for better, more decision-relevant information about our water resources systems, investments in traditional water resources data collection (e.g., point stream flows, snow pack, soil moisture, water quality, etc.) is declining at the federal and state levels, making it more difficult each year to meet this information need. However, investments in new data collection methods are increasing—such as satellite imagery of land cover, snow cover, ocean surface temperatures, etc.; radar estimation of precipitation, aircraft and satellite imagery for estimation of evapotranspiration—that might be used to back-fill the decline in the availability of traditional data.

Research is needed to develop the data that are now becoming available from emerging remote sensing sources into useful information for all temporal and geographical scales of water resources management. Further, the products of this research must be of practical use to the water resources managers who are now losing access to traditional data sources; they must also be of use to a wider range of stakeholders who have heterogeneous technical backgrounds and skill levels, but who are now demanding a role in water resources decision-making.

The faculty, staff, and resources of the UWRL, in coordination with water scientists across campus, are well-suited to respond to these new research needs and emerging water resources problems.
Strengthening Ties Across Campus: The past academic year has brought significant changes to water research and education at USU. Reorganization of the Departments of Biological and Irrigation Engineering and Civil and Environmental Engineering has created opportunities for the UWRL to work more closely with the faculty of both departments. The integration of the UWRL into both departments has expanded the areas of water resources research that can be addressed at USU and has strengthened the ability to address large-scale and complex land/water systems that include irrigation components. In the future, the faculty and staff of the UWRL will work more closely with the Biological and Irrigation Department (see Figure 1) to identify and pursue research opportunities of common interest. In addition, the changing nature of water resources problems in the state, the nation, and around the world, coupled with advances in modern technology, have prompted researchers at the UWRL to seek collaboration with faculty from other departments within the College, especially with the Departments of Electrical and Computer Engineering and Mechanical and Aerospace Engineering. The “Water Initiative” promulgated by President Hall in the past year has provided a forum for water researchers from all across campus to come together and begin to address common curriculum problems and identify opportunities for collaborative, interdisciplinary research on water issues. In coordination with the USU Research Foundation, the “Water Dynamics Laboratory” (WDL) was founded this year at USU to market the products of water research in the private sector. Working relationships between the UWRL and the WDL have already been established. The faculty and staff at the UWRL have welcomed the opportunity to participate in the broadening of research and educational efforts in the water sector and look forward to establishing the strong, interdisciplinary partnerships that will be needed to address the newly emerging water resources research problems that confront Utah, the nation, and the world.

Strengthening Partnerships for the Future: The water problems of the future are complex and their solution will require the development and application of new sets of tools. Water managers at all levels of government will require education and training in order to grapple with these new problems and take advantage of the new tools that will be developed to deal with them. The UWRL is well-positioned to provide the basic and applied research capabilities that will be needed to support water managers and stakeholder groups at local, state, national, and international levels. The faculty and staff at the UWRL are committed to strengthening our ties with resources management agencies at all levels, to listening to them and their stakeholders as they articulate their concerns about water management problems, and to working with them to find ways to solve those problems. The UWRL will provide facilities and financial support to university students to become water resource engineers and specialists and, through research-based training in new water challenges, will provide the future leaders of water management in Utah, the United States, and the world.
The International Irrigation Center (IIC) operates within a globalization context with regard to sustainable agriculture and rural environments. The IIC addresses three specific areas: 1) Provides students the opportunity to specialize in irrigation engineering as an academic discipline and degree program; 2) Administers and conducts long-term international projects through training international irrigation engineers; and 3) Designs and provides short-term training programs for international irrigation professionals in the United States and in other countries.

The Biological Engineering Program addresses the application of engineering principles and methods to microorganism, plant, animal, and human processes, components, and systems and food products. The program includes biomaterial, biomedical, chemical, mechanical, electrical, industrial, and food engineering aspects of living cells and systems. Quantitative assessment, modeling, and control of biological systems are conducted for industrial-related processes and for natural systems.

The Irrigation Engineering Program emphasizes graduate (M.S. and Ph.D.) education for students from the United States and all other countries. Remote sensing conveyance and control systems, drainage, design of wells and well systems, and sprinkle and trickle irrigation are addressed. This academic program is unique in its design and application in the United States and in the world.

Figure 1. Academic Programs and Research Areas within the Biological and Irrigation Engineering Department.
Figure 2. College of Engineering Organizational Structure.
II. Background

In the early 1950’s, Utah State University (USU) faculty and administrators began planning for an integrated facility for interdisciplinary water resources research. In 1959, the Utah State Legislature authorized the establishment of the Utah Water Research Laboratory (UWRL). Funding for the original structure was provided by the Utah Legislature, with supplemental funding from the National Science Foundation (NSF) and the National Institutes of Health. The building was dedicated in 1965, and faculty from a wide range of academic departments began using the facility. By 1975, the research program had outgrown the facility. The Environmental Quality Laboratory was housed in makeshift construction behind the Hydraulics Laboratory, and office space was scarce. Additional funding was obtained from the Utah State Legislature, and, in 1980, the present UWRL building was completed.

UWRL’s first director was Dr. Vaughn E. Hansen (1964 to 1966). He was replaced by Dr. Jay M. Bagley who served until 1976. Dr. L. Douglas James was director from 1976 to 1991. Dr. David S. Bowles, after serving as Acting Director, was appointed Director in 1992 and stepped down in 1996. Dr. Ronald C. Sims served as UWRL Director from 1996 to 2003. Currently, Dr. Mac McKee is the Interim Director.

The UWRL also houses the Utah Center for Water Resources Research (UCWRR), the second largest of 54 U.S. centers. The Center administers the U.S. Geological Survey 104 funding program, performs coordinating roles for water research in Utah, and represents the State of Utah at regional and national levels. Today, multidisciplinary faculty work together in Environmental Engineering, Groundwater, Fluid Mechanics and Hydraulics, Hydrology, Natural Systems Engineering, Water Education, and Water Resources Management to support the mission of the UWRL.

The UWRL is one of six units comprising the College of Engineering, under the leadership of Dean H. Scott Hinton with the other five units organized as academic departments (see Figure 2). Faculty are organized within the UWRL into the Water Engineering Division and the Environmental Engineering Division. The Water Engineering Division is affiliated with the Department of Civil and Environmental Engineering (CEE), and the Environmental Division is affiliated with both the CEE Department and the Department of Biological and Irrigation Engineering (BIE). The UWRL Director works closely with the Heads of the CEE and BIE Departments and the Division Heads to coordinate academic coursework and UWRL programs. Faculty members within the two divisions typically have joint appointments at the UWRL and in either CEE or BIE, and students also work in both units. This coordination allows for a larger and more diverse educational environment for undergraduate and graduate students. The collaboration of the UWRL and the academic departments within the College of Engineering facilitates an integration of coursework, faculty skills, and hands-on research, testing, and training in water engineering and science that is unique in the United States.

The UWRL also collaborates with other academic and research units at USU and at other universities in Utah as well as outside of Utah. Examples of projects and partnerships that illustrate these types of collaboration are provided on the UWRL web address: http://www.engineering.usu.edu/uwrl.
Administration

The administration and organization of the UWRL are shown in Figure 3. Dr. Mac McKee is the UWRL Interim Director. He is assisted by Dr. Ronald C. Sims, Interim Associate Director. The research program at the UWRL is coordinated primarily with the academic programs in the two divisions of the CEE and BIE Departments, as described previously. Dr. R. Ryan Dupont is Environmental Engineering Head (Figure 4), and Dr. Jagath J. Kaluarachchi is Water Engineering Head (Figure 5). Our International Program involves collaboration with developing and developed nations, and involves faculty and students in both the Environmental Engineering and the Water Engineering Divisions. Support areas include: Administrative Services and Infrastructure, supervised by Ms. Jan Urroz; Publications and Information Dissemination, coordinated by Ms. Ivonne Harris; and the Business Office, supervised by Ms. Tamara Peterson. In addition, the Environmental Quality Laboratory is managed by Ms. Joan McLean, and the Hydraulics Laboratory is managed by Dr. William J. Rahmeyer.

Water-related centers at the UWRL add depth and enhance the overall UWRL program. These include: Environmental Management Research Program (EMRP) co-directed by UWRL research engineers Dr. Daniel P. Ames, Ms. Bethany Neilson, and Mr. Jeffery Horsburgh; Institute for Dam Safety Risk Management (IDSRM) headed by Dr. David S. Bowles; Institute for Natural Systems Engineering (INSE) headed by Dr. Thomas Hardy; International Irrigation Center (IIC) managed by Dr. Humberto Yap-Salinas; the International Office for Water and Science Education (IOWSE) managed by Mr. Geoffrey G. Smith; the Utah Center for Water Resources Research (UCWRR) headed by Dr. Mac McKee; the Utah On-Site Wastewater Treatment Training Program coordinated by Ms. Judith L. Sims, and the Water Dynamics Laboratory (WDL) managed by Dr. Richard Peralta.

Expertise originating within the two UWRL divisions and eight centers in the areas of water resources, hydraulics, and environmental quality is integrated for addressing current challenges with regard to ecological engineering, water and environmental stewardship, and risk management. Subprograms within the Environmental Engineering Division that link environmental quality with current challenges are described in Figure 6. Subprograms within the Water Engineering Division that link water resources and hydraulics with current challenges are described in Figure 7. Specific research and testing projects are directed at addressing water-related needs that are supported by a mix of institutions, clients, and UWRL staff through cooperative and collaborative efforts. Specific projects identified in Section VII demonstrate that applications address issues at local, state, regional, and global scales. UWRL physical facilities and staff technical capabilities provide strong leveraging of all projects. In addition, the organization and management of all research and testing projects at the UWRL serve to support the academic programs at undergraduate and graduate levels. The following sections of this report provide more details about the UWRL divisions and its affiliated centers.
Figure 3. Utah Water Research Laboratory Administration and Organizational Structure.

EMRP: Environmental Management Research Program
IDSRM: Institute for Dam Safety Risk Management
IIC: International Irrigation Center
INSE: Institute for Natural Systems Engineering
IOWSE: International Office for Water and Science Education
UCWRR: Utah Center for Water Resources Research
WTTP: Utah On-Site Wastewater Treatment Training Program
WDL: Water Dynamics Laboratory
Figure 4. Utah Water Research Laboratory Environmental Engineering Division Organizational Structure.
Figure 5. Utah Water Research Laboratory Water Engineering Program Organizational Structure.
Environmental Engineering Division

Faculty within the Environmental Engineering Division are indicated in Figure 4. These faculty have joint appointments with the UWRL and with the Civil and Environmental Engineering (CEE) and Biological and Irrigation Engineering (BIE) Departments within the College of Engineering. The Environmental Engineering Division has focused research programs in Hazardous and Toxic Waste Management, Bioprocess Engineering, Geoenvironmental Engineering, Management of Air Quality Impacts, Water Treatment Science, and Natural Systems Engineering. A multimedia thrust within each program is carried out by a multidisciplinary group of engineers and scientists conducting basic and applied laboratory and field research in such areas as: fate and transport of toxic and hazardous contaminants in plant, soil and surface/groundwater environments; performance evaluation and design of biological and plant-based hazardous waste remediation systems; modeling and measurement of basin-scale water quality and ecosystem impacts of water resources and basin development; water and wastewater treatment; behavior and treatment of toxic metals in drinking water; infrastructure degradation; airborne particulates and visibility impacts; and natural systems physical habitat simulation modeling. The Environmental Quality Laboratory supports the experimental research program within the Division. Research in environmental engineering conducted at the UWRL is supported by a variety of funding sources including the State of Utah, industry, U.S. Environmental Protection Agency (USEPA), U.S. Geological Survey (USGS), National Science Foundation (NSF), Department of Defense (DoD), Department of Energy (DoE), and other federal agencies, consulting firms, and other private organizations.

Courses offered for academic credit in Environmental Engineering at the undergraduate and graduate level are listed in Section IV “Education Support.” Information is provided that includes course title, instructor, and CEE course number.

For additional information on the undergraduate and graduate academic degree programs in environmental engineering, please contact Dr. R. Ryan Dupont at: rdupo@cc.usu.edu.
The Air Quality Management Program focuses primarily on evaluating source strength and atmospheric fate of gaseous and particulate air pollutants. On-going studies and research include in-depth analysis of atmospheric chemistry and visibility in Class I areas in and around the Colorado Plateau, evaluating biogenic hydrocarbon emission contributions to ozone photochemistry along Utah’s Wasatch Front, and airborne particulate chemistry and composition in Northern Utah.

Bioreactor processing of environmental materials and engineering scaleup of biologically-based environmental reactions are being explored. Areas of specialization include: waste to energy, fermentation, composting and agricultural and chemical waste reuse.

This program combines the expertise of environmental and geotechnical engineering faculty to evaluate and improve the design and performance of waste-containment systems. Additional areas of specialization include: soil vacuum extraction, and in-situ soil washing.

This program emphasizes an integrated engineering and science approach for characterization and remedial design approaches for contaminated subsurface environments. In addition to laboratory scale work, the program has the largest field scale research dimension of any similar academic program in the nation.

Impacts of engineered systems on habitat in aquatic ecosystems are evaluated through the development and application of assessment methods using computer simulation, data analysis, and remote sensing. This program addresses threatened and endangered species, habitat enhancement, instream flow assessments, remote sensing of fish habitat, and videography-based prediction of stream sediment and mesoscale hydraulic features.

This program focuses on evaluating the fate of trace metals in drinking water systems and on the design and optimization of treatment processes for the removal of metals and organics for potable water production. Work is also ongoing in the evaluation and optimization of wetland systems for municipal wastewater polishing and landfill leachate treatment in arid northern climates.

Figure 6. Environmental Engineering Division Subprograms.
Faculty within the Water Engineering Program are indicated in Figure 5. These faculty have joint appointments with the UWRL and with the Civil and Environmental Engineering (CEE) Department. The Water Engineering Program is supported by state and federal research funds. Speciality areas within the program include: Fluid Mechanics and Hydraulics, Groundwater, Hydrology, Water Resources Planning and Management, and Ecohydraulics. The academic curriculum supporting research is one of the most comprehensive offered in the U.S. Elements of ongoing research projects are routinely and effectively incorporated into the classes. The program combines research, training, and experience to understand the water issues and water resources management challenges in Utah, the United States, and the world.

Fluid mechanics, based on fundamental principles of conservation of mass, energy, and momentum, is the logical core for all water-related engineering research programs. Hydrology is a branch of geoscience concerned with the origin, distribution, movement, and properties of waters of the earth. The hydrology program at USU has strength in both theoretical and applied aspects of modern hydrology. A particular emphasis of the program is on spatial representation of hydrologic processes using geographic information systems. Groundwater engineering is concerned with the transport of fluids in the subsurface environment. Current research activities cover a well-balanced variety of topics, from theoretical (e.g., stochastic analysis of transport of contaminants in groundwater) to practical problems (e.g., design of cleanup technologies for gasoline-contaminated sites). Water resources engineers need a sound understanding of how water storage, delivery, and other management systems function. A focus area of the research program is to develop decision-support systems for sustainable water quantity and quality management in the United States and in developing regions of the world. Other areas include real time reservoir flood operations and dam safety risk management. Ecohydraulics focuses on multidisciplinary studies involving legal, institutional policy, and technical assessment frameworks for the integration of hydrology, operations modeling, water quality, channel maintenance, and fish habitat requirements in the determination of instream flows in water resource systems.

Courses offered for academic credit, including undergraduate and graduate, in Water Engineering are listed in Section IV, “Education Support.”

For additional information on the academic graduate program, as well as undergraduate courses in water engineering, please contact Dr. Jagath J. Kaluarachchi at: jkalu@cc.usu.edu.
Figure 7. Water Engineering Program Subprograms.

Ecohydraulics
This program represents a multidisciplinary focus on the legal, institutional, policy, and technical assessment frameworks that address instream flows in water resource systems. This includes the integration of hydrology, operations modeling, water quality in streams and reservoirs, sediment transport for channel maintenance and riparian maintenance flows, recreation flows, and fish habitat requirements.

Fluid Mechanics and Hydraulics
This program utilizes the UWRL hydraulics laboratory for physical modeling of hydraulic structures, including dams, spillways, energy dissipation structures, intakes, outlet works, pump stations fish passage, and river models. Other activities include performance evaluation of hydraulic machinery and piping systems, flow meter calibration, and testing of erosion control systems for slopes and channels. Analytical aspects of the program include design of pipe networks for water supply, porous media flow, sediment transport, and open channel flow.

Groundwater
Current research activities cover topics from theoretical developments in the stochastic and numerical analysis of transport in groundwater to practical aspects of the design of clean-up technologies for fuel-contaminated sites and management of Utah aquifer systems.

Hydrology
This diverse program has strengths in both the theoretical and applied aspects of modern hydrology, including spatially distributed hydrologic modeling with geographic information systems, hydroclimate and land surface modeling, mountain hydrology, snow hydrology, erosion and hydrologically-induced landsliding.

Water Resources Planning and Management
This program addresses river basin and watershed planning and management, dam safety risk assessment and risk management, user-driven decision support systems for water planning and management, distributed water demand and supply modeling using geographical information systems, real-time flood operations, and reservoir and water system operating policies. Additional areas include institutional and legal aspects of water rights transfers, cost allocation, determination of user fees for multiple purpose water resources projects, and water conservation.
International Program

Throughout its history, the UWRL has actively provided technical expertise and training services related to international water resources and environmental problems. UWRL personnel have implemented several major technical assistance and training projects and numerous smaller projects in water resources, with funding from the World Bank, the Inter-American Development Bank, the Asian Development Bank, the U.S. Agency for International Development, FAO, the OAS, and various countries. The result is substantial improvements in the efficiency of water management, maintenance or improvement of water quality, implementation of integrated water resources planning and development policies, increased well-being of water users, and improvement of public health conditions in many developing countries.

A long tradition of interdisciplinary collaboration with other USU colleges is a major strength of UWRL international programs. Almost all international projects have required faculty from different colleges to work together. As a result, the UWRL has a significant number of associated faculty who are experienced in working on problems as a team, which greatly enhances the capability of the UWRL to quickly and successfully implement international projects. The UWRL can provide senior faculty, all with many years of international experience in the water sector, from Civil and Environmental Engineering, Irrigation Engineering, Economics, Sociology, Political Science, and other disciplines as necessary.

The UWRL, working in cooperation with the Departments of Civil and Environmental Engineering and Biological and Irrigation Engineering, actively recruits international students for educational opportunities in graduate programs in environmental engineering, hydrology, water resources, and hydraulics. At present, international students comprise approximately three-quarters of the graduate enrollment in these programs.

For additional information on UWRL international projects in the water sector or water-related graduate programs, please contact Dr. Mac McKee at: mmckee@cc.usu.edu.
Reclamation of contaminated sediments taken from navigation canals in The Netherlands. The process utilizes silviculture techniques to grow trees as an energy source.

Alterra Green World Research Center is associated with Wageningen University, The Netherlands. UWRL and BIE faculty worked at Alterra in 2002 to develop research collaborations and to learn about approaches to water quality management, agriculture sustainability, and sediment restoration and reuse.

UWRL and BIE faculty worked in collaboration with Alterra Research Center, The Netherlands, and the Republic of Tatarstan, Russia, to develop methods to protect human health and the environment of the City of Nizhnekamsk, the third largest city in Tatarstan and 950 km east of Moscow. The Kama River at Nizhnekamsk is shown in the photograph.
Rice paddy and secondary irrigation canal in the Madroya River Basin, Sri Lanka. This land is part of a large irrigation and drainage project partially funded by the U.S. Agency for International Development. Water storage and irrigation facilities were widely developed in the Madroya Basin over 2,000 years ago, but the region was abandoned between 800 and 1,000 years ago due to military conflict. Modern irrigation facilities are almost identical in size and location to those that were constructed two millennia ago. The paddy field shown—which lay in jungle since it was abandoned long ago—is the first crop of rice to be grown in the region in nearly 1,000 years.

Families bathing and washing in the Subarnarekha River Basin, India. A project funded by the U.S. Agency for International Development focused on developing institutions for integrated river basin planning and management in India. The Subarnarekha River was a case study basin wherein new planning concepts and technologies were applied. The project showed how changes in the operation of aquifers and surface water reservoirs could provide an increase in agricultural production in the basin of about 20 percent, improve deliveries to municipal and industrial users, while at the same time substantially reducing severe water quality problems in the Subarnarekha.
The pump house that provides municipal water supplies from the spring of Ein Sultan to the city of Jericho, West Bank, Occupied Palestinian Territories. Under the Israeli military occupation, Palestinian access to water supplies has been seriously curtailed since 1967, and Palestinians have been severely limited in their ability to maintain water supply systems. A project funded by the US Agency for International Development under the auspices of the Oslo II peace accords sought to find ways to increase Palestinian water supplies. Because of the dependable flow of water provided by Ein Sultan, Jericho is the oldest city on the planet, having been more-or-less continuously occupied for about 9,000 years.
Personnel from the UWRL have worked on water resources projects and training programs in more than 40 countries throughout the world.

<table>
<thead>
<tr>
<th>#</th>
<th>Country</th>
<th>#</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Afghanistan</td>
<td>18</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>2</td>
<td>Albania</td>
<td>19</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>3</td>
<td>Australia</td>
<td>20</td>
<td>Mali</td>
</tr>
<tr>
<td>4</td>
<td>Bangladesh</td>
<td>21</td>
<td>Mauritania</td>
</tr>
<tr>
<td>5</td>
<td>Chile</td>
<td>22</td>
<td>Morocco</td>
</tr>
<tr>
<td>6</td>
<td>China</td>
<td>23</td>
<td>Nepal</td>
</tr>
<tr>
<td>7</td>
<td>Colombia</td>
<td>24</td>
<td>Netherlands</td>
</tr>
<tr>
<td>8</td>
<td>Costa Rica</td>
<td>25</td>
<td>New Zealand</td>
</tr>
<tr>
<td>9</td>
<td>Czech Republic</td>
<td>26</td>
<td>Nicaragua</td>
</tr>
<tr>
<td>10</td>
<td>Dominican Republic</td>
<td>27</td>
<td>Pakistan</td>
</tr>
<tr>
<td>11</td>
<td>Ecuador</td>
<td>28</td>
<td>Palestine</td>
</tr>
<tr>
<td>12</td>
<td>Egypt</td>
<td>29</td>
<td>Peru</td>
</tr>
<tr>
<td>13</td>
<td>India</td>
<td>30</td>
<td>Philippines</td>
</tr>
<tr>
<td>14</td>
<td>Indonesia</td>
<td>31</td>
<td>Republic of Tatarstan</td>
</tr>
<tr>
<td>15</td>
<td>Iran</td>
<td>32</td>
<td>Russia</td>
</tr>
<tr>
<td>16</td>
<td>Iraq</td>
<td>33</td>
<td>Samoa</td>
</tr>
<tr>
<td>17</td>
<td>Jordan</td>
<td>34</td>
<td>Senegal</td>
</tr>
<tr>
<td>18</td>
<td>Kazakhstan</td>
<td>35</td>
<td>South Africa</td>
</tr>
<tr>
<td>19</td>
<td>Kyrgyzstan</td>
<td>36</td>
<td>Spain</td>
</tr>
<tr>
<td>20</td>
<td>Mali</td>
<td>37</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>21</td>
<td>Mauritania</td>
<td>38</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>22</td>
<td>Morocco</td>
<td>39</td>
<td>Thailand</td>
</tr>
<tr>
<td>23</td>
<td>Nepal</td>
<td>40</td>
<td>Tunisia</td>
</tr>
<tr>
<td>24</td>
<td>Netherlands</td>
<td>41</td>
<td>Turkey</td>
</tr>
<tr>
<td>25</td>
<td>New Zealand</td>
<td>42</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>26</td>
<td>Nicaragua</td>
<td>43</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>27</td>
<td>Pakistan</td>
<td>44</td>
<td>Venezuela</td>
</tr>
<tr>
<td>28</td>
<td>Palestine</td>
<td>45</td>
<td>Yemen</td>
</tr>
</tbody>
</table>
Environmental Management Research Program

The Environmental Management Research Program (EMRP) is a research unit of the Utah Water Research Laboratory (UWRL) focused on integrated watershed management and systems analysis of environmental problems. Founded in 1998, EMRP combines the research talent and experience of several UWRL professors, research engineers, and graduate and undergraduate students in Civil and Environmental Engineering, Biological and Irrigation Engineering, Computer Science, and other disciplines. EMRP provides software development, watershed and water quality modeling, and GIS data analysis service to internal and external entities directed at solving integrated watershed and environmental management-related problems of a variety of scales.

EMRP projects have included TMDL water quality modeling and data analysis in both Utah and Idaho, water quality and quantity modeling training seminars (specifically using the EPA BASINS software package), development of a sourcewater protection analysis tool, and the development of custom GIS and data visualization and analysis tools for integrated watershed information management. Additionally, EMRP researchers have developed probabilistic modeling approaches for integrated stakeholder-based watershed management, and continue to do research in new and innovative areas of physical and statistical modeling.

EMRP is co-directed by UWRL Research Assistant Professor, Dr. Daniel P. Ames, and Research Engineers, Ms. Bethany Neilson and Mr. Jeffery Horsburgh. EMRP employs a number of undergraduate and graduate students as software engineers, programmers, and research assistants. These students gain a broad and practical experience in water quality modeling, data analysis, and the development of engineering software tools. Some of the key research and development areas of EMRP include:

• Training seminars on the use of EPA BASINS water quality modeling software.
• Advanced Geographic Information System Tools for Programmers.
• Watershed Decision Support Systems.
• Digital Elevation Model analysis software for watershed and channel network delineation and hydrologic model setup.
• 3-D Terrain Visualization and Modeling.
• Water Quality/Quantity Data Management.
• Sourcewater Protection Software.
• Probabilistic Collaborative Decision Modeling.
• Total Maximum Daily Load (TMDL) water quality analysis.

For more information contact: Dr. Daniel P. Ames, Ms. Bethany Neilson, or Mr. Jeffery Horsburgh <http://emrc.usu.edu/>.
Institute for Dam Safety Risk Management

The Institute conducts research to advance the state of the practice in risk-based approaches to dam safety management. Founded in 1999, its roots go back more than two decades at Utah State University. Approaches developed by the Institute are now being used by engineers, private and government dam owners, and regulators in many countries. These approaches help to improve the understanding and management of the risks associated with owning and operating dams with a goal of improving public safety. In addition to developing approaches for individual dams, the Institute has pioneered portfolio risk assessment for groups of dams. This approach is now a standard of practice in Australia and is being applied by the U.S. Army Corps of Engineers and in other countries.

The Institute has a growing program in real-time reservoir flood operations to provide advanced software tools for forecast-based operations and advanced warning of spillway releases from major reservoirs, such as the Folsom Project above Sacramento, California. Our research program includes strengthening the following supporting areas for dam safety risk management: geotechnical and seismic analysis; flood hydrology and dam break modeling; risk modeling including uncertainty analysis; spillway gate reliability analysis; risk evaluation and communication; and dam failure consequence estimation, including evacuation effectiveness and life loss estimation incorporating GIS techniques.

The Institute organizes and hosts specialized national and international workshops. It also organizes conferences, provides professional training, and have prepared and reviewed guidelines for the ASCE, USSD, ICOLD, CEA, USBR, and ANCOLD. Institute faculty have played a facilitation, coordination, or review role for risk assessment applications to more than 400 dams for dam owners and regulators in association with engineering firms in the US and overseas. They have also advised on incorporating risk management into dam safety programs at corporate, statewide, and national levels.

Core Institute faculty is David Bowles (Director), Loren Anderson, Terry Glover, and Sanjay Chauhan. Graduate students are an important part of the research program. Strong links are maintained with the UWRL spillway modeling group.

For more information contact: Dr. David S. Bowles at David.Bowles@usu.edu, or the UWRL website.
Institute for Natural Systems Engineering

Researchers in this unique program develop, test, and apply a wide range of analytical tools suitable for integration within multidisciplinary assessment frameworks. Research focuses on all aspects of physical, chemical, and biological processes necessary to evaluate impacts in watershed systems. Development, testing, and application of analysis tools and assessment frameworks range across basic life history of aquatic species, spatial sampling of river corridors using remote sensing, GPS and hydro-acoustics, 2- and 3-dimensional hydraulic modeling, and habitat modeling.

For more information contact: Dr. Thomas B. Hardy at: hardy@aaron.uwrl.usu.edu, or the UWRL website.

International Irrigation Center

The International Irrigation Center (IIC) operates within a globilization context with regard to sustainable agricultural and rural environments. The IIC addresses three specific areas: (1) provides students the opportunity to specialize in irrigation engineering as an academic discipline and degree program; (2) administers and conducts long-term international projects through training international irrigation engineers; and (3) designs and provides short-term training programs for international irrigation professionals in the United States and in other countries. The IIC collaborates with the Utah Water Research Laboratory on multidisciplinary projects involving irrigation and water resources planning and management aspects for sustainable development at the river basins and watershed scale.

For more information contact: Dr. Humberto Yap-Salinas hyaps@cc.usu.edu, or their website <http://www.irri-net.org/projects/IIC/IIC.htm>.
International Office for Water and Science Education

The International Office for Water and Science Education (IOWSE) promotes water education projects through a cooperative effort among educators, scientists, and local entities. By adapting projects to local needs, IOWSE also provides inservice training for its users in addition to coordinating information as a resource center for national and international water education programs and needs.

By facilitating the production and marketing of water education materials, the IOWSE provides special services to individuals and groups with water-related interests or needs. IOWSE also focuses on promoting and carrying out adult education programs, as well as specialized training for substitute teaching.

Two major programs are run out of IOWSE, the Substitute Teaching Institute and the Elementary CORE Academy. For more information contact Mr. Geoffrey G. Smith at gsmitt@cc.usu.edu, or the UWRL website.

Utah Center for Water Resources Research

The Utah Center for Water Resources Research (UCWRR) was established by the Water Resources Research Act of 1964 and is currently eligible to receive grants under the provisions of Section 104 of the Water Resources Research Act of 1984. Purposes of the UCWRR are to 1) foster interdepartmental research and educational programs in water resources; 2) administer the State Water Research Institute Program funded through the U.S. Geological Survey at Utah State University for the State of Utah; and 3) provide University-wide coordination of water resources research.

The governing body for the Utah Center for Water Resources Research is a council composed of the deans of the Colleges of Agriculture, Engineering, Natural Resources, Science, and Humanities, Arts, and Social Sciences; directors of the Utah Agricultural Experiment Station, the Utah Water Research Laboratory, and the Ecology Center; and the Vice President for Research. The UCWRR office is located at the Utah Water Research Laboratory. All University faculty engaged in water resources education or research are considered associates of the center. The center promotes and coordinates the development of research and instructional programs that will further the training of water resource scientists and engineers. It maintains liaison relationships with appropriate state, national, and international organizations and agencies having similar objectives.

For more information contact Dr. Mac McKee at mmckee@cc.usu.edu, or the UWRL website.
Utah On-Site Wastewater Treatment Training Program

The Utah On-Site Wastewater Treatment Training Program was established in January 1998. The mission of the training program is to assist in the protection of public health and the environment by providing technology transfer, training, and information dissemination in on-site wastewater treatment to stakeholders in Utah and the surrounding region, and by raising the level of public awareness and knowledge in on-site wastewater treatment issues.

The Program provides classroom and field training to site evaluators, regulators, designers, operators and maintenance personnel in support of the statewide certification program for on-site wastewater professionals. About 12% of all Utah households use on-site wastewater treatment systems, and in six of the twelve local health department regions, this percentage is as high as 30 to 60%. About 3,500 new systems are added annually in Utah.

For more information contact Ms. Judith L. Sims at: jlsims@cc.usu.edu, or the UWRL website.

Water Dynamics Laboratory

The Water Dynamics Laboratory (WDL), a part of the Utah State University Research Foundation, assists Utah State University and supports the Utah Water Research Laboratory in achieving its mission by providing student support and training through contracts and projects that utilize the UWRL physical facilities of the UWRL Hydraulics Laboratory. WDL-supported students, staff, and faculty are involved in the areas of hydraulic testing, calibration, physical model design, development and testing for rivers, dams, and spillways, and performance testing of valves, pipes, and flow meters that are presently used as industry standards.

Employing students in the Civil and Environmental Engineering Department to work in the hydraulics laboratory at the UWRL produces several positive results. The students receive a real-world hands-on experience performing engineering tasks as they assist with WDL projects performed at the laboratory. Employment also provides opportunities for faculty/client/student interaction. After graduation, many students are hired by past laboratory clients. A high percentage of undergraduate student employees at the UWRL have pursued advanced degrees at USU because of the experience gained while working at the laboratory on WDL projects.

For more information contact Mr. Steve Barfuss at: barfuss@cc.usu.edu, or the UWRL website
III. Facilities

The 102,000 square-foot UWRL facility contains offices and laboratories that house engineers, scientists, laboratory technicians, and students from a variety of engineering and water science disciplines. Designed to meet the needs of these disciplines, the UWRL has well-equipped environmental quality and hydraulics laboratories; computer facilities; conference rooms; and administrative, faculty, staff, and student offices.

Environmental Quality Laboratory

The 11,000-square foot Environmental Quality Laboratory (EQL) at the UWRL is equipped for analyses of organic and inorganic constituents in air, water, and soil. The EQL consists of chemistry, microbiology, radiological, and analytical instrumentation laboratories; two constant temperature rooms; bioassay and research project areas; and refrigerated sample storage area.

A safety plan for the EQL has been submitted to and approved by the Environmental Health and Safety Office (EHSO), Utah State University, in compliance with the Occupational Safety and Health Administration standard entitled “Occupational Exposure to Hazardous Chemicals in Laboratories.” The EQL plan includes information on chemical hygiene and proper handling and disposal of hazardous substances, including radioisotopes. All laboratory personnel are required to attend the laboratory safety seminar provided by the EHSO. EQL instrumentation and facilities are listed in the following table:

<table>
<thead>
<tr>
<th>Organic Chemicals</th>
<th>Inorganic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Gas Chromatographs with 5 Detectors</td>
<td>Inductively Coupled Plasma-Mass Spectrometer</td>
</tr>
<tr>
<td>2 High Performance Liquid Chromatographs with UV & Fluorescence Detectors</td>
<td>Atomic Absorption Spectrometer with Graphite Furnace and Mercury/Hydride Atomizers</td>
</tr>
<tr>
<td>2 GC/MS Instruments</td>
<td></td>
</tr>
<tr>
<td>Headspace Autosamplers for Volatile Chemicals</td>
<td></td>
</tr>
<tr>
<td>Supercritical Fluid Extractor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiochemical Analyses</th>
<th>Anion Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Liquid Scintillation Counters for Tritium, 14C, 32P, 35S, and 129I</td>
<td>Dionex LC25 Ion Chromatograph</td>
</tr>
<tr>
<td>2 Biological Oxidizers used for Soils, Biosolids, and Plants</td>
<td>Dionex LC25 Ion Chromatograph with UV/VIS for CR$^+$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microbiology and Toxicity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbics Toxicity Analyzer for microtox measurement of cellular toxicity and mutatox measurement for mutagenicity</td>
<td></td>
</tr>
<tr>
<td>Ames Salmonella/Mammalian Microsome Assay</td>
<td></td>
</tr>
<tr>
<td>ATP analysis with integrating photometer</td>
<td></td>
</tr>
<tr>
<td>Gilson Respirometer for microbial respiration</td>
<td></td>
</tr>
</tbody>
</table>

31
Additional analytical instrumentation includes a total dissolved organic and inorganic carbon analyzer, surface area (BET) analyzer, universal fractionator for separation of particles and macromolecules, laser photometer and a DSP interferometric refractometer for molecular size analysis of separated particles and XAD resin chromatography and a freeze dryer for concentrating humic substances from water or soil extracts.

Field Instruments and Analyses

Water Quality
- YSI Dissolved Oxygen/Conductivity
- Hach Colorimeter for Nutrients, Fe, Mg
- Portable GC/FID instrument
- 2 Gastech Gastechotor Carbon Dioxide/Oxygen Analyzer
- A Gidding Soil Corer and Standard Soil Augers
- Portable Mud Rotary Drill (Deep Rock, Inc.) for observation well installation, and groundwater sampling to depths of approximately 120 feet
- Redi Flo2 Electric Pump (Grundfos Pumps Corp.) for purging ground water from sampling wells
- ES 125 single channel Seismograph for shallow refraction surveys of soil and stratigraphy, and depth to water table

Air Sampling
- High Volume Sampler
- Personal Monitoring Pumps
- Combustible Gas Meter
- Real-time monitors for CO and O\textsubscript{2}
- Stainless steel whole air canisters, collection media and supports
- DO Meters
- MSA Detector Kits
- Draeger Detector Kits
- Air Velocity Meters
Hydraulics Laboratory

The 50,000 square-foot hydraulics section of the Utah Water Research Laboratory contains a variety of flumes, channels, pumps, pipelines, and equipment and instrumentation for conducting hydraulic research, model studies, valve testing, and flow meter calibrations. Water is supplied by gravity flow up to rates exceeding 200 cfs from an upstream reservoir through a 48-inch diameter pipe to the laboratory. The reservoir supplies a constant pressure head of 25 feet to the main laboratory level and 35 feet to the lower laboratory level. A network of steel piping (18-, 24-, and 36-inches in diameter), located under the floor, supplies water to various parts of the laboratory. Other under-the-floor channels conduct water from the experiments back to the river, to recirculating pumps, or to precise flow measurement facilities. Laboratory research is supported by a carpentry and machine shop that houses necessary stationary and hand tools for physical model construction, custom steel and acrylic fabrication, and heavy equipment maintenance. The laboratory uses two forklifts, a mobile crane, and two skid-loaders to aid in the construction of experiments.

Also contained within the Hydraulics Laboratory is a 400 square-foot rainfall simulator, and a sunlight simulator integrated with a tiltable soil-filled test flume. These facilities enable students and faculty to conduct a wide range of studies related to erosion, runoff, infiltration, and crop production.

Laboratory facility summary:

NIST Traceable Flow Measurement Equipment
- 1,000-lb weigh tank
- 30,000-lb weigh tank
- 300,000-lb weigh tank (under construction 2003)
- 835-ft³ volumetric tank
- 3,545-ft³ volumetric tank
- Master venturi meters (48-inch, 24-inch, 12-inch, 6-inch, 2-inch)
- 48-inch ultrasonic meter

Pressure Measurement Equipment
- Adjustable-range pressure transducers/transmitters
- Precision pressure gauges
- U-tube manometers (blue fluid and mercury)

Data Collection Equipment
- Data acquisition software and hardware
- Digital data analyzer
- Multimeters
- Decibel meters
- Accelerometers
- Thermometers
Pipe and Fitting Inventory
- US steel pipe sizes (1/2-inch through 60-inch)
- Uncommon steel pipe sizes (upon request)
- Control valves (1/2-inch through 48-inch)
- Elbows, reducers, tees, etc., for pipeline simulation tests
- Flange clamps for flanges other than 150 pounds
- Dresser couplings (2-inch through 48-inch)

Flow and Pressure Capabilities
- Reservoir: 11 psi upper level, 15 psi lower level at shutoff, over 200 cfs maximum
- 1 stage, 100-hp vertical turbine pump, 1770-rpm, 5000-gpm runout, 70-ft shutoff
- 2 stage, 200-hp vertical turbine pump, 1770-rpm, 5000-gpm runout, 170-ft shutoff
- 10 stage, 100-hp vertical turbine pump, 1770-rpm, 1000-gpm runout, 680-ft shutoff
- 350-hp centrifugal pump, 1780-rpm, 3000-gpm runout, 580-ft shutoff
- 15-ft constant head tank

Test Flumes
- 6-ft x 8-ft x 500-ft concrete flume
- 5-ft x 6-ft x 50-ft wood/plexiglas sectional model flume
- 4-ft x 4-ft x 80-ft wooden high velocity erosion control flume
- Tilting 3-ft x 4-ft x 24-ft steel/plexiglas research flume
- Tilting 2-ft x 3-ft x 24-ft steel/plexiglas research flume
IV. Education Support

Undergraduate and graduate students are involved in research, testing, design, training, technology transfer, and outreach activities at the UWRL. Engineering graduate students with science and/or engineering academic backgrounds are recruited to participate on projects for theses and dissertations, and are competitively supported through UWRL- and client-supported assistantships. These students are primarily associated with the Department of Civil and Environmental Engineering; however, students can also be affiliated with other academic departments and interdisciplinary academic units. A description of education support activities, including graduate course offerings, theses and dissertations awarded, senior design projects, and scholarship offerings follows.

For more information concerning the Water Engineering and Environmental Engineering academic programs contact Dr. Loren Anderson, Head of the CEE Department at: loren@cc.usu.edu; for Environmental Engineering information contact Dr. R. Ryan Dupont at: rdupo@cc.usu.edu; for Water Engineering Program information contact Dr. Jagath J. Kaluarachchi at jkalu@cc.usu.edu.

Environmental Engineering- and Water Engineering-Related Courses

<table>
<thead>
<tr>
<th>CEE Course Number</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1880</td>
<td>CEE Orientation and Computer Applications</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>2870</td>
<td>Sophomore Seminar</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>2890</td>
<td>Environmental Engineering Sophomore Seminar</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>3030</td>
<td>Uncertainty in Engineering Analysis</td>
<td>Gilberto E. Urroz</td>
</tr>
<tr>
<td>3430</td>
<td>Engineering Hydrology</td>
<td>Jagath J. Kaluarachchi</td>
</tr>
<tr>
<td>3500</td>
<td>CEE Fluid Mechanics</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>3510</td>
<td>CEE Hydraulics</td>
<td>Gilberto E. Urroz</td>
</tr>
<tr>
<td>3610</td>
<td>Environmental Management</td>
<td>Darwin L. Sorensen</td>
</tr>
<tr>
<td>3640</td>
<td>Water and Wastewater Engineering</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>3670</td>
<td>Transport Phen. in Bio-Environmental Systems</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>3780</td>
<td>Solid and Hazardous Waste Management</td>
<td>Michael J. McFarland</td>
</tr>
<tr>
<td>3870</td>
<td>Professional/Technical Writing in CEE</td>
<td>Sonia Manuel-Dupont</td>
</tr>
<tr>
<td>3890</td>
<td>Environmental Engineering Design I</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>4200</td>
<td>Engineering Economics</td>
<td>A. Bruce Bishop</td>
</tr>
<tr>
<td>4790</td>
<td>Environmental Engineering Design II</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>4880</td>
<td>Civil Engineering Design III</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>4930</td>
<td>Independent Study</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>5250</td>
<td>Environmental Engineering Cooperative Practice</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>5430/6430</td>
<td>Groundwater Engineering</td>
<td>Mariush W. Kemblowski</td>
</tr>
<tr>
<td>5440/6440</td>
<td>GIS in Water Resources</td>
<td>David G. Tarboton</td>
</tr>
<tr>
<td>5450/6450</td>
<td>Hydrologic Modeling</td>
<td>David S. Bowles</td>
</tr>
<tr>
<td>5460/6460</td>
<td>Water Resources Engineering</td>
<td>Daniel H. Hoggan</td>
</tr>
<tr>
<td>5470/6470</td>
<td>Sedimentation Engineering</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>5540/6540</td>
<td>Fluid Mechanics</td>
<td>Blake P. Tullis</td>
</tr>
<tr>
<td>5550/6550</td>
<td>Hydraulics of Closed Conduits</td>
<td>Blake P. Tullis</td>
</tr>
<tr>
<td>5560/6560</td>
<td>Environmental Hydraulics</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>CEE Course Number</td>
<td>Title</td>
<td>Instructor</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>5610</td>
<td>Environmental Quality Analysis</td>
<td>Joan E. McLean</td>
</tr>
<tr>
<td>5620</td>
<td>Aquatic Chemistry</td>
<td>William J. Doucette</td>
</tr>
<tr>
<td>5670</td>
<td>Hazardous Chem. Handling and Safety</td>
<td>William J. Doucette</td>
</tr>
<tr>
<td>5680/6680</td>
<td>Soil-Based Hazardous Waste Management</td>
<td>Ronald C. Sims</td>
</tr>
<tr>
<td>5690/6690</td>
<td>Natural Systems Engineering</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>5700/6700</td>
<td>Field Sampling Techniques for Natural Systems Eng.</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>5710</td>
<td>Pollution Prevention and Industrial Ecology</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>5720/6720</td>
<td>Natural Systems Modeling</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>5730/6730</td>
<td>Analysis and Fate of Environmental Contaminants</td>
<td>William J. Doucette</td>
</tr>
<tr>
<td>5790</td>
<td>Accident and Emergency Management</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>5810/6810</td>
<td>Biochemical Engineering</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>5830/6830</td>
<td>Management and Utilities of Biological Solids and Wastewater</td>
<td>Michael J. McFarland</td>
</tr>
<tr>
<td>5860</td>
<td>Air Quality Management</td>
<td>Randal Martin</td>
</tr>
<tr>
<td>5870</td>
<td>Hazardous Waste Incineration</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>5880</td>
<td>Remediation Engineering</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>6300</td>
<td>Earth Structures</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>6310</td>
<td>Environmental Geotechniques</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>6330</td>
<td>Ground Reinforcement, Improvement and Treatment</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>6400</td>
<td>Physical Hydrology</td>
<td>David G. Tarboton</td>
</tr>
<tr>
<td>6410</td>
<td>Water Resource Systems Analysis</td>
<td>Mac McKee</td>
</tr>
<tr>
<td>6420</td>
<td>Engineering Risk Assessment and Risk Management</td>
<td>David S. Bowles</td>
</tr>
<tr>
<td>6430/5430</td>
<td>Groundwater Engineering</td>
<td>Mariush W. Kemblowski</td>
</tr>
<tr>
<td>6450/5450</td>
<td>Hydrologic Modeling</td>
<td>David S. Bowles</td>
</tr>
<tr>
<td>6460/5460</td>
<td>Water Resources Engineering</td>
<td>Daniel H. Hoggan</td>
</tr>
<tr>
<td>6470/5470</td>
<td>Sedimentation Engineering</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>6480</td>
<td>Subsurface Flow and Transport Processes</td>
<td>Jagath J. Kaluarachchi</td>
</tr>
<tr>
<td>6490</td>
<td>Integrated River Basin/Watershed Planning and Management</td>
<td>Mac McKee</td>
</tr>
<tr>
<td>6500</td>
<td>Open Channel Hydraulics with an Emphasis on Gradually Varied Flow</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>6510</td>
<td>Numerical and Statistical Methods for Civil Engineers</td>
<td>Gilberto E. Urroz</td>
</tr>
<tr>
<td>6520</td>
<td>Applied Hydraulics</td>
<td>CEE Staff</td>
</tr>
<tr>
<td>6530</td>
<td>Unsteady Flows in Open Channels and Numerical Solutions of St. Venant Eq.</td>
<td>CEE Staff</td>
</tr>
<tr>
<td>6540/5540</td>
<td>Fluid Mechanics</td>
<td>Blake P. Tullis</td>
</tr>
<tr>
<td>6550/5550</td>
<td>Hydraulic Design</td>
<td>Blake P. Tullis</td>
</tr>
<tr>
<td>6560/5560</td>
<td>Environmental Hydraulics</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>6580</td>
<td>Intermediate Fluid Mechanics</td>
<td>Gilberto E. Urroz</td>
</tr>
<tr>
<td>6600</td>
<td>Environmental Chemistry of Inorganic Contaminants</td>
<td>Joan E. McLean</td>
</tr>
<tr>
<td>6630</td>
<td>Process Dynamics in Environmental Engineering Systems</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>6640</td>
<td>Physical and Chemical Environmental Process Engineering</td>
<td>Michael J. McFarland</td>
</tr>
<tr>
<td>6650</td>
<td>Biological Processes in Environmental Engineering</td>
<td>Ronald C. Sims</td>
</tr>
<tr>
<td>6680/5680</td>
<td>Soil-Based Hazardous Waste Management</td>
<td>Ronald C. Sims</td>
</tr>
<tr>
<td>6690/5690</td>
<td>Natural Systems Engineering</td>
<td>Thomas B. Hardy</td>
</tr>
</tbody>
</table>
CEE Course Schedule

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>6700/5700</td>
<td>Field Sampling Techniques for Natural Systems Engineering</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>6710</td>
<td>Environmental Engineering Microbial Ecology</td>
<td>Darwin L. Sorensen</td>
</tr>
<tr>
<td>6720</td>
<td>Natural Systems Modeling</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>6730/5730</td>
<td>Analysis and Fate of Environmental Contaminants</td>
<td>William J. Doucette</td>
</tr>
<tr>
<td>6750</td>
<td>Eco-Hydraulics for Natural Systems Engineering</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>6800</td>
<td>Environmental Seminar</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>6810/5810</td>
<td>Biochemical Engineering</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>6830/5830</td>
<td>Management and Utilization of Biological Solids and</td>
<td>Michael J. McFarland</td>
</tr>
<tr>
<td></td>
<td>Wastewater</td>
<td></td>
</tr>
<tr>
<td>6900</td>
<td>Directed Reading</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>6930</td>
<td>Special Problems</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>6970</td>
<td>Thesis Research</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>6990</td>
<td>Continuing Graduate Advisement</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>7310</td>
<td>Fundamentals of Soil Behavior</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>7430</td>
<td>Stochastic Hydrology</td>
<td>Mariush W. Kemblowski/David G. Tarboton</td>
</tr>
<tr>
<td>7460</td>
<td>Advanced Topics in Hydrology</td>
<td>David G. Tarboton</td>
</tr>
<tr>
<td>7580</td>
<td>Advanced Finite Element Analysis in Fluid Mechanics</td>
<td>CEE Staff</td>
</tr>
<tr>
<td>7970</td>
<td>Dissertation Research</td>
<td>Loren R. Anderson</td>
</tr>
<tr>
<td>7990</td>
<td>Continued Graduate Advisement</td>
<td>Loren R. Anderson</td>
</tr>
</tbody>
</table>

Theses and Dissertations Awarded

2002 DOCTOR OF PHILOSOPHY

Jain, Shaleen. Multiscale Low-Frequency Hydroclimatic Variability: Implications for Changes in Seasonality and Extremes. Major Professor: Dr. Upmanu Lall.

Prasad, Rajiv. Watershed-Scale Hydrology: Influences of Spatial Variability of Snowpack in a Semi-arid, Mountainous Environment. Major Professor: Dr. David G. Tarboton.

2002 MASTER OF SCIENCE

Cox, Nathan Christian. Major: Civil and Environmental Engineering. Major Professor: Dr. Michael C. Johnson.
Lewis, Kerry Ladell. Major: Civil and Environmental Engineering. Major Professor: Dr. William J. Doucette.

Lundell, Martin Peter. Major: Civil and Environmental Engineering. Major Professor: Dr. R. Ryan Dupont.

Mabrouk, Mahmoud A. Major: Civil and Environmental Engineering. Major Professor: Dr. Mac McKee.

McCoy, Sean. Major: Civil and Environmental Engineering. Major Professor: Dr. William J. Rahmeyer.

Slaugh, Dwight Alexander. Major: Civil and Environmental Engineering. Major Professor: Dr. William J. Rahmeyer.

2002 MASTER OF ENGINEERING

Dent, Jordeane L. Major: Civil and Environmental Engineering. Major Professor: Dr. Darwin L. Sorensen.

Timmons, Kelly B., Jr. Major: Civil and Environmental Engineering. Major Professor: Dr. Mariush W. Kemblowski.

2003 DOCTOR OF PHILOSOPHY

Ames, Daniel Peder. Bayesian Decision Networks for Watershed Management. Major Professor: Dr. Upmanu Lall.

Benson, Lowell Scott. Relationship Between Sorption/Desorption and the Bioavailability of Trichloroethylene at Hill Air Force Base Site OU-5. Major Professor: Dr. William J. Doucette.

Istanbulluoglu, Erkan. Quantification of Stream Sediment Inputs from Steep Forested Mountains. Major Professor: Dr. David G. Tarboton.

Savage, Bruce M. Reverse Flow Tubes and Their Application in Upstream Fish Passage. Major Professor: Dr. Roland W. Jeppson.

2003 MASTER OF SCIENCE

Francom, Jared. Major: Civil and Environmental Engineering. Major Professor: Mr. Steven L. Barfuss.
Khadam, Ibrahim Mohammed. Major: Civil and Environmental Engineering. Major Professor: Dr. Jagath J. Kaluarachchi.

Khalil, Abedalrazq F. Major: Civil and Environmental Engineering. Major Professor: Dr. Mac McKee.

Ladhawala, Jignesh P. Major: Civil and Environmental Engineering. Major Professor: Dr. William J. Doucette.

Miller, Ashley Suzanne. Major: Civil and Environmental Engineering. Major Professor: Dr. William J. Rahmeyer.

Moncur, Kade D. Major: Civil and Environmental Engineering. Major Professor: Dr. Darwin L. Sorensen.

Oldham, Jeremy Von. Major: Civil and Environmental Engineering. Major Professor: Dr. Randal S. Martin.

Smart, Bronson Sid. Major: Civil and Environmental Engineering. Major Professor: Dr. Gilberto E. Urroz.

Smith, Tyler Stuart. Major: Civil and Environmental Engineering. Major Professor: Dr. William J. Rahmeyer.

Terry, Spencer H. Major: Civil and Environmental Engineering. Major Professor: Dr. Michael J. McFarland.

Teton, Elese D. Major: Civil and Environmental Engineering. Major Professor: Dr. Darwin L. Sorensen.

2003 MASTER OF ENGINEERING

Hansen, Rick A. Major: Civil and Environmental Engineering. Major Professor: Dr. Blake P. Tullis.

Miller, Suzanne. Major: Civil and Environmental Engineering. Major Professor: Dr. R. Ryan Dupont.

Rahman, Julia Laila. Major: Civil and Environmental Engineering. Major Professor: Dr. Laurie S. McNeill.

Strahl, David L. Major: Civil and Environmental Engineering. Major Professor: Dr. David G. Tarboton.
Senior Design Projects

The senior design project was initiated in Fall 1997 and provides opportunities for each senior student in water engineering and environmental engineering to work in a team environment with other students on a practical problem identified and supported by a university collaborator. USU partners include industry, government agencies, other research institutions, and private consulting firms. Student teams work under the direction and supervision of mentors comprised of university and client staff. The basic elements of the senior design project include: (1) design, (2) build, and (3) test/monitor. The senior design project begins in the spring semester of the junior year, with emphasis on problem definition and conceptualization, and progresses through the design, data collection, and results presentation phases of the project in the students’ senior year. The facilities and resources of the UWRL are utilized in the design, fabrication, assembling, and testing of many of the water engineering and environmental engineering senior design projects. Several design projects have been donated to the UWRL since the design projects were started that provide working models that are used for teaching and demonstration for students and for the general public.

Spring 2001 - Spring 2002
Quail Creek Pipeline Gravity Based Return Flow System Design to Achieve Thermal Modification Within the Virgin River to Improve Roundtail Chub and Woundfin Habitat. Advisor: Dr. Thom Hardy. Student Team: Kevin Hall, Daniel Jeon, Jeremy McGrath, McKay Anderson.

Spring 2002 - Spring 2003
Evaluation of the Source and Potential Control Methods for PM10 and PM2.5 in Cache County, Utah. Advisor: Dr. Randy Martin. Student Team: Tom Bradley, Demetrio Cabanillas, Hosam Jamal.

Feasibility Design for the Management of the Lake Powell Pipeline for Washington County Water Needs and Virgin River Roundtail Chub and Woundfin Habitat. Advisor: Dr. Thom Hardy. Student Team: Cassy Kristensen, Tiffany Leo, Clint Rogers, Mindy Wouden.

If you are interested in obtaining more information on senior design projects, or in sponsoring a senior design project in Environmental Engineering, contact Dr. R. Ryan Dupont at: rdupo@cc.usu.edu; in the Water Engineering Program, please contact Dr. Jagath J. Kaluarachchi at: jkalu@cc.usu.edu.
Scholarships

Graduate student scholarships are competitive and are generally available from two primary sources: (1) internal UWRL-supported assistantships, and (2) client-supported assistantships. Approximately 22 internal UWRL-supported assistantships are available each academic year. The number and type of client-supported assistantships vary, but average approximately 37 per year. Assistantships are renewable based on demonstrated productivity. Over the period of time addressed in this report, 69 graduate students affiliated with the UWRL received scholarships and/or fellowship support.

UWRL High School Summer Research Interns

UWRL faculty designed and implemented a High School Summer Research Internship program in 2002 for area high school students to work on research projects under faculty direction within the Division of Environmental Engineering. The purpose of this internship was to provide outstanding junior and senior high school students with research experiences including laboratory and field testing, research methods, and interpretation of experimental data. Outstanding students were nominated by high school science advisors, and eight students from three area high schools were awarded internships. Students learned about the field of environmental engineering through working with faculty, USU students, and research technicians. As a result, interns were better prepared to make decisions concerning a university education and careers in environmental engineering. Each Research Intern prepared a poster summarizing his/her research experiences for presentation to the College of Engineering and UWRL administration, faculty, students, and staff.
V. Outreach

The mission of the UWRL includes outreach activities related to public service, information dissemination, technology transfer, and short courses. These activities are provided for the benefit of Utah state agencies, elected officials, Utah citizens, and the nation. Outreach is provided by faculty, staff, and students associated with the UWRL. Additional outreach is provided through our World Wide Web (WWW) site addresses that include: [http://www.engineering.usu.edu/uwrl], Utah Water Journal [http://www.engineering.usu.edu/uwrl/uwj], and Utah On-Site Wastewater Treatment Training Program [http://www.engineering.usu.edu/uwrl/training].

For more information on UWRL outreach activities, including public service, information dissemination, technology transfer, short courses, and field training, refer to the specific website addresses provided, or contact Ivonne Harris at: iharr@cc.usu.edu.

Public Service

UWRL faculty serve on state and local advisory panels to provide technical expertise, input, and review of water-related issues. Specific panels include: Utah Water Quality Board, Utah Solid and Hazardous Waste Board, Lake Powell Technical Advisory Committee, Salt Lake County Solid Waste Management Council, the State of Utah Wastewater Treatment Plant Operator Certification Committee, and the Utah Drinking Water Board.

Information Dissemination

UWRL outreach activities with regard to information dissemination include establishing the following Internet sites:

- Training in on-site wastewater treatment in support of the State of Utah certification program for on-site wastewater treatment professionals is provided by the Utah On-Site Wastewater Treatment Training Program at the UWRL. Undergraduate and graduate students participate through projects that involve hands-on, real-world activities. Additional information can be found at the UWRL web site: http://www.engineering.usu.edu/uwrl/training.

- An on-line journal, the “Utah Water Journal,” is a collaboration between USU and state, local, and private organizations involved in stewardship issues that include managing and protecting Utah’s water quality and quantity. The Utah Water Journal is available free of charge on-line at: http://www.engineering.usu.edu/uwrl/uwj.

- Feature articles that highlight UWRL research projects in the state are made available on-line from time to time. A recent example is the “Virgin River Basin-Wide Habitat Assessment” project (http://www.engineering.usu.edu/uwrl/waterlab), which is bringing together city, county, state, federal, university, and private groups within the Virgin River Basin in southwest Utah to work collaboratively to solve water resource allocation problems in a rapidly growing area while also working toward recovery of threatened and endangered native fish species.
Technology Transfer

UWRL staff involvement in conducting technology transfer to audiences external to USU includes the areas listed below:

- UWRL faculty are assisting Utah Department of Environmental Quality personnel in the evaluation of state needs regarding Total Maximum Daily Loads (TMDLs) for Utah’s lakes, rivers, and streams.

- Improved forecasting of the Great Salt Lake will directly benefit future emergency management and planning. Great Salt Lake forecasts are anticipated to be useful for better prediction of the onset, severity, and cessation of droughts in Utah.

- Results of our laboratory investigations continue to provide cost-saving methods for improving the performance of dam spillways in Utah and can be expected to play an important role in future dam safety rehabilitation in the state.

- The use of vegetation for reclaiming mining areas is being investigated through the development of phytoremediation techniques at the UWRL to assist Utah and other intermountain areas with metal-contaminated soil and ground water.

- A more realistic approach to assessing the impacts of altered flow regimes on drifting feeding fish species (i.e., trout) is expected to provide resource managers with a tool to make better decisions on protecting Utah fisheries resources.

- Computer models for managing the quality of stream flows and improving the operational efficiency of Utah Weber Basin water treatment plants continue to be developed and are expected to be transferable to other river systems in Utah.
Short Courses and Field Training

UWRL staff provide short courses both on site at USU and off site within the State of Utah, regionally, as well as globally. Generally offered from one- to five-days duration, short courses are tailored to meet the needs of the requestor. A list of short courses, field training, and involvement of UWRL staff are indicated below.

FY July 2001 - June 2002

FY July 2002 - June 2003

“Physical Habitat Simulation and Habitat Time Series - (PHABSIM-Windows).” Utah State University, Logan, Utah, May 2003. Thomas Hardy

“Specialty Short Course on the Modular Modeling System (MMS).” Utah State University, Logan, Utah, June 2003. Luis Bastidas.
VI. Finances

Revenues and expenditures for the fiscal year from July 1, 2002 through June 30, 2003, are shown in Figure 8, and are representative of fiscal years 2002 through 2003. Categories of revenues include State of Utah, federal, private, and Utah State University. Revenues from the State of Utah total 26% of the UWRL budget, and federal and private sector support totals 74%. Categories for expenditures include research, education support, outreach, and UWRL program administration. Research expenditures include those costs associated with faculty salary, supplies and expendables, publication, and travel. Education support includes expenditures related to undergraduate and graduate stipends and travel. Outreach activities costs are related to information dissemination, short courses, and salary for staff and faculty directly involved in outreach activities. Program administration includes the UWRL Director’s Office, Business Office, publication support, and secretarial support for the faculty. Our expenditures indicate that research is the main activity, accounting for approximately 65% of the total budget, with education support next. Outreach and program administration expenditure categories are similar at 19% and 4%, respectively.

Sources of Support

The UWRL is supported by the State of Utah, Utah State University, and other collaborators that include a variety of private and government agencies. Support from the State of Utah and Utah State University, over the last two years, amounts to approximately $2.5 million on an annual basis. Additional state resources are frequently provided by the Utah Department of Environmental Quality and the Utah Department of Natural Resources, for specific problem-solving tasks. Additional collaborators typically provide a total of $6.5 million for grant, contract, task, and outreach-related activities on an annual basis. Examples of UWRL clients over the two-year period addressed in this report include:

American Water Works Association Research Foundation
Electric Power Research Institute
Hydroplus International
MBI International
National Association of Local Health Boards
National Cooperative Highway Research Program
National Science Foundation
U.S. Bureau of Land Management
U.S. Bureau of Reclamation
U.S. Department of Agriculture
U.S. Department of Defense
U.S. Department of Energy
U.S. Department of Justice
U.S. Department of State
U.S. Department of the Interior
U.S. Environmental Protection Agency
U.S. Fish and Wildlife Service
U.S. Forest Service
U.S. Geological Survey
Utah Department of Environmental Quality
Utah Department of Natural Resources
The UWRL has also been involved with hydraulic testing, evaluation, and calibration activities for private firms. Revenues and expenditures for these projects are in addition to those indicated in Figure 8.

Accurate Measurement Systems Greenfix America
ADS Corporation HDR Engineering, Inc.
Airvac Henry Pratt Company
Atlanta Corrugating JM Manufacturing Co.
BIF McCrometer
Boeing-Rocket Dyne Metso Automation
Buckeye Technologies Milliken Valve Co.
Calibron N.A. Green
CCI National Corrugated Steel Pipe Assoc.
CH2M Hill NSF International
Cherokee Culvert Panametrics
Cla-Val Company Paul Hastings/JM Mfg
Contech PRC Flow Measurement and Control, Inc.
Control Center Primary Flow Signal
Crane Profile Products
Daniel Industries Canada Renaissance Instruments
Ecofiber Rochester Gas and Electric
Energy Flow Systems Soil Retention
Energy Northwest Toshiba International Corporation
Flow products Tracom
Flowserve Triad Measurement and Equipment, Inc.
Franson Noble Engineering Tsrumi Pump
Freese and Nichols Tyco Valves and Controls
GEI University of Iowa
Gerand Engineering Company Valcor
Green & Biotech Wyatt Engineering
Figure 8. Revenues and Expenditures for Fiscal Year July 1, 2002 - June 30, 2003.
Figure 9. History of UWRL Funding.

Total revenues constitute the addition of State of Utah and Federal & Private Revenues.
Figure 9 shows the history of funding of the UWRL with regard to revenue sources. At present, total annual UWRL revenues are approximately $9.4 million. Two categories are identified: (1) State of Utah, and (2) private and federal combined. USU support generally has provided one percent or less of the UWRL total revenue sources over the 38-year period of the UWRL activities. Figure 9 also shows an increasing trend in both state support and federal/private support. Significant increases in federal and private support have been made possible through leveraging of state support. State support has been used to provide state-of-the-art facilities and faculty expertise, as well as graduate student support of collaborative projects that involve state-federal and state-private collaborative activities. This institutional teaming approach to common water issues has provided significant added value in terms of quality and quantity of new knowledge generated. In addition, our students who graduate with engineering hands-on experience of multi-institutional projects add increased capability and competence to water professionals entering the employment market.

Our desire at the UWRL is to encourage and facilitate collaboratively-supported research and testing projects that provide educational opportunities for university students.

For more information on collaborative research opportunities with the UWRL, please contact Dr. Mac McKee at: mmckee@cc.usu.edu.
Selected UWRL Projects in the State of Utah
VII. Summary of Projects

UWRL research and testing projects for 2002-2003 fiscal years are identified below. Descriptive titles, project sponsors, and principal investigators are indicated and the year of project initiation. Additional information concerning individual projects can be obtained by contacting the principal investigator. Selected projects within the State of Utah are indicated by the “◊” symbol and are shown on the state map.

<table>
<thead>
<tr>
<th>Title/Topic</th>
<th>Source of Funds</th>
<th>Principal/Co-Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Performance Indicators for Arsenic Removal◊</td>
<td>American Water Works Association (AWWA)</td>
<td>Laurie S. McNeill</td>
</tr>
<tr>
<td>Provo River Flow Study◊</td>
<td>Bio-West, Inc.</td>
<td>R. Craig Addley</td>
</tr>
<tr>
<td>Long-Range Streamflow Forecasting Using Climate Information</td>
<td>City of Denver, Water Department</td>
<td>Connely Baldwin</td>
</tr>
<tr>
<td>Water Analysis for City of Glendale, California Water and Power</td>
<td>City of Glendale, California</td>
<td>Laurie S. McNeill</td>
</tr>
<tr>
<td>Development and Classification of Shasta River Digital Multi-Spectral Imagery System</td>
<td>Coastal California Fish and Wildlife Office</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>Two-Dimensional Flow Modeling</td>
<td>Colorado Department of Natural Resources</td>
<td>R. Craig Addley</td>
</tr>
<tr>
<td>Below Sevier Bridge Reservoir (Yuba) Fish Sampling◊</td>
<td>Consolidated Sevier Bridge Reservoir Company</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>Model Building and Comparison Study in the Oostanaula Watershed</td>
<td>Electric Power Research Institute (EPRI)</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>Integrated Watershed Information Management Tool Kit</td>
<td>Idaho National Engineering and Environmental Laboratory (INEEL)</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>Evaluating the Plant Uptake of Disopropanolamine (DIPA) and Sulfolane in a Laboratory-Scale Wetlands System◊</td>
<td>Komex International</td>
<td>William J. Doucette</td>
</tr>
<tr>
<td>Evaluation of Innovative Technologies for Remediation of Soils and Groundwater Contaminated by Chlorinated Hydrocarbon◊</td>
<td>MBI International</td>
<td>R. Ryan Dupont</td>
</tr>
<tr>
<td>Survey of Boron and Hexavalent Chromium</td>
<td>McGuire Environmental Consultants, Inc.</td>
<td>Laurie S. McNeill</td>
</tr>
<tr>
<td>Title/Topic</td>
<td>Source of Funds</td>
<td>Principal/Co-Principal Investigator</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hexavalent Chromium Removal from Drinking Water</td>
<td>McGuire Environmental Consultants, Inc.</td>
<td>Laurie S. McNeill</td>
</tr>
<tr>
<td>Scoping Study for Feather-Yuba Real Time Flood Operations</td>
<td>MKB Engineers</td>
<td>David S. Bowles</td>
</tr>
<tr>
<td>Development of a Guide and Video Tape on On-Site Wastewater Treatment and Disposal Systems for Use by Local Boards of Health†</td>
<td>National Association of Local Board of Health</td>
<td>Judith L. Sims</td>
</tr>
<tr>
<td>Two-Dimensional Instream Flow Modeling (Oak Grove Fork/Clakamas)</td>
<td>Pacific Power and Light Company</td>
<td>James Shoemaker</td>
</tr>
<tr>
<td>Bench Scale Reactors for Determining the Fate of Pharmaceuticals in Municipal Water Treatment Facilities</td>
<td>Pfizer, Inc.</td>
<td>William J. Doucette</td>
</tr>
<tr>
<td>Guadalupe River Flood Control Project</td>
<td>Ruth and Going, Inc.</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>Sevier River Basin Water Resource Management Network †</td>
<td>Sevier River Water Users Association</td>
<td>Mac McKee</td>
</tr>
<tr>
<td>Pipe Culvert Database and Data Gathering Model †</td>
<td>State of Utah, Department of Transportation</td>
<td>William J. Grenney</td>
</tr>
<tr>
<td>GIS-Based Watershed Data Viewer and Water Quality for the United States Bureau of Reclamation Western Region</td>
<td>United States Bureau of Reclamation</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>On-Line Instructional Module on Rainfall Runoff Modeling</td>
<td>United States Department of Commerce, National Weather Service (NWS)</td>
<td>David G. Tarboton</td>
</tr>
<tr>
<td>Hydraulic Modeling of Intake Well for Fusegate Spillway, Terminus Dam, Lake Kaweah, California</td>
<td>United States Department of Defense, Army</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>Partnership between Utah State University and An-Najah National University, Nablus, Palestine</td>
<td>United State Department of State</td>
<td>Jagath J. Kaluarachchi</td>
</tr>
<tr>
<td>Folsom Reservoir Emergency Operation Study: Uncertainty Simulation of Reservoir Release Forecast Model</td>
<td>United States Department of the Interior, Bureau of Reclamation</td>
<td>David S. Bowles</td>
</tr>
<tr>
<td>Title/Topic</td>
<td>Source of Funds</td>
<td>Principal/Co-Principal Investigator</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Developing Training Materials for Basin/ Hydrologic Simulation Program</td>
<td>United States Environmental Protection Agency</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>Fontram Modeling Workshops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Water Protection Plan for Utah</td>
<td>United States Geological Survey</td>
<td>Ronald C. Sims</td>
</tr>
<tr>
<td>Improve Accuracy of Design Discharge Calculations</td>
<td>University of Utah</td>
<td>William J. Grenney</td>
</tr>
<tr>
<td>Sevier River Basin Long-Term Fish Monitoring</td>
<td>Utah Division of Wildlife Resources</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>Virgin River Basin Integrated Resource Management and Recovery Program</td>
<td>Washington County Water Conservancy District</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>Two Dimensional Hydraulics and Habitat Modeling</td>
<td>Watershed Systems Group</td>
<td>Jennifer Ludlow</td>
</tr>
</tbody>
</table>

FY 2003

<table>
<thead>
<tr>
<th>Title/Topic</th>
<th>Source of Funds</th>
<th>Principal/Co-Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluating Hyporheic Zone Biodegradation/Attenuation of MTBE and Other</td>
<td>American Petroleum Institute (API)</td>
<td>Ronald C. Sims</td>
</tr>
<tr>
<td>Oxygenates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developing Training Materials for Basins/ HSPF Modeling</td>
<td>Aqua Terra</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>Underwater Mapping at Sevier Bridge Reservoir, Utah</td>
<td>Bowen, Collins, & Associates</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>Bathymetric Mapping of the Little Harguala Pumping Plant Forebay in</td>
<td>Central Arizona</td>
<td>James Shoemaker</td>
</tr>
<tr>
<td>Central Arizona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newton Reservoir TMDL Project, Utah</td>
<td>Cirrus Ecological Solutions, L.C.</td>
<td>Daniel P. Ames</td>
</tr>
<tr>
<td>Otter Creek TMDL Support, Utah</td>
<td>Cirrus Ecological Solutions, L.C.</td>
<td>Daniel P. Ames</td>
</tr>
<tr>
<td>Modeling Flows of Three River Sites</td>
<td>Colorado Division of Wildlife</td>
<td>R. Craig Addley</td>
</tr>
<tr>
<td>WinHSPF Modeling Building Support from Aqua Terra</td>
<td>Electric Power Research Institute (EPRI)</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>Title/Topic</td>
<td>Source of Funds</td>
<td>Principal/Co-Principal Investigator</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Emery County Resource Management/Conflict Resolution Network◊</td>
<td>Emery County Water Conservancy District</td>
<td>Mac McKee</td>
</tr>
<tr>
<td>Integrated Watershed Information Management Tool Kit</td>
<td>Idaho National Engineering and Environmental Laboratory (INEEL)</td>
<td>David K. Stevens</td>
</tr>
<tr>
<td>Hydraulic Loss Coefficients for Culverts</td>
<td>National Cooperative Highway Research Program</td>
<td>Blake P. Tullis</td>
</tr>
<tr>
<td>Physical Model of Success Dam Model</td>
<td>Owen, Ayers and Associates</td>
<td>William J. Rahmeyer</td>
</tr>
<tr>
<td>Demonstration of Hydraulic Control (Phytostabilization) of Shallow Groundwater Using Tree Plantings and Department of Defense Installations</td>
<td>Parsons, Texas</td>
<td>William J. Doucette</td>
</tr>
<tr>
<td>Pollution Prevention◊</td>
<td>SES</td>
<td>Michael J. McFarland</td>
</tr>
<tr>
<td>Lower Sevier River Basin Long Term Fish Community Monitoring◊</td>
<td>Sevier River Water Users Association</td>
<td>Thomas B. Hardy</td>
</tr>
<tr>
<td>On-Site Wastewater Training◊</td>
<td>State of Utah, Department of Environmental Quality (DEQ)</td>
<td>Judith L. Sims</td>
</tr>
<tr>
<td>Managing the Impacts of Small Reservoir Sluicing◊</td>
<td>State of Utah, Department of Environmental Quality (DEQ)</td>
<td>Mac McKee</td>
</tr>
<tr>
<td>Reservoir Release Model for the Upper Sevier◊</td>
<td>United States Bureau of Reclamation</td>
<td>Mac McKee</td>
</tr>
</tbody>
</table>
| GIS-Based Analyst Tools for Forest Roads | United States Department of Agriculture, Rocky Mountain Research Station | David G. Tarboton
VIII. Publications

The publications listed below have been restricted to peer-reviewed publications in professional journals for UWRL/collaborator projects, primarily for the year 2002. Research reports, presentations, and specially formatted reports are not included.

IX. Current Personnel Listing

UWRL Faculty

MCKEE, Mac, Interim Director, Professor
 (e-mail: mmckee@cc.usu.edu)
AMES, Daniel P., Research Assistant Professor
 (e-mail: dan.ames@usu.edu)
ANDERSON, Loren R., Department Head of Civil and
 Environmental Engineering, Professor
 (e-mail: loren@cc.usu.edu)
BAGLEY, Jay M., Professor Emeritus
BASTIDAS, Luis, Assistant Professor
 (e-mail: Luis.bastidas@usu.edu)
BISHOP, A. Bruce, Professor
 (e-mail: Bruce.Bishop@usu.edu)
BOWLES, David S., Professor
 (e-mail: David.Bowles@usu.edu)
CHAUHAN, Sanjay, Research Assistant Professor
 (e-mail: sanjay.chauhan@usu.edu)
CLYDE, Calvin G., Professor Emeritus
 (e-mail: calclyde@cc.usu.edu)
DOUCETTE, William J., Professor
 (e-mail: doucette@cc.usu.edu)
DUPONT, R. Ryan, Professor, Head, Environmental Division
 (e-mail: rdupo@cc.usu.edu)
GRENNEY, William J., Professor
 (e-mail: grenney@cc.usu.edu)
HARDY, Thomas B., Professor, Director, INSE
 (e-mail: hary@inse.usu.edu)
HOGGAN, Daniel H., Professor
 (e-mail: danh@cc.usu.edu)
HUGHES, Trevor C., Professor Emeritus
 (e-mail: thughes@cache.net)
ISRAELSEN, C. Earl, Professor Emeritus
 (e-mail: mear14@juno.com)
JEPPSON, Roland W., Professor Emeritus
 (e-mail: jeppson@lab.cee.usu.edu)
JOHNSON, Michael C., Research Assistant Professor
 (e-mail: mikejnsn@cc.usu.edu)
KALUARACHCHI, Jagath J., Head, Water Division
 Program, Professor
 (e-mail: jkalu@cc.usu.edu)
KEMBLOWSKI, Mariush W., Professor
 (e-mail: mkem@cc.usu.edu)
LALL, Upmanu, Adjunct Professor
 (e-mail: ula2@columbia.edu)
MARTIN, Randal, Associate Professor
 (e-mail: rmartin@cc.usu.edu)
MCFARLAND, Michael J., Associate Professor
 (e-mail: farlandm@msn.com)
MCLEAN, Joan E., Research Associate Professor
 (e-mail: jmcle@cc.usu.edu)
MCNEILL, Laurie, Assistant Professor
(e-mail: lmcneill@cc.usu.edu)
RAHMeyer, William J., Professor
(e-mail: rahmeyer@cc.usu.edu)
RILEY, J. Paul, Professor Emeritus
(e-mail: riley@mtwest.net)
SIMS, Judith L., Research Associate Professor
(e-mail: jlsims@cc.usu.edu)
SIMS, Ronald C., Interim Associate Director, UWRL,
Department Head, Biological and Irrigation Engineering,
Professor
(e-mail: rcsims@cc.usu.edu)
SORENSEN, Darwin L., Research Professor
(e-mail: dsore@cc.usu.edu)
STEVENS, David K., Professor
(e-mail: david.stevens@usu.edu)
TARBOTON, David G., Professor,
(e-mail: dtarb@cc.usu.edu)
TULLIS, Blake, Assistant Professor
(e-mail: btullis@cc.usu.edu)
TULLIS, J. Paul, Professor Emeritus
(e-mail: ptullis@bridgernet.com)
URROZ, Gilberto E., Associate Professor
(e-mail: gurro@cc.usu.edu)

UWRL Staff

BARFUSS, Steven L., Research Engineer
(e-mail: barfuss@cc.usu.edu)
BROWN, Marianne, Staff Assistant
(e-mail: marianne.brown@usu.edu)
BURNS, Carmell, Staff Assistant III
(e-mail: carmell@cc.usu.edu)
CARLSEN, Terry, Research Technician
(e-mail: terrycarlsen@cc.usu.edu)
COX, Melissa, Receptionist
(e-mail: melistick@hotmail.com)
CROUCH, Coreen, Research Technician
(e-mail: ccrouch@cc.usu.edu)
HANSEN, Betty J., Staff Assistant
(e-mail: betty.hansen@usu.edu)
HARRIS, R. Ivonne, Information Dissemination Coordinator
(e-mail: iharr@cc.usu.edu)
HENDERSON, Cindy, Runner
(e-mail: cinher@cc.usu.edu)
JORGENSEN, Danielle, Library Assistant
(e-mail: danijorg@cc.usu.edu)
KADIS, Tami, Receptionist
(e-mail: tami.kadis@usu.edu)
MELTON, Sharon, Accounting Technician
(e-mail: sharon.melton@usu.edu)
PETERSEN, Michael, Research Scientist
(e-mail: peter@cc.usu.edu)
PETERSON, Tamara, Business Office Manager
(e-mail: tamara.peterson@usu.edu)
ROBISON, Susan, Research Technician
(e-mail: srobison@cc.usu.edu)
TAYLOR, Alan, Shop Foreman
(e-mail: alan.taylor@usu.edu)
THOMAS, Chris, Accountant
(e-mail: chris.thomas@usu.edu)
URROZ, Jan, Supervisor of Administrative Services and Infrastructure
(e-mail: janurroz@cc.usu.edu)

EMRP Staff

AMES, Daniel P., Research Assistant Professor
(e-mail: dan.ames@usu.edu)
HORSBURGH, Jeffery, Research Engineer
(e-mail: jeff.horsburgh@usu.edu)
NEILSON, Bethany, Research Engineer
(e-mail: bethany.neilson@usu.edu)

IDSRM Staff

BOWLES, David S., Professor, Director
IDSRM
(e-mail: David.Bowles@usu.edu)
ANDERSON, Loren R., Department Head of Civil and
Environmental Engineering, Professor
(e-mail: loren@cc.usu.edu)
CHAUHAN, Sanjay, Research Assistant Professor
(e-mail: sanjay.chauhan@usu.edu)
GLOVER, Terry, Professor, Economics Department
(e-mail: tglover@econ.usu.edu)
MATHIAS, James Dean, Senior Software Developer
(e-mail: deanmat@cache.net)
IIC Staff

YAP-SALINAS, Humberto L., Director, Research Professor
(e-mail: hyaps@cc.usu.edu)
HARGREAVES, George H., Research Professor Emeritus
(e-mail: iic@cc.usu.edu)
OLSEN, Edwin C. (TED), Professor Emeritus
(e-mail: ted.olsen@usu.edu)

INSE Staff

HARDY, Thomas B., Director, Professor
(e-mail: hardy@inse.usu.edu)
ADDLEY, R. Craig, Senior Research Engineer
(e-mail: craig@inse.usu.edu)
BASDEKAS, Leon, Research Engineer
(e-mail: leon@inse.usu.edu)
BRADFORD, Bill, Research Engineer
(e-mail: bill@inse.usu.edu)
CLEMENS, Shannon, Research Engineer
(e-mail: sclemens@inse.usu.edu)
COMBES, Matthew, Research Engineer
(e-mail: mattc@inse.usu.edu)
GOWING, Ian, Research Scientist
(e-mail: I_gowing@hotmail.com)
LUDLOW, Jennifer, Research Engineer
(e-mail: ludlow@inse.usu.edu)
PETERSON, Tamara, Office Supervisor
(e-mail: tamara.peterson@usu.edu)
RICHARDS, Carri, Business Assistant
(e-mail: carri.richards@usu.edu)
SHOEMAKER, James, Research Engineer
(e-mail: shoe@inse.usu.edu)
TYLER, Cynthia, Research Engineer
(e-mail: cynthia@inse.usu.edu)
WINKELAAR, Mark, Research Engineer
(e-mail: mark.winkelaar@usu.edu)
IOWSE Staff

SMITH, Geoffrey G., Director
 (e-mail: gsmit@subed.usu.edu)
DOWNS, Jennifer, Staff Assistant II
 (e-mail: jennifer@subed.usu.edu)
DITLEVSEN, Diane, Staff Assistant
 (e-mail: diane@subed.usu.edu)
FERGUSON, Andrae, Publications Specialist
 (e-mail: andrae@subed.usu.edu)
HAINES, Barbara, Education/Travel Coordinator
 (e-mail: barbara@subed.usu.edu)
LUNDGREEN, Debby
 (e-mail: debra@subed.usu.edu)
LONGHURST, Max, Staff Development
 (e-mail: max@subed.usu.edu)
REESE, ValaRee, Staff Assistant
 (e-mail: valaree@subnt.hsrc.usu.edu)
RICHARDS, Megan, Coordinator
 (e-mail: meganr@cc.usu.edu)
SCHOFIELD, Chris, Chief Distribution Engineer
 (e-mail: chrichy@subed.usu.edu)
SORENSON, Blaine, Education Specialist
 (e-mail: blaine@subed.usu.edu)
TIPPETTS, Zach, Web Designer
 (e-mail: zach@subed.usu.edu)

UCWRR Staff

MCKEE, Mac, Interim Director, Professor
 (e-mail: mmckee@cc.usu.edu)
HARRIS, R. Ivonne, Information Dissemination Coordinator
 (e-mail: iharr@cc.usu.edu)
SIMS, Ronald C., Interim Associate Director, Professor
 (e-mail: rcsims@cc.usu.edu)
URROZ, Jan, Supervisor of Administrative Services and Infrastructure
 (e-mail: janurroz@cc.usu.edu)
Utah On-Site Wastewater Treatment Training
Program Staff

SIMS, Judith L., Facilitator/Coordinator
Research Assistant Professor, Newsletter Editor
(e-mail: jlsims@cc.usu.edu)
CASHELL, Peg, Soil Scientist
(e-mail: peg@cal.sdl.usu.edu)
HARRIS, R. Ivonne, Information Dissemination Coordinator
(e-mail: iharr@cc.usu.edu)
SIMS, Ronald C., Environmental Engineer, Advisory Board Chairman
(e-mail: ronsims@cc.usu.edu)
SORENSEN, Darwin L., Microbiologist
(e-mail: dsore@cc.usu.edu)
TULLIS, Blake, Hydraulic Engineer
(e-mail: btullis@cc.usu.edu)

Water Dynamics Laboratory Staff

PERALTA, Richard, Director, Professor, Biological and Irrigation Engineering Specialist
(e-mail: peralta@cc.usu.edu)
BARFUSS, Steven L., Research Engineer
(e-mail: barfuss@cc.usu.edu)
JOHNSON, Michael C., Research Assistant Professor
(e-mail: mikejnsn@cc.usu.edu)