

Assessments of MODIS On-orbit Spatial and Spectral Characterization

Jack Xiong¹, Dan Link², Kevin Twedt², and Ben Wang²

¹NASA GSFC, Greenbelt, MD 20771, USA ²SSAI, 10210 Greenbelt Road, Lanham, MD 20706, USA

Acknowledgements

Raytheon MODIS Team members MCST members supported SRCA data analyses (previous and current)

Outline

MODIS Instrument

- Spectral Bands and Focal Plane Assemblies (FPAs)
- On-board Calibrators (OBCs)
- Spectro-Radiometric Calibration Assembly (SRCA)
- On-orbit Spatial and Spectral Characterization
 - Activities and Methodologies
- Spatial Performance
 - Band-to-Band Registration (BBR)
 - Modulation Transfer Function (MTF)
- Spectral Performance
 - Center Wavelengths (CW) and Bandwidths (BW)
- Summary

Moderate Resolution Imaging Spectroradiometer (MODIS)

MODIS

Terra since 1999

Aqua since 2002

36 spectral bands: 0.4 - 14.4 μ m (VIS, NIR, SMIR, LWIR) 3 spatial resolutions (nadir): 250 m, 500 m, and 1000 m 4 focal plane assemblies (FPA) with a total of 490 detectors

On-board Calibrators (OBC)

SD/SDSM for RSB radiometric calibration

BB for TEB radiometric calibration

SRCA for spatial and spectral characterization

Spectro-Radiometric Calibration Assembly (SRCA)

On-orbit Spatial and Spectral Characterization

Year	Terra	Agua
2000	10	-
2001	6	-
2002	6	5
2003	6	6
2004	6	5
2005	3	4
2006	3	2
2007	4	4
2008	5	5
2009	4	4
2010	4	4
2011	5	5
2012	4	5
2013	4	4
2014	5	5
2015	4	4
2016	3	2

Spatial (82/64)

Spectral (58/44) Year Terra Aqua _

Lamp Usage

Terra

- Launch: Lamps 1-3, 5 in operation (4, 6 in reserve)
- Nov. 2004 L4 replaced L2
- Feb. 2006 Lamp 3 taken out of service

Aqua

- Launch: Lamps 1-3, 5 in operation (4, 6 in reserve)
- April 2003 L4 replaced L2
- June 2005 Lamp 3 taken out of service
- July 2016 Lamp 4 taken out of service

Spatial and Spectral Characterization Methodologies

 λ calibration performed with didymium filter

Grating step -> θ -> λ

Spatial Performance (Aqua along-scan BBR)

Aqua BBR: a known issue since pre-launch; shift between warm and cold FPA

Spatial Performance (Aqua yearly BBR)

Spatial Performance (Terra yearly BBR)

Terra BBR: within spec (±0.1 km) for all band pairs (except for along scan B30 and B32)

Spatial Performance (Terra along-scan MTF)

MTF performance meets design requirements except for a few bands in Aqua

Limitation of SRCA: along-track MTF Data quality impact on MTF (e.g. SWIR crosstalk)

Spatial Performance (Terra along-track MTF; Moon)

Similar results (stable along-track MTF) for Aqua MODIS Methodologies developed for MODIS also applied to VIIRS Limitation of lunar approach: TEB saturate when viewing the Moon

Spectral Performance (on-orbit RSR from SRCA)

Pre-launch from SpMA used as the reference On orbit SRCA measurements (Terra) made in 2001, 2005, 2010, 2015

Center Wavelengths (CW) and Bandwidths (BW)

Spectral Performance (Terra changes in CW)

Spectral Performance (Terra CW and BW)

Changes in CW and are within 0.5 nm and 1.0 nm, respectively, for most VIS/NIR bands

Relatively large changes seen for bands with broad bandwidths (e.g. band 1 and 19)

Spectral Performance (Aqua CW and BW)

Changes in CW and are within 0.5 nm and 1.0 nm, respectively, for most VIS/NIR bands

Relatively large changes seen for bands with broad bandwidths (e.g. band 1 and 19)

Summary

- Terra and Aqua MODIS SRCA continue to operate and function (as good as expected)
 - Adjustments made to operation configuration due to loss of internal lamps
 - Sufficient margin in the expected lifetime for the remaining lamps
- Overall spatial and spectral performance remains stable
 - Terra BBR: within spec (±0.1 km) for all band pairs except for B30 and B32 in scan direction)
 - Aqua BBR: a known issue since pre-launch (same on-orbit)
 - MTF performance meets design requirements except for a few bands (Aqua)
 - Changes in CW and BW are within 0.5 nm and 1.0 nm, respectively, for most VIS/NIR bands (large for bands with broad bandwidths)
- Approaches developed using MODIS lunar observations (validated with SRCA) successfully applied to VIIRS
- Challenging issues and lessons

Challenging Issues and Lessons

- Use of SRAC data to improve sensor radiometric calibration
 - Radiometric mode (changes of internal calibration source): very useful for relative calibration
 - Use of on-board spectral and spatial performance parameters: justification/validation; uncertainty; ...
- Lamp degradation
 - Different operation configurations impact on radiometric stability monitoring
 - Impact of SNR for spectral calibration
- Lessons and benefits from MODIS SRCA design and operation
 - Radiometric calibration transfer (can be improved)
 - Sensor anomaly diagnosis and resolution
 - Development and validation of different calibration and characterization approaches