A device to record the specific time an artificial nest is depredated

JENNIFER S. BORGO1, Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA jborgo@coker.edu

MICHAEL R. CONOVER, Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA

Abstract: We designed a timing device that records the calendar date and time of a depredation event on an artificial nest. The clock was simple to construct and successful in field trials, with only 6% failure (3 of 48 clocks). The average difference between actual and estimated depredation time was 4.6 minutes. Use of this clock improves daily survival estimates, provides insight into predator activity patterns, and allows the evaluation of investigator-induced depredation.

Key words: artificial nests, human–wildlife conflicts, monitoring, nest depredation, nest success, predator activity patterns

Methods

Construction of clocks

We purchased digital alarm clocks (Travel Alarm Clock® @ $8.24 each) that displayed both time and calendar date. We used a soldering iron to disconnect the wire that connected the clock body to the positive battery terminal. We used new wires (20–22-gauge hook-up wire, 1 to 1.5 m long) to connect the clock body and battery terminal through a trigger device (sub-mini SPDT lever switch @ $2.69 each) and soldered them in place to prevent disconnection (Figure 1). The length of wires can be altered to fit project needs. For example, when using the device for an above-ground artificial nest, wires can be extended so that the clock is on the ground while the trigger and nest are several meters high. We made a #2-size ideal butterfly clamp ($0.04 each) into a treadle and attached it by both soldering and wire-crimping it to the trigger device. The wires were attached so that

1Present address: Coker College, 300 E. College Avenue, Hartsville, SC 29550, USA
Timing device • Borgo and Conover 89

When the trigger was depressed (egg in place) the battery was disconnected. Once the trigger was released by removing the egg, the electric circuit was completed, and the clock started at 1200 hours, July 1 (start time and date differ by clock brand and should be checked). The clock display indicated the number of days, hours, and minutes that passed since the trigger was released (depredation event). The clock was placed into a plastic container to protect it from the weather. Wires were passed through a hole cut into the container that was sealed with epoxy to prevent water damage. The wires and container were spray-painted green, brown, and beige for camouflage. After painting, the clocks were left outside for at least 1 week to dissipate the odor. The trigger device was attached using 2 screws (#6 x 0.25 inch Phillips pan-head, sheet metal screws @ $0.04 each) to the blade of a heavy duty plastic knife to provide stability (Figure 2). Once familiar with the technique, we took <10 minutes to wire each clock. Battery life extended >1 year with clocks in continuous use (i.e., trigger-released).

Field trial

We placed 48 clocks in a grid pattern at the Green Canyon Ecology Station of Utah State University (Logan, Utah) in August 2007. We used mediumsized, white chicken eggs purchased from the grocery store. One fresh egg was placed on each treadle (Figure 3). Over the course of 3 days (August 27–29, 2007), each nest was “depredated” by a person other than the investigator. There was no precipitation during the testing period, and wind speed varied from 0 to 29 km/hr. This clock has worked well under variable weather conditions during predator research in North Dakota (personal observation). The exact time and date of the depredation event was recorded, but the investigator was not provided this information. The investigator checked all nests on August 31, 2007, and

Figure 1. Inside of the digital clock within a plastic container showing attachment points for the new wires. Stars indicate solder points.

Figure 2. Diagram of the treadle attached to the trigger device, including a plastic knife that is pushed into the ground for stability.
recorded the date and hour on the clock, as well as the actual time. We subtracted the depredation period from the nest check time to estimate when the depredation event occurred.

After we estimated the time of each depredation event, we were informed when the actual event took place. We then compared the estimated simulated depredation time to the actual time of the event to determine the accuracy of our timing device. We calculated failure rate for the clocks, which we defined as any instance when the difference between the calculated and actual time was >1 hour.

Results

Of 48 total clocks, two failed due to loose wiring that could be corrected through more rigorous soldering, and 1 failed due to unknown causes (94% success). The remaining clocks averaged a time difference of 4.6 minutes (SE = 0.33), with a maximum difference of 8 minutes.

Discussion

Field trials showed that our clocks were very accurate, with time differences between actual and recorded depredation events ≤8 minutes. There are several benefits to knowing the actual time that a nest is depredated, including more accurate nest survival estimates and insight into nest predators and their activity patterns.

Precise recording of the day and time of a depredation have been hard to obtain in the past. Precision can be increased through more frequent nest-checks. However, anest check interval of 5 days is recommended to minimize the risk of investigator-induced predation (Major 1990, Esler and Grand 1993). To estimate when the depredation event took place, investigators usually use the median date in the nest-check interval (Mayfield 1975, Klett et al. 1986). Our clock design eliminates the need for estimation and allows for a longer time between visits, while still providing a more robust measure of nest survival rate.

Investigator-induced depredations are often a concern in nesting studies because researchers may increase depredation risk by depositing odor trails to nests, disturbing vegetation around nest sites, or being observed at the nest site by a predator (Strang 1980, Götmark et al. 1990, Skagen et al. 1999, Béty and Gauthier 2001). The importance of investigator-induced depredation on overall nest success remains unclear. Several studies found evidence of nest predators, both mammalian and avian, following observers' visits (Götmark et al. 1990, Morton et al. 1993, Sloan et al. 1998). However, observer effects are inconsistent among studies and over years (Béty and Gauthier 2001, Keedwell and Sanders 2002) and are difficult to quantify. Researchers have used the direction of predator approach to a nest, comparisons of daily survival with different visitation rates, and depredation rates with human scent treatments to evaluate the impact of investigator-induced depredation (Major 1990, Esler and Grand 1993, Whelan et al. 1994, Verboven et al. 2001, Keedwell and Sanders 2002). Our timing device could provide a more direct test of investigator-induced depredation. If predators are watching observers or following observer scent trails, then nests may be depredated soon after the observer leaves the area.

Further, these clocks can be used to explore temporal patterns in depredation risk caused by weather. A predator's ability to locate a nest using olfaction is affected by humidity, temperature, wind speed, and atmospheric turbulence (Conover 2007). Previous studies reported a negative relationship between rainfall and nest survival, but they relied on averaging rainfall over the entire incubation period (Roberts et al. 1995, Roberts and Porter 1998). Roberts and Porter (1998) found that daily nest survival of turkeys (*Meleagris gallopavo silvestris*) was negatively associated with the departure from average seasonal rainfall. While this sort of analy-
Timing device indicates a potential link between weather conditions and predator activity, the timing device allows us to determine predator responses to short-term weather events. Use of our timing device will allow researchers to evaluate weather conditions at the time of depredation to determine if there are consistent meteorological conditions that increase risk of predation.

Recruitment in many avian species is reduced due to high rates of nest depredation (West et al. 2007, Jiménez et al. 2007). Wildlife biologists and researchers who are studying or managing this problem have been hampered by their inability to determine the time of day when nests are most vulnerable to depredation. Our timing device can provide this information when used with artificial nests.

The timing device is simple to make, inexpensive (around $13 each), and accurate. By using this device, researchers can improve daily nest survival estimates, evaluate the impact of investigator-induced depredation in their research area, and study predator activity patterns.

Acknowledgments

Funding for this project was provided by the Utah Agricultural Experiment Station and the Jack H. Berryman Institute. We thank S. Rowbottom for his contribution to the treadle design.

Literature cited

Jennifer S. Borgo currently is serving as visiting assistant professor of biology at Coker College in South Carolina. She is a member of the Jack H. Berryman Institute. She obtained her B.S. degree in zoology from Auburn University and her M.S. and Ph. D. degrees in wildlife biology at Utah State University. Her research interests include human–wildlife conflicts, nest-site selection, and interspecific interactions.

Michael R. Conover (not pictured) is a faculty member with the Jack H. Berryman Institute and the Department of Wildland Resources at Utah State University.