








106

(a) (b)

Fig. B.4: MASnet robots (a) and MicaZ wireless sensor network mote from Crossbow (b).

Fig. B.5: TinyOS program structure.



107

(b) Place the base-station mote, programmed with TOSBase, on the programming

board located beside the base-station computer. Take care to properly seat

the white 52-pin connector. A MicaZ mote that is not completely connected

can cause damage to the mote and programming board as well as cause system

malfunctions. Make sure the mote is switched off or has no batteries to avoid

further damage to the mote. A green LED on the programming board will turn

on when the mote is completely connected to the programming board.

(c) Launch RobotCommander from either the taskbar or the shortcut on the desktop.

(d) From the main menu, select System→Setup→Dectection tab. Verify that a

non-zero number is present in the Broadcast text box. If a zero is present, no

pGPS messages will be broadcast and the robot will not know its global position.

A pGPS broadcast of every 250 ms is typical. Close the Setup box. If any value

in the Setup window is changed, stop RobotCommander and restart it so that

the changes will take effect.

(e) Select System→Start from the main menu to start the program. An image from

the pGPS camera should now be visible. If an error message appears instead of

the image, restart the computer. Occasionally, the base-station computer does

not recognize the pGPS camera signal till it is restarted.

2. Command a robot to move:

(a) Program a MicaZ mote with the desired application. See sec. B.4 for instructions

on mote programming.

(b) Select the MASmote robot corresponding to the MicaZ number and connect the

mote to the sensor board. Turn on the mote at the front of the robot, then the

motor board at the rear of the robot. If done in the reverse order, the encoders

will give a bogus reading. The large rectangular red and green LEDs on the back

of the robots should now be on.



108

(c) Identify the robot number on the front scoop and find the corresponding marker;

numbers are hand written in the top left corner of each marker. Make sure the

the robot number, mote number, and marker number all correspond to keep the

MASnet platform organized. Place the robot with its marker on the platform at

least 0.25 meters away from the edge.

(d) The marker should be identified by RobotCommander and a red circle with a

line indicating orientation is drawn on the image at the location of the robot.

The robot number is also printed in the red circle. If the robot is not recognized,

see sec. B.3.1 to adjust the camera settings.

Note. Currently, only markers 1, 3, 6, and 8 can be recognized by RobotCommander.

Go to System→Make Pattern to add more markers to the RobotCommander registry.

(e) Select the robot by left clicking it on the RobotCommander screen. The red

identifying circle should now turn blue. Right click any place you would like the

robot to move. A green line should extend from the robot to the desired position

and the robot will begin to move using its PI controller to arrive at the selected

target point. If the robot does not move, see sec. B.6 to pinpoint the problem.

B.3 RobotCommander

B.3.1 Functions and Features

The RobotCommander is written in C++ using MFCs to build the multi-window

application. The core application is constantly processing images from the pGPS camera

while all other functionalities are event driven. A standard windows type menu system is

used to navigate and use RobotCommander’s added functions and features. This section

provides an explanation of each option available in RobotCommander’s main menu.



109

� System includes all parameters and commands that change the RobotCommander

system.

– Start starts the RobotCommander program.

– Stop stops the RobotCommander program.

– Setup sets parameters before starting RobotCommander. See sec. B.3.2 for a

detailed explanation of the Setup process.

– Find 4 Corners allows RobotCommander to find the four corners of the plat-

form for camera calibration. See sec. B.3.3 for camera calibration steps.

– Make Pattern adds new marker patterns for RobotCommander to identify.

Follow the Make Pattern steps to add more robots to the platform.

– Eval Error evaluates the camera distortion error. This should not be done

on the platform, but in a simulated environment described in PungYu Chen’s

thesis [2]. This function was only used for the initial setup of the MASnet

platform.

– Save Image saves a Bitmap file of the current pGPS image.

� View displays data in the current window or other windows available in RobotCom-

mander.

– Control Panel provides detailed data about the state of each robot in operation

and can be used to issue commands.

– Show Labeled creates a child window that shows the image after it has been

filtered according to the parameters set in the Major Tweak window. This is

useful when tuning the camera filter because it allows the user to see what the

computer sees.

– Display Comm displays incoming or outgoing messages in a child window.

– L-Matrix Editor changes the communication topology for consensus experi-

ments. This window has not been fully developed; see the source code for details.



110

– Show pGPS Data displays pGPS in a child window.

– Compare Position Data compares the position data derived by RobotCom-

mander on the left and the position data sent from a robot back to the base-

station. This was primarily used to fix encoder problems.

– Robot Destination decides whether All, None, or only Selected robots will

show their destination. All is typically selected.

– Clear Fog Map clears a fog map used for the TinyOS Tech Exchange demo.

This option is obsolete, but can be reinstated with some source code manipula-

tion.

� Camera changes image and detection performance for the pGPS camera.

– Camera Adjust 1 and 2 controls driver settings on the actual camera.

– Major Tweak opens a window that is only activated by pressing the alt key.

Parameters of the image filter can be adjusted in this window; see fig. B.6. The

hue, saturation, and brightness parameters can be used to select a limited range

of colors, red in our case. These parameters are rarely changed but the exposure

time must be adjusted frequently throughout the day as the ambient light levels

change. This is by far the most important adjustment on the MASnet vision

system. Use the Show Labeled window to see how adjustments affect the

filtered image.

Note. For better robot detection, keep the Major Tweak settings the same as fig. B.6,

except for the exposure time.

– Enable Undistortion turns on the undistortion feature which removes barrel

distortion from the image.

� pGPS



111

Fig. B.6: Major Tweak window used to adjust vision parameters.



112

– Detect Now searches for robot markers in the field of view once.

– Broadcast Now immediately broadcasts pGPS information for all robots iden-

tified.

� Commands

– STOP ALL stops motion and resets some states of the robot. The button is

considered the emergency stop of the system and is frequently used in experi-

ments.

– Record Paths turns on the Record Paths function to track robot paths. A

small dot is placed at the center of the robot at each time step. To clear the

screen click on record paths again.

– Rendezvous broadcasts a Rendezvous packet once. Originally it was used to

trigger the simultaneous start of the rendezvous experiment but has since been

used to trigger the start of several different experiments, depending on the robot

code.

– RandomWalk broadcasts a RandomWalk packet once for robots to randomly

traverse the platform. Only robots programmed with a random walk command

can respond, which exclusively includes applications written by Florian Zwetti.

Note. To see what commands or message types are included in each robot application,

check under MASNET MSG TYPE in the masnet Messages.h file.

– Phototaxis broadcasts command packets for robots to perform behavioral dy-

namic phototaxis. Only robots programmed with a random walk command can

respond, which exclusively includes applications written by Florian Zwetti.

– Consensus should broadcast a Consensus command for the robots to perform

formation control. However, there is currently no code written for any robot to

respond to this command.



113

– CVT begins a CVT Light Follow or CVT Formation command to perform

phototaxis or formation control using centroidal Voronoi tessellations.

� Formation Group encompasses tools used for formation maneuvers developed dur-

ing early MASnet projects.

� Calibration tests the performance of the robot controller by a Turn Around or Go

Straight command. These commands are only included in certain applications.

� Logging gathers and save information during experiments.

– Log pGPS records the pGPS information of all visible robots at each interval

in a text file.

– Log SensorMsg records all sensor messages sent from the robots to the base-

station. This file can then be read by one of the MATLAB scripts in the MASnet

Log Plotter folder located in C:\MASNET.

– Log CollectMsg records all “collect messages” sent from the robots to the

base-station. This option is obsolete.

– Log DebugMsg records all debug messages sent from the robots to the base-

station.

– Log TmoteMsg records all Tmote messages sent from the robots to the base-

station. This file can then be read by one of the MATLAB scripts in the MASnet

Log Plotter folder located in C:\MASNET.

B.3.2 Setup

In the RobotCommander Setup menu there are five tabs:

� Camera - Default camera resolution is 1280x1024 the result of changing this is un-

known. The default capture rate is 15 frames per second. This parameter may be

increased or decreased. However, this is a desired rate and is limited by the processor.



114

� Calibration - The Distortion Parameters should not be altered. The Camera

Matrix block contains the intrinsic parameters of the cameras. The default matrix

is


713.484 0 691.651

0 712.373 496.98

0 0 1

 .

� Detection - The detection rate should be greater than or equal to the camera’s

capture rate. In the Broadcast text box, a zero means no pGPS will be sent where

a -1 will cause the pGPS messages to be sent as frequently as they are updated.

A specific time interval for the pGPS broadcast can be entered in milliseconds. If

extended format is checked, pGPS information for only two robots can be packed

into one transmission. If compact format is checked, one transmission can contain

pGPS information for up to four robots. If pGPS information for all robots does not

fit in one transmission, RobotCommander will make multiple transmissions at each

update. RobotCommander can support up to 10 robots.

� Platform - The platform size is the actual dimensions of the blue rectangle painted

on the screen and is entered by the user to perform camera calibration; see sec. B.3.3.

All other parameters in this tab are calculated by the camera calibration routine.

� Formation - This tab is used to control formation control parameters used for early

MASnet projects.

� Test Markers - This tab was used to configure camera calibration experiments.

B.3.3 Calibration

This section describes how to calibrate the cameras extrinsic parameters assuring an

accurate coordinate transform from the camera’s image to real world coordinates. This

calibration should be executed monthly or anytime the camera is moved.



115

1. Define the boundaries of the platform:

(a) Start RobotCommander.

(b) Place a corner marker in each corner of the desired platform size. All four corner

markers have an “L” symbol, a balsa wood block, and an orange base. Markers

are usually placed at the extremities of the platform but may be placed to form

any size rectangular area. Smaller work areas are more accurate that larger work

areas.

(c) Select System→Setup→Platform tab. Enter the x and y platform dimensions

in millimeters measuring from the corner markers placement. Click OK.

2. Calibrate the camera within the platform boundaries:

(a) Select System→Find 4 Corners from the menu. RobotCommander will search

for the corner markers in a predefined order. If all markers are not found, adjust

the camera settings in Major Tweak or reduce the size of the calibration area.

Note. It is difficult for all robot markers to be detected at one time. It would be easier

to hold detected robot markers till all four have been found. To do this, the detectRobots

function under the CPictureAnalyzer class, found in file PictureAnalyzer.cpp, must be

altered.

(b) Once all four corners are found and a red rectangle is drawn on the screen

connecting the corners, double click anywhere in the screen. A verification box

will appear, select Yes; see fig. B.7. The calibration is now complete.

(c) The calibration can be verified by moving the mouse to a position on the platform

and comparing the calculated mouse coordinates in the bottom left corner of

RobotCommander to actual measurements.



116

Fig. B.7: Camera calibration.

B.4 MicaZ Programming

The robots are programmed in the nesC 1.1 language which was developed for the

TinyOS operating system. Since the summer of 2007 the old TinyOS software platform

has been updated to the MoteWorks software platform on the base-station computer. De-

tails of MoteWorks and a free download is available at the Crossbow website [17]. Because

MoteWorks requires an updated version of Cygwin to operate, all old applications must

be updated to the MoteWorks platform to work. All MoteWorks program files for MAS-

net are stored on the base-station hard drive at C:\Crossbow\cygwin\opt\MoteWorks\

apps\general and all old TinyOS files are located at C:\ProgramFiles\UCB\cygwin\opt\

tinyos-1.x\apps. There should be shortcuts on the desktop for both folders (MoteView

apps and TinyOS apps). As these are community files, please do not make changes to

these folders or files. When you decide to make program changes, copy a known good pro-

gram, rename it with your name first and then edit it. Programmers Notepad 2 is typically

used to edit and program the motes. Vim is also available for editing and any other text

editor can be used. Documentation of the nesC language can be found innesC 1.2 Language

Reference Manual [28].



117

The following is a list of programs from the MoteWorks platform included on the

base-station computer [59].

Cygwin - A Linux-like environment for Windows. This can be used to compile and pro-

gram motes.

Programmers Notepad - An Integrated Development Environment for code editing,

compiling, programming, and debugging motes.

XSniffer - A Network Monitoring Tool that displays incoming packets in a user-friendly

GUI. This program is useful to test if the gateway mote is receiving wireless packets.

MoteConfig - A GUI environment for Mote Programming and Over The Air Program-

ming. MoteConfig can only program integrated applications and cannot program new

robot application.

MoteView - A GUI environment for viewing mesh networks. MoteView is an upgrade

from SergeView and is similar to Moteiv’s Trawler application.

For more information on these applications beyond this user’s manual, see MoteWorks

Getting Started Guide, XServe Users Manual, and XMesh Users Manual [59–61].

There are two different ways to program a MicaZ mote with new robot applications

included in the MoteWorks package. The programmer can either use Cygwin or Program-

mers Notepad. Programmers Notepad is typically used because the user can edit, compile,

and program a mote easily. The following sections describe how to program in both cases.

B.4.1 Cygwin

To program a MicaZ with Cygwin:

1. Make sure the mote is switched off and RobotCommander is closed. Having the mote

on while programming can damage the mote, programming board, and the computer.

Also, programming while RobotCommander is running will cause the program to

freeze.



118

2. Place the mote on the programming board making sure it is completely connected.

A MicaZ mote that is not completely connected can also cause damage to the mote

and programming board as well as cause system malfunctions. A green LED on

the programming board will turn on when the mote is completely connected to the

programming board.

3. If you would like to program an old application not yet in the MoteView apps

directory, copy and paste the files from the TinyOS apps directory to the MoteView

apps directory. Delete the current makefiles and copy and paste the makefiles from

VoronoiPYMicaZ. If your application is already in the MoteView apps directory,

skip to the next step.

4. Before programming a mote with a robot application, open the config.h file for the

desired application in a text editor. Change the ROBOT NUMBER on line 26 to the

robot you are programming. Each robot has its own parameters which is included in

config.h.

5. Start the Cygwin environment from the desktop. This is a Linux environment so all

commands are entered as text. Table B.1 shows some useful commands in Cygwin.

6. Use cd to change the path to C:\Crossbow\cygwin\opt\MoteWorks\apps\general\

[DesiredApplication].

7. Type make micaz install.1 to compile and load the program into the mote’s mem-

ory. The number at the end of the install command indicates the robot number and

should be changed appropriately. See fig. B.8 for an illustration of Steps 5 through 7.

Note. It is important to know other basic commands for compiling and installing pro-

grams for MicaZ motes. Here is a short list.

make micaz install compiles and installs the program into the mote.



119

Table B.1: Some useful Cygwin commands (from MoteWorks Getting Started Guide).

Fig. B.8: Robot programming in the Cygwin environment.



120

make micaz only compiles the program. This command is useful to check for syntax

errors while writing new code.

make micaz reinstall only installs the program onto the mote. This command can

speed up the process of installing the same code on several motes, but it will not

work if the program has never been compiled before.

B.4.2 Programmers Notepad

To program a MicaZ with Programmers Notepad:

1. Open Programmers Notepad on the desktop. This will be used to edit and install

your programs to MicaZ motes.

2. Select a file from your desired application in the Projects window on the left. The

file will appear on the right; see fig. B.9.

3. Follow Steps 1 through 4 from the previous section using Programmers Notepad as

the text editor.

4. Make sure the curser is on a file that is part of your desired application. From the

main menu, select Tools→shell (or type F6).

5. In the command shell, follow Step 7 from the previous section to install the program

to the mote.

If errors are found in the program code they will be displayed. If the program loads

but fails during the verification process, it is most likely a bad connection between the mote

and the programming board. To repair this, secure the connection and load the program

again.

Finally, the gateway mote is designated with the number 11. If RobotCommander is

closed before stopping the gateway mote, it may need to be reprogrammed with TOSBase.

To reinstall the gateway mote, type make micaz reinstall.11.



121

Fig. B.9: Robot programming in Programmers Notepad.



122

For more documentation on MicaZ robot testing, refer to the Developer’s Manual

for MASmotes, by Zhongmin Wang, and other documents in the MicaZ Robot Document

folder.

B.5 Tmote Programming

Currently, Tmotes are used solely for the CVT phototaxis experiment as the light

sensor array programmed with the application SenseLight. Tmotes are programmed in the

nesC 1.2 language. However, because Tmotes require a different instance of Cygwin, the

TinyOS package for Tmotes cannot exsist on the same computer as the MoteView package

for MicaZs. For the MASnet platform, the TinyOS for Tmotes is installed on the computer

beside the base-station desk. The username is CSIOS. Obtain the current password from

an administrator.

All TinyOS program files for Tmotes are in C:\cygwin\opt\moteiv\apps. There

should be a shortcut on the desktop called tinyOS apps. Please do not make changes

to these folders or files. When you decide to make program changes, copy a known good

program, rename it with your name first and then edit it. Vim is typically used to edit the

programs, but other text editor can be used.

To program a Tmote for MicaZ cross-communication:

1. Connect a Tmote to the computer. This computer has a USB extension for conve-

nience.

2. Start the Cygwin environment from the desktop.

3. Change the path to C:\cygwin\opt\moteiv\apps\[DesiredApplication].

4. Type make telosb install.21 to compile and load the program into the mote’s

memory. The number at the end of the install command should correspond to the

number on the mote. The mote DOES NOT need to be off during this process.



123

B.6 Troubleshooting

There are many things that can go wrong on the MASnet platform. This section helps

pinpoint the problem when robots are not moving as they should.

Possible code error

First, check to see if it is not an error in the code by giving a position command

in RobotCommander. If the robots move to that spot, there is a problem with the code.

Remember, nesC runs concurrently and if two motor commands are given at once, the robot

will not move.

MicaZ lock-up or connection problem

If your robot still will not move as it should after the first step, check the mote connected

to the robot. Occasionally, the mote may be bumped out of place when colliding with other

robots or running between Plexiglasr sheets. If the mote is not fully connected, it can cause

odd robot behavior. The problem could also be caused by the MicaZ processor locking-up.

The red LED on the MicaZ should toggle every time message is received and the green LED

should toggle every time a message is sent. If these lights are not blinking, the processor

has locked-up. Simply, turn of the motors and mote, then turn them back on again to stop

the lock-up.

Low battery voltage

If this is not a problem, replace the four AA batteries under the robot. The brightness

of the red LED on the back of the robot is a good indicator of how much voltage is applied

by those four batteries. If it is too dim, the batteries should be replaced. The two AA

batteries on the mote do not need to be replaced as often since two 1.5 V batteries should

last up to one year. However, the green LED on the back of the robot indicates how much

voltage these two batteries supply. If it is too dim, the mote batteries should be replaced.

Because the batteries on the bottom of the robot should be changed often, it is im-

portant to keep charged and uncharged batteries separate while always keeping a charger



124

working. An organized system will keep the MASnet platform running efficiently. A box of

separated charged and uncharged batteries is on the bookcase between the MASnet base-

station desk, and the MASnet bench. A charger, along with a multi-meter to check battery

voltage, should be on the MASnet bench.

Limited mote range

Finally, if the problem remains, the MicaZ may have limited range. If not handled

properly, a voltage spike may occur during mote programming. This spike can limit the

range of the mote. Fortunately, motes with limited ranges can repair themselves, but may

take some weeks before they are restored to full range. These motes are called sick motes. Do

not use these motes, with the exception of testing their range, till they are fully functional.

If motes have short ranges the green LED on the MicaZ should toggle while the red

LED is static. In other words, the mote should send messages, but not receive them at

longer ranges. Bring the robot next to the gateway mote while in operation. If the red LED

begins to toggle at very close range, then the mote is sick and cannot be used.

To test the range of more motes, program transmitting motes with CountSend and

program receiving motes with CountReceive. The application CountSend uses a binary

counter, where the first three bits are displayed by the LEDs, and transmits the number

through the radio. The application CountReceive receives that number and displays the

first three bits on its LEDs. Basically, motes programmed with CountReceive should mimic

the mote programmed with CountSend. Once the receiver stops mimicking the sender, both

motes have exceeded their transceiver range.

B.7 Adding New Functionality to the Platform

If a new task has to be introduced to generate a new behavior for the MASmotes,

modifications are most likely required on both the C++ RobotCommander program that

runs the base-station and the nesC program that runs the robots.



125

B.7.1 Adding a New Message to the Robot nesC Program

Since telling the robot to perform a specific task consists of sending a message from

the base-station mote to the moving mote on the platform, an interface for transferring the

message has to be created. This can be done by defining an instance of the ReceiveMsg

interface as [Task]Msg in file robotMainM.nc, where [Task] denotes the name of the task.

The newly created interface has to be connected in the configuration file of the applica-

tion, which is robotMain.nc. Here, the interface is used by the module robotMainM, which

must be connected to the ReceiveMsg interface of the communication module. Since this

is a parameterized interface, appending data has to be included in brackets.

Now, program the robot behavior as a task in the definition file for the associated

incoming message which is done in the file incoming msg.nc. Tasks, which normally has

no parameters to return, are defined. Timers can also be called, which can activate events

when fired.

A new event of receiving a message should be defined to later perform the specific

task. This has to be done, since the command from RobotCommander should activate this

certain behavior, which is done by passing a message through the base-station mote to the

motes on the platform. The event is of type TOS MsgPtr.

An event is activated, when the interface [Task]Msg receives a message. The task is

put into the task queue and the event closed again. When creating an event, attention

should be paid to the fact that the event should be as short as possible. It should only pass

the Task into the task queue and then close again.

Next, update the MASnet message list to identify the message for the new behavior in

the file masnet Messages.h. The message identification list has to be extended by adding

the message with a specific number x under the MASNET MSG TYPE. Then a new variable

type has to be created with the typedef syntax.

B.7.2 Adding a New Command to RobotCommander

After modifying the robot behavior, RobotCommander must also be modified to be able

to activate the new behavior. In order to make sure that the current version of RobotCom-



126

mander is not affected during modification, it is recommended to create a new folder and to

copy all files in the existing RobotCommander directory to the newly created one. Currently,

the latest instance of RobotCommander is called Shelley RobotCommanderLightInterp.

Start Microsoft Visual Studio.Net and open the newly copied project file RobotCom-

mander.vcproj. Click the solution explorer icon, which will display a treelike folder

structure of the project with source, header and resource files. Now, click on the resource

view structure and then the Menu folder; finally, select IDR MAINFRAME. A new com-

mand can be implemented by opening the main frame display and choosing the Commands

menu, then typing in a command name; see fig. B.10. After successfully assigning a name

to the new task, the right mouse button has to be used on the new menu item to choose

the option Add Event Handler; see fig. B.11. In the Event Handler window a function

handler name is assigned automatically. This name normally does not have to be changed.

The same holds for the Message type, which is assigned to COMMAND. After choosing the

CMainFrame class in the class list, the actual code of the event can be inserted by clicking

on the button Add and Edit.

After closing the event handler with Add and Edit, the file MainFrm.cpp is auto-

matically opened and the code of the function can to be added to the CMainFrame class.

Therefore, the following lines are created automatically and the code can easily be inserted

inside. After finishing the function, a look at the top of MainFrm.cpp shows that an ac-

cording ON COMMAND instruction was added automatically to the message map. If the class

definition of CMainFrame is opened by double-clicking on MainFrm.h, it can be seen that

the new function was also added at the end of the public section of the class.

Since the new function in the CMainFrame class probably calls another function to

broadcast the message for the new task, this new broadcast function must also be declared

and defined in the CRobotCommanderCore class. This is done by modifying RobotCom-

manderCore.h. The broadcast function has to be defined by opening RobotCommander-

Core.cpp and adding the required elements.

After successfully modifying all involved files, the whole project can be compiled by



127

Fig. B.10: Adding a new menu icon in RobotCommander.rc of the RobotCommander
project.

Fig. B.11: Adding an event for the newly created task in the Event Handler.



128

clicking Build RobotCommander in the Build menu. If no errors are detected during

compilation, the file RobotCommander.exe is created in the directory C:\MASNET\bin. Now

the new RobotCommander GUI can be opened by double-clicking the .exe file and the

proper implementation of the behavior can be tested by choosing the new command in the

command menu.



129

Appendix C

RobotCommander File Reference

With over 60 files that make up RobotCommander, adding code and functionality may

seem an impossible task. This section provides a description of each file to help programmers

tackle RobotCommander. Items without a file extension indicate a .h and .cpp file with the

item name.

C.1 General Files

Table C.1: RobotCommander general file and class reference.
File Name Class Description
ChildView CChildView controls the pGPS image on the GUI

Comm Display CComm Display displays all platform communication in a

dialog box

Compare Data Display CCompare Data Display compares pGPS and encoder position data

for robots in a dialog box

LabeledImageWnd CLabeledImageWnd this class is obsolete and is not used in

RobotCommander

LeaderFollowingDlg CLeaderFollowingDlg displays a dialog of Leader-Follower

parameters after the Follow Leader

command has been selected

LMatrix Display CLMatrix Display displays a dialog of a communication

topology matrix for consensus experiments.

This class is not yet fully functional

MainFrm CMainFrm handles all commands in RobotCommander

MajorTweakDlg CMajorTweakDlg controls the Major Tweak window for

adjusting the camera filter

Position Display CPosition Display saves position data in the class

RobotCommander CRobotCommanderApp

CAboutDlg

creates the the main RobotCommander

program and the executable file

RobotMonitor CRobotMonitor controls the Control Panel window

stdafx N/A includes standard system include files

VoronoiTessellation CVoronoiTessellation calculates centroidal Voronoi tessellations

and light position estimation



130

C.2 Core Files

Below is a list of Core files and their descriptions. It is important to note that changes

to any Core files will change the Core files to all instances of RobotCommander. Once any

Core file is changed, older instances of RobotCommander will not work.

Table C.2: RobotCommander Core file and class reference.
File Name Class Description
AM.h N/A defines the TinyOS message structure (do

NOT change)

AMTransceiver CMessageQueue

CAMTransceiver

reads and handels messages from the

gateway mote

ar.h N/A includes the ARToolKit (do NOTchange)

CameraController CCameraController controls the pGPS camera

GroupManager CGroupManager calculates and performs formation

commands under the Formation Group

menu

lucamapi.h N/A includes inherant pGPS camera parameters

(do NOT change)

masnet def.h N/A defines constants for the MASnet platform

masnet Messages.h N/A defines all incomming and outgoing wireless

messages

PictureAnalyzer CPictureAnalyzer converts from image to real world

coordinates and vice-versa

RobotCommanderCore CRobotCommanderCore handles all outgoing messages

RobotCommandList CRobotCommandList handles the list of commands for robots

RobotMask CRobotMask counts number of selected robots



131

C.3 PropertyPages Files

Below is a list of PropertyPages files and their descriptions. Note, here, that changes

to any PropertyPages files will change the PropertyPages files to all instances of Robot-

Commander and the computer registry.

Table C.3: RobotCommander PropertyPages file and class reference.
File Name Class Description
CalibrationPropertyPage CCalibrationPropertyPage saves and loads calibrates camera distortion

properties in the registry

CameraPropertyPage CCameraPropertyPage saves and loads camera properties in the

registry

DetectionPropertyPage CDetectionPropertyPage saves and loads robot detection properties in

the registry

FormationPropertyPage CFormationPropertyPage saves and loads old robot formation

command properties in the registry

PlatformPropertyPage CFormationPropertyPage saves and loads physical platform properties

in the registry

TestMarkersPropertyPage CTestMarkersPropertyPage saves and loads the camera distortion

evaluation error in the registry


