Utah State University DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1977

Growth and Uptake Dynamics of Selenastrum Capricornutum Parameterized by Percent Nitrogen

Ronald F. Malone

Kenneth A. Voos

William J. Grenney

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

Malone, Ronald F.; Voos, Kenneth A.; and Grenney, William J., "Growth and Uptake Dynamics of Selenastrum Capricornutum Parameterized by Percent Nitrogen" (1977). *Reports.* Paper 228. https://digitalcommons.usu.edu/water_rep/228

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

WR 179.

Growth and Uptake Dynamics of Selenastrum capricornutum Parameterized by Percent Nitrogen

by

Ronald F. Malone Kenneth A. Voos William J. Grenney

Utah Water Research Laboratory College of Engineering Utah State University

March 1977

ACKNOWLEDGMENTS

* 2

r ...

r =

۰.

,-----

÷ n

The work presented here was funded as a special project through the Utah Water Research Laboratory under the direction of Dr. William J. Grenney. Special acknowledgment must be given to Ken Voos, a fellow graduate as the data and kinetics were developed as conjunctive effort. Ken's thesis will follow mine. In addition to Dr. Grenney, the other members of my graduate committee, Dr. Vincent A. Lamarra and Dr. Donald B. Porcella are thanked for their guidances through crucial points of this study.

Ronald F. Malone

TABLE OF CONTENTS

е я т 2

::

~ ~

£ 5

. .

. .

· ·

- -

• . .

۰ .

٠...

بة م • •

- -- -

٤...

57

. . . در د

																					Page
ACKNOV	WLE	DGME	NTS		•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	i 1
LIST (OF	TABL	ES	•	•	•	•	•	•	•	•	•	•	٠	٠		•	•	•	•	iv
LIST (OF	FIGU	RES		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
ABSTRA	АСТ	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	vii
INTRO	DUC	TION	ι.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
REPRES	SEN	TATI	ON (OF.	STO	RAG	ΕP	HENC	OME	NON	BY	PE	RCE	NT	NIT	ROG	EN	•	•	•	3
PERCEN	NT	NITR	OGE	NM	IODE	L	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	8
EXPERI	IME	NTAL	ME	гно	DS	•	•	•	•	•	•	•	•	•	•	•	•	•		•	12
RESULT	rs	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	15
CALIBE	RAT	ION	OF 1	PER	CEN	T N	ITR	OGEN	M	ODE	L	•	•	•	•	•	•	•	•	•	19
SUMMAR	RY	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	47
CONCLU	USI	ons	AND	RE	COM	MEN	DAT	IONS	5	•	•	•	•	•	•	•	•	•	•	•	50
LITER/	ATU	RE C	ITE	D	•	•	•	٠	•	•	•	•	•	•		•	•	•	•	•	51
APPENI	DIC	ES	•	•	•	•	•	•	•	•	•	•	٠	•	•	•		•	•	•	53
I	App App	endi endi	x A x B	:	Dat. Com	a L put	ist er	ings Prog	s fo gram	or 1 m L:	Exp ist:	eri ing	men	ts	1 a	nd •	2	•	•	•	54 62
ł	App	endi	x C	:	Out	put	Li	stir	igs	fo	r S:	imu	lat	ior	ı Ru	ns	•	•	•	•	67
VITA		•	•	•	•	•				•	•			•	•	•	•	•	•	•	91

LIST OF TABLES

r 2

::

1 3

e 2

• •

· -

- -

۰ . .

۰. ..

~ ~

ъ., , , ,

• =

. . .

i .

- --- _ _

r -

۰. ...

· · ·

Table		Pa	ıge
1.	Mean biomass, nitrate, nitrogen content, and standard deviations for Experiment 1	• •	16
2.	Mean biomass, nitrate, and nitrogen contents and standard deviations for Experiment 2	• •	17

LIST OF FIGURES

. . . .

. .

. .

£ 0

,

. .

; ;

4 .

- -

• •

51

Ξ.

ι. .

L .

امبر

r 11

ء ۔ - -

Figur	ce	•	Page
1.	Schematic diagram of a subcompartment model of phytoplankton population	•	5
2.	Conceptual percent nitrogen model	•	9
3.	Correlation of specific growth rate to mean percent nitrogen for all data	•	20
4.	Correlation of uptake rate constant to mean percent nitrogen	•	21
5.	Response of nitrogen deficient cultures to the addition of nitrate during Experiment 1	•	24
6.	Responses of nitrogen deficient cultures to the addition of nitrate during Experiment 2	•	25
7.	Correlation of specific growth rate to mean percent nitrogen for phases of growth exhibiting decreasing nitrogen content	•	28
8.	Correlation of specific growth rate to mean percent nitrogen for phases of growth exhibiting increasing nitrogen content	•	29
9.	Variation of specific growth rate with increasing and decreasing internal nitrogen contents	•	32
10.	Comparison of simulated external nitrate curve with values calculated from Experiment 1, transition point = 3.8 percent	•	33
11.	Comparison of simulated growth curve with points observed in Experiment 2, transition point = 3.8 percent	•	34
12.	Comparison of simulated nitrogen content curve with observed percent nitrogen values from Experiment 1, transition point = 3.8 percent		35
13.	Comparison of simulated external nitrate curve with values dalculated from Experiment 2 before dilution,		
	$transition point = 5.0 percent \cdot \cdot$	•	36

v

LIST OF FIGURES (Continued)

. .

ь н х н

- --

• •

. .

ч. *н*

• ~

s. ..

× ..

ς.,

. .

۰ -

.

- -

د . .

. .

Figur	e	Page
14.	Comparison of simulated growth curve with points observed in Experiment 2 before dilution, transition point = 3.8 percent	• 37
15.	Comparison of simulated nitrogen content curve with percent nitrogen values observed in Experiment 2 before dilution, transition point = 3.8 percent	• 38
16.	Comparison of simulated external nitrate curve with values calculated from the dilution sequence of Experiment 2, transition point = 3.8 percent	• 39
17.	Comparison of simulated growth curve with points observed in the dilution sequence of Experiment 2, transition point = 3.8 percent	• 40
18.	Comparison of simulated nitrogen content curve with percent nitrogen values, observed in the dilution sequence of Experiment 2, transition point = 3.8 percent	• 41
19.	Comparison of simulated external nitrate curve with values calculated from the dilution sequence of Experiment 2, transition point modified to 3.0 percent	• 44
20.	Comparison of simulated growth curve with points observed in the dilution sequence of Experiment 2, transition point modified to 3.0 percent	• 45
21.	Comparison of simulated nitrogen content curve with percent nitrogen values observed in the dilution sequence of Experiment 2, transition point modified to 3.0 percent	• 46

.

vi

ABSTRACT

Growth and Uptake Dynamics of Selenastrum Capricornutum

Parameterized by Percent Nitrogen

by

Ronald F. Malone, Master of Science

Utah State University, 1977

Major Professor: Dr. William J. Grenney Department: Civil and Environmental Engineering

Batch cultures of *Selenastrum capricornutum*, PRINTZ were perturbed by dilution and nutrient spiking routines to obtain a wide variation of introcellular nitrogen levels (2 to 7 percent) under dynamic conditions. The relationship between specific growth rate (dry weight) and cellular nitrogen content (percent nitrogen) was investigated by regression analysis and continuous mathematical simulation.

Linear regression analysis resulted in good correlation ($r^2 = 0.817$) between cellular percent nitrogen and specific growth rate. Continuous simulation revealed the relationship was least accurate for the lag phase of growth. The observed deviations always occurred when the cellular nitrogen content was increasing. This indicated that the rate of change of cellular percent nitrogen, as well as it's absolute level, affects the observed growth rate. Data points were separated into two groups having decreasing and increasing rates of change in cellular nitrogen content respectively. Separate regression analyses were performed on each data set. A strong correlation ($r^2 = 0.883$) between specific growth rates and percent nitrogen was obtained for the first set of data. The second set of data exhibited a constant low specific growth rate ($\mu = 0.05$ per day) for cultures with low percent nitrogen content. At higher nitrogen contents, the relationship between growth and nitrogen content was identical to the results in the first data set. The transition zone between reduced and normal growth occurred in a range of 3 to 4 percent nitrogen content.

5 Z

r 7

е z

• •

. .

× ...

- -

• •

• •

ι...

. .

• • •

÷.

÷.,

<u>م</u> . . .

د به ج ج

ι.

 (99 pages)

INTRODUCTION

: =

Algal models are being applied to answer increasingly sophisticated questions about eutrophication. Species dominance, as well as, biomass is a significant factor in defining the effect of algae upon the recreational and consumptive values of our streams and reservoirs. Models capable of giving results of a high resolution must be developed to answer questions concerning species dominance. Further, application of models to dynamic river and estuary systems requires algal models that realistically represent kinetics of growth and uptake under rapidly changing conditions.

First order and Monod type relationships are commonly being utilized to represent algal kinetics in a number of water quality models (Grenney, Porcella, and Cleave, 1976). In most cases the basic assumption of constant yield is maintained. This assumption is not compatible with observed phenomena. The widely recognized phenomenon of luxury uptake (Gerloff and Skoog, 1954; Fogg, 1959; Daley and Brown, 1973; Droop, 1973; Eppley and Renger, 1974; Malone and Garside, 1975; Reynolds et al., 1975), variations in cell composition (Gerloff and Skoog, 1957; Caperon, 1968; Thomas and Dodson, 1972; Daley and Brown, 1973; Droop, 1973; Eppley and Renger, 1974) and growth in a nutrient depleted medium (Gerloff and Skoog, 1954; Fogg, 1959; Rhee, 1973; Daley and Brown, 1973; Eppley and Renger, 1974) cannot be represented by models assuming a constant yield.

Observations of luxury uptake, variations in cell composition, and growth in nutrient depleted media have prompted a number of authors (Caperon, 1968; Thomas and Dodson, 1972; Grenney et al., 1973; Droop, 1973) to suggest conceptual models which include internal storage pools of nutrients. A lack of understanding of the precise composition of the proposed storage pools have hindered development of such models.

; a

· · ·

س مە

This paper investigates the feasibility of utilizing variations in nitrogen content of cells to represent storage phenomena. More specifically, the relationships between growth and uptake dynamics and percent nitrogen in batch cultures of *Selenastrum capricornutum*, PRINTZ are examined. The objective here is to determine the potential of percent nitrogen as a basis for a realistic algal model capable of dealing with dynamic situations and questions of species competition to a high degree of resolution.

REPRESENTATION OF STORAGE PHENOMENON BY

. .

PERCENT NITROGEN

The approach of utilizing variations in cell nitrogen content to represent phenomena of storage as related to the kinetics of growth and uptake, gain support from the data presently available on the patterns of nitrogen storage. Fogg (1959) reviewed the metabolic patterns associated with nitrogen in algae. Noting decreases in inorganic nitrogen, free amino acids, soluble peptides and chlorophyll during periods of nitrogen limitation, he suggested that nucleic acids and proteins were maintained at the expense of less essential nitrogenous compounds. This definition of the storage pool is compatible with recent work which has confirmed storage of inorganic nitrogen (Malone and Garside, 1975) and variations of nitrogenous pigments (Bunt, 1969; Eppley and Renger, 1974; Vasconcelos and Fay, 1974) with nitrogen availability. This is also compatible with the theory of Droop (1973) that nitrogen storage occurs in organic forms. However, Fogg (1959) concluded there was little evidence to show whether decreases in nitrogen content were reflected equally in all nitrogen fractions or whether some substances were affected more than others. This uncertainty was more currently emphasized by Caperon (1968, p. 871):

The hypothesized internal reservoir is not necessarily a physically separate identity any more than a diffuse component of the protoplasm nor is it implied that the internal supply is in the form of nitrate ions.

We may, therefore, reasonably assume that the storage phenomena involve both inorganic and organic nitrogenous compounds, and that the

proposed internal storage pool exists 1) in the ability of the algal culture to shift the distribution of internal nitrogen such that essential forms dominate and/or 2) in their ability to function through variations in levels of essential forms.

4 Z

. .

. .

Two approaches for representing the storage phenomenon were considered. The first was the development of an algal model consisting of a number of internal subcompartments (Figure 1). This approach was outlined by Grenney et al. (1973). This model defined three internal subcompartments, inorganic nitrogen (N_1), organic nitrogenous intermediates (N_2), and protein (N_3). The size of the population was measured by the concentration of protein in the environment. The external concentrations of nitrate and excreted nitrogenous organics were identified as N_I and N_o , respectively. The coefficients G_I , G_1 , G_2 , K_3 , K_4 , K_5 , and K_6 represented reaction rates among subcompartments.

Such an approach is compatible with the metabolic patterns associated with nitrogen storage and assimilation. In mathematical terms it has the flexibility to represent many of the responses of phytoplankton under dynamic conditions. However, the practical difficulties of defining and measuring internal components for verification of internal reaction rates discourages use of such a vigorous approach. The use of protein to measure phytoplankton concentrations makes conversion to biomass (measured as dry weight) difficult because the protein content of algal cells has been observed to vary (Fogg, 1959).

The second approach was the use of nitrogen content to represent storage phenomena. Shiroyma, Miller and Greene (1975) have observed a linear relationship between maximum yield and nitrogen concentration

€ – a : :

1.1

-

÷. .

5

د ۲

Figure 1. Schematic diagram of a subcompartment model of a phytoplankton population. (Proposed by Grenney et al., 1973.)

under controlled laboratory conditions. They concluded that 0.001 mg-N/1 of total soluble inorganic nitrogen will produce a maximum yield of 0.038 mg/1 dry weight of the alga *Selenastrum capricornutum* under constant laboratory conditions. From this relationship the cell nitrogen content of the cultures can be calculated to be 2.6 percent as the growth of the culture approaches zero.

The works of Gerloff (Gerloff and Skoog, 1954, 1957; Gerloff and Krombholz, 1966) demonstrate a relationship between percent nitrogen and exponential growth. In his efforts to utilize nutrient content to predict nutrient limitations, he defined levels of internal nitrogen and

phosphorus that were necessary to permit optimum growth of the blue green alga, *Microcystis aeruginosa*. He established that a 4.0 percent nitrogen content was necessary for exponential growth to occur in cultures of *M. aeruginosa*.

The use of nitrogen content to represent the storage phenomenon requires not only that the potential for growth be measurable but also that the potential can be accurately related to kinetics of growth and uptake of the phytoplankton. Utilizing the subcompartment model (Figure 1) for purposes of illustration, it can be seen that an infinite number of combinations of internal nitrogenous components can be envisioned for a given percent nitrogen value. This argument indicates that percent nitrogen would be a poor indicator of physiological condition since the internal distribution would vary significantly with the nutrient availability in the history of the cell.

Fortunately, it is reasonable to assume that internal nitrogenous forms are synthesized and depleted in an established order of priority. Assuming the internal reaction rates are sufficiently fast, a given percent nitrogen value would result in a consistent internal distribution of nitrogenous compounds; the nitrogen content of a culture would reflect a certain physiological state which in turn could be related to uptake and growth kinetics. Caperon and Renger (1974) have illustrated a hyperbolic relationship between nitrogen to carbon ratios (N/C) and specific growth rate for continuous cultures. Since percent nitrogen is closely related to the N/C ratios, a similar relationship will hold for percent nitrogen and growth rates under continuous culture conditions.

The works cited in the above discussion indicate the potential of cell nutrient content as a basis for predicting alga kinetics. A relationship between maximum and minimum growth and cell nitrogen content under batch culture conditions has been previously demonstrated. This information supports the hypothesis that a relationship between growth rates and nitrogen content similar to that found for continuous cultures exists for more dynamic batch culture conditions.

í .

::

11

. .

· -.

ù _

· -

tr a

k. ...

<u>ب</u> يا

PERCENT NITROGEN MODEL

Figure 2 illustrates the conceptual percent nitrogen model. The diagrams illustrate a theoretical unit cell with two internal nitrogen components. The component labeled "NMIN" represents the minimum nitrogen fraction found when the growth rate is zero due to nitrogen limitation. The component "N_s" is the nitrogen fraction in excess of NMIN. This component represents nitrogen reserves which reflect additional potential for growth.

This conceptual model does not represent precisely the nitrogen storage phenomenon previously described. In contrast to the subcompartment model (Grenney et al., 1973), the percent nitrogen model lumps all internal nitrogen components into two classifications, NMIN or N_s . Questions concerning exact internal components or mechanisms need not be answered, nor is exact mathematical representation of the numerous mechanisms required. This permits the development of an uncomplicated set of differential equations based on information presently available.

The following set of differential equations can be utilized to describe the kinetics of uptake and growth related to the percent nitrogen model:

in which

U = growth rate constant (days⁻¹) N_s = excess intracellular nitrogen

NITROGEN RESERVES MAINTAINED EXTERNAL SOURCES AND INTERNAL RESERVES DEPLETED

Figure 2. Conceptual percent nitrogen model.

9

е в 11 г. п. X = algal biomass (mg/1 dry wt.)

. . .

. .

r Tt

2 I 1 I

G	=	uptake rate constant (liters/mg-day)
N	*	extracellular inorganic nitrogen (mg-N/1)
%N	=	percent nitrogen of algal biomass
NMIN	=	minimum percent nitrogen

 $N_c = intracellular nitrogen (mg-N/1)$

Equation 1 implies that the specific growth rate (EPA, 1971) is directly proportional to the excess intracellular nitrogen level, N_g. This linear relationship differs from the hyperbolic relationship utilized by Caperon and Renger (1974) to describe the relationship between N/C ratio's and specific growth rate. There are a couple of justifications for this deviation. First, despite the loss of one degree of freedom, the linear relationship appeared to fit the data of Caperon and Renger (1974) as well as the hyperbolic. Although a hyperbolic relationship may be assumed to apply throughout a full range of nitrogen availability, linear characteristics would be exhibited in the range of severe nitrogen limitation.

Equation 2 implies that the uptake rate of external nitrogen depends upon the external nitrate level and algal biomass of the system. Droop (1973) and Rhee (1973) have suggested that uptake rates vary as a function of both internal and external nitrogen levels. There is no doubt in the mind of the author that at some point the uptake rate will be affected by the internal nitrogen levels. However, observations made during the course of this study have not indicated that there is any relationship. The point at which internal nitrogen stores begin inhibit uptake activities must lie beyond the levels obtained in nitrogen limited cultures.

Equation 3 defines the storage component, N_s , to be the difference between the existing cellular percent nitrogen and the minimum level.

Application of Equations 1 through 3 requires the definition of three coefficients; the growth rate constant, U, uptake rate constant, G, and the minimum nitrogen level, NMIN. NMIN can be directly calculated from the maximum yield of the algal cultures under a given set of conditions.

Then U and G can be found by calibration of the model to observed data or through correlation studies.

EXPERIMENTAL METHODS

1.

÷ ...

Unialgal cultures of S. capricornutum PRINTZ (from U.S. EPA, CORVALLIS, OREGON) were maintained in three separate 3-liter low profile culture flasks at 25 \pm 1^oC and 350 \pm 35 foot candles. Flasks were continually mixed by magnetic stirrers.

The AAM medium (EPA, 1971) increased in strength by a factor of 3.33 was utilized for all experiments. The nitrate was reduced to 10 percent of the level normally found in a triple strength media. This nitrate level has been shown (Malone et al., 1975) to produce a nitrogen limited environment. The sodium bicarbonate (NaHCO₃) level of the medium was increased to 84 mg/1 as NaHCO₃ to aid in stabilization of pH.

The pH was maintained by aeration of the cultures with an $\operatorname{air-CO}_2$ mixture. Carbon dioxide from a gas cylinder (95 percent CO_2) was mixed with ambient air in a mixing chamber. The ambient air was pumped at a constant rate. The rate at which carbon dioxide was bled into the mixing chamber was varied until the target pH of 7.1 was obtained in a control flask containing algal free medium and pH sensitive dye. The pH of the medium was defined by a function of the ratio of bicarbonate to carbon dioxide found in the aerated media. The bicarbonate level was selected such that the resulting carbon dioxide level at pH 7.1 would be sufficiently high to prevent pH variations due to algal activities. This is possible since the transfer rate of carbon dioxide across the air-water interface varies as a function of the difference between existing and saturated carbon dioxide concentrations. This difference, the carbon dioxide deficit, results from algal uptake of carbon dioxide.

maximum carbon dioxide deficit for a culture is defined by either the virtual elimination of carbon dioxide or by a balancing of the transfer and uptake rates. The bicarbonate level selected led to a high carbon dioxide saturation level at pH 7.1. This saturated level was sufficiently high so that the maximum carbon dioxide deficit found in our laboratory cultures was not a large enough fraction of the saturated level to affect the pH determining ratio. The air-CO₂ mixture could therefore remain fixed for the duration of an experiment.

÷. #

مرية ريج Prior to entering the culture flasks, the air-carbon dioxide mixture was passed through a series of flasks to assure removal of ammonia. The flasks contained, in order; 1.0 N H₂SO₄, distilled water, a weak bicarbonate solution, and packed glass wool. The stripping system also eliminated significant evaporation from the culture flasks, by water saturation of the air. The air-carbon dioxide mixture was continuously bubbled into the culture flasks. Plugs on the flasks were vented permitting the release of pressure, but maintaining the enriched carbon dioxide levels within the flasks.

Temperature (°C), pH biomass (mg/1 dry wt 103°C), nitrogen content of biomass (percent nitrogen), cell counts (cells/ml), cell volume (cubic microns), optical density (1 inch cell at 750 nm) were measured on samples removed periodically from the three culture flasks. Percent nitrogen was measured on a Coleman (micro-Dumas) nitrogen analyzer. Cell counts and cell volumes were measured by a Coulter counter. Optical densities were read on a Bausch and Lomb Spectronic 20. pH measurements were made with a Corning Scientific Instruments, Model 7, pH meter.

During the course of the experiments, cultures at various stages of growth were diluted with fresh medium to permit examination of specific phases of growth and uptake dynamics. Dilution at intervals specified by experimental design was accomplished by mixing 1 liter of culture with 1 liter of fresh medium. The temperature of the fresh medium was equalized before mixing. Thus the volume of culture in the experimental flasks varied from a maximum of 2.5 liters to a minimum of about 1.2 liters due to sample removal during the course of the experiment.

1.

+ -

RESULTS

. .

- -

њи г

. .

- -

Two experiments were conducted to provide data for calibration of the algal model. Experiment 1 had a duration of approximately six days. The batch cultures were monitored until 4.7 days, at which time the culture was mixed with an equal amount of fresh medium. The response of the cultures to this dilution was measured until 5.81 days. Table 1 presents the results of Experiment 1 in a summarized form. The dry weight, percent nitrogen, and nitrate values represent the mean values of the three culture flasks. A complete data listing is given in Appendix A.

Difficulty was encountered with pH control during the early part of Experiment 1. The pH varied due to variations in the air-carbon dioxide mixture which resulted from a regulator failure. Addition of a new regulator midway through the experiment corrected the difficulty. The pH varied from 6.5 to 10.0 prior to day 3.55 after which it was stabilized at 7.3 \pm 0.1.

Experiment 2 had a duration of 19 days. The cultures were diluted three times during the course of the experiment. Dilutions in Experiment 2 were made during different phases of growth. The first dilution (11.06 days) was made after growth had essentially ceased due to nitrogen depletion. The second dilution (15.67 days) was made immediately after the exponential growth phase. And the third dilution (16.85 days) was made late in the exponential growth phase. Table 2 summarizes the mean values of dry weight, percent nitrogen and nitrate for the three cultures of Experiment 2. The pH varied within the range of 6.9 to 7.3 during the

Time (days)	Dry Weight (mg/l)	Standard Deviation (mg/l)	Percent Nitrogen	Standard Deviation (percent)	Nitrate ³ (mg/l)
1.83	32.23	2.96	5.07	0.22	0.27
2.10	36.54	2.56	3.86	0.16	0.19
2.67	51.20	0.87	2.54	0.27	0.30
2.85	51.60	1.14	2.79	0.19	0.16
3.16	57.67	1.79	2.51	0.13	0.15
3.55	61.40	0.80	2.61	0.10	0.0
4.18	71.60	2.58	2.23	0.02	0.0
4.70	72.30	1.30	2.43	0.38	0.0
4.73 ²	36.40	0.98	2.09	0.13	0.84
4.88	36.60	1.02	2.79	0.31	0.71
5.05	37.07	1.71	4.05	0.19	0.23
5.20	41.00	0.33	3.83	0.13	0.16
5.52	49.00	2.94	3.35	0.0	0.09
5.81	55.20	1.10	3.13	0.07	0.0

Table 1. Mean biomass, nitrate, nitrogen content, and standard deviations for Experiment 1.

¹Mean values of 3 separate cultures

²Immediately after 1:1 dilution

7 7 X 9 .

e ...

. .

, ,

1.2

۰.

5.

۰.

L -

. .

. د

. .

ь., 2 т

<u>*</u> _

τ.,

.

 $^{3}\mbox{Calculated}$ value from initial mass of N minus mass of particulate N

Time (days)	Dry Weight (mg/l)	Standard Deviation (mg/l)	Percent Nitrogen	Standard Deviation (percent)	Nitrate ³ (mg/l)
0.93	3.13	0.24	6.07	0.15	1.38
1.50	9.77	0.71	7.06	0.54	0.88
2.00	23.40	2.20	5.39	0.19	0.31
3.05	47.33	2.56	3.32	0.14	0.0
4.03	58.20	0.87	2.68	0.08	0.0
5.01	69.27	1.32	2.27	0.13	0.0
11.04	79.00	1.58	2.13	0.06	0.0
11.06 ²	38.93	0.51	2.31	0.21	0.83
11.52	38.60	0.58	3.26	0.46	0.47
14.97	77.67	0.62	2.20	0.20	0.02
15.64	80.00	0.56	2.16	0.07	0.00
15.67 ²	38.73	0.81	2.04	0.10	0.80
16.05	40.93	0.65	3.30	0.08	0.24
16.56	55.47	1.05	2.79	0.04	0.04
16.83	59.40	0.71	2.58	0.12	0.06
16.85 ²	30.23	0.21	2.71	0.10	0.80
17.06	30.77	0.80	4.65	0.30	0.19
17.53	44.27	2.61	3.41	0.09	0.11
18.09	55.07	4.24	2.80	0.12	0.08
19.23	66.13	2.31	2.25	0.00	0.13

Table 2. Mean biomass, nitrate, and nitrogen contents and standard deviations for Experiment 2.

v a

1.1

. .

F--- 6

1.7

. . .

4 -

- -

4. . .

z . 5

• •

- - -

¹Mean values of 3 separate cultures

²Immediately after 1:1 dilution

³Calculated value from initial mass of N minus mass of particulate N

course of Experiment 2. One minor adjustment of the air-carbon dioxide mixture was made at day 1.50. A complete listing for the data generated during the course of this experiment is presented in Appendix A.

ĸ ź

, --.

- -

F - 4

* *

• -

: :

۰. ب

• •

ъ.,. 2 п

÷ ...

::

CALIBRATION OF PERCENT NITROGEN MODEL

* *

The calibration process consisted of empirically defining the three unknown constants contained in Equations 1 through 3: the uptake rate constant (G), the growth rate constant (U), and the minimum percent nitrogen (NMIN).

Correlation studies were conducted between a wide variety of parameters in an attempt to define the unknown coefficients. These correlation studies also shed some light upon the appropriateness of the selected equation forms. Figure 3 illustrates a plot of specific growth rate and percent nitrogen data taken from Experiment 1 after dilution (4.73-5.81days) and Experiment 2. Data points from Experiment 1 prior to dilution (1.83-4.70 days) were omitted from this analysis because of the unknown effect of pH variations upon the cultures. The specific growth rate (μ) was calculated from Equation 4:

The calculated specific growth rate was then correlated with the average percent nitrogen exhibited by the cultures over the time interval. Individual observations (Appendix A) were utilized for this plot. Linear regression by least squares reveals a correlation ($r^2 = 0.817$) between specific growth rate and mean percent nitrogen. From this correlation it is evident that U = 0.407 and NMIN = 2.31 percent for Equation 1.

No correlation between the uptake constant (G) and percent nitrogen exists in the regime of nitrogen limitation utilized in this experiment (Figure 4). The values of G for this correlation plot were developed from Equation 5:

1.1

e 2

<u>e</u> -

$$G = \frac{\Delta N}{\overline{N} * \overline{X} * \Delta T} \qquad (5)$$

in which \overline{N} and \overline{X} represent the mean external nitrate and algal biomass levels for the time interval ΔT . The charge in external nitrate is represented by ΔN .

The scatter in the correlation plot may be indicative of a number of factors: (1) inappropriateness of Equation 2; (2) sensitivity of Equation 5 to low \overline{N} and ΔN values; (3) sensitivity of utilizing linear interpolation for calculation of \overline{N} and \overline{X} . Fortunately, the use of an essentially continuous simulation routine permits the elimination of factors 2 and 3, permitting the evaluation of Equation 2 for representing the dynamics of uptake.

A complete listing of the computer model used for calibration purposes is given in Appendix B. A fourth order Runge-Kutta algorithm was used to provide a numerical solution to Equations 1 through 3. A dilution routine was incorporated into the model to permit simulation of a sequence of dilutions. The external nitrate levels immediately after dilution were defined by the routine. The biomass was reduced automatically to 50 percent to reflect the effect of the 1:1 dilutions. These discontinuities were, of course, required by the external perturbations upon the system at the time of dilution. As a result of the nature of the dilution routine, errors generated in simulation of growth and uptake dynamics before dilution.

Initial applications of the percent nitrogen model to the observed algal growth dynamics indicated the resolution of the percent nitrogen model was limited by the inability of Equation 1 to represent the growth

response to *S. capricornutum* immediately after the addition of fresh medium. The results of Experiment 1 in terms of external nitrate, percent nitrogen, and dry weight are shown in Figure 5. Immediately after dilution a lag in growth became apparent (4.73 - 5.05 days). Similar lags occurred after each dilution of Experiment 2 (Figure 6).

Previous authors have observed or described this phenomenon. The lag is explained when we examine the history of the culture in terms of nitrogen assimulation and storage patterns. Through the first phase of Experiment 1 (0.0 - 4.70 days) the nitrogen content decreases as the biomass increases (Daley and Brown, 1973). As the nitrogen content approaches the two percent level, the growth of the algae approaches zero. This decrease in percent nitrogen reflects the shift of nitrogen from intermediate and nonessential forms to forms essential for growth. At the 2 percent nitrogen level, the storage capability has been completely utilized. Growth at this point reflects continued carbohydrate and fat accumulation (Fogg, 1959; Vasconcelos and Fay, 1974).

Immediately after dilution (4.73 days) the cells begin the rapid uptake of the available nitrate. The nitrate is assimilated to organic intermediates, nonessential, and essential forms. As the cell synthesizes the necessary components (5.05 days), growth increases at a rapid pace (Vasconcelos and Fay, 1974).

According to this classical interpretation the lag in growth occurs as the cell "gears up" by synthesizing essential components. The response after dilution depends upon the past condition of the cell.

The basic assumption of Equation 1 is that a unique growth rate would be reflected for a given nutrient content. It is apparent from the results

. .

. . .

- -

:____

, .

۰.

<u>د</u> ـ ـ

Figure 5. Response of nitrogen deficient cultures to the addition of nitrate during Experiment 1.

ei LL

61 1 1

Figure 6. Responses of nitrogen deficient cultures to the addition of nitrate during Experiment 2.

25

5 1 - 3 1 - 5 - 5

•

• • •

8 N 16 J that this assumption is not valid. Comparison of the growth responses for equivalent percent nitrogen values to the right and left of the percent nitrogen peaks in Figures 5 and 6 clearly demonstrate significant differences in growth responses. These preliminary observations would lead us to believe that internal nitrogen assimulation rates are not sufficiently fast to erase the effects of the cell history, leading to a unique percent nitrogen-growth rate correlation. Or put in other terms, the growth rate cannot be correlated to percent nitrogen without considering cell nutrient history. However, this conclusion is not necessarily correct.

Although Equation 1 does not apply to all situations its failure is not the result of slow response rates. In fact, the classical interpretation of lag does not explain the experimental data. The lag phenomenon is not solely the result of a depletion of internal nitrogen components as would be expected from the classical interpretation. This hypothesis is drawn largely from the response of the cultures after the third dilution of Experiment 2 (Figure 6). Despite substantial additional potential for growth, growth ceased upon the addition of nitrate. This strongly suggests that growth depends not only upon internal nitrogen levels but also upon external nitrogen availability. The availability of nitrate interrupts the normal pattern of nitrogen deficient growth causing a temporary discontinuation or reduction of growth.

The lag, therefore, could be explained in terms of a change in internal nitrogen pathways. Before the third dilution of Experiment 2, the cultures undoubtedly had entered the phase of utilization of higher nitrogen containing organic components to sustain growth. If the dilution

had not been performed, the cultures would have exhibited a slowly decreasing growth rate until the nitrogen stores were depleted. Upon the addition of nitrate to the system it would make little sense in terms of energy for a cell to continue to utilize the higher organic forms to provide nitrogen for components essential for growth. The experimental data indicate that the presence of nitrate in some manner inhibits growth possibly through the interruption of pathways of utilization of higher organics. The cell then continues the pathway of uptake and assimilation of nitrate while growth is interrupted.

1 - 2

<u>,</u> 2

The proposed mechanism provides a framework for modification of Equation 1. Examination of Figure 5 and Figure 6 reveals that in all cases, the end of the lag phase corresponds precisely with the percent nitrogen peaks. It appears that lag phase occurs while the percent nitrogen of the cell is increasing.

Figure 7 and Figure 8 represent correlation plots of specific growth rate versus percent nitrogen for phases of growth exhibiting decreasing and increasing percent nitrogen values respectively. It is immediately apparent that significantly different relationships exist for the two phases. Specific growth rates derived in periods with decreasing percent nitrogen correlate strongly with percent nitrogen ($r^2 = 0.883$) when a linear regression is utilized (Figure 7). This suggests that Equation 1 applies for periods of growth decreasing exhibiting percent nitrogen. The growth rate constant, U, and the minimum nitrogen level, NMIN, are defined by this correlation to be 0.39 and 2.11 respectively.

A plot of specific growth rate versus percent nitrogen for periods exhibiting increasing percent nitrogen is presented in Figure 8. A discontinuous response has been proposed for periods exhibiting increasing

INTERNAL NITROGEN (Percent of Dry Wt.)

Figure 7. Correlation of specific growth rate to mean percent nitrogen for phases of growth exhibiting decreasing nitrogen content.

1

INTERNAL NITROGEN (Percent of Dry Wt.)

Figure 8. Correlation of specific growth rate to mean percent nitrogen for phases of growth exhibiting increasing nitrogen content.

percent nitrogen. For percent nitrogen values less than 3.8 percent, Equation 6 applies

in which

x 4

U' = constant growth const.

Above 4 percent Equation 1 was assumed to apply. This function was selected since it is compatible with the observed correlation points (Figure 8) and the hypothesized growth inhibition mechanism. Above the 4 percent nitrogen level there are obviously insufficient observed data points to describe the functional response. This is undoubtedly in part an artifact of our experimental design. Uptake must more than compensate for growth if the percent nitrogen is to continue its increase. Under the experimental conditions existing immediately after dilution, the cultures were unable to obtain nitrogen content levels above 4.5 percent (Figure 6). As this level was approached rapid growth plus nitrate depletion in the medium led to a decreasing nitrogen content. If the nitrate availability was increased, the percent nitrogen may have continued to increase during the period of high growth. Such a situation was observed early in Experiment 2 in the time interval from 0.93 days to 1.5 days (Figure 6). This time interval produced the two correlation points above 6 percent. The lack of correlation points between 4 and 6 percent reflects the failure of the experimental design to expose the cultures to the appropriate regimes of nitrate availability.

This gap can be filled in a reasonable manner if the proposed growth blocking mechanism is used as a framework. First, it was observed that the two correlation points above 6 percent on the increasing percent nitrogen plot (Figure 8) fall close to the correlation line from the decreasing percent nitrogen plot (Figure 7). Secondly, it is only reasonable to assume that the rapid increase in growth causes the end of the increasing percent nitrogen regime. The magnitude of this growth rate is reflected by the initial (with respect to time) growth rates exhibited in the decreasing percent nitrogen regime. Since these points are also compatible with the correlation line from Figure 7, it is assumed that when the blocking mechanism is not in effect the growth response returns to normal. The normal distribution of internal nitrogen products has been re-established by the time growth begins.

()

1 1

The questions that remain are 1) how the transition from reduced growth to normal growth occurs and 2) where, with respect to percent nitrogen, does it occur. These questions cannot be answered without development of additional experimental data. Any conclusions drawn in this area would undoubtedly be seriously biased by the experimental design used here. It was, therefore, assumed that a discontinuous transition occurs at constant percent nitrogen level.

Figure 9 illustrates the relationship between the specific growth rate, μ , and percent nitrogen resulting from the application of Equations 3 and 6.

Plots comparing simulated curves with observed data resulting from application of the modified model to the results of Experiments 1 and 2 are illustrated in Figures 10 through 18. A single set of coefficients was utilized for these simulations. Experiment 2 was simulated in two segments (0.93 to 11.1 days, and 11.1 to 19.3 days) because of storage limits of the model. The Runge-Kutta Routine was applied with a 30 minute time step to all simulations.

100

. Te

Figure 9. Variation of specific growth rate with increasing and decreasing internal nitrogen contents.

32

*

1.3

ι.

ω.

۰. ۲

Figure 10. Comparison of simulated external nitrate curve with values calculated from Experiment 1, transition point = 3.8 percent. (See Appendix Table C-1.)

- -

. .

τ.Ξ

: :

5 3

50

6. e

Figure 12. Comparison of simulated nitrogen content curve with observed percent nitrogen values from Experiment 1, transition point = 3.8 percent. (See Appendix Table C-1.)

SINULATION OF ALGAL UPTAKE DYNAHICS BY PERCENT NITROGEN HODEL

Figure 13. Comparison of simulated external nitrate curve with values calculated from Experiment 2 before dilution, transition point = 3.8 percent. (See Appendix Table C-2.)

Figure 14. Comparison of simulated growth curve with points observed in Experiment 2 before dilution, transition point = 3.8 percent. (See Appendix Table C-2.)

a. .

. .

Figure 15. Comparison of simulated nitrogen content curve with percent nitrogen values observed in Experiment 2 before dilution, transition point = 3.8 percent. (See Appendix Table C-2.)

۰.

~

Figure 16. Comparison of simulated external nitrate curve with values calculated from the dilution sequence of Experiment 2, transition point = 3.8 percent. (See Appendix Table C-3.)

. .

4

4

÷.,

Figure 17. Comparison of simulated growth curve with points observed in the dilution sequence of Experiment 2, transition point = 3.8 percent. (See Appendix Table C-3.)

,

Figure 18. Comparison of simulated nitrogen content curve with percent nitrogen values, observed in the dilution sequence of Experiment 2, transition point = 3.8 percent. (See Appendix Table C-3.)

The uptake rate constant, G, was selected by empirical methods to be 0.1 days⁻¹. This value provided good results when applied to the uptake data from Experiment 2 (Figures 13, 16, and 19). Negative data points result from the indirect calculation of the external nitrate levels. Application of Equation 2 to results of Experiment 1 revealed little correlation between predicted and observed points (Figure 10) for the period before dilution (4.70 days) and excellent correlation after dilution. The deviations before dilution are believed to have resulted from the variations in pH previously discussed. Equation 2 with an uptake constant of 0.1 days⁻¹ provided satisfactory simulation of the uptake phenomenon observed.

Equation 1 was applied with constants derived from the regression analysis plot (Figure 7) to phases of growth exhibiting decreasing nitrogen contents. Equations 1 and 6 were applied to phases of increasing nitrogen contents. The transition point was found empirically to be 3.8 percent. The reduced growth rate constant, U', similarly determined to be 0.05 days^{-1} . The simulated percent nitrogen curves were calculated by the model from the simulated growth and uptake curves.

The most significant deviation of the model occurred between the second and third dilution of Experiment 2 (Figure 17, day 15.67 to 16.83). The model response reflects the selection of 3.8 percent as the transition point. This value provides excellent simulation of the lag phenomenon for the dilution of Experiment 1 (Figure 11) and the first dilution of Experiment 2. The simulated lag of the second dilution (Figure 11) exceeds the observed lag. A transition point of 3.0 percent provides a better representation of the lag phenomenon for the second dilution, but fails to

represent the lag of the first dilution adequately (Figure 20). The optimum transition point for the third dilution occurs at a value above 4 percent. It is apparent that the transition point is not a constant.

. .

Aside from this variability, the model provides excellent representation of the growth phenomenon. The minimum nitrogen content (2.11 percent) and the growth rate constant (0.39 days⁻¹) are correct for these experimental conditions. The simulated growth curves correspond closely with the observed data (Figures 11, 15, 17).

The percent nitrogen curves are presented in Figures 12, 15, and 21. Deviations in these curves are the result of accumulated errors in the growth and uptake simulations. The simulated curves closely represent trends in the storage response. Points of inflection are not represented precisely. In some cases this can be attributed to the variability of the transition point. The sensitivity to this parameter is revealed by comparison of Figure 18 to Fi ure 21 which represent transition points of 3.8 and 3.0 percent respectively. In other cases (Figure 15) deviations are attributed to small variations in the uptake curve (Figure 13) during periods of rapid uptake. Fortunately, the growth model is totally insensitive to these minor deviations.

, . . .

*

Figure 19. Comparison of simulated external nitrate curve with values calculated from the dilution sequence of Experiment 2, transition point = 3.8 percent. (See Appendix Table C-4.)

Figure 20.

. -] |

• ~

r 1

1 -1

Comparison of simulated growth curve with points observed in the dilution sequence of Experiment 2 transition point modified to 3.0 percent. (See Appendix Table C-4.)

SIMULATION OF PERCENT NITROGEN VARIATIONS BY PERCENT NITROGEN MODEL

Figure 21. Comparison of simulated nitrogen content curve with percent nitrogen values observed in the dilution sequence of Experiment 2, transition point modified to 3.0 percent. (See Appendix Table C-4.)

. -

: :

SUMMARY

1 E

; -

. .

The mathematical model developed to represent algal uptake and growth phenomenon was based upon two underlying assumptions. First it was assumed that under a given set of environmental conditions cell components were synthesized or depleted in an established order. Secondly, it was assumed that the internal reaction rates were fast. Fast reaction rates would assure that a given nutrient content would reflect a given physiological state.

A conceptual model distinguishing between essential and nonessential nitrogen forms was utilized to represent algal storage phenomenon. Correlation studies indicated that uptake phenomenon was independent of internal nitrogen levels within the regime of nitrogen limitation studied. Equation 1 was found to provide satisfactory results when applied with an uptake constant of $G = 0.1 \text{ days}^{-1}$. Minor deviations from the observed data (Figures 10, 13, and 16) plus poor correlation (Figure 4) suggest refinement in this area may be warranted. Deviations resulting from the application of Equation 1, however, did not affect growth simulations.

A linear relationship $(r^2 = 0.817)$ was indicated between the specific growth rate and internal nitrogen levels of batch cultures of *S. capricornutum*. Application of this relationship in the form of Equation 2 revealed consistent deviation of the model during lag phases of growth. Observation revealed that lag phases always occurred during phases displaying low and increasing levels of internal nitrogen. By identifying those phases of growth exhibiting a decreasing internal nitrogen percentage and correlating only related points the linear relationship was improved ($r^2 = 0.883$). From this regression analysis the constants for Equation 2 were defined. The minimum percent nitrogen was found to be 2.11 percent and the growth rate constant, U, 0.39 days⁻¹. These constant were used to describe "normal" growth since the high correlation suggested that the underlying assumptions applied completing during periods of decreasing nitrogen content.

f ____

. .

1 -

Analysis of the data related to increasing internal nitrogen levels suggested a discontinuous response reflecting a reduced growth phase (lag) and a normal growth phase. The reduced growth phase was explained by an apparent violation of the second underlying assumption of the model. During periods of rapid nutrient uptake and low internal nitrogen levels growth rates did not correlate with internal nitrogen contents. Instead a low (U = 0.05 days^{-1}) and constant growth rate was displayed. The response of spiked cultures suggested the presence of a growth inhibition mechanism during periods of rapid uptake. The algal model was modified to exhibit a reduced growth phase with a constant specific growth rate and a normal growth phase. The transition between reduced and normal growth occurred at a variable nitrogen content in the range of 3 to 4.5 percent nitrogen on the increasing curve.

Application of the modified growth model displayed exellent results. The model was insensitive to error accumulation. Growth rates and ultimate biomasses were closely approximated. The model was found to be sensitive to the selection of the transition point which was assumed constant for the simulations. Simulated curves, however, corresponded closely with observed data when the appropriate transition point was selected. This indicated that the equations were valid. Factors

affecting the transition point could not be investigated without development of additional data.

7 × 4 #

· .

. .

1.2

. .

r -

: :

- -

() • ()

۹ ÷ ۱

r ~

ы. .. 1

*, -

. .

-

: .:

• •

CONCLUSIONS AND RECOMMENDATIONS

7 - 2 7 - 2

. .

t 1

i. ...

1) There is a strong correlation between internal nitrogen levels and specific growth rate in batch cultures of *Selenastrum capricornutum*.

2) The uptake phenomenon was independent of the nitrogen content of algal cells for the regime of nitrogen limitation studied.

3) The data indicate the existence of a growth inhibition mechanism during periods of low increasing percent nitrogen. Factors contributing to the transition between reduced and normal growth are not clear.

It is believed that a number of areas related to nutrient content models warrants further study. The following are recommended:

1) Investigation of the factors affecting the proposed growth inhibition mechanism.

2) Expansion of the model to include phosphorus limited growth.

3) Sensitivity studies to examine variability of constants with environmental factors such as light and temperature.

4) Application of the model to other algal species to determine universality of relationships.

LITERATURE CITED

- -

• •

4 4

1.1.2

- Bunt, J. S. 1969. Observations of photoheterotrophy in a marine diatom. Journal of Phycology, 5:37-42.
- Caperon, J. 1968. Population growth response of *Isochrysis galbana* to nitrate variation at limiting concentrations. Ecology, 49:866-872.
- Cramer, M., and J. Meyers. 1948. Nitrate reduction and assimilation in Chlorella. J. Gen. Physiol., 32:93-102.
- Daley, R. J., and S. R. Brown. 1973. Chlorophyll, nitrogen, and photosynthetic patterns during growth and senescence of two blue-green algae. Journal of Phycology, pp. 395-401.
- Droop, M. R. 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology, 9:264-272.
- Environmental Protection Agency. 1971. Algal assay procedure: bottle test. A publication of the National Eutrophication Research Program produced by the Pacific Northwest Water Laboratory, Corvallis, Oregon.
- Eppley, R. W., and E. H. Renger. 1974. Nitrogen assimilation of an oceanic diatom in nitrogen-limited continuous cultures. Journal of Phycology, 10:15-23.
- Fogg, G. E. 1959. Nitrogen nutrition and metabolic patterns in algae. Symp. Soc. Exp. Biol., 13:106-125.
- Gerloff, G. C., and P. H. Krombholz. 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnology and Oceanography, 11:529-537.
- Gerloff, G. C., and F. Skoog. 1954. Cell contents of nitrogen and phosphorus as a measure of their availability for growth of *Microcystis* aerugenosa. Ecology, 35:348-353.
- Gerloff, G. C., and F. Skoog. 1957. Nitrogen as a limiting factor for the growth of *Microcystis aerugenosa* in Southern Wisconsin lakes. Ecology, 38:556-561.
- Grenney, W. J., D. A. Bella, and H. C. Curl, Jr. 1973. A mathematical model of nutrient dynamics of phytoplankton in a nitrate-limited environment. Biotechnology and Bioengineering 15:331-358.

- Grenney, W. J., D. B. Porcella, and M. L. Cleave. 1976. Water quality relationships to flow-streams and estuaries in methodologies for the determination of stream resource flow requirements: an assessment. Prepared for U.S. Fish and Wildlife Service, Office of Biological Services, Western Water Allocation, by Utah State University, Logan, Utah, pp. 37-87.
- Malone, R. F., K. A. Voos, W. J. Grenney, and J. H. Reynolds. 1975. The effects of media modifications upon *Selenastrum capricornutum* batch cultures. Biostimulation and Nutrient Assessment Workshop Proceedings USU, pp. 267-292.
- Malone, T. C., and C. Garside. 1975. Nitrate uptake and growth of *Chaeloceros sp.* in large outdoor continuous cultures. Limnology and Oceanography, 20:9-19.
- Reynolds, J. H., E. J. Middlebrooks, Donald B. Porcella, and William J. Grenney. 1974. A continuous flow kinetic model to predict the effects of temperature on the toxicity of waste to algae. PRWG105-3, Utah Water Research Laboratory, Utah State University, Logan, Utah.
- Rhee, G. 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in *Scenedesmus sp.* Journal of Phycology 9: 495-506.
- Shiroyama, T., W. E. Miller, and J. C. Greene. 1975. Comparison of the algal growth response of *Selenastrum capricornutum* PRINTZ and *Anabaena flos-aquae* (LYNBG) DeBrebisson in waters collected from Shagawa Lake, Minnesota. Biostimulation and Nutrient Assessment Workshop Proceedings. PRWG168-1, Utah Water Research Laboratory, Utah State University, Logan, Utah. pp. 127-148.
- Thomas, W. H., and A. N. Dodson. 1972. On nitrogen deficiency in tropical Pacific oceanic phytoplankton. II. Photosynthesis and cellular characteristics of a chemostat-grown diatom. Limnology and Oceanography 17:515-523.

1 2

Vasconcelos, L., and P. Fay. 1974. Nitrogen metabolism and ultrastructure in Anabaena cylindrica. I. The effect of nitrogen starvation. Arch. Microbiol. 96:271-279.

APPENDICES

£ 2

£ .

. .

. .

۰ ،

х *г*

• •

•_--

• -• ·

1

ह. १ २ -

× .

: : ړ ، ι. Appendix A y S Data Listings for Experiments 1 and 2 t 1 r - ' ۰. L' χ. ι. . . 5.2 £ 1-۰. , -۲ ـ e -. . ç k z 1 : 5.4 : • بر م 1 2

54

r' -

* *

Table A-1. Data listings for experiment 1. (Zero indicates no observation.)

EXPERIMENT #1.FLASK R.10/31/75.N=1.44

TINE	PF	TEMP	DD CELLS/ML	NEAN CELL VOLUME	ORY WEIGHT	PERCENT NITROGEN	COMMENTS
CUATS	,	0E6 C		(MICRON**3)	(MG/L)		
0.6	0 7.02	26-20	.000 0.	0.00	0.00	0-000	TEMP AND CO2 ADJUSTED
1.7	1 9.24	26.70	-000 0-	0.00	0.00	0.00	SAME, BUBBLING AND MIXING INCREASED
1.8	3 7.51	26.40	.069 .132E+07	45 8 0	28-10	4.776	TEHP AND COZ ADJUSTED
2.1	0 7.75	24.50	-102 0-	0.00	36 . 87	4.004	AIR OFF, TEMP AND CD2 ADJUSTED
2.6	7 6.49	24.00	.144 .356E+07	37 - 40	50 -60	2-366	CO2 ADJUSTED
2.8	5 6.82	24.40	-151 .369E+07	37.20	51.80	2.594	CO 2 AD JUSTED
3.1	6 6.70	23.60	.167 0.	0.00	58.40	2.586	CO2 ADJUSTED
3.5	5 7.42	24-20	-187 -405E+01	36.80	62.20	2.466	CO2 ADJUSTED
4.1	8 7.30	23.90	.197 0.	0.00	68-60	2.358	
4.1	0 7.32	24.00	-212 .433E+01	38.30	73.20	2.673	SETTLING, HIXING BAR OFF

EXPERIMENT #1+FLASK C+10/31/75+N=1.44

					MEAN CELL	DRY	PERCENT	
TIME	PH	TERP	00	CELLS/ML	VOLUHE	WEIGHT	NITROGEN	CONNENTS
(DAYS)		0E6 C			(MICRON++3)	(NG/L)		
0.60	7.10	27.20	.000	0.	0.00	0.00	0.000	TEMP AND CO2 ADJUSTED
1.71	9.95	27.50	.000	0.	0-00	0.00	0.000	SAME, NO AIR, BUBBLING-MIXING INCREASED
1.83	7.71	27.20	.057	₽950E+06	46.70	22.80	5.538	TEMP AND CO2 ADJUSTED
2.10	7.80	25.60	.096	0.	0+00	33.85	4.037	TEMP AND CO2 ADJUSTED
2.67	6.49	25.00	-142	• 3 36 E+07	34 - 80	0.00	0.000	CO2 ADJUSTED
2.85	6.85	25.30	+154	-356E+07	33-40	50 -4 0	3.062	CO 2 ADJUSTED
3-16	6.70	24-90	-169	0-	0-00	55-60	2-461	CO2 ADJUSTED
3.55	7.36	25.50	-184	+422E+01	35.10	60.60	2.656	CO2 ADJUSTED
4.18	7.28	25.10	+196	0.	0.00	73.00	2-177	
4.70	7.30	25.00	-208	-442E+01	36.50	71-40	2.199	SETTLING, MIXING BAR OFF

EXPERIMENT #1.FLASK L. 10/31/75, H=1.44

					MEAN CELL	DRY	PERCENT	
TINE	PH	TE NP	00	CELLS/ML	. VOLUHE	WEIGHT	NITROGEN	COMMENTS
(DAYS)		0E6 C			(MICRON++3)	(MG/L)		
0.60	7.00	26.70	.000	0.	0.00	0.00	0.000	TEMP AND CO2 ADJUSTED
1.71	9.16	26.80	-066	0.	0.00	0-00	0.000	SAME,NO AIR, BUBBLING-MIXING INCREASED
1.83	7.67	26.00	.071	-145E+07	42.50	27.80	4.937	TENP AND CO2 ADJUSTED
2.10	7.70	24.50	-108	0.	0.00	38.90	3.566	TEMP AND CO2 ADJUSTED
2.67	6.49	23.60	-141	.326E+07	37.00	51.80	2.691	CO 2 AD JUSTED
2.85	6.83	24-20	-154	-334E+07	37 .40	52.60	2.736	CO2 ADJUSTED
3-16	6 -70	23.60	-171	0.	0.00	59-00	2.486	CO2 ADJUSTED
3.55	7.40	24.60	-184	.407E+01	37.80	61 - 40	2.686	CO2 ADJUSTED
4.18	7.29	24.20	-200	0.	0-00	73.20	2-186	
4.70	7.30	24.00	.210	-425E+01	37-00	0.00	0-000	SETTLING, MIXING BAR OFF

SS

EXPERIMENT #1.FLASK R.AFTER DILUTION

					HEAN CELL	DRY	FERCENT	
TIME	91	TEMP	00	CELLS/HL	VOLUME	WEIGHT	NITROGEN	COMMENTS
CAYS)		CEG C			(MICRON++3)	(MG/L)		
4.73	0.00	0.00	.106	-212E+07	37.20	37.40	2.175	CULTURE MIXED 50-50 WITH FRESH MEDIA
4 - 8 E	7.30	23.40	-105	-215E+07	37 - 6 0	36.00	2-480	
.05	7.30	24.00	.106	-215E+07	37.60	36.40	4.197	
.20	0.00	0.00	•000	-217E+07	44.30	41-40	3.931	
-52	0.00	0-00	+000	•262E+07	44 - 40	49 - 60	0.000	SETTLING, MIXING BAR OFF
81	7.20	24.00	-169	0.	0.00	54.40	3.236	SETTLING, MIXING BAR OFF

EXPERIMENT #1.FLASK C.AFTER DILUTION

					MEAN CELL	DRY	PERCENT	
" ; ME	PF	TEPP	00	CELLS/ML	VOLUPE	WEIGHT	NITROGEN	COMMENTS
(x (5))		DEG C			(MICRON**3)	(MG/L)		
4.73	0.00	0.00	-109	+222E+07	35.50	36.40	2.001	CULTURE MIXED 50-50 WITH FRESH MEDIA
4.88	0.00	24.50	.107	.220E+07	35.50	36.00	3.086	
ñ-05	7.40	0.00	.107	+222E+07	36.40	35.80	4.320	
65.0	0.00	0.00	-000	+224E+07	41.70	40.80	3.789	
5.52	0.00	0.00	.000	+261E+07	45.20	45.80	3.582	SETTLING, MIXING BAR OFF
5.81	7.40	25.80	-170	0.	0.00	56.00	3-041	

EXPERIMENT #1.FLASK L.AFTER DILUTION

HE	የኑ	TEPP	00	CELLS/HL	MEAN CELL Volume	DRY Weight	FERCENT NITROGEN	COMMENTS
445)		CEG C			(MICREN++3)	(FG/L)		
73	0.00	0.00	-104	•209E+07	37.50	35.40	2.084	CULTURE MIXED 50-50 WITH FRESH MEDIA
-88	7.24	23.50	-107	•211E+07	37.70	37.80	2.814	
.05	0.00	24.00	-109	-211E+07	38.10	39.00	3.636	-
· .20	0.00	0.00	.000	.207E+07	42.60	40.80	3.734	
~ 52	0.00	0.00	-000	+234E+07	46.50	51.60	0-00	SETTLING NIXING BAR DEF
:81	7.32	24.60	.168	0.	0.00	0.00	0.00	

Table A-2. Data listings for experiment 2. (Zero indicates no observation.)

EXPERIMENT #2.FLASK R.AT START

					MEAN CELL	DRY	PERCENT	
TIME	PF	TEPP	00	CELLS/ML	VOLUKE	WEIGHT	NITROGEN	COMMENTS
(CAYS)		CEG C			(HICRON++3)	(MG /L)		
0.00	6.95	24.00	.000	0.	000	0.00	5.662	
0.93	7.05	24.00	-008	0.	0.00	3-40	5.376	
1.50	6.85	24.00	.021	0.	0.00	9.00	7.008	CO 2 ADJU
2.00	7.00	24.00	-059	0.	0.00	21.30	6.014	
3.05	6.90	24.00	-140	0.	0.00	44-40	3.632	BICARBON.
4.03	7.00	24.00	-180	0.	0.00	57.60	2.790	
5.01	6.90	24-00	-200	0.	0.00	70.60	2.195	
11.04	7.00	24.50	-244	0.	0.00	79.60	2-137	

EXPERIMENT #2.FLASK C.AT START

					NEAN CELL	DRY	PERCENT	
TIME	PF	TEPP	00	CELLS/HL	VOLUME	WEIGHT	NITROGEN	C
(DAYS)	•	026 0			(NICRON++3)	(MG/L)		
0.00	7.00	24.00	.000	0.	0.00	0.00	5.662	
0.93	7.15	25.00	.011	0.	0.00	3.06	6.179	
1.50	6.95	25.00	-023	0.	0.00	9.90	7.243	C
2.00	7.20	26.00	•067	0.	0.00	25.70	4.695	
3.05	7.20	26.00	•152	0.	0.00	49-00	3.256	9
4 - 0 3	7.05	25.00	-190	0.	0.00	59.20	2.650	
5.01	6.90	26.00	.210	0.	0.00	68.00	2.196	
11-04	7.10	26.00	-235	0.	0-00	77.20	2.225	

EXPERIMENT #2.FLASK L.AT START

					NEAN CELL	DRY	FERCENT	
TIME	PF	TEPP	00	CELLS/ML	VOLUPE	WEIGHT	NITROGEN	COMMEN
(CAYS)		CEG C			(NICRON**3)	(HG/L)		
0.00	7-10	24.CO	-000	0.	0.00	0.00	5.662	
0.93	7.15	25.00	.012	0	0.00	2.94	0.000	
1.50	7.10	25.00	-024	0.	0-00	10-40	6.983	CO2 AD
2.00	7.50	25.00	.064	0.	0.00	23.20	5.532	
3.05	7.20	25.00	.147	0.	0.00	48.60	3.067	BICARE
4.03	7.10	25.00	.192	0.	0.00	57 - 80	2.616	
5.01	7.00	25.00	-217	0.	0.00	69.20	2.416	
11-04	7.00	25.50	.239	0.	0.00	80.20	2.039	

CO2 ADJUSTED Bicarbonate sol in air stripping series

.

COMMENTS CO2 EXHAUSTED

BICARBONATE SOL IN AIR STRIPPING SÉRIES

CO MM EN TS

CO2 ADJUSTED

BICARBONATE SOL IN AIR STRIPPING SERIES

57

* * *

5 i i

n an fr

EXPERIMENT #2, FLASK R, AFTER 1ST DILUTION

na a la servici de las de las estas de las estas en anticipantes en la servici de las en las estas en las estas La la la servici de la servici de la servici de la servici de las de las estas en las estas en las estas estas e

					MEAN CELL	DRY	FERCENT					
FIME	PH-	TEMP	00	CELLS/ML	. VOLUPE	WEIGHT	NITROGEN	COMMENTS				
(CAYS)		DEG C			(MICRON**3)	(MG/L)						
11.06	7.30	22.00	.126	0.	0.00	39 - 40	2.497	AFTER 50-50	DILUTION	WITH	FRESH	MECIUM
11.52	7.10	24-50	-131	0.	0-00	0.00	0-000					
14.97	7.10	24.00	.242	0.	0.00	78.40	1.991					
15.64	7.10	24.00	•254	0.	0.00	80-20	2.200					

EXPERIMENT #2+FLASK C+AFTER 1ST DILUTION

					MEAN CELL	DRY	PERCENT	
TIME	P+	TE MP	ÓD	CELLS/H	L VOLUME	WEIGHT	NITROGEN	COMMENTS
(DAYS)		CEG C			(MICRON**3)	(MG/L)		
11.06	7.35	22.50	•118	0.	0.00	38.40	2+324	AFTER 50-50 DILUTION WITH FRESH MEDIUM
11.52	7.10	25.50	-120	0.	0.00	39.00	2.914	
14.97	7.10	25.60	-236	0.	0.00	77.20	2.189	
15.64	7.20	25.50	-242	0.	0.00	79.40	2.090	

EXPERIMENT #2.FLASK L.AFTER 1ST DILUTION

					MEAN CELL	DRY	FERCENT		
TIME	PF	TE₽P	00	CELLS/HL	. VOLUME	WEIGHT	NITROGEN	COMMENTS	
(CAYS)		DEG C			(MICRON**3)	(MG/L)			
11.06	7.20	22.70	-124	0.	0.00	39.00	2 • 11 5	AFTER 50-50 DILUTION WITH FRESH FEDIU	м
11.52	7.05	25.50	-130	0.	0.00	38.20	3-634		
14.97	7.10	25.20	.242	0.	0.00	77.40	2+415		
15-64	7.05	25-20	•250	0.	0.00	80.40	2-181		

• -- P

......

EXPERIMENT #2.FLASK R.AFTER 2ND DILUTION

-

					MEAN CELL	DRY	PERCENT	
TIME	P۲	TE₽P	00	CELLS/HL	VOLUNE	WEIGHT	NITROGEN	COMMENTS
(CAYS)		CEG C			(MICRON++3)	(MG/L)		
15.67	7.30	24.20	-132	0.	0.00	38.60	1.962	AFTER 50-50 DILUTION WITH FRESH MEDIUM
16.05	7.15	24.00	•132	0.	0.00	41.40	3.340	
16.56	7.13	24.50	-163	0.	0.00	55.20	2 • 85 0	
16.83	7.10	24-60	-180	0-	0.00	58.60	2 - 66 4	

EXPERIMENT #2.FLASK C.AFTER 2ND DILUTION

					MEAN CELL	DRY	PERCENT		
TIME	PF	TERP	00	CELLS/M	L VOLUME	WEIGHT	NITROGEN	COMMENTS	
(CAYS)		0 030			[MICRON**3]	(+G/L)			
15.67	7.25	25.30	.126	0.	0.00	38.00	2.030	AFTER 50-50 DILUTION WITH FRESH MEDI	UM
16.05	7.10	25.50	-129	0.	0.00	40.20	3.290		
16.56	7.12	25.80	-162	0.	0.00	56.60	2.730		
16.83	7.11	26.00	-182	0.	0.00	59.60	2 • 42 6		

EXPERIMENT #2+FLASK L+AFTER 2ND DILUTION

					MEAN CELL	ÐRY	FERCENT	
TIME	Pł	TEPP	00	CELLS/M	L VOLUHE	WEIGHT	NITROGEN	CO HM EN TS
(DAYS)		DEG C			(MICRON++3)	(NG/L)		
15.67	7.20	25.20	-125	0.	0.00	39 • 60	2 • C9 0	AFTER 50-50 DILUTION WITH FRESH MEDIUM
16.05	7.10	25.70	-130	0.	0.00	41.20	3.250	
16.56	7.05	25.20	-164	0.	0-00	54.60	2.810	
16.83	7.05	26.00	.184	0.	0.00	60.00	2.639	

4 E F

er.

EXPERIMENT #2.FLASK R.AFTER 3RD DILUTION

					MEAN CELL	DRY	FERCENT		
TIME	Pt -	TEPP	00	CELLS/ML	. VOLUME	WEIGHT	NITROGEN	COMMENTS	
(CAYS)		0 933			(MICRON++3)	(HG/L)			
16.85	7.30	24.10	.094	0.	0.00	30.00	2.849	AFTER 50-50 DILUTION WITH FRESH MEDIL	1 14
17.06	7.14	24.50	.095	0.	0.00	30.30	4.937		
17.53	7-18	24.3C	-126	0.	0.00	41-60	3.545		
18.09	8 -45	24.50	-161	0.	0.00	50-20	3.115		
19.23	7.20	24.10	-190	0.	0.00	63 - 80	2-312		

EXPERIMENT #2+FLASK C+AFTER 3RD DILUTION

					MEAN CELL	DRY	PERCENT	
TINE	Pt	TEPP	00	CELLS/HI	VOLUME	WEIGHT	NITROGEN	COMMENTS
(CAYS)		DEG C			(MICRON++3)	(MG/L)		
16.85	7.18	25.00	-091	0.	0.00	30-30	2.630	
17-06	7.10	26.00	-094	0.	0.00	30.30	4-509	
17.53	7.13	26.00	-136	0	0.00	44 - 40	3 - 364	
18.09	7.17	26.00	.179	0.	0.00	57.80	2.545	
19-23	7.25	26.00	-201	0.	0.00	66.20	2.272	

EXPERIMENT #2.FLASK L.AFTER 3RD DILUTION

TIME	P+	TEPP	00	CELLS/HL	NEAN CELL VOLUME	ORY WEIGHT	PERCENT NITROGEN	COMMENTS
(DAYS)		DEGC			(MICRON**3)	(PG/L)		
16.85	7.20	24-80	.093	0.	0.00	30-40	2-679	AFTER 50-50 DILUTION WITH FRESH MEDIUM
17.06	7.10	25.60	.096	0.	0.00	31-70	0-00	
17.53	7.18	25.20	.140	0.	0.00	46.80	3 - 31 6	
18.09	7.05	26.00	.181	0.	0.00	57.20	2.790	
19.23	7.20	25.80	-203	0.	0.00	68.40	2-173	

.

7 1

6 m

EXPERIMENT #2.FLASK R.AFTER 4TH DILUTION

 $\frac{1}{2} = \frac{1}{2} + \frac{1}$

					MEAN CELL	0 RY	FERCENT	
FINE	PF	TEPP	00	CELLS/H	L VOLUME	WEIGHT	NITROGEN	COMMENTS
(EAYS)		0 33J			(MICRON++3)	(MG/L)		
19.26	7.45	23.90	.101	0.	0.00	33.00	2.187	AFTER 50-50 DILUTION, NO NITROGEN
20-34	7.20	24.00	-122	0.	0.00	40-00	2.159	×
22.14	8.00	24.00	-136	0.	0.00	30.30	2.100	CO2 CYLINDER EXHAUSTED

EXPERIMENT #2, FLASK C, AFTER 4TH DILUTION

					MEAN CELL	DRY	FERCENT	
TIME	Ph	TEPP	0 C	CELLS/ML	. VOLUME	WEIGHT	NITREGEN	COMMENTS
(CAYS)		DEG C			(HICRON++3)	(HG/L)		
19.26	7.37	25.00	.108	0.	0.00	36 .00	1.944	AFTER 50-50 DILUTION, NO NITROGEN
20.34	7.12	25.60	-122	0.	0.00	38.00	2.016	
22.14	7.98	25.50	.132	0.	0.00	41.80	1.548	CO2 CYLINDER EXHAUSTED

EXPERIMENT #2.FLASK L.AFTER 4TH DILUTION

					MEAN CELL	DRY	PERCENT	
TIME	የዞ	TEPP	00	CELLS/M	L VOLUME	WEIGHT	NITREGEN	COMMENTS
(CAYS)		DEG C			(MICRON++3)	(MG /L)		
19.26	7.40	25.80	.108	0.	0.00	34 .70	2 . 25 1	AFTER 50-50 DILUTION, NO NITRUGEN
20-34	7.05	25.50	.123	0.	0.00	0.00	0.00	
22.14	7.80	25.80	.138	0.	0.00	43.20	1.708	CO2 CYLINDER EXHAUSTED

Appendix B

• • • •

÷

. .

e e

• •

× .

. .

ī.

• •

ب بلا ج

ъ т

• •

. .

L 2

ь. л

Computer Program Listing

62

.

Table B-1. Computer program listing.

: T 3 7

1

2 2

r 11

, .

۰ -۰

<u>ب</u>

1 T

. .

د با ب ب

- -

ъ. :

۰. ۲ بر

× -

x .-

5 -

÷ =

.

, -

د ما د د

ب ب

	85700/87700 FORTRAN COMPILATION HARK 2.8.060	NE ON ESDAY,	04/13/77	12:56 PM
		STAR	GF SEGNENI	002
		FORMAT SE	GHENT IS OC	C9 LONG
	INTE EER TSTEP	C 002	2 2000 610	
	REAL KN(4+4) +H(4+1000)+K1+K2+HA	C 002	2 1000 C10	
	DIHENSION HEADI(12), FEAD2(12), XLABEL(12), YLABL1(12), YLABL2(12)	C 002	2 = 0 0 0 C = 0	
	0INENSION YC4)+DATA(180+4)+NHEAD(15)+D(10+9)+CODN(200)+C(7)	C 002	2 1000 01 0	
	DIMENSION DILT(10)	C 002	2 2 0 0 0 0 2 0	
	OIMENSION AI(1045),21(180),22(500),¥1(180),¥2(500),X1(180),X2(500)	C 002	2 × 0 0 0 C × 0	
	DIMENSION YB(2CO)	C 002	2 x 0 0 0 G X 0	
	DIMEASIDN VLABL3(12),NI(180),N2(500),MEA03(12)	C 002	2 1000 C10	
	DATA A1/1045** */	C 002	2 2 0 0 0 C 2 0	
	READ (5,924)IEQUPT,IDILT,[PLOT,(C(L),L+1,/),ISTEP	C 002	21000 010	
		F	18 15 0006	LONG
92.4	FURMAT (212)(1)(7)(0.0)(3)	C 002	1001412	
	[f [[EW[F].EW.2] [EW=2	C 002	1001412	
	IF \IUILIAEWAUA UU IE 233	C 002		
	UU 233 111 - 19 19 19 10 1 02 45 45 6963 NTI TETTOS-2821115-13 -1-43-05	C 002		
25 2		C 002	******	
928		· C 002	1002712	
24.2	READ (SAGAS) NEADIAYIARI 1. YEARI 1. HEAD? YEAR? YEARI 2. YEARI 3. NEADI	r 002	1002013	
904		C 0.02	1001612	
	READ (5.9111) CODN	C 002	1003612	
9111	FDRMAT (1946-20X)	C 002	1004512	
	READ(S,921) L9-HHEAD	C 002	1004512	
92 1	FORMAT (13,15A2)	C 002	2:004E:2	
	READ (5,922) TOAR, THIN, THAX, PHOAR, PHNIN, PHNAX	C 002	1004E12	
92 2	FORMAT (6E9.3)	C 002	2:005F:2	
	00 241 K=1-L9	C 002	21005F12	
24.1	READ (5,923)(DATA(K/L)/L=1/4)	C 002	1005 C: 0	
923	FORMAT (4F10.5)	C 002	2 1 0 07 CI 3	
	1710=1	C 002	2 1007 613	
	D0GG=C (6)	C 002	2 = 0 07 1 = 1	
	00GC=C(6)	C 002	2 1007 21 2	
	00 7821 1ET=1-19	C 002	2:007 3: 3	
	IF (IOILT.E0.0)60 TO 7821	C 002	2 2007520	
	IF (DATACLET-1)-LT-DILTCITIC))GD TC 7821	C 002	2:0076:1	
	DDGC=D(ITIC,9)	C 002	2007825	
		C 0 02	1087 A1 3	
149.1		C 002	1007 815	
1021	URIALIEIDA JALUULAURIA(ELEJA) Note (C.o.1.4) Todo, TV (Max, NUCAR, GUGAR, GUGAR, GUNAS, M/2)	C 002	1007014	
	WALLE TOPPINIS COMPLETIONSFERDENDENDENDENDENDENDENDENDENDENDENDENDEND	L UU2	10 15 0007	1.040
914 1	ENDMAT (141.112.408<50050 EVERDMENTAL DATA4.167.405AU TEMP-1.	r 663	10 13 0000	LUNU
· · · · ·	FALL TAGE DANGET SEL AT TOUS CATER TAT TOUT THE TAT THE AND THE TAT TO THE TAT	C 002	1009512	
;	TAGE PRINCE F_{1} and F_{2} and F_{1} and F_{2} and F_{2	C 002	*****	
•	WRITE (6.0142)	r nc2	1009512	
911.2	FORMAT (1)4 . 159. (00) 1.165. (C.G.) 10 AD1. 175. (FYTERNAL) / 150. (1) #64.	r 002	21009912	
1	159+*#1+*+ 169+************************************	E 002	1009912	
ī	176+*(HG/L)*)	C 0.02	:009912	
-	00 7142 L=1.L0	C 002	1009912	
715 2	WRITE (6,9143) (DATA(L+⊼)+≠=1+4)	C 002	1009A10	
914 3	FORMAT (1H +T49+4(F5-2+5))	C 002	100A913	
	T=0.	C 002	100A913	
C	LRUN=LENGTH OF RUN IN HOURS	C 002	1 = 0 0A A= 1	
c	DEFINE INTIAL CONDITIONS	C 002	100AA:1	
	N(1+1)=DATA(1+4)	C 002	1 = A A O O A = 1	
	N(2+1)=DATA(1+2)	C 002	100A 815	
	PERN 2= \$9\$\$.	C 002	100A012	

63

Ş.
į į

r -

. .

. .

. -----

х т х т

к. -2 -

ند با بر م

t :

5. .

.

÷ -

* ~

. Лара

х - т - -

ы а 1.2

	C	GEFINE TIME STEP & RELATED PARAMETERS	С	002:00AE:2
		LRUN=(DATA(LQ, 1)=DATA(1, 1))=24++1	С	002:00AE:2
	C	TSTEP=TIME STEP IN MINUTES(INTEGER)	C	002:0081:3
	C LO I	S THE NUNBER OF TIME STEPS IN A HOUR	C	002 #00B 1 # 3
		LD=60/TSTEP	C	002:0081:3
	С	NUP=NUMBER OF TIPE STEFS	¢	002:0083:0
		NUN=LRUN+60/TSTEP+1	C	002 #00B 3#0
		IF (NUM-1000)98,98,99	C	002:0085:2
	99	WRITE (6,901)	C	00210086:3
	901	FORMAT CIH + T30 + NUMBER OF TIME STEPS NOT COMPATIBLE WITH	Ç	002100BA:2
	1	CINENSIONED ARRAYS*)	Ç	0 02 10 08 A 1 2
		GD T0 899	C	002:008A:2
	98	CONTINUE	C	0021008A15
	C	DELTATINE STEP IN DATS	C	0021008A15
		DELTA=TSTEP/1440.	ç	002:00BA:5
		RRITE (6,9112) COON	C	002:008C:2
	9112	FORMAT (1H1,135,1046/9(15,1046,5%,1046/))	Ç	002+0003+2
		CC6)=02GG	Ç	002:0003:2
		WRITE (6,9113) (R,C(R),R=1,F)	C	002:0004:4
	9113	FORMAT CIH + T54+ "DEF IN IF ION OF CONSTANTS"/ IZ+/ (CC *+ I1+*)=*+	C	0 C2 ± 0 00 2 ± 2
	1	E9-354RJ/1505 DEFINITION OF CLEUTION CONSTANTS*)	C	002:0002:2
	0.01 0		L L	0.051000515
	001 7	WRITE (0,7003) DIEI([II](J)(\mathbb{L})U(II](\mathbb{L}) \mathbb{L}) \mathbb{L}	L L	0021009510
	7003	LAUNAL (IL 1134),IIME AL ATKALIAN-,1236211592(.A(.)113,14,14,04303)		0021000613
	1.	177	L L	0021000613
	0171	RAILE LOPYINIS LUURARINE IN LUIPINEEF Eadmit siulitea, 1946/182. Erenite fe alcai craute etmulattanes	L L	0021002633
		FUMMER AT MININES IN A THE CIED OF ACARC MOMENT SINGLATION'S	č	002+0004+2
	•	WITE (SAUSISI	ž	0021005112
	9135	FORMAT (140-150-4TINF4-162-4K4-177-4K4-188-4PERCENT K4)	ř	0 02 1005 81 2
		PERM1=(F(6)-N(1,1))/N(2,1)+100.	ů r	0.021005812
		WRITE (6.0) 1363 DATA(1.1).(U(J.1).J=1.2).PERN1	č	0.02 :00F 8:2
	9136	FORMAT (1H + 149+ F5-2+156+F12-5+T71+F12-5+T86+F12-5)	r.	0021010412
	/		ř	0.02 1010412
		I F=0	č	002:0108:0
		TLINE=7	č	0021010814
		I V=0	č	002:0100:3
	1		č	00210100:1
		LOIL T= COIL TCITIC 3-DATACI, 1 >>/DEL TA	Č	002:0100:5
		00 100 I=2,NUM	Č	002:011 (: 2
		IF (191LT.EQ.0) GO TC 7777	C	0 02 10112:0
		IV=IV+1	C	002:0113:1
		IF (IV-NE-LOILT) GO TO 7777	° C	002:0114:3
		N(1,I-1)=D(ITIC,1)+N(1,I-1)+E(ITIC,2)	С	002:0115:3
		N(2,I-1)=D(ITIC,3)+N(2,I-1)+D(ITIC,4)	C	002:011A:2
		N(3+I-1)=D(ITIC+5)+N(3+I+1)+C(ITIC+6)	C	002:011F:2
		N(4,I-1)=D(ITIC,7)*N(4,I-1)+D(ITIC,8)	C	0021012412
		C(6)=D(ITIC,9)	C	002:0129:2
		PERN2=9999•	. C	002:0128:3
		ITIC=ITIC+1	С	002:0120:3
		LDILT= (0 ILT(ITIC)-DATA(1,1))/DELTA	C	002:0120:5
	7777 (SUNTINUE	C	002:0130:2
	-	LFILT FILE FOR FOURTH SPACE BUILDE BUTT	ç	002:013(:2
	U,	ULFIRE RITS FUN FUUKIN UNDER NUNGE KUITA	C	002:0131:4
		DU 125 J=1+1KW	č	002:0131:4
. •	125	T(J)=N(J+1=1)	ç	002:0133:0
			ç	0021013814
	~	GU TU DUU Derte voir for foudtu abaed bunge witte	C	0021013912
	L	AVATANIC Avatanic Deline deli logato dubria dubre dubre dubre	C .	0021013915
	123	VUNI 1795 1-1 150	C	0021013915
		AA TEA A-ILIEA	ç	vuc+u159+5

.

. . .

4 B - +

1.1

· ·

* *

r

د ۲ و و

т. 1. ...

• •

ч ... , ..

τ. :

r 2

• •

E. 2

a. .

128	YEJ)=N(J+1-1)+OELTA/3+KN(J+1)	c	002:0138:0
	J=2	Ċ	002:0142:5
	GO TO 600	C	002:0143:4
C	DEFINE K3+S FOR FOURTH ORDER RUNGE KUTTA	C	002:0144:1
150	CONTINUE	C	002:0144:1
	DO 158 J=1/IEQ	C	002:0144:1
158	Y(J)=N(J+I-1)-DELTA/3+KN(J+1)+DELTA+KN(J+2)	C	002:0145:0
	J= 3	Ç	002:014E:4
_	GO TO 600	C	002:014F:3
¢	OFFINE RA'S FOR FOURTH UNDER NUNGE RUTTA	C C	002:015 (:0
175	CONTINUE	C C	002:0150:0
		L L	0023015130
1/ 8	T(J)=N(J,1=1)+UELIAA(AN(4,1)=NA(3,2)+NA(3,3))		0021015110
		Č,	002-0158-0
~	SU IG DUU Deelse weg wurdtent ieges of somitcition de dunce kutta	C C	002:0138:3
5 20.0	CONTRACT ALM NURRENT LEVEL OF AFFLICATION OF NURBE AUTOR	c c	002 +0150+2
200	CUNIINUE = 0.0222 = 1.71.750	с с	002+0150+2
22.2	UU CCC J-19104 Ne 1, timbe 1, tabaset taba, af 166 () tababue 1, 2340+ kue 6, 334 kue ()	c c	002+0150+0
	$ \begin{array}{c} \mathbf{H}_{\mathbf{A}} = \mathbf{L}_{\mathbf{A}} = \mathbf{L}_{$	ř	002:0158:0
	TE / I E = 1 0 2 2 # 2 2 7 2 2 7	č	002:0171:1
227		č	002:0172:3
		č	002:0173:5
	IF (1LINE_LT_60) 60 TO 7312	č	002:0174:3
	IL INE≠6	ċ	0021017515
	NRITE (6,9131) (COON(K),R=1,10), TSTEP	, Č	002:0176:4
	NRITE (6,9135)	c	002:0184:2
7312	CONT IN UE	C	002:0188:2
	PERN 3≈ PERN2	C	002:0188:2
	TR=DAT AC 1, 1)+I+DEL TA	C	002:0189:1
	PERN2={C(6)-%{1,1}}/N{2,1}+100.	C	002:0188:1
	WRITE (6,9136) TR,(N(J,1),J=1,2),PERN2	c	002 + 019 6 + 3
	IL INE=IL INE+1	C	002:01AC:2
	IPNT=1	C	002:01A1:4
	IF (PERN2-PERN3-GT-0-) IFN T=2	ç	002:01A2:2
	IF (PERN2.GE_C(4))IPNT=1	C	002:0144:5
	IF (PERN2-C(7)-LT601) IPN1=3	C	002:0147:1
22.6	CONTINUE	C C	002:0148:3
100		L L	0021014813
		L L	00210140+4
1000	CONTINUE Deduka/c/6324/133/44/232166 #6/73		002:01AE-1
	FULL - 19-FL 19 FL 29 FL 29 FL 29 FL 29 FL 20 FL	Č Č	002+01AC+1
	RR11937-22137412584728	ž	002+0102+0
4414		č	002+0198+8
9014	$\mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G}$	ř	0021018611
881 5	KN(2+1)=E(3)+Y(2)	· .	002:0185:6
	GD TO BA	č	002:0103:0
8816	KN(2,J)=0.0	č	0 02 10 10 31 3
88	CONTINUE	č	0021010514
	60 T0 (125,150,175,200) -	č	0 C2 : 01C 5: 4
899	CONTINUE	č	002:01CB:3
68 Z	LN#1	C	002:01CB:3
	LX=2	C	002:0100:1
	IF (IPLOT.NE.1) GO TC 891	С	002:0100:0
	XHAXT=DATA(1,1)+12.	C	002:01CE:1
	XMIN=DATA(1,1)	¢	002:01CF:4
	XMAX=DATAC1,13+CNUN=13+DELTA	C	002+010 C+4
	IF (XHAX-LT, XHAXT) XHAX* XHAXT	C	002:0103:0
• •		C	0021010415
	NMAX=10.	c	002:0105:3

~

e.

. .

. .

- -

x ::

4

2 ~ ~ ~ ٤....

```
YMIN≠0.
ZM[N±0.
ZMAX=100.
           2011-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

2012-0.

201
                                                        CALL PL360 (LG,A1,X1,XHIN,XPAX,XLABEL,YI,YHIN,YHAX,YLABLI,HEADI,

1213)

WRITE (6,9144)

WRITE (6,9147) C(7),C(1),C(2)

4 FORMAT (1H,T14,*085EPVE0 CATA INDICATED BY "N"*/T14,*SIMULATED C

10FVE COMPOSED OF "O"*)

CALL PL360 (NUM,A1,X2,XHIN,XPAX,XLABEL,22,2HIN,ZHAX,YLABL2,HEAD2,

1231)

CALL PL360 (LG,A1,X1,XHIN,XFAX,XLABEL,21,2HIN,ZHAX,YLABL2,HEAD2,

1231)

NOTE (C,014E)
        914.4
CALL PL360 (L0,A1,X1,XNIN,XXAX,XLABEL,Z1,2NIN,ZMAX,YLABL2,HEAD2,

123)

WRITE (6,9145)

WRITE (6,9147) C(7).C(1).C(2)

915 FORMAT (1H, 114,*DBSERVED LATA INDICATED BY "X"*/T14,*SIMULATED C

108VE COMPOSED OF "O"*)

CALL PL360 (NUM.A1,X2,XXIN.XMAX,XLABEL,M2,MMIN,WMAX,YLABL3,

* HEAD3,-240)

CALL PL360 (L0,A1,X1,XMIN,XMAX,XLABEL,M1,MMIN,WMAX,YLABL3,

* HEAD3,215)

WRITE (6,9146)

9166 FORMAT (1H, *14,*OBSERVEC LATA INDICATED BY "P"*/T14,*SIMULATED C

*URVE COMPOSED OF "O"*)

WRITE (6,9147) C(7),C(1),C(2)

9147 FORMAT (1H, *114,*CONSTANTS FCR THIS RUM:NMIN=*F4.2,*JG=*,F4.2,

* JU=*,F4.2)

B91 CONTINUE

CALL EXIT

ENO
```

66

 $\begin{array}{ccccc} & 0.02 & 10 & 10 & 612 \\ C & 0.02 & 10 & 10 & 714 \\ C & 0.02 & 10 & 10 & 813 \\ C & 0.02 & 10 & 10 & 813 \\ C & 0.02 & 10 & 10 & 813 \\ C & 0.02 & 10 & 10 & 813 \\ C & 0.02 & 10 & 10 & 113 \\ C & 0.02 & 10 & 16 & 113 \\ C & 0.02 & 10 & 16 & 113 \\ C & 0.02 & 10 & 16 & 113 \\ C & 0.02 & 10 & 16 & 113 \\ C & 0.02 & 10 & 16 & 113 \\ C & 0.02 & 10 & 16 & 113 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 17 & 114 \\ C & 0.02 & 10 & 20 & 114 \\ C & 0.02 & 10 & 20 & 214 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ C & 0.02 & 10 & 22 & 114 \\ \end{array}$

C 0021023212 C 0021023912 C 0021023915 C 0021023915 C 0021023915 C 0021024612 C 0021024612 C 0021024612 C 0021025710 C 0021025710

C 002:0257:0 C 002:0257:3 C 002:0256:2 C 002:0265:2 C 002:0265:2 C 002:0265:2

C 002:026512 C 002:026512 C 002:026512 C 002:026814 C 002:1027010 C 002:1027312 C 002:1027413 C 002:1027812 C 002:1027812 C 002:1027812

0021028212

002+0282+2

C 0021028311 SEGMENT 002 IS 0283 LONG

Ċ

C C

Appendix C

11

11

τ.

r =

а с 1 т

κ.,

1.5

ε :

۲. .

R. 2

. . .

с. -

<u>د ا</u>

Output Listings for Simulation Runs

.

Table C-1. Simulation of experiment #1. (See Figures 10 - 12 in text.)

DESERVED EXPERNENTAL DATA		MEAN TEL	IP=25.0	RANGE	23.4 TO 27.5
HEAR VALUES OF HUNS 172		ACAN FR	f • 1	TOTAL	NITROGEN= 1.60
	DRY	CELLULAR	EXTERNAL		
TINE	hT.	N	N		
(DAYS)	(MG/L)	(MG/L)	(MG/L)		
1.83	26.23	1.33	0.27		
2.10	36.54	1-41	0.19		
2.67	51-20	1.30	0.30		
2.85	51-60	1-44	0.16		
3.16	57.67	1.45	0.15		
3.55	61-40	1-60	0.00		
4-18	71.60	1.60	-0.00		
4 - 7 0	72-30	1.76	-0.16		
4.73	36 - 4 0	0.76	0.84		
4.88	36.60	1.02	0.71		
5+05	37 - 07	1.50	0.23		
5.20	41-00	1.57	0.16		
5.52	49.00	1.64	0.09		
5.81	55.20	1.73	-0.00		

Г L

,

 EQUATION SET #3

 DN/DT=-G*N*X
 CX/DT=U*(PERN-NMIN)*X
 DILUTION ROUTINE (OPTIONAL)

 N=EXTRACELLULAR NITROGEN (MG/L)
 N=D(1)*N+D(2) X=C(3)*X+D(4)

 X=ALGAL BICHASS AS DRY HT. (MG/L)
 C(6)=D(9)

 PE FN= PERCENT NITROGEN=AT(T-N)/X
 C(6)=D(9)

 NMIN=MININUM PERCENT NITROGEN FOR POSITIVE GROWTH

 NTOT=TOTAL NITROGEN (MG/L)

 C(1)=G
 C(2)=U

 C(5)=NTOT
 C(7)=NMIN

 DEFINITION OF CONSTANTS

 C(1) = .100E+00
 C(2) = .390E+00
 C(3) = .500E-01
 C(4) = .380E+01
 C(5) = 0.
 C(6) =

 DEFINITION OF DILUTION CONSTANTS
 TIME OF DILUTION CONSTANTS

C(6)= .160E+01 C(7)= .211E+01

D(1)= 0.000 D(2)= 0.930 D(3)= 0.500 D(4)= 0.000 D(5)= 0.000 D(6)= 0.000 D(7)= 0.000 D(8)= 0.000 D(9)= 1.730

 $\frac{1}{2} \left[\frac{1}{2} + \frac{1$

* *

. .

. .

ъĘ

÷ ;

. .

51. . 1

> • -- -

> * *

÷ L.

- -- -- -

: -

ы. -- - -

ι.

11

• • • • •

EQUATION SET #3 RESULTS OF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

TIME	N	X	PERCENT N
1.83	- 27 426E +0 0	+26233E+C2	• 50 53 6E +0 1
1.90	• 24522E+00	-27490E+02	• 49 282E +0 1
1.94	- 21811F+00	-28750F+C2	- 48 06 6F +0 1
1 08	192985	30009E+C2	- 46 8875 +0 1
2 0 2	* 17270L TOU	712645+62	400072401
2+02	• 10 90 DE +UU	-31264E+L2	+ 40744E +01
2-05	-14872E+00	•32512E+02	- 44 638E +0 1
2-10	•12954E+00	•33750E+C2	• 43 56 9E +0 1
2.15	11226E+00	-3 4976E+C2	- 42 53 6E +0 1
2-19	•96794E-01	•36186E+C2	- 41 54 1E +0 1
2.23	-83040F-01	-37379E+02	- 40 58 3E +0 1
2.27	- 70890E-01	-18552F+C2	- 39663F +0 1
2 21	603255-01	107045462	787815+01
2+31	• 602/2 JL = 01	+ 3 77 V4L+ C2	
2+37	• 30922E-01	•40833E+C2	• 37 937E +U 1
2.40	•42856E-01	•41938E+C2	• 57 129E +0 1
2.44	• 35904E-01	•43018E+C2	• 36 35 9E +0 1
2-48	-29947E-01	-44071E+C2	 35 62 5E +0 1
2.52	-24870E-01	+45098E+C2	• 34 927E+0 1
2.56	- 20566F -01	-46098F+C2	- 34 26 3E +0 1
2.60	- 16938F=01	47070E+02	- 33632F +0 1
2 65	178045-01	6970702722	770745401
2.00	• 130942-01	•48013E+C2	+ 33 V34E +U 1
2.69	-11353E-01	-48932E+ 62	• 5246 EE +U 1
2.73	-92417E-02	•49823E+C2	• 31 92 8E +0 1
2.77	•74957E-02	•20686E+C5	- 31419E+01
2.81	•60581E-02	•212554 CS	• 30 937E+01
2.85	•48794E-02	•2333E+ C2	+ 30480E+01
2.90	- 39171E-02	-53118E+02	- 30048E+01
2.94	- 31 34 4F -02	-53878F+02	- 29639F+01
2 04	250035-02	546135402	202515+01
2 0 2	108855-02	55725E+02	- 27 23 1L TU 1
3+02	• 1900JE-02	• JJJ2JE+ V2	• 20004E TU I
3.00	• 15/60E=U2	+36013E+02	+ 20 33 0E +U1
5.10	-12469E-02	• 3 6 6 7 9 E + C2	• 28207E+01
3.15	• 98 328E -0 3	•57323E+C2	• 27 895E +0 1
3.19	.77337E-03	-57945E+C2	• 27 599E +0 1
3.23	• 60672E-03	•28247E+C2	• 27 318E +0 1
3.27	. 47481E-03	-231545+CS	. 27 05 2E +0 1
3.31	- 37 06 9E-03	-59691E+02	- 26799E+01
1.15	- 28874F-03	-50234F+02	- 26 55 8E +0 1
1 40	224415-03	607505402	26 77 05 10 1
7 1 1	174075-07	612675402	• 20 33 VE +V 1
3.44	• 17 40 32 -03	+0120/E+U2	• 20 11 25 +0 1
5.48	-13469E-03	•01758E+C2	• 25 906E +0 1
3.52	- 10403E-03	•62232E+ C2	• 25709E+01
3.56	-80190E-04	-62690E+C2	+ 25 521E+01
3.60	.61700E-04	-63133E+02	• 25 34 2E +0 1
3.65	- 47 387E-04	-63561E+C2	• 25172E+01
3.69	- 36 330E-04	-63974F+C2	- 25 01 0E +0 1
3.73	- 27807F-04	-64374F+C2	24 85 45 40 1
3.77	21268F-04	-647605+02	+ L7 UJ7L TV I 21,702E 10 4
J 0 1 1 7 5 4	4 5 5 4 AF - AJ	60 71 0VE 7 92 2 E1 7754 AM	+ 24 / VOL TU 1
3.01	• 1021VE -V#	+07133E+ U2	• 24 363E +0 1
3.00	- 12 34 CL TU4	+07495E+C2	• 24 4 3 0E +0 1
5.90	. 939252-05	+05842E+02	- 24 301E +0 1
3.94	-71341E-05	•66178E+C2	• 24 177E +01
3.98	.54112E-05	•66504E+C2	• 24 05 9E +0 1
4.02	-40990E-05	•66818E+02	-23946E+01
4.06	.31009E-05	•67122E+02	-23837E+01

]

ĝ

÷.

EQUATION SET #3 RESULTS OF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

TIME	N	X	PERCENT N
4.10	-23430E-05	•67415E+C2	• 23733E+01
4.15	17682E-05	•67699E+02	-23634E+01
4.19	-13328E-05	•67973E+C2	+23539E+01
4.23	-10036E-05	-68238E+C2	• 23447E+01
4.27	-75481E-06	•68494E+C2	• 23360E+01
4.31	-56712E-06	•68741E+02	• 23276E +0 1
4.35	-42567E-06	.68980E+02	• 23195E +0 1
4.40	-31919E-06	•69211E+C2	• 23118E+01
4.44	-23912E-06	•69434E+C2	• 23044E+01
4.48	-17897E-06	•69649E+C2	+ 22 97 2E +0 1
4.52	-13383E-06	•69858E+02	• 22904E+01
4.56	•99994E-07	•70059E+02	• 22838E+01
4-60	.74650E-07	•7 0253E+ 02	• 22775E+01
4.65	•55685E-07	•70441E+C2	- 22714E+01
4 - 69	-41506E-07	•70623E+C2	• 22656E+01
4.73	• 30915E-07	•70798E+02	• 22 599E +0 1
4.77	-80220E+00	•35589E+ <u>C</u> 2	• 26 07 0E +0 1
4.81	-69115E+00	•35963E+C2	•28887E+01
4.85	-59488E+00	•36038E+C2	• 31 498E +0 1
4.90	-51186E+00	•36113E+02	• 33731E+01
4.94	•44028E+00	•36188E+C2	• 35 63 9E +0 1
4.98	- 37860E+00	•36264E+C2	• 37 26 6E +0 1
5.02	• 32545E+00	•36339E+02	•38651E+01
5.06	•27911E+00	•37396E+C2	• 38798E+01
5.10	-23830E+00	•38487E+C2	-38758E+01
5.15	- 2025 3E+00	• 3 96 02E + 02	• 38571E+01
5.19	•17132E+00	-40733E+C2	• 38266E+01
5.23	• 14423E+00	•41872E+C2	• 37 87 2E +0 1
5.27	-12085E+00	•43013E+C2	• 37410E+01
5.31	-10079E+00	-44151E+02	• 36 901E +0 1
5.35	-83654E-01	•45279E+C2	- 36 36 0E +0 1
5-40	-69111E-01	+46395E+C2	• 35799E+01
5.44	-56832E-01	.47494E+02	• 35 22 9E +0 1
5.48	-46524E-01	•48575E+C2	• 34 657E+01
5.52	• 37915E-01	•49634E+C2	• 34 091E +0 1
5.56	- 30765E-01	•50670E+C2	• 33 535E +0 1
5.60	-24857E-01	•51681E+C2	• 32 99 3E +0 1
5+65	-20001E-01	•52667E+C2	• 32468E+01
5.69	.16028E=01	•53627E+C2	• 31 961E+01
5.73	•12793E-01	•54560E+02	• 31 47 4E +0 1
5+77	• 10 17 3E-01	+55467E+C2	- 31 007E +0 1
5.81	-80588E-02	•26346E+C2	+ 30 560E +0 1
5.85	-63612E-02	•57199E+C2	• 30134E+01

Table C-2. Simulation of experiment #2 before dilution. (See Figures 13 - 15 in text.)

DBSERVED EXPERI	MENTAL DATA		MEAN TE	MP=24.9	RANGE	22.0 TU 26.0
FEAN VALUES U				(• <u>1</u>	TOTAL	NIT RO GE N = 1.68
		DRY	CELLULAR	EXTERNAL		
	TIME	₩T .	N	N		
	(DAYS)	(MG/L)	(MG/L)	(MG/L)		
	11.06	38 - 9 3	0.90	0.78		
	11.52	38.60	1.26	0.42		•
	14.97	77 .67	1.71	-0.03		
	15 .6 4	00.08	1.73	-0.05		
	15.67	38.73	0.75	0.74		
	16.05	40.93	1.35	0.18		
	16.56	55.47	1.55	-0.05		
	16.83	59 - 40	1.53	-0.00		
	16.85	30.23	0.82	0.71		
	17.06	30 .77	1.43	0.10		
	17.53	44.27	1.51	0.02		
	18.09	55.07	1.54	-0.01		
	19.23	66.13	1.45	0.04		

` 1

 EQUATION SET #3

 DN/DT=-G*N*X
 DX/DT=U*(PERN-NMIN)*X

 N=EXTRACELLULAR NITROGEN (MG/L)
 DILUTION ROUTINE (OPT 10NAL)

 X=ALGAL BIOMASS AS DRY HT. (MG/L)
 N=D(1)*N+D(2)
 X=D(3)*X+D(4)

 VERN=PERCENT NITROGEN=NTCT-N/X
 C(6)=D(9)

 NMIN=MINIMUM PERCENT NITROGEN FOR POSITIVE GROWTH
 C(1)=G
 C(2)=U
 C(6)=NTOT
 C(7)=NMIN

DEFINITION OF CONSTANTS C(1)= .100E+00 C(2)= .390E+0C C(3)= .500E-01 C(4)= .300E+01 C(5)=0. C(6)= .168E+01 C(7)= .211E+01 DEFINITION OF DILUTION CONSTANTS TIME OF DILUTION=15.67 D(1)= 0.000 D(2)= 0.665 D(3)= 0.500 D(4)= 0.000 D(5)= 0.000 D(6)= 0.000 D(7)= 0.000 D(8)= 0.000 D(9)= 1.530 TIME OF DILUTION=16.85 D(1)= 0.000 D(2)= 0.665 D(3)= 0.5C0 D(4)= 0.000 D(5)= 0.000 D(6)= 0.000 D(7)= 0.000 D(8)= 0.000 D(9)= 1.530

. . . .

ν,

1.5

• ·

т. 1 1 с

- -

×.

τ.,

ب - - - -

- - -

× ~

t :

~ -

. .

	EQU	ATION	SET	#3			
RESULTS	OF	ALGAL	GROM	1T F -	SI MU	LATIO	N
NUMBER C	F M	INUTES	5 IN	A T	INE	STEP	I S3 O

TIME	N	x	PERCENT N
11.06	• 77 96 4E +00	•38933E+02	• 23 126E +01
11.12	• 66263E+00	.39156E+02	•25983E+01
11.16	• 56245E+00	•39544E+02	.28261E+01
11-21	• 47 69 3E +00	•39626E+02	.30360E+01
11.25	• 40381E+00	.40273E+02	• 31 68 9E +0 1
11.29	• 34092E+00	-41006E+02	 32656E+01
11.33	• 28691E+00	-41807E+02	• 33 32 2E +C 1
11.37	- 24062E+00	•42661E+02	• 33740E+01
11.41	• 20106E +00	•4 3555E+02	• 33 955E +0 1
11.46	• 16737E+00	-44478E+02	. 34 009E +01
11.50	13879E+00	-45418E+02	-33934E+01
11.54	• 1146 3E +00	•46370E+02	• 33759E+01
11.58	• 94 30 5E -0 1	-47324E+02	. 33507E+01
11.62	.77275E-01	•48276E+02	• 33 199E+01
11.66	-63071E-01	-49221E+02	• 32 85 0E +0 1
11.71	.51276E-01	•20155E+02	•32474E+01
11.75	• 41527E-01	•21074E+02	32 08 0E +0 1
11.79	• 3350 3E -01	•21976E+02	- 31678E+01
11.83	.26930E-01	•52860E+02	. 31 27 2E +0 1
11.87	• 21 568E -0 1	•5 37 24 E+ 02	 30 87 0E +0 1
11.91	.17212E-01	•54566E+02	. 30 47 3E +0 1
11.96	.13688E-01	•223 86 E+ 02	• 30 08 6E +0 1
12.00	- 10849E-01	•56183E+02	29709E+01
12.04	85710E-02	•26928E+02	• 29 34 5E +0 1
12.08	• 67 49 7E = 02	•57709E+02	• 28 99 4E +01
12.12	• 52990E = 02	•58438E+02	• 28658E+01
12.16	• 41 47 7E -02	•201 45 E+ 02	 28 33 5E +0 1
12.21	• 32 37 2E • 02	•5 98 29 E+ 02	28026E+01
12.25	• 25 19 4E -02	•60492E+02	• 27 7 3 1E +0 1
12.29	• 19 55 5E = 02	-6 11 33 E+02	.27449E+01
12.33	• 15138E-02	•61753E+02	• 27 181E +01
12.37	-11689E-02	•6 2353E+02	• 26 92 4E +0 1
12.41	• 50 C4 1E - 0 3	-62934E+02	•26680E+01
12.46	- 69191E-03	•6 34 95 E+ 02	• 26 448E +01
12.50	• 53048E-03	-64038E+02	.26226E+01
12.54	- 40580E-03	.64562E+02	• 26 01 5E +0 1
12.58	• 30976E -03	•65069E+02	•25814E+01
12.62	• 23596E-03	•65559E+02	• 25 62 2E +0 1
12.66	• 17938E -03	•6 60 33 E+ 02	• 25 439E +01
12.71	• 1361 1E-03	•66491E+02	• 25 26 5E +0 1
12.75	• 10 20 8E -0 3	•6 69 33 E+ 02	• 25 098E +01
12.79	.77924E-04	•67360E+02	.24939E+01
12.83	.58804E-04	•67774E+02	.24788E+01
12.87	• 44 30 1E -04	-68173E+02	• 24643E+01
12.91	- 33 32 0E - 0 4	•68559E+02	.24504E+01
12.96	• 25021E-04	•68931E+02	• 24 37 2E +0 1
13.00	.18761E-04	•69292E+02	+ 24245E +01
13.04	•14046E-04	•6 96 40 E+ 02	• 24 124E +01
13.08	• 10501E -04	•69976E+02	-24 CO8E +01
13.12	.78402E-05	•7 03 01 E+ 02	•23897E+01
13.16	• 58457E = 05	•70615E+02	-23791E+01
13.21	.43529E-05	•70919E+02	.23689E+01
13.25	• 32 37 4E -05	•7 1212E+02	.23591E+01
13.29	.24048E-05	•7 14 96 E+ 02	• 23 498E +01

G

Ð

52

Ł

ũ

EQUATION SET #3 RESULTS CF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

TIME	N	X	PERCENT N
13-33	• 17843E-05	•7 17 70 E+ 02	.23408E+01
13.37	13224E-05	.72034E+02	• 23 32 2E +0 1
13.41	. 97 90 QE -0 E	•7 22 90 E+ 02	-23240E+01
13.46	.72403E-06	•7 25 37 E+02	• 23 16 1E + 01
13.50	• 53492E-06	•72776E+02	.23085E+01
13.54	- 39 48 1E -0 6	•7 30 07 E+02	.23012E+01
13.58	. 29113E-06	-7 32 29 F + 02	- 22 94 2E +0 1
13.62	- 21 44 8F -0 F	-7 34 45 F+02	- 22874F+01
13.66	- 15787E=06	-7 36 53 E+ 02	- 22 81 0E +0 1
13 71	116105-06	7 18 56 5+ 02	. 22768F +01
17 75	€ 11 01 0C 0 C	740495402	226885101
17 70	+ 0 3 1 0L 01	7 40 47 6 402	+ 22 00 0L +01
13 •17	+ 62 64 4E -07	-/ 42 30 LT UZ	+ 22 03 UL +U I
13+03	• 43701L -V/ 77606E -07	•/ 44 10 E + V2 7/ E 07 E + 02	+ 22 JI JE TUL
13.01	• 33070E-07	+1 43 73 ET U2	• 22 322E +UI
17 06	+ 24 00 0L -U/	•/ 4/ 65 L+ U2	• 22 47 IL +UI
13.90	• 1007 SE = 07	+1 47 20 L + U2	• 22 4221 +01
14.00	• 13222E -07	•/ 50 85 E+ 02	• 22 37 3E +01
14.04	. 5667 3L = 08	-75238E+02	-22329E+01
14.08	•70637E-08	•75385E+02	• 22 286E +01
14 • 1 2	• 51582E=08	•75528E+02	• 22 24 3E +01
14.16	• 37645E-08	•75666E+02	• 22 20 3E +0 1
14.21	• 27 459E -08	•7 57 99 E+ 02	+ 22 16 4E +0 1
14.25	. 20017E-08	•75928E+02	• 22126E+01
14.29	•14585E-08	•76053E+02	• 22 09 0E +0 1
14.33	- 10621E-08	.76173E+02	• 22 055E +01
14.37	• 77 31 3E -0 9	•76289E+02	• 22 02 1E +0 1
14.41	- 56248E-09	•7 64 01 E+ 02	• 21 98 9E +0 1
14.46	• 4090 4E-09	•76510E+02	• 21 95 8E +0 1
14.50	• 29733E −09	•76615E+02	• 21 92 8E +0 1
14 -5 4	• 21603E-09	•76716E+02	• 21 899E +01
14.58	.15690E →09	•76814E+02	•21871E+01
14.62	• 11 39 OE -0 9	•7 69 09 E+ 02	•21844E+01
14.66	.82659E-10	•77000E+02	.21818E+01
14.71	• 59963E-10	•77088E+02	21793E+01
14.75	• 43 48 3E - 10	•77174E+02	.21769E+01
14.79	- 31 52 2E -10	•7 7256 E+ 02	•21746E+01
14.83	. 22843E-10	•77336E+02	+ 21723E+01
14.87	-16548E-10	-77413E+02	-21702E+01
14.91	.11984E-10	-77487E+02	.21681E+01
14.96	•86762E-11	•77559E+02	• 21661E+01
15.00	•62795E-11	.77629E+02	.21641E+01
15.04	• 45436E-11	•77696E+02	÷21623E+01
15.08	. 32867E-11	•77761E+02	• 21 60 5E +01
15.12	• 23768E-11	•77823E+02	. 21587E+01
15.16	.17184E-11	-77884E+02	-21571E+01
15.21	- 12421E-11	•77943E+02	• 21 55 4E +0 1
15.25	.89757E-12	•77999E+02	-21539E+01
15.29	.64847E-12	•7 8054 E+ 02	• 21 52 4E +0 1
15.33	. 46839E-12	-78107F+02	- 21 50 9E +0 1
15.37	- 33825E -12	-78158F+02	-21495E+01
15.41	. 24421E-12	-78207E+02	-21481F+01
15.46	. 17629E -12	.7 82 55 F+ 02	. 21 46 RF +01
15.50	12723E-12	-78301F+02	21456F+01
15.54	91 80 3E -13	.78345F+02	21444F +01
	· · · · · · · · · · · · · · · · · · ·		

, , , ,

5 3

. .

. .

• •

+ . .

: ;

- -

3 7 1

ι.

÷.,

 $\tau_{i,1}$

. .

<u>.</u> .

. .

د ت

EQUATION SET #3 PESULTS OF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

TIME		v	DEDCENT N
16 6 9	N	79700 5102	FERCENT N
10.00	• 66 23 IE = 1 3	•7 03 08 E+ U2	+ 21432E +UI
15.62	• 4/ // 3E=13	•78430E+02	• 21 42 UE + 0 1
15.66	• 34454E = 13	-78470E+02	•21409E+01
15.71	• 56 45 7E +00	•39377E+02	•24517E+01
15.75	- 47,888E +00	•39663E+02	• 26 50 1E +0 1
15.79	• 40 58 6E +0 0	-397 45 E+02	• 28 28 3E +01
15.83	• 34 386E +00	.39828E+02	.29781E+01
15.87	• 29123E+00	•39911E+02	• 31 038E+01
15.91	• 24627E+00	.40582E+02	-31633E+01
15.96	- 20766F+00	-41297 F+02	- 32 02 1E +0 1
16.00	- 17456E+00	-42044E+02	. 32 23 BE +01
16.04	14628E+00	42816E+02	. 72 31 8F ±0 1
16 00	122185+00	6 7 C 0 7 C + 0 2	* 32 3100 *01
10.00	* 122100 +00	•4 36036702	*322070 +01
16+12	- 1017 IE +00	•443 99E+ U2	• 32 16 9E +0 1
16+16	-84 592E =01	•45198E+02	• 31 98 4E +01
16.21	.69790E-01	•45996E+02	• 31746E+01
16.25	• 57 52 3E = 0 1	•46789E+02	.31471E+01
16.29	-47257E-01	•47572E+02	• 31 16 8E +0 1
16-33	 38698E=01 	-48345E+02	.30847E+01
16.37	• 31588E-01	.49103E+02	• 30 51 6E +0 1
16.41	• 25703E-01	-498 47 E+ 02	. 30 17 8E +0 1
16.46	. 20851E-01	.50574E+02	.29841E+01
16.50	- 1686 4E -01	-51283F+02	- 29 506F +01
16.54	-13600F-01	-51974F+02	-29176E+01
16 - 58	- 10937E = 01	-52647E+02	28854F+01
16.62	- 87706F-02	-5 33 01 E+ 02	- 2854 OF +01
16 66	701665 = 02	5 30 76 54 02	287775 +01
16 71	55054E=02	5/552 Ex 02	+ 202312 +01
16 75	+ 53 /5 -02	+J4JJ2ETU2 551405+02	+ 21 744C TU 1
10+7.3	+ 44 J2 4E -U2 75 36 0E -02	• J J I 47 E • U2	• 27 00 2C TV 1
10.19	• 35 34 VE - VZ	•337 28 E+ U2	• 27 391E +U1
10.03	• 27 985E-02	•56289E+02	• 27 131E +01
16.87	• 59083E+00	-28638E+02	•32794E+01
16.91	• 52 37 5E +00	•29228E+02	• 34428E+01
16.96	• 46 306E +00	•29900E+02	• 35 684E +0 1
17.00	• 40820E+00	•30641E+02	• 36611E+01
17.04	• 35868E+00	•31441E+02	. 37 25 5E +0 1
17.08	• 31409E+00	•32289E+02	• 37 65 7E +0 1
17.12	• 27 405E +00	•33176E+02	.37858E+01
17.16	• 23822E+00	-34093E+02	. 37 89 OE +01
17.21	• 20 62 7E +00	-35034E+02	. 37 78 5E +0 1
17.25	-17790E+00	-35991E+02	- 37 56 8E +01
17.29	- 15282F+00	-36958E+02	37 26 35 101
17 22	1307 45 400	79705+02	+ JT 203L +01
17 77	111605400	+J/JJUE+UZ	+ 30 09 UE TU 1
17+37	• 11 1 + 02 + 00	• 3 8 7 U3 E + U2	• 36463E +U1
17.41	• 94 94 35 -01	•39872E+ UZ	• 36 CO 2E +0 1
17.40	•/9912E=01	+4 08 33 E+ 02	• 35 51 3E +01
17.50	• 67 27 6E = 01	•41783E+02	• 35 007E +01
17.54	• 36 4 1 6E =0 1	•42721E+02	• 34 49 3E +0 1
17.58	• 47 126E =01	•43642E+02	• 33 97 8E +0 1
17.62	• 39 21 7E -0 1	•4 45 47 E+ 02	 33 46 6E +01
17.66	.32513E-01	•45432E+02	• 32 96 1E +0 1
17.71	. 26857E-01	•46298E+02	• 32 467E +0 1
17.75	.22107E-01	-47142E+02	• 31 986E +01
17.79	• 18133E −01	•47965E+02	• 31 52 0E +0 1

. .

11

. .

, -

- -

: :

к -Ъ -

: ·

ι,

١.

ъ.

、 *.* , .

ы... 1 а

i. .,

EQUATION SET #3 RESULTS CF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

Ť IME	N	X	PERCENT N
17.83	• 14823E-01	.4 87 66 E+ 02	• 31 07 0E +0 1
17.87	-12078E-01	•49545E+02	•30637E+01
17.91	• 98 09 7E -0 2	•2 03 02 E+ 02	• 30 22 1E +0 1
17.96	• 79 42 7E -0 2	•51037E+02	. 29823E+01
18.00	•64116E-02	•5 17 49 E+ 02	• 29442E+01
18.04	• 51 60 6E -0 2	•52440E+02	.29078E+01
18.08	-41419E-02	•23109E+02	.28731E+01
18.12	• 33 15 2E -0 2	•53757E+02	.28400E+01
18.16	• 26465E-02	•24384E+02	.28084E+01
18.21	• 21 07 2E -0 2	•24992E+02	• 27784E+01
18.25	.16737E-02	•55579 E+ 02	• 27 498E +01
18.29	.13261E=02	•56147E+02	• 27 226E +01
18.33	.10483E-02	•56697E+02	• 26967E+01
18.37	.82680E-03	•57229E+02	.26720E+01
18.41	• 65 07 0E = 0 3	•57743E+02	+ 26 486E +01
18-46	• 51 10 3E +0 3	•582 40 E+ 02	• 26 26 2E +0 1
18.50	• 40052E - 03	•20 E+ 02	• 26 04 9E +0 1
18.54	• 31 329E -03	•20184 E+ 02	• 25 846E +01
18.58	• 24459E-03	•59633E+02	• 25 65 3E +0 1
18.62	• 19061E-03	•60067E+02	• 25 46 8E +0 1
18.66	.14828E-03	•60486E+02	• 25 29 3E +0 1
18.71	• 11515E-03	.60891E+02	• 25 12 5E +0 1
18.75	• 89 27 3E -04	•61283E+02	•24965E+01
18.79	•69101E-04	•61661E+02	•24812E+01
18.83	• 5340 4E -04	•6 20 27 E+ 02	• 24 66 6E +0 1
18.87	-41212E-04	•62380E+02	•24526E+01
18+91	.31757E −04	•6 27 21 E+ 02	• 24 39 3E +01
18.96	• 24437E-04	•6 3051E+02	• 24 266E +01
19.00	• 18778E-04	•6 33 70 E+ 02	• 24 14 4E +01
19.04	• 14412E-04	•6 36 78 E+ 02	• 24 027E +01
19.08	• 11046E-04	•63976E+02	• 23915E+01
19-12	-84565E-05	•64264E+02	• 23808E +01
19.16	• 64663E=05	-64542E+02	•23705E+01
19.21	.49388E-05	+64810E+02	• 23607E +01
19.25	. 37680E-05	.65070E+02	• 23 51 5E +01
19.29	•28717E-05	%65321E+02	• 23 42 5E +01

Table C-3. Simulation of dilutions of experiment #2, transition point = 3.8 percent. (See Figures 16 - 18 in text.)

OBSERVED EXPERM	ENTAL DAT/	1	MEAN TE	MP=24.9	RANGE	22.0 TO 26.0
MEAN VALUES OF	RUNS 4 TH	IRU 6	MEAN PH	7.1	RANGE	6.9 TO 8.5
					T GT AL	NITROGEN= 1.68
		DRY	CELLULAR	EX TE RN AL		
	TIME	WT.	N	N		
	(DAYS)	(MG/L)	(MG/L)	(MG/L)		
	11.06	38.93	0.90	0.78		
	11.52	38.60	1.26	0.42		
	14.97	77.67	1.71	-0.03		
	15.64	80.00	1.73	-0.05		
	15.67	38.73	0.75	0.74		
	16.05	40.93	1.35	0.18		
	16.56	55.47	1.55	-0.02		
	16.83	59.40	1.53	-0.00		
	16.85	30.23	0.82	0.71		
	17.06	30.77	1.43	0.10		
	17.53	44.27	1.51	0.02		
	18.09	55.07	1.54	-0.01		
	19.23	66 •1 3	1.45	0.04		-

78

سوه المحالية المحالي مورد المحالية المحالية

1 () ------

EQUATION SET #3DN/DT=-G*N*XDX/DT=U*(PERN-NMIN)*XDILUTION ROUTINE (OPTIONAL)N=EXTRACELLULAR NITROGEN (MG/L)N=D(1)*N+D(2) X=D(3)*X+O(4)X=ALGAL BIOMASS AS DRY WT. (FG/L)C(6)=D(9)PERN=PERCENT NITROGEN=NTCT-N)/XC(1)=GNMIN=MINIMUM PERCENT NITROGEN FOF POSITIVE GROWTHC(1)=GNTCT=TOTAL NITROGEN (MG/L)C(7)=NMIN

DEFINITION OF CONSTANTS C(6) = .168E+01 C(7) = .211E+01C(1) = .100E + 00C(2)= .390E+0C C(3) = .500E - 01 C(4) = .380E + 01 C(5) = 0. DEFINITION OF DILUTION CONSTANTS TIME OF DILUTION= 15.67 D(1) = 0.000D(2) = 0.665D(3) = 0.500D(4) = 0.000 D(5) = 0.000 D(6) = 0.0000(7) = 0.000D(8) = 0.000 D(9) = 1.530TIME OF DILUTION= 16.85 D(1) = 0.000D(2) = 0.665 D(3) = 0.500D(4) = 0.000 D(5) = 0.000 D(6) = 0.000D(7) = 0.000D(8) = 0.000 D(9) = 1.530

می این وروان ایران ور از والی ایران و ا ایران و ایران ایران و ایران

79

.

ţ. s

· ·

- -

. . .

10

• • •

1 --- -

· ·

• •

ь... г ^ ъ т

r 1

۰.

- -

: :

· 4

E (JUATION	SET #3	
RESULTS C	FALGAL	GROWTH	SIMULATION
NUMBER OF	MINUTES	IN A T	IME STEP IS30

TIME	• N	X	PERCENT N
11.06	•77964E+00	•38933E+02	• 23 126E + 01
11.12	• 66 26 3E +0 0	•39156E+02	• 25 98 3E +0 1
11.16	• 56245E+00	•395 44 E+02	• 28 26 1E +0 1
11.21	• 47 69 3E +00	•39626E+02	 30 36 CE +01
11.25	• 40427E+00	•39709E+02	• 32127E+01
11.29	.34257E+00	•39792E+02	•33611E+01
11.33	• 29018E+00	•39875E+02	- 34855E+01
11.37	• 24572E+00	•39958E+C2	• 35 89 5E +01
11.41	• 20800E+00	•40041E+02	• 36762E+01
11.46	• 17 60 1E +00	•40125E+02	• 37 48 3E +0 1
11.50	•14888E+00	•40208E+02	- 38080E+01
11.54	• 12 56 3E +00	•41318E+02	• 37 62 0E +0 1
11.58	• 10 55 1E + 00	•42425E+02	.37112E+01
11.62	• 88216E-01	•4 35 24 E+ 02	• 36 57 2E +0 1
11.66	•73419E-01	•44612E+02	 36 01 2E +0 1
11.71	.60828E-01	•45685E+02	• 35 44 2E +0 1
11.75	• 50 17 4E -0 1	-46741E+02	• 34 86 9E +0 1
11.79	•41206E-01	•47776E+02	• 34 301E +01
11.83	• 33697E-01	•4 87 90 E+ 02	• 33742E+01
11.87	. 27 44 1E -0 1	•49781E+02	•33197E+01
11.91	• 22 25 6E -0 1	•50747E+02	. 32667E+01
11.96	• 17979E-01	•51688E+02	 32 15 5E +0 1
12.00	•14468E-01	•52604E+02	• 31 66 2E +0 1
12.04	• 11 59 9E −0 1	-5 3494 E+ 02	• 31189E+01
12.08	• 92646E-02	•54358E+02	• 30736E+01
12.12	•73740E-02	•55196E+02	 30 30 3E +0 1
12.16	• 58 49 1E * 02	•56009E+02	•29891E+01
12.21	• 46 24 1E - 0 2	•2 67 97 E+ 02	• 29 498E +01
12.25	• 36 438E -02	•57559 E+02	•29124E+01
12.29	.28624E-02	•58298E+02	•28769E+01
12.33	• 22 41 8E -0 2	•59012E+02	•28431E+01
12.37	•17506E-02	•59704E+02	•28110E+01
12.41	• 13632E-02	•60373E+02	• 27 80 5E +C 1
12-46	• 10 58 6E -0 2	•61020E+02	• 27 515E +01
12.50	• 8198 4E -03	•61645E+02	• 27 239E +01
12.54	• 6 3 3 3 4E -0 3	•6 2250 E+ 02	• 26 97 8E +01
12.58	• 48 80 5E - 0 3	•6 28 34 E + 02	• 26 72 9E +0 1
12.62	• 37 51 9E -0 3	•6 34 00 E+ 02	• 26 49 3E +01
12.66	• 28776E=03	•6 39 46 E + 02	• 26 26 8E +01
12./1	• 22 02 2E =0 3	•64474E+02	• 26 05 4E +0 1
12.75	• 16 81 6E =0 3	•64984E+U2	• 25 85 CE +01
12.79	• 1281 4E =0 3	+65477E+02	• 25656E +01
12.83	• 97 44 BE = 04	•65954E+02	• 25 47 1E +01
12.87	• 7 3 9 6 3 E = 0 4	•66414E+02	• 25 29 5E +01
12.91	• 36032E=04	•66859E+02	• 25 127E +01
12.96	• 42 37 IE = 04	+67289E+02	• 24 966E +01
13.00	• 3190 4E -04	•67705E+02	• 24 81 3E +01
17 00	• 241025-04 181775-0/	•00100L702	• 24 bb / L + 01
12.00	• 10 13 3C - V4	+0 34 73 L + UZ	• 24 727E+01
13 • 12	• 1302UE -04	+000/UL+UZ	• 24 574E +01
17 24	• IV2IJC-V4 76/08E=05	• D 7 C J C L + U C	• 24 200E +01
12 00	•/0470L-VJ 57205E=05	•0702L+UZ	• 24 144L +U1
13.27	• 37 2035 TU3	+0 YYZUE+02	• 24 UZ/E +01
13.453	- 42/196 -03	•7 UZ 47 E+ UZ	•23715E+01

1

. .

۰ ۲

. .

! :

. .

1....

ъ. -

 t^{-1}

k ...

. . .

e -

× -

. .

÷....

e c c kuł

r -

ы. *2*

L _

	EQUATION	SET #3	
RESULTS	OF ALGAL	GROWTH	SIMULATION
NUMBER (DF MINUTES	5 IN A T	IME STEP IS30

TIME	N	X	PERCENT N
13.33	.31858E-05	.70563E+02	•23808E+01
13.37	.23728E-05	.70869E+02	• 23706E +01
13.41	17651E-05	•71164E+02	-23608E+01
13.46	.13114E-05	•71449E+02	.23513E+01
13.50	- 97 32 0E -0 6	-7 17 24 E+ 02	• 23 42 3E +01
13.54	.72141E=0.6	71990E+02	- 23336E+01
17.58	534185-06	7 22 48 5+ 02	27 25 75 401
13+30	- 334100-00	*/ 22 40 L+ V2	• 23 23 32 101
13.02	. 393122-06	•/ 2498E+V2	• 23 17 42 +0 1
13.66	- 29197E-06	•12136E+02	•23097E+01
13.71	• 21553E -06	•72968E+02	• 23 C24E+C1
13.75	•15896E-06	•7 31 92 E+ 02	• 22 95 3E +0 1
13.79	-11712E-06	•7 34 09 E+ 02	• 22 88 5E +01
13.83	• 86223E-07	.7 36 19 E + 02	• 22820E+01
13.87	•63420E-07	•7 38 21 E+ 02	• 22758E+01
13.91	.46610E-07	.74016E+02	. 22 69 8E +0 1
13.96	- 34228F -07	-74205F+02	- 22 64 0E +0 1
14.00	- 25115E =07	-74388F+02	- 22 584E +0 1
14 04	184155=07	7 45 64 5+ 02	225315+01
14 0 9	174075-07	7 47 76 5 4 02	* 2 2 J J I L V I
14.00	• 1347 JL 07	*/ 4/ JJC+V2	• 22 40 VL + VI
14 • 12	• 9879 4E -08	*7 40 99 E* U2	• 2243 VE +U I
14.16	·/228/E-08	•75058E+02	• 22 38 3E +01
14.21	• 52857E -08	•75212E+02	• 22 337E +01
14.25	• 38 62 6E -0 8	-75361E+02	+ 22 29 3E +0 1
14.29	• 28 20 9E -0 8	•7 55 04 E+ 02	• 22 25 0E +0 1
14.33	. 20 58 9E -0 8	•7 56 43 E+ 02	• 22 21 0E +0 1
14.37	.15019E −08	.75777E+02	• 22 17 0E +0 1
14.41	.10950E-08	•75907E+02	•22132E+01
14.46	.79791E-09	•76032E+02	• 22 096E +01
14.50	• 58113E-09	-76153E+02	• 22 06 1E +0 1
14.54	. 42 30 3E −0 9	.76270E+02	• 22 02 7E +0 1
14.58	- 30780E-09	•76383E+02	• 21 99 4E +0 1
14.62	• 22 38 5E - 0 9	•76492E+02	.21963E+01
14.66	• 16 27 2E -0 9	+76597E+02	• 21 93 3E +01
14.71	. 11824E -09	•76699E+02	• 21 904E +01
14.75	- 85880F -10	-7 67 98 F+02	- 21876E+01
14.79	- 62 351E - 10	-76893E+02	- 21 849E +01
14 . 83	. 45251E=10	-7 69 85 E+ 02	21822E+01
14 .87	- 32828E-10	-77074F+02	- 21 797E+01
14 01	- 23807F = 10	-77160E+02	21 77 75 40 1
14 • 7 1	172505=10	772475+02	2176 AE +01
14 + 70	+ 17 2396 -10	*/ / C 43 C + V2	• 2173 VE + V1
15.00	• 12508E -10	•//JZJE+UZ	•21/2/6+01
15.04	. 50 61 62 - 11	•//400E+02	•21705E+01
15-08	. 65626E -11	•//4/5E+02	•21684E+01
15.12	•47516E-11	•77547E+02	•21664E+01
15.16	• 34 19 2E -11	•77617E+02	• 21 64 5E +01
15.21	• 24886E -11	•77685E+02	• 21626E+01
15 .25	.18002E-11	•77750E+02	+21608E+01
15.29	-13019E-11	•77813E+02	• 21 59 0E +0 1
15.33	• 94132E-12	•77874E+02	• 21 57 3E+01
15.37	• 68042E -12	•77933E+02	• 21557E +01
15.41	.49171E-12	•77990E+02	• 21541E+01
15.46	• 35526E-12	•78045E+02	• 21 526E +01
15.50	. 25662E-12	•7 80 98 E+02	.21511E+01
15.54	• 18532E -12	•78149E+02	+21497E+01

т. к. и

- -

. .

× ~

÷ •

• •

ι.

. .

1.5

. .

- .-

5., 2

¥ ,

. .

ъ. -

م . م

•. •

1.1

00		TION	SET #3	ST MIL		N	
NL	IMBER OF MI	NUTES	IN A 1	IME	STEP	1530	
TIME	N			X	• •	PERCEN	T N
15.58	• 13 38 1E	-12	•/81 782	9924)	02	+ 21484	1E+01
15.66	. 69 71 3E	-13	.782	93E+	02	- 21 458	IE +01
15.71	• 56 47 8E	+00	.3 92	92E+	02	.24566	5E +01
15.75	• 47 922E	+00	+395	680E+	02	. 26 54 8	3E +0 1
15.79	• 40629E	+00	.396	62E+	02	.28332	2E +01
15.83	• 34 43 5E	+00	• 3 97	45 E+ 1	02	. 29 832	2E +01
15.91	• 29 17 4E	+00	-390	20 E + 1 211 F + 1	02	. 32 144	F +01
15.96	• 20 92 0E	+00	.399	94 E+	02	. 33 02 5	5E +01
16.00	. 17706E	+00	.400	77E+	02	. 33758	3E +01
16.04	-1498OE	+00	•401	61 E+	02	• 34 36 7	'E +0 1
16.08	. 1267 CE	+00	•4 02	245E+	02	• 34 86 9	/E+01
16.12	• 10712E	+00	-403	29E+	02	. 35 282	2E +01
16.21	• 90 33 3E	-01	•4 04	13ET -	02	. 15.892	2E +01
16.25	- 64 60 3E	-01	-405	682 E+	02	. 36 11 ()E +01
16.29	. 54 54 4E	-01	.406	66E+	02	. 36 282	2E+01
16.33	• 46 0 3 4E	-01	-407	'51 E+	02	. 36 4 1 5	5E +01
16.37	.38838E	-01	-408	36 E +	02	.36516	5E+01
16-41	• 32756E	-01	.405	21 E+	02	. 36 58 5	VE +01
16.46	• 27 61 6E	-01	•410	06 E+	02	• 36 63 8 76 66 7	JE +01
16.54	+ 23 27 3C	-01 +01	-410	78 F+	02	• 30 00/	1F +01
16.58	• 1651 4E	-01	.412	264 E+	02	. 36 67 9	E+01
16.62	-13876E	-01	.422	93E+	02	. 35 848	3E +0 1
16.66	•11610E	-01	•4 32	291E+	02	.35074	E+01
16.71	• 96 7 4 OE	-02	-442	259E+	02	• 34 35 1	LE +01
16.70	• 80291t	-02	•471	97 E+	02	+ 3 3 6/4	1E +01
16.83	- 54 67 98	-02	.469	86 F+	02	. 12 44 (6F +01
16.87	• 60220E	+00	.241	134E+	02	. 38 44	3E +01
16.91	• 54 37 9E	E+0 0	-248	50 E+	02	. 39686	5E +01
16.96	• 48952E	+00	•256	532E+	02	• 40593	SE +01
17.00	• 43917E	+00	-264	71E+	02	- 41 20 8	3E +01
17.08	+ 372375 - 34962F	.+00 .+00	+273	AGE+	02 02	+ 41 57 3	SE +01
17.12	• 31012E	+00	.292	54 F+	02	. 41700)F +01
17.16	. 27 397E	+00	.302	46 E+	02	. 41 52 7	E+01
17.21	• 24 10 2E	+00	•312	260E++	02	• 41 234	E +01
17.25	• 21114E	+00	.322	89E+	02	• 40 845	E+01
17.29	• 18416E	+00	• 3 33	30E+	02	. 40 37 9	/E +01
17 37	• 1399 SE	.+00	•545 754	76 E+	02	• 3985:	E+01
17.41	- 11905F	+00	.364	69 E + 1	02	• 37 201	E +01
17.46	. 10205E	+00	.375	508E+	02	. 38 07 1	E +01
17.50	.87098E	-01	.385	37 E+	02	. 37 442	2E +01
17.54	•74021E	-01	•395	53E+	02	.36810	E +01
17.58	- 6264 3E	-01	•405	55 E+	02	. 36 18 1	E +01
17.62	• 52795E	-01	•415	41 E+	02	• 35 56 (E+01
17.71	• 44 31 DE	-01	•425	54 54	02 02	• 54 95]	E +01
17.75	• 30 85 3E	-01	-443	79E+	02	• 34 537	E +01
17.79	• 25 59 6E	-01	.452	82 E+	02	• 33 22 3	SE +01

т ¹ т 2 — а

199 199 199

, .

7 · •

, .

· ·

• •

ŧ . .

× -

с. 4 F с 4

* *

r : • • •

р. « ъ. –

. . .

r 3

5 5 • • 4 5 •

- - -

	EG	UATIO	IN SI	ET	#3			
RESULTS	CF	ALGA	L GI	ROW	TH	SI MU	LATI	ON
NUMBER	OF	MINUT	ES 1	IN	A T	IME	ST EP	1530

TIME	N	x	PERCENT N
17.83	• 21156E-01	•46163E+02	•32685E+01
17.87	.17423E-01	•47020E+02	• 32 16 9E +0 1
17.91	.14298E-01	•47854E+02	• 31 67 3È +01
17.96	.11694E-01	4 86 65 E + 02	• 31 199E +0 1
18.00	• 95 31 9E -02	•49452E+02	• 30747E+01
18.04	.77446E-02	•20515E+05	. 30 31 5E +0 1
18.08	• 62728E-02	•20956E+02	• 29 90 3E +0 1
18 - 12	•50653E-02	•51673E+02	• 29 51 1E +0 1
18.16	.40782E-02	•52368E+02	.29138E+01
18.21	• 32741E-02	• 5 30 41 E+ 02	.28784E+01
18.25	• 26 21 4E -0 2	•5 3693 E+ 02	.28446E+01
18.29	20931E=02	•24324E+02	•28126E+01
18.33	• 16 67 0E -0 2	•549 34 E+ 02	• 27 821E+01
18.37	.13244E-02	•2224 E+05	• 27 53 2E +0 1
18+41	• 10496E -02	•2 60 95 E+ 02	• 27 257E +01
18.46	•82987E =03	• 5 6 6 4 6 E + 0 2	. • 26 995E +01
18.50	•65467E-03	•57180E+02	• 26746E+01
18.54	• 51 53 3E = 0 3	•57696E+02	•26509E+01
18.58	• 40 47 9E -0 3	•58194 E+02	 26 28 4E +0 1
18.62	• 31 7 3 2E = 0 3	•28677E+02	• 26 C7 CE +0 1
18.66	.24825E-03	•2 01 42 E+ 02	• 25 86 6E +0 1
18.71	• 19 38 5E = 0 3	•59593E+02	•25671E+01
18.75	• 15 10 9E -0 3	•60028E+02	• 25 486E +01
18.79	.11755E-03	•60448E+02	•25309E+01
18.83	• 91 30 3E -0 4	-60855E+02	+ 25 14 0E +0 1
18.87	.70796E-04	•61248E+02	.24979E+01
18.91	• 54807E = 04	•61627E+02	- 24826E+01
18.96	• 42 36 4E =04	•6 19 94 E+ 02	• 24679E+01
19.00	• 32696E=04	•62349E+02	• 24 53 9E +01
19.04	• 25198E = 04	•62691E+02	• 24 40 5E +0 1
19.08	• 19 39 2E=04	•6 30 22 E+ 02	• 24 27 7E +01
19.12	• 1490 4E = 0 4	+63342E+02	• 24 154E +C1
19-16	• 11459E=04	+6 3651 E+02	-24 C37E+01
19-21	• 87 69 UL =0 5	•6 5950E+02	• 23 92 5E +01
19+25	• 6/139E=05	+64238E+02	• 23 81 8E +01
19.29	■ 01 34 3E=05	•0431/E+02	•23715E+C1

Table C-4. Simulation of dilutions of experiment #2, transition point modified to 3.0 percent. (See Figures 19 - 21.)

er ve e s in e ٣

مونی مورد کو مورد کو . مورد کار مورد کو مو

1

× .

.

18 a --

1 1 4

 $\begin{array}{cccc} f' & f'' & f'' \\ c & b & c \end{array}$

Ч 1 р н 195 к. 133

DESERVED EXPERMENTAL DATA		MEAN TER	1P=24 .9	RANGE	22.0 10 26.0
MEAN VALUES OF RUN 3		MEAN PH	7+1	RANGE	6.9 10 8.5
				T CT AL	NITROGEN= 1.57
	DRY	CELLULAR	EX TE RN AL		
TIME	WT.	N	N		
(DAYS)	(MG/L)	(MG/L)	(MG/L)		
0.93	3.13	0.19	1.38		
1.50	9.77	0.69	0.88		
2.00	23.40	1.26	0.31		
3.05	47.33	1.57	0.00		
4.03	58-20	1.56	0.01		
5.01	69.27	1.57	-0.00		
11-04	79-00	1-68	-0.11		

84

47.4 86.2 a si ka Kiti pat

the state of the second s

k if Sc

r

1

 $\begin{array}{cccc} r & r & r & y \\ x & 0 & 0 & 0 \end{array}$

 EQU AT IGN SET #3

 DN/DT=-G+N+X
 DX/DT=U+(PERN-NMIN)+X

 N=EXTRACELLULAR NITROGEN (MG/L)
 DILUT IGN RGUTINE (OPTIONAL)

 N=EXTRACELLULAR NITROGEN (MG/L)
 N=D(1)+N+D(2)

 X=ALGAL BIOMASS AS DRY HT. (MG/L)
 C(6)=D(9)

 >ERN=PERCENT NITROGEN TOT-N)/X
 C(6)=D(9)

 NHIN=NININUM PERCENT NITROGEN FOR POSITIVE GROWTH
 C(1)=G

 NTOT=TOTAL NITROGEN (MG/L)
 C(1)=G

DEF IN IT ION OF CONSTANTS C(1) = .100E+00 C(2) = .390E+00 C(3) = .500E-01 C(4) = .380E+01 C(5) = 0. DEF INITION OF DILUTION CONSTANTS TIME CF DILUTION = 0.00 D(1) = 0.000 D(2) = 0.000 D(3) = 0.000 D(4) = 0.000 D(5) = 0.000 D(6) = 0.000 D(7) = 0.000 D(8) = 0.000 D(9) = 0.000

(a) A second se Second seco

. · .

.

•••

h. . .

. .

s :

. .

، د و -

ء ۽ م

د . . .

ب بر

• •

6. ...r

EQUATION SET #3 RESULTS OF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

	TIME	N	x	PERCENT N
	0.93	- 13841E+01	-31333E+01	• 59 33 9E +01
	0.99	- 13655E+01	-33395E+01	- 61 22 4E +01
	1.03	- 1346 OF +01	-35691F+01	- 62750E+01
	1.08	-13255E+01	-38229F+01	-63961F+01
	1.12	13038F +01	4 10 19 F4 01	. 64 8995 401
	1 10	128005 +01	440725+01	• 04 07 7E + 01
	1.10	• 120092 •01	440722701	+ 03 60 UE +0 1
	1.20	+ 1230/1401	-4/37/6+01	+ 00 UYOE +U1
	1.24	- 12 31 2E +01	-5100/E+01	+ 60 415E +01
	1.28	• 1204 4E +01	•54913E+01	• 66 58 2E +01
	1.33	- 1176 IE +01	•59128E+01	• 66 616E +01
	1.37	•11464E+01	•63664E+01	• 66 53 4E +01
	1-41	- 11153E+01	•68532E+01	- 66 34 9E +0 1
	1-45	10827E+01	•73746E+01	• 66 07 4E +01
	1-49	- 10488E+01	•79315E+01	•65717E+01
	1.53	- 10134E+01	-85250E+01	• 65 286E +01
	1.58	• 97680E+00	•91560E+01	.64789E+01
	1.62	- 93894E+00	.98253E+01	. 64 22 9E +01
	1.66	- 89996F+00	-10533E+02	- 63 61 2E +01
	1.70	- 85 99 9E +00	1 12 81 F+ 02	- 62 94 1E +01
	1.74	. 81 91 7E +00	12067F+02	. 62 22 0E +0 1
	1.74	. 777675+00	128935+02	. 61 45 85 A01
	1 97	775685+00	127585402	60562E x01
	1.03	+ 7 3 30 0E TUV	+137382+02	+ 60 04 2C 401
	1.007	+ 67 337E TUU	+14061E+UZ	• 37 / 7 IL TUI
	1.91	• 63 10 4E + 00	•13601E+02	+ 58 90 SE +01
	1.95	• 50 58 SE +00	-16577E+02	• 57 98 1E +0 1
	1.99	• 55701E+00	+1/388E+U2	• 57 UZ 8E +U1
	2.03	- 52581E+00	-18630E+02	- 56 04 8E +01
	2.08	- 48 54 5E +00	•19703E+02	• 55 04 5E +0 1
	2.12	• 44 61 7E +00	-20803E+02	• 54 02 2E +01
	2.15	• 40818E+00	-21928E+02	• 52 98 4E +0 1
	2 • 20	• 37 165E +00	+2 30 74 E+02	• 51 935E +01
	2.24	• 33677E+00	•242 39 E+02	- 50 87 8E +01
	2.28	 30 367E+00 	+25419E+02	-49818E+01
	2.33	. 27 24 8E +00	-26610E+02	•48760E+01
	2.37	• 24 32 7E +00	-27810E+02	+47707E+01
	2.41	• 21 61 1E +00	-29014E+02	• 46 66 3E +0 1
	2.45	. 1910 3E +00	-30219E+02	.45632E+01
	2.49	- 16 80 0E +00	-31422F+02	- 44 61 8F +0.1
	2.53	- 14702E+00	+32620F+02	- 43 62 3E +01
	2.58	- 12 80 2F +00	-33809F+02	+2651E+01
	2.62	11 09 2E +00	. 349875402	42 05 12 VOI
	2 4 4	956455 =01	-361515402	+41703LV01
	2.00	820745-01	* 7 2 00 5 . 0 2	
	2.70	+ 0207 45 -01	•3/299E+U2	• 59 692E +U1
	2.14	•/UUY5E-U1	-38428E+02	• 39 03 1E +01
	2.78	• 39 30 6E TU 1	+3 93 38E+U2	-38202E+01
	2.85	• JUACIE "UI	• 4 U6 25 E4 02	• 37 405E +01
	2.87	• 4247 3L -01	+1690E+02	• 36 64 0E +01
	2.91	• 53625E -01	•42731E+02	• 35 908E +01
-	2.95	• 29751E-01	- 4 37 46 E+ 02	• 35 209E +01
	Z .99	• 2474 3E =01	•447 36 E+ 02	• 34541E+01
	3.03	• 20 49 4E -0 1	•45700E+02	• 33 906E +01
	3-08	• 16907E-01	• 4 66 38 E+ 02	• 33 301E +01
•	3.12	- 13895E -01	•47550E+02	• 32726E +01
	3.16	• 11 37 6E -01	+484 35 E+02	• 32180E+01
•	,			

•

τ. τ. α

- -

· · ·

ι,

1.2

.

× ;

. .

~ ~

. .

ι.

r -

5

2 T

ι.

r •

د ۲

r -

Ъ. э

s :

ъ. -

÷-----

1.2

بر ک

EQUATION SET #3 RESULTS OF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

TINE	N	X	PERCENT N
3.20	• 92807E-02	• 4 92 94 E+ 02	• 31 66 1E +01
3.24	.75444E-02	•20127E+02	• 31 17 0E +0 1
3.28	•61121E-02	•50935E+02	.30704E+01
3.33	• 49 35 3E -02	•51717E+02	. 30262E+01
3.37	• 39723E-02	• 5 24 75 E+ 02	. 29 84 3E +01
3.41	-31873E-02	.53208E+02	+ 29 44 7E +01
3.45	• 25497E-02	•2 39 18 E+ 02	- 29 07 1E +01
3.49	- 20 3 3 8E - 0 2	-54605E+02	.28715E+01
3.53	• 16 17 7E -0 2	•22240E+02	. 28377E+01
3.58	- 12832E-02	.55913E+02	.28057E+01
3.62	• 10152E -02	-56534E+02	. 27 75 3E +01
3.66	- 80 11 4E -03	•57135E+02	+ 27 465E +01
3.70	• 63 06 6E -0 3	.57716E+02	• 27 191E +01
3.74	+ 49 52 8E -0 3	-58278E+02	• 26 93 1E +01
3.78	- 38806E -03	.58821E+02	• 26 685E +01
3.83	- 30 338E -03	-59346E+02	- 26 45 0E +01
3.87	- 23667E -03	-59853E+02	- 26 22 7E +01
3.91	- 18424E +03	-60343E+02	- 26 01 5E +01
3.95	- 14 31 4F -0 3	-60817F+02	- 25 81 3E +01
3,99	- 11 10 OF =0 3	-61275F+02	- 25 62 0E +01
4.03	- 45907E -04	-6 17 17 F+ 02	- 25 43 75 +01
A.08	- 66 36 9F = 0 4	-62145E+02	- 25 26 2E +01
4.12	- 51 18 45 -04	-6 2558 F+ 02	. 250965401
4.16	- 39 40 7F -04	-62958F+02	24 937F +01
4.20	- 30 29 05 -0 4	-63363F+02	24 7855 401
4.20	272465=04	677165402	- 2470 JE +01
4.28	178125-04	64077EA02	+ 24 04 UE +UI
4.23	• 17 012E -V4	644 25 FAN2	- 24 JUZE 401
4.37	- 104135-04	-64761F402	• 24 307E +01
4.51	- 70451E -05	65086FA02	* 24 24 35 701
4.45	+ 1 7 4 J 12 - V J	65401 FA02	+ 24 122L +VI 24 006F 401
4.49	- 46 07 1E =0 5	-6 57 06 FA 02	27 805C AN1
4.53	- 350165-05	65908E102	• 23 07 JE +01
4.58	- 26582E-05	-66281 F+02	226875 401
4.52	- 201565-05	-6 4555 FA 02	22 5805 401
4.66	- 15 26 65 -0.5	66820E+02	• 23 JOFE +01
4.00	- 115505-05	-67075 FA02	+ 23 470C +V1
4.74	97298F-06	673235402	+ 23 400C +01
1 79	. 65 91 2E =0.6	675615402	• 23 32 1E VUI
4.47	- 49717E =06	677 92 FA02	• 23230E TUL
4.07	174665-06	+0// 72E+U2	+ 23 137L +V1
4.01	- J/ 400E -00	+0 00 15 E+ U2	+ 23 UO 3E +UI
4.71	• 20208E -06	+002312+02	- 23 UI UE +01
4 + 73	• 21 21 92 -00	• 6 64 3YE + UZ	• 22 94 0E +01
4.97	+ 13948E -06	+0 004UE+U2	• 22 87 5E +01
5.03	- 119762-06	+6 88 34 E+02	• 22 80 8E +01
5.08	• 07066L ~0/	+6 Y0 22 E+ 02	• 22746E+01
3+12	• D/ JOIL -0/	+6 9204 E+02	• 22 687E +01
5.15	- 20484E "0/	•6 93 79 E+02	• 22 62 9E +01
5.20	• 5779 BE -07	+69549E+02	• 22 57 4E +01
5.24	• 28 27 9E =07	•6 97 12 E+ 02	• 22521E+01
5.28	- 2114 4E -07	-69871E+02	- 22 47 0E +01
5.33	• 15799E-07	•70024E+02	• 22 42 1E +01
5.37	- 11797E-07	•70171E+02	+ 22 37 4E +01
3.41	• 38039E =08	.70314E+02	- 22 32 8E +01

N. V

j. Al

r 1 - -

: 1 /

2 4 2 4

. .

- -

- 1

· ·

ι.,

в ° ъ -

ξ.

с р с ...

× ~

. .

e: - 1

* * 5 1

1 J

~ *~*

£. __

~ ~

EQUATION SET #3 RESULTS OF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

TIME		¥	PERCENT N
5.45	- 65 66 3E -0 A	-704525+02	. 22 28 5F +0 1
5 40	199155-09	705955402	22 24 25 401
5 6 7	764655-08	70714 5102	+ 22 24 JL 1VI
J •JJ E E B	• J0 40 JL ~V0	+/ J/ 14 L+U2	• 22 202E VUI
2.20	• 27 13 35 -00	•7 00 37 EV 02	+ 22 10 35 40 1
2402	- 2020 BE -08	-709592+02	• 22125E +U1
2+00	-15032E-08	+/ 10/5 E+02	• 22 08 YE +01
5.10	-111//E-08	•/1188E+92	+ 22 US 4L +U 1
5.74	-83062E-09	•71296E+02	• 22 02 1E +01
5.78	• 61702E -09	-71401E+02	+ 21 98 8E +01
5 -83	•45815E-09	-71502E+02	- 21 957E +01
5.87	-34005E-09	•71600E+02	• 21 927E +01
5.91	- 25229E-09	•7 1695 E+02	• 21 89 8E +01
5.95	- 18711E-09	•71786E+02	- 21 87 0E +01
5.99	- 1387 1E -09	÷7 18 75 E+ 02	• 21844E+01
6.03	. 10280E-09	+71960E+02	-21818E+01
6.08	•76155E •10	-72043E+02	+ 21793E+01
6.12	• 56 39 9E-10	•72122E+02	• 21769E+01
6.16	• 41754E -10	-72199E+02	• 21745E+01
6.20	- 30 90 2E -10	-7 22 74 E+02	. 21 72 3E +01
6.24	- 22864E-10	.72346E+02	. 21 70 1E +01
6.28	- 1691 1F -10	-7 24 15 F+ 02	- 21 68 1F +01
6.33	- 12505E = 10	72682F+02	21 66 0E +01
6.37	. 9244 3F =1 1	.725476+02	- 21 64 1E +0 1
6 4 4	6 2 7 A F = 1 1	7 26 10 5 402	21 62 25 40 1
C . L E	+ 00 J2 UE -1 1	726715402	• CI OC CL VOI
6 4 0		7 27 20 54 02	+ 21 00 4C VUI
0+47	• 37 207E -11	•/ 2/ 27 EV U2	+ 21 JO/E TUI
0.00	- 27 33 6E -11	• 7 27 00 E+ U2	+ 21 57 UE +U 1
6.58	- 20 331E -11	-7 284UE+UZ	+ 21554E +U1
6.62	+15007E-11	+/2893E+02	+21538E+01
6.66	-11076E-11	•7 29 44 E+ 02	• 21 52 3E +01
6.70	• 81721E=12	•7 29 94 E+02	•21509E+01
6.74	• 60285E -12	-73041E+02	• 21 495E +01
6.78	•44464E-12	•73087E+02	• 21 48 1E +01
6.83	• 32788E -12	-73132E+02	. 21 46 8E +01
6.87	- 24174E-12	-7 31 75 E+ 02	+ 21 455E +01
6.91	• 17 82 0E -1 2	•73216E+02	• 21 44 3E +0 1
6.95	• 13134E -12	•73256E+02	• 21 43 2E +0 1
6.99	• 96 7 8 3E -1 3	•73295E+02	- 21 42 0E +01
7.03	• 71 30 9E -1 3	•7 33 33 E+ 02	• 21 40 9E +0 1
7.08	• 52 53 1E • 1 3	.73369E+02	- 21 399E +01
7.12	• 38 69 3E -1 3	-73404E+02	. 21 38 8E +01
7.16	• 28 49 6E ~1 3	-7 34 38 E+ 02	+ 21 37 9E +01
7.20	• 20 98 3E - 1 3	•73470E+02	• 21 36 9E +01
7.24	■ 15449E = 13	+7 35 02 E+ 02	• 21 36 0E +01
7.28	. 11 37 3E -1 3	+7 35 33E+02	- 21 35 1E +01
7.33	- 8371 3E -14	-73562E+02	21 36 3E +01
7 . 37	.61611F+14	.73591F+02	- 21 3345 +01
7 . 4 1	45339F -14	-73618F+02	21 126F +01
7.15	_ 33361F +1 A	.736455402	21 21 05 101
7.49	- 245455 -1 4	736705+02	- 21 21 15 401
7.57	- 180575 +14	.736055102	- 21 JL LL VVI
7.58	- 132826-14	+1 3073E+V2 .77710E+A2	+ CI JUHC VI 21 20 75 ± 1 4
7 630	• 1JCUCL 14 .076015-15	41 J1 176782 7 17/38400	+ C1 27/L TV1
1+02	+ 7/ 071C-13 719/4C-1E	+/ 3/ 43L+ UZ	• 21 27 UE +01
00.1	* f 1 0 4 0C -1 7	■7 37 631+92	. ZIZDAL +01

Alder a star

ŝ

- - -- - - -- - -

- - -

٤.,

ж. -

к - -

τ. :

۰ . .

ι.

۲ ۲ د د

2 C - - - -

- -

~ ~

EQUATION SET #3 RESULTS OF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

TIME	N	· X	PERCENT N
7.70	• 52834E-15	•7 37 87 E+ 02	• 21 27 8E +01
7.74	• 38849E-15	.73808E+02	• 21 27 2E +01
7.78	- 28563E -15	-73828E+02	- 21 266E +01
7.83	- 20999F -15	-738475+02	- 21 26 OF +0 1
7 87	154775 -15	778665402	21 2555 401
7.07	+ 13+376-15	-730002402	• 21 23 35 401
(. 91	• 11 347E -10	+/ 30 04 E+U2	+ 21 24 YE +01
7.95	-85404E-16	-73902E+02	• 21 24 4E +01
7.99	- 61 29 8E -1 6	•7 39 19 E+ 02	• 21 239E +01
8-03	-45049E-16	•7 39 36 E+ 02	• 21 23 5E +0 1
8.08	-33104E-16	.73951E+02	. 21 23 CE +01
8.12	- 24 325E -1 6	.73967E+02	• 21 226E +01
8-16	- 17 87 3F -1 6	-73982F+02	- 21 22 1F +01
8.20	- 131325 =16	739965402	21 21 75 40 1
8 24	96 47 75 -1 7	740105402	31 31 75 +01
0.42.4			• 21 21 32 401
0.20	• / U 0/ DE =1/	-74UZ3E+UZ	• 21 21 UE +0 1
8-55	• 52065E -17	+74036E+02	• 21 206E +01
8 + 57	• 38244E=17	•74049E+02	• 21 202E +01
8.41	-28091E-17	-74061E+02	• 21 199E +01
8.45	■ 20632E = 17	-74073E+02	21 195E +01
8.49	• 15 15 3E -17	-74084E+02	• 21 19 2E + 01
8.53	- 11129E -17	-74095F+02	- 21 189F +01
8.58	- 8172 AF -1 8	-74105E+02	21 186E +01
8.62	600165-18	741165402	- 21 18 75 +01
0.02	+ 60 01 62 -1 6	***1000002	+ 21 10 JE + V 1
0 40 0	- 44 07 12 -1 8	+/41252+02	+ 21 10 VE + V1
0.70	• 32 36 1E -1 8	•74135E+02	+ 21 17 8E +01
8.74	-23761E-18	-74144 E+ 02	• 21 17 5E +01
8.78	- 17446E -18	-74153E+02	- 21 17 2E +01
8.83	-12809E -18	-74162E+02	+ 21 17 0E +0 1
8.87	- 94041E-19	.74170E+02	• 21 16 8E +01
8.91	- 69041E -19	-74178E+02	- 21 165E +01
8.95	- 50685E -19	-74186F+02	- 21 16 3E +01
8.99	- 17 20 AF -1 9	741935+02	21 16 15 40 1
0 0 2	27 31 45 - 1 9	742005402	21 1505 101
7.03		-142002402	+ 21 13 72 +01
9.00	• 20 05 0E -1 9	-74207E+02	+21157E+01
9-12	-14/10E -19	+74214E+02	+ 21 155E+01
9.16	-10803E-19	•74221E+02	• 21 15 3E +0 1
9.20	- 79294E -20	•74227E+02	• 21 151E+01
9.24	• 58 20 0E - 20	•74233E+02	• 21 15 0E +0 1
9.28	- 42717E-20	-74239E+02	• 21 14 8E +0 1
9.33	- 31 352E-20	-74245E+02	- 21 146E +01
9.37	- 23010E-20	-74250E+02	• 21 145E +01
9-41	- 16 88 7E -20	-74255F+02	- 21 14 3E +01
9.45	- 12 39 4F -20	-74260F+02	21 14 25 40 1
0 1 0	- 909545-21	74265 5402	+ 21 14 2E VVI
0 5 7	667685-21	742705402	+ 21 14 UC TU 1
7.33		-14270E+U2	• 21 15 9E +01
7.70	• 40 70 3L -21	+/ +2/3 L+ U2	- 21138E +01
9.62	+ 33 Y46L #21	+74279E+02	• 21 136E+01
9.66	- 26 37 8E -21	•74284E+02	-21135E+01
9.70	• 19 356E - 21	+74288E+02	+ 21 13 4E +01
9.74	• 14 20 4E -2 1	•74292E+02	• 21133E+01
9.78	• 10 422E -2 1	-74296E+02	• 21132E+01
9.83	.76477E-22	-74300F+02	21 131E+01
9 87	- 56 1 1 6F - 2 2	-743035+02	. 21 1 2 05 40 4
0.01	. 41175E = 22	762075402	+ CI IJVE TVI
7 4 7 1	• 41 11 JE C C	+r = 3 U/ E + UZ	• 21 ISAF +01

89

,

S.

1

. .

-

. .

• ·

£ .,

• •

5 3

а ж. н н н н

۰ . ب

Σ.

1 -

ہ ما

2.0

<u>بر</u>

EQUATION SET #3 RESULTS OF ALGAL GROWTH SIMULATION NUMBER OF MINUTES IN A TIME STEP IS30

TIME	N	X	PERCENT N
9.95	- 30 21 2E -2 2	-74310E+02	- 21 12 8E +0 1
9.99	- 22168E-22	.74313E+02	- 21 127E+01
10.03	• 16265E =22	.74317E+02	+ 21126E+01
10.08	- 11934E-22	-74320E+02	• 21 125E +01
10.12	• 87 55 8E =2 3	.74323E+02	• 21 12 4E +0 1
10-16	- 64241E -23	•74325E+02	+ 21 12 3E +01
10.20	• 47 13 2E = 2 3	.74328E+02	- 21 12 3E +01
10.24	• 34 58 0E - 2 3	•74331E+02	- 21122E+01
10.28	• 25 37 0E =2 3	•74333E+02	- 21 12 1E +01
10.33	. 1861 3E -2 3	.74336E+02	- 21 12 0E + 0 1
10.37	• 13656E = 23	•74338E+02	• 21 12 0E +0 1
10.41	• 1001 8E -23	.74341E+02	-21119E+01
10.45	•73499E-24	.74343E+02	• 21 11 8E +0 1
10.49	-53921E-24	.74345E+02	.21118E+01
10.53	• 39558E -24	.74347E+02	-21117E+01
10.58	- 29021E-24	-74349E+02	+21117E+01
10.62	.21290E-24	•74351E+02	• 21116E +01
10-66	- 15618E -24	-74353E+02	- 21 115E +01
10.70	.11458E-24	.74355E+02	-21 115E +01
10.74	. 84 05 4E -25	.74357E+02	- 21114E +01
10.78	•61661E-25	.74358E+02	- 21 11 4E +01
10.83	• 45234E -25	•74360E+02	- 21 11 3E +01
10.87	• 3318 3E -25	•74362E+02	- 21 11 3E +01
10.91	• 24 34 2E = 2 5	.74363E+02	• 21 11 3E +01
10.95	- 17 857E -25	-74365E+02	- 21 11 2E +01
10.79	.13099E −25	-74366E+02	- 21 11 2E +0 1
11.03	• 96089E - 26	-74368E+02	- 21 11 1E +0 1
11.08	.70487E-26	.74369E+02	-21111E+01

90

ł

VITA

Ronald F. Malone

Candidate for the Degree of

Master of Science

Thesis: Growth and Uptake Dynamics of Selenastrum Capricornutum Parameterized by Percent Nitrogen

Major Field:

1 1

1. 1.

1. 2

ι.

2

2. 5

1 1

د ـ د د ـ ب Biographical Information:

Personal Data: Born May 26, 1950, District of Columbia

- Education: Received B.S., Civil Engineering, at Loyola University of Los Angeles, 1972; M.S., Civil and Environmental Engineering, Utah State University, 1977.
- Professional Experience: Summer, 1971, Junior Engineer, Engineering Science Inc., Arcadia, California; 1972-73, Assistant Engineer, Environmental Engineering Inc., Westwood, California; October 1973, Consultant, State of Nevada, Carson City, Nevada; 1973-74, Assistant Engineer, Toups Corporation, Santa Ana, California; June 1975, Consultant, Toups Corporation, Santa Ana, California.