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ABSTRACT 

Growth and Uptake Dynamics of SeZenastrum Cappiaornutum 

Parameterized by Percent Nitrogen 

by 

Ronald F. Malone, Master of Science 

Utah State University, 1977 

Major Professor: Dr. William J. Grenney 
Department: Civil and Environmental Engineering 

vii 

Batch cultures of SeZenastrum aapPiaopnutum, PRINTZ were perturbed 

by dilution and nutrient spiking routines to obtain a wide variation of 

introcellular nitrogen levels (2 to 7 percent) under dynamic conditions. 

The relationship between specific growth rate (dry weight) and cellular 

nitrogen content (percent nitrogen) was investigated by regression 

analysis and continuous mathematical simulation. 

2 Linear regression analysis resulted in good correlation (r = 0.817) 

between cellular percent nitrogen and specific growth rate. Continuous 

simulation revealed the relationship was least accurate for the lag 

phase of growth. The observed deviations always occurred when the cel-

lular nitrogen content was increasing. This indicated that the rate of 

change of cellular percent nitrogen, as well as it's absolute level, af~ 

fects the observed growth rate. Data points were separated into two 

groups having decreasing and increasing rates of change in cellular nitro-

gen content respectively. Separate regression analyses were performed on 

2 each data set. A strong correlation (r = 0.883) between specific growth 

rates and percent nitrogen was obtained for the first set of data. The 

second set of data exhibited a constant low specific growth rate (~ = 0.05 
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per day) for cultures with low percent nitrogen content. At higher nitro-

gen contents, the relationship between growth and nitrogen content was 

identical to the results in the first data set. The transition zone 

between reduced and normal growth occurred in a range of 3 to 4 percent 

nitrogen content. 

(99 pages) 



INTRODUCTION 

Algal models are being applied to answer increasingly sophisticated 

questions about eutrophication. Species dominance, as well as, biomass 

is a significant factor in defining the effect of algae upon the recre

ational and consumptive values of our streams and reservoirs. Models 

capable of giving results of a high resolution must be developed to 

answer questions conce~ning species dominance. Further, application of 

models to dynamic river and estuary systems requires algal models that 

realistically represent kinetics of growth and uptake under rapidly 

changing conditions. 

First order and Monod type relationships are commonly being utilized 

to represent algal kinetics in a number of water quality models (Grenney, 

Porcella, and Cleave, 1976). In most cases the basic assumption of 

constant yield is maintained. This assumption is not compatible with 

observed phenomena. The widely recognized phenomenon of luxury uptake 

(Gerloff and Skoog, 1954; Fogg, 1959; Daley and Brown, 1973; Droop, 1973; 

Eppley and Renger, 1974; Malone and Garside, 1975; Reynolds et al., 1975), 

variations in cell composition (Gerloff and Skoog, 1957; Caperon, 1968; 

Thomas and Dodson, 1972; Daley and Brown, 1973; Droop, 1973; Eppley and 

Renger, 1974) and growth in a nutrient depleted medium (Gerloff and Skoog, 

1954; Fogg, 1959; Rhee, 1973; Daley and Brown, 1973; Eppley and Renger, 

1974) cannot be represented by models assuming a constant yield. 

Observations of luxury uptake, variations in cell composition, and 

growth in nutrient depleted media have prompted a number of authors 

(Caperon, 1968; Thomas and Dodson, 1972; Grenney et al., 1973; Droop, 
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1973) to suggest conceptual models which include internal storage pools 

of nutrients. A lack of understanding of the precise composition of the 

proposed storage pools have hindered development of such models. 

This paper investigates the feasibility of utilizing variations in 

nitrogen content of cells to represent storage phenomena. More specifi

cally, the relationships between growth and uptake dynamics and percent 

nitrogen in batch cultures of Selenastrum capricornutum, PRINTZ are 

examined. The objective here is to determine the potential of percent 

nitrogen as a basis for a realistic algal model capable of dealing with 

dynamic situations and questions of species competition to a high degree 

of resolution. 
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REPRESENTATION OF STORAGE PHENOMENON BY 

PERCENT NITROGEN 

The approach of utilizing variations in cell nitrogen content to 

represent phenomena of storage as related to the kinetics of growth and 

uptake, gain support from the data presently available on the patterns 

of nitrogen storage. Fogg (1959) reviewed the metabolic patterns assoc-

iated with nitrogen in algae. Noting decreases in inorganic nitrogen, 

free amino acids, soluble peptides and chlorophyll during periods of 

nitrogen limitation, he suggested that nucleic acids and proteins were 

maintained at the expense of less essential nitrogenous compounds. This 

definition of the storage pool is compatible with recent work which has 

confirmed storage of inorganic nitrogen (Malone and Garside, 1975) and 

variations of nitrogenous pigments (Bunt, 1969; Eppley and Renger, 1974; 

Vasconcelos and Fay, 1974) with nitrogen availability. This is also 

compatible with the theory of Droop (1973) that nitrogen storage occurs 

in organic forms. However, Fogg (1959) concluded there was little 

evidence to show whether decreases in nitrogen content were reflected 

equally in all nitrogen fractions or whether some substances were affected 

more than others. This uncertainty was more currently emphasized by 

Caperon (1968, p. 871): 

The hypothesized internal reservoir is not necessarily a 
physically separate identity any more than a diffuse component 
of the protoplasm nor is it implied that the internal supply is 
in the form of nitrate ions. 

We may, therefore, reasonably assume that the storage phenomena 

involve both inorganic and organic nitrogenous compounds, and that the 
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proposed internal storage pool exists 1) in the ability of the algal 

culture to shift the distribution of internal nitrogen such that essen

tial forms dominate and/or 2) in their ability to function through 

variations in levels of essential forms. 

Two approaches for representing the storage phenomenon were con

sidered. The first was the development of an algal model consisting of 

4 

a number of internal subcompartments (Figure 1). This approach was out

lined by Grenney et al. (1973). This model defined three internal sub

compartments, inorganic nitrogen (N l ), organic nitrogenous intermediates 

(N2), and protein (N3). The size of the population was measured by the 

concentration of protein in the environment. The external concentrations 

of nitrate and excreted nitrogenous organics were identified as Nr and 

Nd respectively. The coefficients Gr , G1, G2, K3, K4 , K5, and K6 repre

sented reaction rates among subcompartments. 

Such an approach is compatible with the metabolic patterns associated 

with nitrogen storage and assimilation. In mathematical terms it has 

the flexibility to represent many of the responses of phytoplankton under 

dynamic conditions. However, the practical difficulties of defining and 

measuring internal components for verification of internal reaction rates 

discourages use of such a vigorous approach. The use of protein to mea

sure phytoplankton concentrations makes conversion to biomass (measured 

as dry weight) difficult because the protein content of algal cells has 

been observed to vary (Fogg, 1959). 

The second approach was the use of nitrogen content to represent 

storage phenomena. Shiroyma, Miller and Greene (1975) have observed a 

linear relationship between maximum yield and nitrogen concentration 
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Figure 1. Schematic diagram of a subcompartment model of a phytoplankton 
population. (Proposed by Grenney et a1., 1973.) 

under controlled laboratory conditions. They concluded that 0.001 mg-N/l 

of total soluble inorganic nitrogen will produce a maximum yield of 0.038 

mg/l dry weight of the alga SeZenastrum aapriaoPnutum under constant 

laboratory conditions. From this relationship the cell nitrogen content 

of the cultures can be calculated to be 2.6 percent as the growth of the 

culture approaches zero. 

The works of Gerloff (Gerloff and Skoog, 1954, 1957; Gerloff and 

Krombholz, 1966) demonstrate a relationship between percent nitrogen and 

exponential growth. In his efforts to utilize nutrient content to pre-

dict nutrient limitations, he defined levels of internal nitrogen and 
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phosphorus that were necessary to permit optimum growth of the blue green 

alga, Miarocystis aeruginosa. He established that a 4.0 percent nitrogen 

content was necessary for exponential growth to occur in cultures of 

M. aeruginosa. 

[ The use of nitrogen content to represent the storage phenomenon 

requires not only that the potential for growth be measurable but also 

that the potential can be accurately related to kinetics of growth and 

uptake of the phytoplankton. Utilizing the subcompartment model (Figure 

1) for purposes of illustration, it can be seen that an infinite number 

f 
of combinations of internal nitrogenous components can be envisioned for 

a given percent nitrogen value. This argument indicates that percent 

[ nitrogen would be a poor indicator of physiological condition since the 

internal distribution would vary significantly with the nutrient avail-

[ ability in the history of the cell. 

f 
Fortunately, it is reasonable to assume that internal nitrogenous 

forms are synthesized and depleted in an established order of priority. 

I 
Assuming the internal reaction rates are sufficiently fast, a given per-

cent nitrogen value would result in a consistent internal distribution of 

I nitrogenous compounds; the nitrogen content of a culture would reflect 

[ 
a certain physiological state which in turn could be related to uptake 

and growth kinetics. Caperon and Renger (1974) have illustrated a hyper-

I bolic relationship between nitrogen to carbon ratios (N/C) and specific 

growth rate for continuous cultures. Since percent nitrogen is closely 

related to the NIC ratios, a similar relationship will hold for percent 

nitrogen and growth rates under continuous culture conditions. 

r , 
L 
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The works cited in the above discussion indicate the potential of 

cell nutrient content as a basis for predicting alga kinetics. A 

relationship between maximum and minimum growth and cell nitrogen content 

under batch culture conditions has been previously demonstrated. This 

information supports the hypothesis that a relationship between growth 

rates and nitrogen content similar to that found for continuous cultures 

exists for more dynamic batch culture conditions. 
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PERCENT NITROGEN MODEL 

Figure 2 illustrates the conceptual percent nitrogen model. The 

diagrams illustrate a theoretical unit cell with two internal nitrogen 

components. The component labeled "NMIN" represents the minimum nitrogen 

fraction found when the growth rate is zero due to nitrogen limitation. 

The component fiN " is the nitrogen fraction in excess of NMIN. This s 

component represents nitrogen reserves which reflect additional potential 

for growth. 

This conceptual model does not represent precisely the nitrogen 

storage phenomenon previously described. In contrast to the subcompart-

ment model (Grenney et al. t 1973)t the percent nitrogen model lumps all 

internal nitrogen components into two classifications, NMIN or Ns ' 

Questions concerning exact internal components or mechanisms need not be 

answered, nor is exact mathematical representation of the numerous mecha-

nisms required. This permits the development of an uncomplicated set of 

differential equations based on information presently available. 

The following set of differential equations can be utilized to 

describe the kinetics of uptake and growth related to the percent nitrogen 

model: 

dx 
U*Ns*X (1) = . 

dt 

dN dN 
G*N*X 

c 
(2) = = - dt dt 

N = (%N-NMIN) (3) s 
in which 

growth -1 
U = rate constant (days ) 

N = s excess intracellular nitrogen 



NMIN 

NITROGEN RESERVES 
MAINTAINED 

Figure 2. Conceptual percent nitrogen model. 

EXTERNAL SOURCES AND 
INTERNAL RESERVES DEPLETED 

\0 



x = algal biomass (mg/1 dry wt.) 

G = uptake rate constant (liters/mg-day) 

N = extracellular inorganic nitrogen (mg-N/1) 

%N = percent nitrogen of algal biomass 

NMIN = minimum percent nitrogen 

N = intracellular nitrogen (mg-N/1) c 

Equation 1 implies that the specific growth rate (EPA, 1971) is 

directly proportional to the excess intracellular nitrogen level, N . 
s 

This linear relationship differs from the hyperbolic relationship 

utilized by Caper on and Renger (1974) to describe the relationship 

between N/C ratio's and specific growth rate. There are a couple of 

10 

justifications for this deviation. First, despite the loss of one degree 

of freedom, the linear relationship appeared to fit the data of Caperon 

and Renger (1974) as well as the hyperbolic. Although a hyperbolic 

relationship may be assumed to apply throughout a full range of nitrogen 

availability, linear characteristics would be exhibited in the range of 

severe nitrogen limitation. 

Equation 2 implies that the uptake rate of external nitrogen depends 

upon the external nitrate level and algal biomass of the system. Droop 

(1973) and Rhee (1973) have suggested that uptake rates vary as a func-

tion of both internal and external nitrogen levels. There is no doubt 

in the mind of the author that at some point the uptake rate will be 

affected by the internal nitrogen levels. However. observations made 

during the course of this study have not indicated that there is any 

relationship. The point at which internal nitrogen stores begin inhibit 

uptake activities must lie beyond the levels obtained in nitrogen limited 

cultures. 



11 

Equation 3 defines the storage component, N , to be the difference s 

between the existing cellular percent nitrogen and the minimum level. 

Application of Equations 1 through 3 requires the definition of 

three coefficients; the growth rate constant, U, uptake rate constant, 

G, and the minimum nitrogen level, NMIN. NMIN can be directly calculated 

from the maximum yield of the algal cultures under a given set of con-

ditions. 

Then U and G can be found by calibration of the model to observed 

data or through correlation studies. 
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EXPERIMENTAL METHODS 

Unialgal cultures of S. aappiaoPnutum PRINTZ (from U.S. EPA, 

CORVALLIS, OREGON) were maintained in three separate 3-liter low profile 

culture flasks at 25 ±l°C and 350 ± 35 foot candles. Flasks were con-

tinually mixed by magnetic stirrers. 

The AAM medium (EPA, 1971) increased in strength by a factor of 

3.33 was utilized for all experiments. The nitrate was reduced to 10 

percent of the level normally found in a triple strength media. This 

nitrate level has been shown (Malone et al., 1975) to produce a nitrogen 

limited environment. The sodium bicarbonate (NaHC03) level of the medium 

was increased to 84 mg/! as NaHC03 to aid in stabilization of pH. 

The pH was maintained by aeration of the cultures with an air-C02 

mixture. Carbon dioxide from a gas cylinder (95 percent CO2) was mixed 

with ambient air in a mixing chamber.· The ambient air was pumped at a 

constant rate. The rate at which carbon dioxide was bled into the mixing 

chamber was varied until the target pH of 7.1 was obtained in a control 

flask containing algal free medium and pH sensitive dye. The pH of the 

medium was defined by a function of the ratio of bicarbonate to carbon 

dioxide found in the aerated media. The bicarbonate level was selected 

such that the resulting carbon dioxide level at pH 7.1 would be suffi

ciently high to prevent pH variations due to algal activities. This is 

pOSSible since the transfer rate of carbon dioxide across the air-water 

interface varies as a function of the difference between existing and 

saturated carbon dioxide concentrations. This difference, the carbon 

dioxide deficit, results from algal uptake of carbon dioxide. The 
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maximum carbon dioxide deficit for a culture is defined by either the 

virtual elimination of carbon dioxide or by a balancing of the transfer 

and uptake rates. The bicarbonate level selected led to a high carbon 

dioxide saturation level at pH 7.1. This saturated level was sufficient

ly high so that the maximum carbon dioxide deficit found in our laboratory 

cultures was not a large enough fraction of the saturated level to affect 

the pH determining ratio. The air-C02 mixture could therefore remain 

fixed for the duration of an experiment. 

Prior to entering the culture flasks, the air-carbon dioxide mixture 

was passed through a series of flasks to assure removal of ammonia. The 

flasks contained, in order; 1.0 N H2S04, distilled water, a weak bi

carbonate solution, and packed glass wool. The stripping system also 

eliminated significant evaporation from the culture flasks, by water 

saturation of the air. The air-carbon dioxide mixture was continuously 

bubbled into the culture flasks. Plugs on the flasks were vented permit

ting the release of pressure, but maintaining the enriched carbon dioxide 

levels within the flasks. 

Temperature (OC), pH biomass (mg/l dry wt 1030 C), nitrogen content 

of biomass (percent nitrogen), cell counts (cells/ml), cell volume (cubic 

microns), optical density (1 inch cell at 750 nm) were measured on 

samples removed periodically from the three culture flasks. Percent 

nitrogen was measured on a Coleman (micro-Dumas) nitrogen analyzer. 

Cell counts and cell volumes were measured by a Coulter counter. Optical 

densities were read on a Bausch and Lomb Spectronic 20. pH measurements 

were made with a Corning Scientific Instruments, Model 7, pH meter. 
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During the course of the experiments, cultures at various stages of 

growth were diluted with fresh medium to permit examination of specific 

phases of growth and uptake dynamics. Dilution at intervals specified 

by experimental design was accomplished by mixing 1 liter of culture with 

1 liter of fresh medium. The temperature of the fresh medium was equal

ized before mixing. Thus the volume of culture in the experimental 

flasks varied from a maximum of 2.5 liters to a minimum of about 1.2 

liters due to sample removal during the course of the experiment. 
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RESULTS 

Two experiments were conducted to provide data for calibration of 

the algal model. Experiment 1 had a duration of approximately six days. 

The batch cultures were monitored until 4.7 days, at which time the 

culture was mixed with an equal amount of fresh medium. The response 

of the cultures to this dilution was measured until 5.81 days. Table 1 

presents the results of Experiment 1 in a summarized form. The dry 

weight, percent nitrogen, and nitrate values represent the mean values 

of the three culture flasks. A complete data listing is given in 

Appendix A. 

Difficulty was encountered with pH control during the early part of 

Experiment 1. The pH varied due to variations in the air-carbon dioxide 

mixture which resulted from a regulator failure. Addition of a new 

regulator midway through the experiment corrected the difficulty. The 

pH varied from 6.5 to 10.0 prior to day 3.55 after which it was stabilized 

at 7.3 ± 0.1. 

Experiment 2 had a duration of 19 days. The cultures were diluted 

three times during the course of the experiment. Dilutions in Experiment 

2 were made during different phases of growth. The first dilution (11.06 

days) was made after growth had essentially ceased due to nitrogen deple

tion. The second dilution (15.67 days) was made immediately after the 

exponential growth phase. And the third dilution (16.85 days) was made 

late in the exponential growth phase. Table 2 summarizes the mean values 

of dry weight, percent nitrogen and nitrate for the three cultures of 

Experiment 2 •. The pH varied within the range of 6.9 to .7.3 during the 
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Table 1. Mean biomass, nitrate, nitrogen content, 
for Experiment 1. 

. Time Dry Standard 
(days) Weight Deviation 

(mg/t) (mg/t) 

1.83 32.23 2.96 

2.10 36.54 2.56 

2.67 51.20 0.87 

2.85 51.60 1. 14 

3.16 57.67 1. 79 

3.55 61.40 0.80 

4.18 71.60 2.58 

4.70 72.30 1.30 

4.732 36.40 0.98 

4.88 36.60 1.02 

5.05 37.07 1.71 

5.20 41.00 0.33 

5.52 49.00 2.94 

5.81 55.20 1.10 

IMean values of 3 separate cultures 

2Immediately after 1:1 dilution 

Percent 
Nitrogen 

5.07 

3.86 

2.54 

2.79 

2.51 

2.61 

2.23 

2.43 

2.09 

2.79 

4.05 

3.83 

3.35 

3.13 

16 

and standard deviations 

Standard Nitrate3 
Deviation (mg/t) (percent) 

0.22 0.27 

0.16 0.19 

0.27 0.30 

0.19 0.16 

0.13 0.15 

0.10 0.0 

0.02 0.0 

0.38 0.0 

0.13 0.84 

0.31 0.71 

0.19 0.23 

0.13 0.16 

0.0 0.09 

0.07 0.0 

3Calculated value from initial mass of N minus mass of particulate N 
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Table 2. Mean biomass, nitrate, and nitrogen contents and standard 
deviations for Experiment 2. 

Time Dry Standard 
(days) Weight Deviation 

(mg/ R,) (rng/ R,) 

0.93 3.13 0.24 

1.50 9.77 0.71 

2.00 23.40 2.20 

3.05 47.33 2.56 

4.03 58.20 0.87 

5.01 69.27 1.32 

11.04 79.00 1. 58 

11.062 38.93 0.51 

11.52 38.60 0.58 

14.97 77 .67 0.62 

15.64 80.00 0.56 

15.672 38.73 0.81 

16.05 40.93 0.65 

16.56 55.47 1.05 

16.83 59.40 0.71 

16.852 30.23 0.21 

17.06 30.77 0.80 

17.53 44.27 2.61 

18.09 55.07 4.24 

19.23 66.13 2.31 

IMean values of 3 separate cultures 
2Immediately after 1:1 diJution 

Percent 
Nitrogen 

6.07 

7.06 

5.39 

3.32 

2.68 

2.27 

2.13 

2.31 

3.26 

2.20 

2.16 

2.04 

3.30 

2.79 

2.58 

2.71 

4.65 

3.41' 

2.80 

2.25 

Standard Nitrate3 
Deviation (mg/R,) (percent) 

0.15 1.38 

0.54 0.88 

0.19 0.31 

0.14 0.0 

0.08 0.0 

0.13 0.0 

0.06 0.0 

0.21 0.83 

0.46 0.47 

0.20 0.02 

0.07 0.00 

0.10 0.80 

0.08 0.24 

0.04 0.04 

0.12 0.06 

0.10 0.80 

0.30 0.19 

0.09 0.11 

0.12 0.08 

0.00 0.13 

3Calculated value from initial mass of N minus mass of particulate N 

17 
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course of Experiment 2. One minor adjustment of the air-carbon dioxide 

mixture was made at day 1.50. A complete listing for the data generated 

during the course of this experiment is presented in Appendix A. 
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CALIBRATION OF PERCENT NITROGEN MODEL 

The calibration process consisted of empirically defining the three 

unknown constants contained in Equations 1 through 3: the uptake rate 

constant (G), the growth rate constant (n), and the minimum percent 

nitrogen (NMIN). 

Correlation studies were conducted between a wide variety of param-

eters in an attempt to define the unknown coefficients. These correla-

tion studies also shed some light upon the appropriateness of the selected 

equation forms. Figure 3 illustrates a plot of specific growth rate and 

percent nitrogen data taken from Experiment 1 after dilution (4.73-5.81 

days) and Experiment 2. Data points from Experiment 1 prior to dilution 

(1.83- 4.70 days) were omitted from this analysis because of the unknown 

effect of pH variations upon the cultures. The specific growth rate (~) 

was calculated from Equation 4: 

In (x2/x1) 

T1-T2 
The calculated specific growth rate was then correlated with the 

(4) 

average percent nitrogen exhibited by the cultures over the time interval. 

Individual observations (Appendix A) were utilized for this plot. Linear 

regression by least squares reveals a correlation (r2 = 0.817) between 

specific growth rate and mean percent nitrogen. From this correlation it 

is evident that U = 0.407 and NMIN = 2.31 percent for Equation 1. 

No correlation between the uptake constant (G) and percent nitrogen 

exists in the regime of nitrogen limitation utilized in this experiment 

(Figure 4). The values of G for this correlation plot were developed 

from Equation 5: 
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Figure 4. Correlation of uptake rate constant to mean percent nitrogen. 



G = 
6N 

N * X * 6T 

in which N and X represent the mean external nitrate and algal biomass 

levels for the time interval 6T. The charge in external nitrate is 

represented by 6N. 

The scatter in the correlation plot may be indicative of a number 
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(5) 

of factors: (1) inappropriateness of Equation 2; (2) sensitivity of 

Equation 5 to low Nand 6N values; (3) sensitivity of utilizing linear 

interpolation for calculation of Nand X. Fortunately, the use of an 

essentially continuous simulation routine permits the elimination of 

factors 2 and 3, permitting the evaluation of Equation 2 for representing 

the dynamics of uptake. 

A complete listing of the computer model used for calibration pur

poses is given in Appendix B. A fourth order Runge-Kutta algorithm was 

used to provide a numerical solution to Equations 1 through 3. A dilution 

routine was incorporated into the model to permit simulation of a sequence 

of dilutions. The external nitrate levels immediately after dilution were 

defined by the routine. The biomass was reduced automatically to 50 per

cent to reflect the effect of the 1:1 dilutions. These discontinuities 

were, of course, required by the external perturbations upon the system 

at the time of dilution. As a result of the nature of the dilution 

routine, errors generated in simulation of growth and uptake dynamics 

before dilution were transmitted in a continuous manner to phases after 

dilution. 

Initial applications of the percent nitrogen model to the observed 

algal growth dynamics indicated the resolution of the percent nitrogen 

model was limited by the inability of Equation 1 to represent the growth 
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response to S. aapriaornutum immediately after the addition of fresh 

medium. The results of Experiment 1 in terms of external nitrate, per

cent nitrogen, and dry weight are shown in Figure 5. Immediately after 

dilution a lag in growth became apparent (4.73 - 5.05 days). Similar 

lags occurred after each dilution of Experiment 2 (Figure 6). 

Previous authors have observed or described this phenomenon. The 

lag is explained when we examine the history of the culture in terms of 

nitrogen assimulation and storage patterns. Through the first phase of 

Experiment 1 (0.0 - 4.70 days) the nitrogen content decreases as the 

biomass increases (Daley and Brown, 1973). As the nitrogen content 

approaches the two percent level, the growth ,of the algae approaches 

zero. This decrease in percent nitrogen reflects the shift of nitrogen 

from intermediate and nonessential forms to forms essential for growth. 

At the 2 percent nitrogen level, the storage capability has been com

pletely utilized. Growth at this point reflects continued carbohydrate 

and fat accumulation (Fogg, 1959; Vasconcelos and Fay, 1974). 

Immediately after dilution (4.73 days) the cells begin the rapid up

take of the available nitrate. The nitrate is assimilated to organic 

intermediates, nonessential, and essential forms. As the cell synthesizes 

the necessary components (5.05 days). growth increases at a rapid pace 

(Vasconcelos and Fay. 1974). 

According to this classical interpretation the lag in growth occurs 

as the cell "gears up" by synthesizing essential components. The response 

after dilution depends upon the past condition of the cell. 

The basic assumption of Equation 1 is that a unique growth rate would 

be reflected for a given nutrient content. It is apparent from the results 
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that this assumption is not valid. Comparison of the growth responses 

for equivalent percent nitrogen values to the right and left of the per

cent nitrogen peaks in Figures 5 and 6 clearly demonstrate significant 

differences in growth responses. These preliminary observations would 

lead us to believe that internal nitrogen assimulation rates are not suf

ficiently fast to erase the effects of the cell historYt leading to a 

unique percent nitrogen-growth rate correlation. Or put in other terms, 

the growth rate cannot be correlated to percent nitrogen without consider

ing cell nutrient history. However t this conclusion is not necessarily 

correct. 

Although Equation 1 does not apply to all situations its failure is 

not the result of slow response rates. In fact, the classical interpreta

tion of lag does not explain the experimental data. The lag phenomenon 

is not solely the result of a depletion of internal nitrogen components 

as would be expected fr~m the classical interpretation. This hypothesis 

is drawn largely from the response of the cultures after the third dilu

tion of Experiment 2 (Figure 6). Despite substantial additional potential 

for growth, growth ceased upon the addition of nitrate. This strongly 

suggests that growth depends not only upon internal nitrogen levels but 

also upon external nitrogen availability. The availability of nitrate 

interrupts the normal pattern of nitrogen deficient growth causing a 

temporary discontinuation or reduction of growth. 

The lag, therefore t could be explained in terms of a change in 

internal nitrogen pathways. Before the third dilution of Experiment 2t 

the cultures undoubtedly had entered the phase of utilization of higher 

nitrogen containing organic components to sustain growth. If the dilution 
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had not been performed, the cultures would have exhibited a slowly de-

creasing growth rate until the nitrogen stores were depleted. Upon the 

addition of nitrate to the system it would make little sense in terms of 

energy for a cell to continue to utilize the higher organic forms to 

provide nitrogen for components essential for growth. The experimental 

data indicate that the presence of nitrate in some manner inhibits 

growth possibly through the interruption of pathways of utilization of 

higher organics. The cell then continues the pathway of uptake and 

assimilation of nitrate while growth is interrupted. 

The proposed mechanism provides a framework for modification of 

Equation 1. Examination of Figure 5 and Figure 6 reveals that in all 

cases, the end of the lag phase corresponds precisely with the percent 

nitrogen peaks. It appears that lag phase occurs while the percent nitro-

gen of the cell is increasing. 

Figure 7 and Figure 8 represent correlation plots of specific growth 

rate versus percent nitrogen for phases of growth exhibiting decreasing 

and increasing percent nitrogen values respectively. 'It is immediately 

apparent that significantly different relationships exist for the two 

phases. Specific growth rates derived in periods with decreasing percent 

2 nitrogen correlate strongly with percent nitrogen (r = 0.883) when a 

linear regression is utilized (Figure 7). This suggests that Equation 1 

applies for periods of growth decreasing exhibiting percent nitrogen. 

The growth rate constant, U, and the minimum nitrogen level, NMIN, are 

defined by this correlation to be 0.39 and 2.11 respectively. 

A plot of specific growth rate versus percent nitrogen for periods 

exhibiting increasing percent nitrogen is presented in Figure 8. A dis-

continuous response has been proposed for periods exhibiting increasing 
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percent nitrogen. For percent nitrogen values less than 3.8 percent, 

Equation 6 applies 

dx 
dt • (6) 

in which 

U' = constant growth const. 

Above 4 percent Equation 1 was assumed to apply. This function was se-

lected since it is compatible with the observed correlation points 

(Figure 8) and the hypothesized growth inhibition mechanism. Above the 

4 percent nitrogen level there are obviously insufficient observed data 

points to describe the functional response. This is undoubtedly in part 

an artifact of our experimental design. Uptake must more than compensate 

for growth if the percent nitrogen is to continue its increase. Under 

the experimental conditions existing immediately after dilution, the 

cultures were unable to obtain nitrogen content levels above 4.5 percent 

(Figure 6). As this level was approached rapid growth plus nitrate 

depletion in the medium led to a decreasing nitrogen content. If the 

nitrate availability was increased, the percent nitrogen may have con-

tinued to increase during the period of high growth. Such a situation 

was observed early in Experiment 2 in the time interval from 0.93 days 

to 1. 5 days (Figure 6). This t.ime interval produced the two correlation 

points above 6 percent. The lack of correlation points between 4 and 6 

percent reflects the failure of the experimental design to expose the 

cultures to the appropriate regimes of nitrate availability. 

This gap can be filled in a reasonable manner if the proposed growth 

blocking mechanism is used as a framework. First, it was observed that 

the two correlation points above 6 percent on the increasing percent 



31 

nitrogen plot (Figure 8) fall close to the correlation line from the 

decreasing percent nitrogen plot (Figure 7). Secondly, it is only reason

able to assume that the rapid increase in growth causes the end of the 

increasing percent nitrogen regime. The magnitude of this growth rate is 

reflected by the initial (with respect to time) growth rates exhibited in 

the decreasing percent nitrogen regime. Since these points are also com

patible with the correlation line from Figure 7, it is assumed that when 

the blocking mechanism is not in effect the growth response returns to 

normal. The normal distribution of internal nitrogen products has been 

re-established by the time growth begins. 

The questions that remain are 1) how the transition from reduced 

growth to normal growth occurs and 2) where, with respect to percent 

nitrogen, does it occur. These questions cannot be answered without 

development of additional experimental data. Any conclusions drawn in 

this area would undoubtedly be seriously biased by the experimental design 

used here. It was, therefore, assumed that a discontinuous transition 

occurs at constant percent nitrogen level. 

Figure 9 illustrates the relationship between the specific growth 

rate, ~, and percent nitrogen resulting from the application of Equations 

3 and 6. 

Plots comparing simulated curves with observed data resulting from 

application of the modified model to the results of Experiments 1 and 2 

are illustrated in Figures 10 through 18. A single set of coefficients 

was utilized for these simulations. Experiment 2 was simulated in two 

segments (0.93 to 11.1 days, and 11.1 to 19.3 days) because of storage 

limits of the model. The Runge-Kutta Routine was applied with a 30 min

ute time step to all simulations. 
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Figure 18. Comparison of simulated nitrogen content curve with percent 
nitrogen values t observed in the dilution sequence of Experi
ment 2, transition point = 3.8 percent. 
(See Appendix Table C-3.) 
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The uptake rate constant, G, was selected by empirical methods to 

-1 be 0.1 days • This value provided good results when applied to the up-

take data from Experiment 2 (Figures 13, 16, and 19) . Negative data points 

result from the indirect calculation of the external nitrate levels. 

Application of Equation 2 to results of Experiment 1 revealed little cor-

relation between predicted and observed points (Figure 10) for the period 

before dilution (4.70 days) and excellent correlation after dilution. 

The deviations before dilution are believed to have resulted from the 

variations in pH previously discussed. Equation 2 with an uptake constant 

-1 of 0.1 days provided satisfactory simulation of the uptake phenomenon 

observed. 

Equation 1 was applied with constants derived from the regression 

analysis plot (Figure 7) to phases of growth exhibiting decreasing nitro-

gen contents. Equations 1 and 6 were applied to phases of increasing 

nitrogen contents. The transition point was found empirically to be 3.8 

percent. The reduced growth rate constant, U', similarly determined to 

-1 be 0.05 days The simulated percent nitrogen curves were calculated by 

the model from the simulated growth and uptake curves. 

The most significant deviation of the model occurred between the 

second and third dilution of Experiment 2 (Figure 17, day 15.67 to 16.83). 

The model response reflects the selection of 3.8 percent as the transition 

point. This value provides excellent simulation of the lag phenomenon for 

the dilution of Experiment 1 (Figure 11) and the first dilution of Experi-

ment 2. The simulated lag of the second dilution (Figure 11) exceeds the 

observed lag. A transition point of 3.0 percent provides a better repre-

sentation of the lag phenomenon for the second diltuion, but fails to 
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represent the lag of the first dilution adequately (Figure 20). The 

optimum transition point for the third dilution occurs at a value above 

4 percent. It is apparent that the transition point is not a constant. 

Aside from this variability, the model provides excellent repre-

sentation of the growth phenomenon. The minimum nitrogen content (2.11 

-1 
percent) and the growth rate constant (0.39 days ) are correct for these 

experimental conditions. The simulated growth curves correspond closely 

with the observed data (Figures 11, 15, 17). 

The percent nitrogen curves are presented in Figures 12, 15, and 21. 

Deviations in these curves are the result of accumulated errors in the 

growth and uptake simulations. The simulated curves closely represent 

trends in the storage response. Points of inflection are not represented 

precisely. In some cases this can be attributed to the variability of 

the transition point. The sensitivity to this parameter is revealed by 

comparison of Figure 18 to Fi ure 21 which represent transition points of 

3.8 and 3.0 percent respectively. In other cases (Figure 15) deviations 

are attributed to small variations in the uptake curve (Figure 13) during 

periods of rapid uptake. Fortunately, the growth model is totally insen-

sitive to these minor deviations. 
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Figure 19. Comparison of simulated external nitrate curve with values 
calculated from the dilution sequence of Experiment 2, transi
tion point = 3.8 percent. (See Appendix Table C-4.) 
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Figure 20. Comparison of simulated growth curve with points observed in 
the dilution sequence of Experiment 2 transition point modi
fied to 3.0 percent. (See Appendix Table C-4.) 
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Figure 21. Comparison of simulated nitrogen content curve with percent 
nitrogen values observed in the dilution sequence of Experi
ment 2, transition point modified to 3.0 percent. 
(See Appendix Table C-4.) 
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SUMMARY 

The mathematical model developed to represent algal uptake and 

growth phenomenon was based upon two underlying assumptions. First it 

was assumed that under a given set of environmental conditions cell com-

ponents were synthesized or depleted in an established order. Secondly, 

it was assumed that the internal reaction rates were fast. Fast reaction 

rates would assure that a given nutrient content would reflect a given 

physiological state. 

A conceptual model distinguishing between essential and nonessential 

nitrogen forms was utilized to represent algal storage phenomenon. Cor-

relation studies indicated that uptake phenomenon was independent of 

internal nitrogen levels within the regime of nitrogen limitation studied. 

Equation 1 was found to provide satisfactory results when applied with an 

-1 uptake constant of G = 0.1 days • Minor deviations from the observed 

data (Figures 10, 13, and 16) plus poor correlation (Figure 4) suggest 

refinement in this area may be warranted. Deviations resulting from the 

application of Equation 1, however, did not affect growth simulations. 

2 
A linear relationship (r = 0.817) was indicated between the specific 

growth rate and internal nitrogen levels of batch cultures of S. eapl'i-

eopnutum. Application of this relationship in the form of Equation 2 

revealed consistent deviation of the model during lag phases of growth. 

Observation revealed that lag phases always occurred during phases dis-

playing low and increasing levels of internal nitrogen. By identifying 

those phases of growth exhibiting a decreasing internal nitrogen percent-

age and correlating only related points the linear relationship was 
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2 improved (r = 0.883). From this regression analysis the constants for 

Equation 2 were defined. The minimum percent nitrogen was found to be 

-1 2.11 percent and the growth rate constant, U, 0.39 days • These con-

stant were used to describe "normal" growth since the high correlation 

suggested that the underlYing assumptions applied completing during peri-

ods of decreasing nitrogen content. 

Analysis of the data related to increasing internal nitrogen levels 

suggested a discontinuous response reflecting a reduced growth phase (lag) 

and a normal growth phase. The reduced growth phase was explained by an 

apparent violation of the second underlying assumption of the model. 

During periods of rapid nutrient uptake and low internal nitrogen levels 

growth rates did not correlate with internal nitrogen contents. Instead 

-1 a low (U = 0.05 days ) and constant growth rate was displayed. The 

response of spiked cultures suggested the presence of a growth inhibition 

mechanism during periods of rapid uptake. The algal model was modified 

to exhibit a reduced growth phase with a constant specific growth rate 

and a normal growth phase. The transition between reduced and normal 

growth occurred at a variable nitrogen content in the range of 3 to 4.5 

percent nitrogen on the increasing curve. 

Application of the modified growth model displayed exellent results. 

The model was insensitive to error accumulation. Growth rates and ulti-

mate biomasses were closely approximated. The model was found to be 

sensitive to the selection of the transition point which was assumed con-

stant for the simulations. Simulated curves, however, corresponded 

closely with observed data when the appropriate transition point was 

selected. This indicated that the equations were valid. Factors 
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affecting the transition point could not be investigated without develop-

ment of additional data. 
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CONCLUSIONS AND RECOMMENDATIONS 

1) There is a strong correlation between internal nitrogen levels 

and specific growth rate in batch cultures of SeZenastrum aapriaoPnutum. 

2) The uptake phenomenon was independent of the nitrogen content of 

algal cells for the regime of nitrogen limitation studied. 

3) The data indicate the existence of a growth inhibition mechanism 

during periods of low increasing percent nitrogen. Factors contributing 

to the transition between reduced and normal growth are not clear. 

It is believed that a number of areas related to nutrient content 

models warrants further study. The following are recommended: 

1) Investigation of the factors affecting the proposed growth 

inhibition mechanism. 

2) Expansion of the model to include phosphorus limited growth. 

3) Sensitivity studies to examine variability of constants with 

environmental factors such as light and temperature. 

4) Application of the model to other algal species to determine 

universality of relationships. 
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Appendix A 

Data Listings for Experiments 1 and 2 



Table A-I. Data listings for expe~iment 1. (Zero indicates no observation.) 

EXPERIMENT 'l.fLASK R.10/31/15.Nzl.44 

MEAN CELL DRY PERCENT 
TIME PI- TOP 00 CELLS/ML VOLlIIIE IIEIGIIT !lIlRDGEN COMMENTS 

«OATS) DEli C (MICRDN"3) (II6/Ll 
0.60 1.02 26.20 .000 O. 0.00 0.00 0.000 TEMP AND C02 ADJUSTED 
1.11 9.24 26.10 .000 O. 0.00 0.00 o.COO SAME.8U8IILING AND MUING INCREASED 
1.83 1.51 26.40 .069 .132£+01 45.80 28.10 4.116 TEMP AltO C02 ADJUSTED 
2.10 1.75 24.50 .102 O. 0.00 36.81 4.004 AIR Off. TEMP AND C02 ADJUSTED 
2.67 6.49 24.00 .144 • 356E+01 31.40 50.60 2.366 C02 ADJUSTED 
2.85 6.82 24.4( .151 .369E+01 31.20 51.80 2.~94 C02 .DJUSTED 
J.16 6.10 23.60 .161 O. 0.00 58.40 2.586 C02 ADJUSTED 
3.55 1.42 24.20 .181 .405E+Ol 36.80 62.20 2.466 C02 ADJUSTED 
4.18 7.30 23.90 .197 O. 0.00 68.60 2.358 
4.10 1.32 24.00 .212 .433E+Ol 38.30 13.20 2.673 SETTLING.MIXING 8AR Off 

EXPERIMENT '1-FLASII C.I0/31115." .. "1." 

MEAN CELL DRY PERCENT 
TIME PI! TEIIP 00 CELLS/ML ~OLU~E WEIGHT NITROGEN COMMENTS 

(IlATS) OEili C (MICRON"3) (MG/L) 
0.60 1.10 21.20 .000 O. 0.00 0.00 0.000 TEMP AND C02 ADJUSTED 
1.11 9.95 21.50 .000 O. 0.00 0.00 0.000 SAME .NO AlR. BUBBLING-tHxtMG INCREASED 
1.83 7.71 21.20 .051 ... 950E+06 46.70 22.80 5.538 TEMP AND C02 ADJUSTED 
2.10 1.80 25.60 .096 O. 0.00 H.85 4.037 TEMP AND CO2 AOJUSTED 
2.61 6.49 25.00 .U2 • 336E+07 34.80 0.00 0.000 CD 2 ADJUSTED 
2.85 6.85 25.30 .154 .356£+07 33.40 50.40 3.062 CO 2 AOJU STED 
3.16 6.10 24.9C .169 O. 0.00 55.60 2.461 C02 ADJUSTED 
j.55 1.36 25.50 .184 .422£+01 35.10 60.60 2.656 C02 ADJUSTED 
4.18 1.28 25.10 .196 O. 0.00 73.00 2.111 
4.70 7.30 25.00 .208 .442E+Ol 36.50 71.40 2.199 SETTLING.MUING 8AR OfF 

EXPERIMENT 'l.fLAS« L.l0/Jl/7S.H"1.44 

MEAII CELL DRY PERCENT 
TIME PI! TEIIP 00 CELLS/ML VOLUI!E WEIGHT .. t TROGEI! CaMIIENTS 

(CUS) DEG t {MICRON--n (MG/L) 
0.60 7.00 26.70 .000 O. 0.00 0.00 0.000 TEMP AIIO C02 ADJUSTEO 
1.11 9.16 26.80 .066 O. 0.00 0.00 0.000 SAlI[ pliO URI 8UBBLING·" IxtliG IIICREASED 
1.83 1.67 26 .00 .on .145E+01 42.50 27.80 4.937 TEMP .11110 C02 ADJUSTED 
2.10 7.70 24.50 .108 o. 0.00 Ja.90 30566 TEMP AND C02 ADJUSTED 
2.61 6.49 23.60 .Ul .326E+07 17.00 51.80 2.691 C02 ADJUSTED 
2.85 6.81 24.20 .154 .334£+01 37.40 52.60 2.136 C02 .DJUSTED 
3.16 6.10 23.60 .1'1 O. 0.00 59.00 2.486 CD 2 AD.lU STE 0 
3.55 7.40 24.60 .184 .407£+01 31.80 61.40 2.686 ca2 ADJUSTED 
4.18 7.29 24.20 .200 O. 0.00 13.20 2.186 
4.70 7.30 24.00 .210 .425E+OI 37.00 0.00 0.000 SETTLllIGpMIXIIIG 8AR Off 

VI 
VI 



Table A-I. Continued. 

EXPERI"ENT 'lpflASK RpAfTER DILUTION 

HEAN CELL DRY FE RCEN T 
TIME PI' TE!!' 00 CELLS/Ml VOLUME WEIGHT ttl TROGOI COMMENTS 
CA YS) DE G C (MICRONun (MG/l) 
fI.73 0.00 0.00 .106 .212E+07 37.20 37.40 2.175 CULTURE HIKED 50~50 WITH FRESH ~EDIA 
.. 8f 1.30 23.40 .105 .215E+07 37.60 3&.00 2.480 

.05 7.30 24.0e .106 .215E+07 37.60 36.40 4.197 

.lO 0.00 0.00 .000 _217E+07 44.30 41.40 3. 931 
.52 0.00 0.00 .000 .262£+07 44.40 49.60 0.000 SEITlING#MIXING BAR OFf 

Fll T.20 24.00 .169 O. 0.00 54.40 3.236 SETTlING#KIXING BAR OFF 

EXPERIMENT .t.FLASK C#AFTER DILUTION 

MEAN CEll DRY PE RCEN T 
peE Pt TEfl' 00 CEllS/ilL VOLUI'E WEIGHT NITROGEN COMMENTS 

(I·",) eEG C (MICRON**H (tlG/ll 
4.'3 0.00 0.00 .109 .222E+Ol 35.5Q 36.40 2.00 1 CULTURE tlIXED 50-50 wITH FRESH MEDIA 
1t.8 E 0.00 24.50 .107 .220E+07 35.50 36.00 3.086 
... "05 1.40 0.00 .107 .222E+01 36.40 35.60 1t.320 ., .l' 0.00 0.00 .000 .224E+07 41.7e 40 .80 3.769 
'j • "i l' 0.00 0.00 .000 .261£+07 45.20 45.60 3.562 SETTlING,MIXING BAR OFF 
.,.81 7.40 25.80 .170 O • 0.00 56.00 3. C4 t 

EXPERIMENT .t.FLASK L#AfTER DILUTION 

MEAN CELL DRY FE RCENT 
~E PJ. TEI'P 00 CEllS/ML VOLUIIE WEIGHT NITROGEI\I COMMENTS 

~ VS) DEC C (MICRCNu3) (,.G/L) 
·.7~ 0.00 0.00 .104 .209E+07 37.50 35.40 2.084 CULTURE MIXED 50-50 ~ITH fRESH MEDIA 
.8e 1.24 23.50 .101 .211 E+07 37.70 37.60 2 .. e14 
.05 0.00 24.00 .109 .211E+07 38.10 59.00 3.636 

.• 20 0.00 0.00 .000 .207£+07 42.60 40.60 3.734 
". 52 a.co 0.00 .000 .234E+07 46.50 51.60 O. COO SETTLINGp/UXING !JAR Off 
• ~a 1 1.32 24.60 .168 O • 0.00 0.00 o. coo 

VI 
0\ 



Table A-2. Data 

TIME P~ TOP 00 
(CAYS) eEG C 

0.00 &.95 24.00 .000 O. 
0.95 7.05 24.00 .008 O. 
1.50 &.65 24.00 .021 O. 
2.00 7.00 24.0C .059 O. 
5.05 &.90 ~4.CO .140 O. 
1,.03 7.00 24.00 .160 O. 
5.01 &.90 24.0C .200 O. 

11.04 1.00 24.50 .244 O. 

TIME P~ lOP 00 
(OAYS) CH C 

a.oo 7.00 24.0C .000 O. 
a.93 7.15 25.00 .011 O. 
1.50 &.95 25.00 .023 O. 
2.00 7.20 2&.00 .061 O. 
3.05 7.20 2&.00 .152 O. 
4.03 T.a5 25.0C .150 O. 
5.01 &.90 26.00 .210 O. 

11.0 4 7.10 26.0t .255 O. 

TIllE PI- TOP 00 
(CAYS) [EG ( 

0.00 7.10 24.CO .000 O. 
a.93 7.15 25.0C .012 a. 
1.50 1.10 25.00 .024 O. 
2.00 1.50 25.00 .064 O. 
1.0 5 7.20 25.00 .147 O. 
4.03 7.10 25.00 .192 O. 
5.01 7.00 25.00 .217 O. 

11.0 ~ 1.00 25.50 .239 O. 

for experiment 2. (Zero 

EXPERIMENT ,z.flASK R.AT nART 

HfAN CELL o fiY PERCENT 
CELLS/Hl ~OlUP!£ WEIGHT NI TROGEN 

(MICRON •• 31 (~G/l) 

0.00 0.00 5. && 2 
O.OC 3.40 5.376 
0.00 9.00 7. 008 
O.OC 21.30 &. C14 
O.OC 1,1, .40 3.632 
O.OC 57.&0 2.190 
0.00 10 .&0 2.195 
0.00 19.&0 2.137 

EXPERIMENT ,z.flASK C.AT START 

M£AN CEll DRY PERCENT 
CEllS/Ml ~o lU ME WEIGHT NITROGEN 

(HICRON u 31 (~G/l) 

0.00 0.0 0 5.662 
O.OC 3.06 6.179 
0.00 9.90 7.243 
0.00 25.T 0 4.695 
0.00 49.00 3.256 
0.00 59.20 2.650 
0.00 68.00 2.196 
0.00 17 .20 2.225 

EXPERIMENT ,2.FLASK L.AT START 

HEAN CELL DRY fERCENT 
CELlS/Hl ¥OlU~E WEIGHT HI TROGEN 

UHCRON •• 3) (IIG/Ll 
0.00 0.00 5.6&2 
0.00 2.94 O.COO 
0.00 10.40 6.983 
a.Oll 23.20 5.532 
0.00 48.GO 3. 067 
0.00 51.80 2.61& 
0.00 &9.20 2.101& 
0.00 80.20 2.059 

indicates no observation.) 

COMMENTS 

C02 ADJUSTED 

BICARBONATE SOL IN AIR STRIPPING SERIES 

COIIMEN TS 

C02 EXHAUSTED 

iHCARBONATE SOL IN A IR STRIPPING SERIES 

COMMENTS 

C02 ADJUSTED 

BICARBONATE SOL It; ~ IR STRIPPING SERIES 

1r1 
"'-l 

I.. ; I, 



Table A-2. Continued. 

rr"lE PI' T£tIP aD 
, rA VS) eEG C 

11.0 fa 7.30 22.00 .126 o. 
11.52 1.10 24.5<: .131 O. 
.4.97 1.10 24.00 .242 O. 
1'5.faIt 1.10 ~".OO .2510 o. 

lIME Pt TUP 00 
ClAYS) DE(; C 

11.06 7.35 22.50 .118 O. 
11.52 1.10 25.5<: .120 o. 
t4.97 7.10 25.6C .236 O. 
t,).64 7.20 25.50 .242 O. 

TIME PI- TflrP 00 
(CAYS) DEG C 

11.06 1.20 22.70 .124 O. 
11.52 7.05 25.50 .130 o. 
14 .. 97 7.10 25 .. 20 .242 O. 
1"i.64 7.05 ~5.Z0 .Z50 O. 

EXPERIMENT '2.fLASK R.AfTER 1ST DILUTION· 

MEAN CEll DRY FEItCEN T 
CELlS/ML VOLU!'E WEIGHT til TReGEN COHHEhTS 

(MICRDN**H ("GIL> 
0.00 39.40 2.497 AFTER 50·50 DILUTION WITH fRESH MECIUM 
O.OC C.OO 0.000 
0.00 78.100 1.991 
0.00 ~0.20 2.200 

EXPERIMENT '2.fLASK C,AffrR 1ST DILUTION 

MEAN CEll DRY PERCENT 
CElLS/ML ~OLUf4E WEIGHT NITROGEN co "',.. EN TS 

(MICRON**3) (!!G/l) 
0.00 38." a 2.324 AfTER 50-50 DILUTION ~ITH fRESH ~EOIJM 
0.00 J9.0 C 2.91 " 
0.00 77 .20 2.189 
O.OC 79.40 2.090 

EXPERIMENT '2.fLASK L.AfTER 1ST OILUTION 

MEAN CEll DRY FE RCEI'H 
CELLS/Ml "OLUIIE WEIGHT NITRI:GEN COMMENTS 

(MI CR ON** 3) 016 It) 
0.00 19 .00 2.115 AfTER 50·50 DILUTION WITH FR£S~ ~EDIU~ 

O.OC 36.20 3.634 
0.00 71.40 2. "15 
0.00 80 .. 4Q 2. HI1 

\.n 
00 



Table A-2. Continued. 

EXPERIMENT '2.FLASK R,AFTER 2~D DILUTION 

MEAN CEll DRY PERCENT 
TIME Pt TOP OD CELLS/ML ~OLUH WEIGHT hITRCGEN COMMENTS 

( CAYS) eEl: ( (MICRON"'3) (MG/L) 
15.67 7.30 24.20 .132 O. 0.00 38.60 1.962 'FTER 50-50 DILUTI1N WITH FRES~ "ECrUM 
16.05 7.15 24.00 .132 O. O.OC 41.40 3.340 
16.56 7.13 24.50 .163 O. 0.00 55.20 2.850 
16.83 7.10 24.60 .180 O. 0.00 58.60 2.664 

EXPERIMENT '2.FLASK C.AFTER 2ND DILUTION 

MEAN CEll DRY PE RCEN T 
TI 1'4[ Pt TEI<P 00 CELlS/ML ~OLUIIE WEIGHT hIlROGEN COMMENTS 

( tA YS ) CEG ( (HICRC"""3) <"Gill 
15.67 7.25 25.30 .126 O. O.OC 38.00 2.030 ,FlER 50-50 DILUTION WITH FRESH MEDIUM 
16.05 7.10 2S.5e .129 O. 0.00 40.20 3.290 
16.56 7.12 25.80 .162 O. O.OC 56.&0 2.730 
16.83 7.11 26.00 .182 O. 0.00 59.60 2.426 

EXPERIMENT .2.FLASK L.AFTER 2~D DILUTION 

MEAN CELL DRY FERCENT 
TIME Pt TOP DO CELlS/HL ~OLU"E WEIGHT NITROGEN COMMEN TS 

(OA vs ) OEG C (MICRON"3) (MG/ll 
15.67 7.20 25.20 .125 O. 0.00 39.60 2. C9 a AFTER 50-50 DILUTION IIITH FRESI-i ~EOI!JI': 

16.05 7.10 25.70 .130 O. 0.00 41.20 3.250 
16.56 7.05 25.2C .164 O. 0.00 54.60 2.810 
16.83 7.05 26.00 .184 O. O.OC 60 .00 2.639 

In 
\0 



Table A-2. Continued. 

EXPERIMENT 'Z.fLASK R.AFTER "3RO DILUTION 

MEAN CEll Of<'( fnCENT 
TritE PI' TEttP 00 CELLS/Nl ~OLU"E WEIGHT ~ITROGEN COMMENTS 

( CAYS) CH C ( HI CR ON .... n (KG It ) 
1&.8'5 7.30 2~.10 .094 O. 0.00 30.00 2.1349 AfTER SO-50 DILUTION WITH FRESH ~EDrUM 
t7 .06 1.14 2~.50 .095 o. 0.00 30 .30 4.SH 
11.53 T.18 24.30 .lZ6 O. O.OC 41.60 3. ~4 5 
18.09 8.45 24.50 .161 O. O.OC '50.Z0 3.115 
1<;.Z3 1.20 24.10 .190 O. 0.00 63.80 2.312 

EXPERIMENT 'Z.FLASK C.AfTER 3~D DILUTION 

HEAN CELL DRY PERCENT 
rUfE Pt- YEtlP 00 CElU/HL lOLUME W[lGHT NI TRCGEN COMMENTS 

(CAYS) etG C (HI CRON ... ]) ("':ilL) 
1&.85 7.18 25.00 .091 O. 0.00 30.30 2.630 
17 .06 1.10 26.00 .094 O. 0.00 30.30 1 .. ~09 
17 .53 1.13 26.00 .136 o. 0.00 44.40 3.364 
18.09 1.17 26.00 .119 O. 0.00 51.ao 2.5~5 
19.23 1.25 26.00 .ZOl O. 0.00 6G .20 2.272 

EXPERIMENT 'Z.FLASK L.AFTER 3RJ DILurION 

HEAN CELL DRY FE RCEN T 
fI I4E PI' TUP 00 CEUS/NL ·\OLU~E WEIGHT NITRCGEN COMMENTS 

(DAYS) DH C (MICRIlN .. n ("GIl) 
16.8'5 7.20 2~.80 .093 O. 0.0-0 30.40 2.679 AfTER 50-50 DILUUDN II ITH fRESH I'IEOI "JM 
17 .06 7.10 25.60 .096 O. o.OC 31.70 O.COO 
11.53 7.18 25.2C .140 O. o.OG 4&.80 3.316 
18.09 7.05 26.00 .181 O. o.oc 57.20 2.790 
19.23 7.20 25.80 .203 o. 0.00 68.40 2.17 3 



Table A-2. Continued. 

fIME PI- lEI'P 00 
(CAYS) tEl: C 

19.26 7.4S 23.90 .101 o. 
20.34 1.20 24.00 .122 O. 
112.14 8.00 24.00 .136 O. 

TI liE p~ lOP DC 
(CAYS) DEG C 

19.26 7.31 25.00 .106 O. 
20.34 7.12 25.6C .122 O. 
22.14 7.98 25.50 .132 O. 

TIME PI- TE IfP aD 
(tA YS ) DEG C 

19.26 7.40 25.80 .108 o. 
20.3 It 1.05 25.50 .123 o. 
?2.11t 7.80 25.80 .138 o. 

EXPERUIEN1' '2~fLASI( R.AFTER 41'H DILUllON 

HEAN CELL \) RY FERCENT 
CElLS/Hl 1fOlUHE WEIGHT NITROGEN CtlllllENTS 

(MICRCN**]) (HG/l) 
O.OG 33 .00 2.167 AFTEII 50-50 DIlUTION~ NO NITROGEN 
0.00 40.00 2.1') '1 
O.OC 30.30 2.100 C02 CYLINDER EXHAUSTEO 

EXPERIMENT '2.fLASI( C.AFTER 4TH DILUTION 

!'fEAN CEll DRY FE RCEN T 
CEllS/Hl 1I0lUliE WEIGHT t4ITR[GEN COMI'IENTS 

(MICRON •• ]) (MG/l) 
0.00 36.00 1. ~44 AfTER 50-50 !lIlU TIOt ... t.iO N ITRQGE N 
o.oe 38.00 2.016 
0.00 41.60 1. S4!1 en CYLI NOER EXHAUSTEO 

EXPERIMENT '2.flASI( l.AfTER 4TH DILUTION 

MEAN CEll Ol<Y PE RCEN T 
CEllS/lll 'tOlUI'!E WEIGHT t.ITRCGEN CIllil1 EN TS 

("ICRON •• 3) (~G/l) 
0.00 34.10 2.251 AfTER 50-50 DILUTION. NO NtTROGEh 
0.00 0.00 o.coo 
0.00 43 .20 1.108 C02 CYLINDER EXHAUSTED 

0'1 
~ 
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Table B-l. Computer program listing. 

86100/87700 FOR T RAN CO" P I l A T I G N 2.e.060 NEONESOAY. OHUl1r 

STA~T fiF SEGMENf 002 
FORMAt SEGMEMf 15 OOC9 LONG 

IMTUER TSTEP C 002 '000 ('0 
REAL UI4.U .MI4.1000J,KhK.;;'U C 002 'OOOC'O 
DIMENSIOM HEADlCUhHA021 If h .lABELlI2).TLA8l1l121. YUeUU21 C 002'000C'O 
DIMENSION Tl41 .DUAI 180. 41.MHAOU51.0UO.9hCOON( 200) .Clf) C 00210000' 0 
OIMENS 10M OIUUOI C 002'000CIO 

OI"ENSION AlU045hll U80 1022(500 hTHUO I.Y2(500 I. XlU80hJ2I500 I C 0021000(' 0 
OIMEkSION nl2tOI C 002'000(10 
o IIOE'S ION YlA8LJ 1121.M I( 1l10).N21 500hHEAOHI21 C 002 '000 C' 0 
DATA A1/104~" 'I C 002 '000 ('0 
REAO 15. 9HI IEQOPT.I DILT .IPlOT. I elL I .L-I.T" lS TEP C 002'000C'0 

FlO IS C006 LONG 
n4 FORMAT HI2.Il-THO.0.UI C 002'0014'2 

IFUEQCPl.EQ.21 IEQ-2 C 002'0014'2 
IF 110Ill.EQ.0I GO f( 253 C 002'0016'] 
00 251 III C-!. III ItT C 002'001714 
RUO (5.928) OIL f( IT IC)'CII(!lIC.U "La t .. 9J C 002 '0019'0 

253 COIIf IIIU£ C o 02'00U'2 
928 FORMU (IOn.OI C 002 '002C'l 
242 REAli (5.9041 H£AOh YlULI. XL'BEt.HEA02.YLA8L2. YLUll.HEA03 C 002 '01l2CH 
904 FORMAT (IUo.SX) C 002'003£12 

REAli (5.9111) COOII C 002'00H'2 
9111 FORMAl ItOA6.20U C 002'0045'2 

REAO{S.921) U.HHEAO C OC2'00H.2 
921 FORMAl (1]'15A21 C 002'004£'2 

READ (5.9221 T8AR.lMIH,nAb'HBAR.PHIIUhPHMAX C 002 '004£12 
922 FORMAl (6[9. J) C 002 '005f12 

00 241 K-t.to C 002'005Ft2 
241 READ (5. 92]HOAUCK.1I.L-I.41 C 002.00. C: 0 
923 FORMAt UF10.5) C 002 '001 C' 3 

ITIC-I C 0021001 C' 3 
OOGG'C(61 C 002 .oor III 
\lOGe-CUI C 002 .oor 2' 2 
00 7821 IET-h lQ C 002.0073.1 
IF I IOILT .£O.O)GO fO 7821 C 002 '0075' ° 
IF (OATHIEhll.ll.0IlHITICllGII l t 1821 C 002'0076' I 
OOGC -II (\ TI C. 9) C 002'007S'5 
nIC-ITIC·1 c 002 .00rA' 3 
IF (ITlC.Gl.IOIL nITIC-IUIU C 002 .oor B' 5 

re2 I OATUIEt.4)"tOGC+UfJ( IEl.U c 002'0070'4 
MRlfE (6.91~ 11 tBAR, TN III.UAh~HEAD. fHon.PH~I H. PIlIiA hCU) C 002'0063'2 

FI8 IS 0006 LONG 
9141 FORMAT UH I. fJ2. '08SERf£0 EXPERMENTAL DATA'. 161. 'MEAN TEMP: •• C 002 '009502 

I f4.1,,' 86J11 f RANG(' ,f5." t TO'" ". tiT 32 .. 15A2. T6'#' NEAte PH: " '4.1" C 002 '0095' 2 
I l86.'UHGE',F5.1.' H'.n.lIU6.'TOTAL HIlROGEN".F5.2) C 002'0095'2 

MRIlE (6.9H2) C DC2 '0095'2 
9" 2 FORffAT UH .",.'ORY'.tn.'CELLULAR'. fT5.'EXTERNAl'1t50.'n~£" C 002'0099'2 

I TS9, 'VT.'" Ti9 .. 'N'" " 9,'N'/T4',,' (OA TS J' .. t58 ,,' UU/I.)'" To ,,, I( fiG It).,. C 002'00n.2 
I T76.'(ffG/U'1 C 002.009912 

00 1142 L·I.to c 002 '009912 
7{\ 2 WRUE (6.9143) (OAtUL.Kht-h41 c 002 .009A1 0 
9143 FORMAT (111 • T~90 U F5.2." II C 002'OOU:] 

l·O. C 002 '00l"3 
C lRUfI=lENGtH OF ~UH I H HOURS C 002.00Al'1 
C OEfUE INt tAL COMDn IDNS c 002'00U'1 

~H") ;DATAU. 41 C 002.00U'l 
N(Z.Il*DAU( 1>21 C 002'00AB'5 
PUN2:9999. C 002.00ADtZ 



Table B-l. Continued. 

C DEFIlE TIME STEP' RELATED PJRAMETERS 
LRUM·(DATA(LQ.II-0ATJ(I.1I)oZ,.+1 

C TSTEP-TIME STEP IN MINIlTES(UTEGEU 
C LO IS THE IIUMEER or TIME STEPS III A HOUR 

LD260ITSTEP 
C NU~·.UM8ER or TI~E STE.S 

NUM:LRUNo60/TSTEP+l 
IF (.UM-IOOO)98.9a.99 

9' MRITE (6.9011 
901 FORMAT (IH .T30. oMIIM8ER OF TIME STEPS NOT COMPATIBLE WITH 

1 DIMENSIONED ARRAYS') 
GO TD 899 

98 COHT IflUE 
e DELTA2TtME STEP III Dns 

OELTA=TSTEP/I'.O, 
WRITE (6.91IZ) COO~ 

9112 FORMAT (IHI.T15.IOA6/'(T5.10J6.5X.l0A6/)1 
C(61=OCGG 
WRITE (6.91131 CK.C(K).K-I.fl 

9113 FORMAT OH • T54 •• DEfIlI IT IQII Dr CONST ANrs"1t2.Te' C( ',110".', 
I £9.3"X)/T~0.·OEfIIlITION Of tILUTIOII COIISTANTS') 

on 8819 ITIC=I.IOILT 
6819 WRITE (6.90031 OILT(ITICI.(L.O(ITIC.ll.L-I.91 
9003 FORMAT (lH .T54.'TIME OF DJLIiUD~.'.r5.21T2.9(tD(' .[1.'I"".F6.3.3 

IX II 
WRITE (6.9131) (COON(KI.~·I,IO),TSTE' 

9131 FORMAT (IHloHO.I0A61T53."UIILTS CF AlGAL GROwn SIliULATION'1 
IT53.'NUII8£R OF MINUTES IN A TillE STEP 15'.121 

WRITE (6.9135) 
9115 fORMAT (IHO,T50.'TIME'.T6Z.'M'.I'7.'X'.T88.'PERCENT M'I 

PERN1:(C(6)-"( I. III1N(2. n-Ioo. 
MRITE (6.9136) DATA( 1011.(II(J.1I.J=I.2JoPERIiI 

9136 FORMAT (IH .T~,.f5,Z.T'6.EIZ.5.T'I.EI2.5.Ta6.ElZ,51 
l=O 
LF=O 
ILINE:1 
tv=O 

1 TlC:1 
lOll '=(0 IL J( IT IC I-DATA( I. III/DEL TA 
DO 100 I~2.NU" 
If (IOILT.EO.O) GO U 7171 
IY=IY+l 
IF (IY.NE.LOILY) GO 10 7117 
N( 1.I-lJ =O(nlc.1 ) oH( 10 I -II+C([T IC.21 
N(2.1'1)=0(ITIC.3I oll(Z.I'II>U(ITI(.41 
NO. I-II=O( tTIC. 510MU.1 -I )oC( IT le.6) 
H<4.I-1)=O<l nc, 71011«4.1-1 JoUf IT IC .81 
C(6)=O( ITl C. 9) 
PERN2=9999, 
ITIC=ITIC>1 
lOILI=(OIlT(ITICI-OA1A(I.I)I/OEllA 

1111 COHTtHUE 
If'Lf+1 

e OEFI~E KI'S fOR FOURTH D~O£R RUNGE KUII. 
00 1<3 J:loIEQ 

lZ 3 HJI"'H (J. 1-11 
J·t 
GO TO 600 

C OEFUE KZ'S fOR fOURTH ORDU RUNeE IIUTIA 
125 CONT INUE 

DO 128 J=I.IEO 

C 002:00AE'2 
C 002 .OOH: 2 
C 002'001ll'3 
C 0 OUOOB IS 3 
C 002'0081>3 
C 00210083:0 
C 002'00B3I0 
C 002'0085'2 
C 002'0086:3 
C 002Hl08U2 
C 002'008UZ 
C 00Z:008A'2 
e 002.009 .. 5 
e 002.008 Al5 
C 002'008"5 
C 002 '00ge. 2 
e 002'00e3l2 
C 002.00C3'2 
C 002'00e404 
C OC2.00!)2.2 
C 002'0002'2 
C 002'0002'2 
C 002.0003:0 
e 002 '00£6' 3 
C 002 '00£6'3 
e 002. DOE 6' 3 
C 002'00F4:2 
C 002 'OOfU 2 
C 002,00H:2 
C 002'00F"812 
e 002'00f8'2 
C OC2.00f8.2 
C 002'010A=2 
C 002'010U2 
C 002:0108'0 
C 002 '010814 
C 002 .oloe, 3 
C 002'0100'1 
C 00210100'5 
C 002'011C12 
C 002'0112'0 
C 002'0113:1 
C 002 '011~' J 
C 002.0115:3 
C 002'011"2 
C 002:0Uf.2 
C 002'012~'2 
C 002:0129.Z 
C 002'0128:3 
C 002'012C;J 
C 002'0120:5 
C 002 '013el1i~ 
C 002.013('2 
C 002'0131:4 
C 002'01J1I~ 
C 002'013310 
e 002'0138'4 
C 002'0139:2 
C OC2 '0139' 5 
C 002'0119'5 
C 002'0139:5 

64 
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Table B-1. Continued. 

128 Y(J)=N(J.I-l).OELtA/!aKN(J.l) C OOZIOIJIlIO 
J~2 C 002 '014Z" 
GO TO 000 C 002.0143 .. 

C DEfl'E "l'S fOR fOURTH OR~ER RUNGE KUrT. C 002'0144:1 
150 CONT INUE C OOZIOl44'1 

DO 1$8 J~I.1EQ C 00210144'1 
158 T(J)·N(J.I-l)·OELTA/J·KN(J.l).OELT.aKN(J.2) C OOZ '0145'0 

J= 1 C 002'014£:4 
GO TO 60C C 002 'OHf 13 

C OEfl~[ .4'$ FOR fO~RrH ORDER RUNGE KurrA C 00Z.015(IO 
115 CaNT INUE C 002'015(:0 

00 178 J·1.1EI C 002'015t·O 
118 '(J)sN(J.I-l).O[lTA.(KN(~.l)·KN(J.Z).KN(J.l» C 002'015110 

J=4 C OOZ'Ol$BIO 
GO TO 600 C 002.0nS'$ 

C OEfI'E NEW NUTRIENT LEVEL BY APPLICATION OF RUNGE KUTrA C 002'015C 12 
200 CONTI 'UE C 002.01'C·2 

00 22Z J=I.IU C 002'015C'Z 
Z22 N(h !)=N (J. 1·1 HOEL T AIf ••• (." (J.t )tZ.KN(J.Z)t Z- KN(J.l)+ JII( J. 4 n C 002'0150'0 

W2(I)~(C(6)-N(1.1»/N(Z.I)·100. C 002'016B10 
If HF-LOH28.ZZ1.2Z1 C OOZ '011111 

?21 L=l+1 C 002.0(121) 
LF=O C OOZI()l7l' 5 
If (Il INE.LT .601 GO TO 7312 C 002:0114'3 
IllHE=6 C 002'0115'5 
WRtTE (6.9131) (COON(~t."·l.tO).fstEF C 002.0176' 4 
WRITE U.9U') C 002 '0184: 2 

1312 CO NT (IIUE C 002 '018812 
PERNJzPERN2 C 00210188'2 
TR·O~TA(I.1J·I-DELTA C 002'0189'1 
PERN2=(CtoJ-II(I.I))/N(2.()·100. C 002:01sa: I 
WAITE (6.911E) TR.(NeJ.I).J-l.ZJ.PERN2 c 002t019C'3 
IlINE: It {NEtt C 00210lAt'2 
{PHT sl C 002 t01A" 4 
{I'(PERH2-PERNJ.G 1.0. )I PH T= 2 C 002'OU2H 
If (PERNZ.GE.Ct4»IPHT-I C 002'0IA4'S 
tFCPEAN2-C(1).LT •• 001)IPNT-! C 00Z.OU1'1 

228 CONT INOE t 002:0USH 
100 CONTINUE C 002'0IAB'3 

GO TO 899 C 002'OlAOH 
600 CONT IHUE C 002'OIAE'1 

PERN1=eC(6)-Y(I)/Y(2).lCO.-C(1) C 002tOUUI 
KH(I.J)·-C(l)'Y(l)'Y(Z) C 002'0182'0 
GO TO e88H.8815.68161IP"T C 00210196.0 

86H KN(2.JI=ce2).PERH1·yeZ) C 002101BBI! 
GO TO 88 C 002t01Bftl 

861' KH<2.J)=C( n'H2) C 002 '01Bfl4 
GO TO 58 C 002'01C3'0 

6816 K'j(2.J)=0.O C OOZ'O It 1:3 
88 CONTIN UE C 002'0 lC 504 

GO TO (125.150.115.200) . C o C2f01C5'. 
899 CoNT lNUE C 002'01CB03 
862 LN:l C OOZ 'OICBI 3 

LX"2 C 00210lCCtI 
IF (IPLOT.NE.l) GO T( 891 C 002'0ICO'0 
XHAXT-DATA(1.11+12. C 002.01CE.I 
XHIN=O AT All." C 002'01CFl4 
XMAX=OJTAC1.1).CNUH-l)·OEL1A C 0021010 tH 
If (IMAK.LT.XMAXT) XMAx-)MAXl C 002 .010 3'0 
NHIN=O. C 002.0104 1 5 
NMAX=10. C OG2'01D5:] 



Table B-l. 

""IN~O_ 
ZMIH-O. 
lUX-toO. 
IMAX=I.O 

Continued. 

892 00 8S4 1-.. 1.; 
"IC Il=OAHU. 3J/OATHI.21'IOO. 
IF (THIN.Gr. CAlUI.4lJ HU-OATAU.U 
/r (lNIN.Gr. CATACt.ZII Un-OAlAU.ll 
/r (WMIN.Gr •• HIII WMtl.tlHIl 
IF OM_X.LT.WlCllJ WUX*WI<t1 
IF CYUX.lf.DAlACI.4Jl ,"U*OUUI,U 
IF (ZMJX.LT.QAfACI,Zll Z~U·OATA(hZl 
Y1111=UTAU,41 
ZlU '-OATAC 1.21 
Xl(ll=OAfHI,ll 

894 CGHUMUE 
DO 895 I= .. IUM 
IF (WM_X.lf.WZ(f)) lKAX=WlClI 
IF UMIH.GT.WZUll NMIN-WZUI 
IF (TMIN.Gr.N'lI!. III ua-HLNoIl 
IF CYUX.LT.H(LN.Il! nUa~(l.H.I' 
IF (lKlN.ST.N(U.I" UlhaULX.ll 
IF (lMU.lf.NUX.llJ HA.-UI.X,1l 
YZIII·H(U.ll 
lUI '-M(U.I' 
X2(( '-OATA<I.11+U"tl'OELl A 

895 CONTINUE 
CALL PI.]60 (NUM. AI.U.XN II,ltAX.lII.ABEI..Y2. 'Mil. UAX. TLABll.NEAOI. 

I"ZUI 
CALL PLl60 (L Q. AI.Xl. 1M IN .nAX. XL AUL .1I. 'MIN .un. 'UBU.tlUOt. 

tll31 
WRITE n.91 .. ' 
WRITE (6.91411 C<1IoC(1IoI:(ZI 

'''4 FORHAT C1~ .T1b'08S[PVEm Uu nOICHED BY 'N-'ITI4.'SIMUUT£O C 
IURVE COMPOSED OF -0"'1 
CALL PL160 «NUM. A .. Xl. XM IN .X~AX. ILA8£IoZZ.V! IN.lMU. YLABLZ.IlEAOZ. 

I'Z40) 
CALL PL]60 (L Q. At,X1. 1M IN .UAX. XUBEL.l 1.1M IM.l M_ •• YlA8U,H £AOZ. 

1231) 
WRITE (6.91451 
MUTE (6.9141) C(7I.((1)'C(21 

9U5 FORMAT (111 ,T14.'OHS£RVEC UTA HDICATEO BY ·X·'/fl4.'SIMULATED 
IURYE COMPOSED OF '0"1 

CALL PL360 (NUN. AI. X 2. XN IN .XHX. XUBEL ,N Z.MUN.IIMU. TLA8Ll. 
• IlEAOJ.-Z40) 

CALL PL160 (u.n .... ulH. IM' ... UBEL. MhWHIN.IINAhYLABL]. 
• KEA03,215) 

UITE (6"1461 
91\6 FORMAl (1H .T14,'OBS£RYEt UTA INDICAtED BY ·P·'IT14.'SIHULATEO C 

.URYE COMPOS EO OF '0" I 
WRITE U,91471 C<11oC(1I>C(2) 

91H FORNAT nil .1I40'CONSlAUS FeR TKIS RUNlHNlN·'F4.Z.'1G='.F4.Z. 
'* ·JUs-.F4 .. Z) 

a91 CONTINUE 
CALL EXIT 
(NO 

C 00210t0612 
C 00Z'0101l0 
C 002'010714 
C 0021010813 
C 002 '010 9' 1 
t 002'010AlO 
C 002.010£13 
C OOZ .01E 2,. 
C 002l01H,1] 
C 002l01EAlO 
C OOZ'OIEO:3 
C OOZIOtftU 
C 002101F5.J 
C. OOZ'OIFa>1 
C 00ZtOlFAl4 
C 002tOlFD'O 
C 002 >OlFFll 
C 002'OZOCtO 
C 00lI020]'3 
C 002.020110 
C OOZ '020C15 
C 002'OZI2 .. 
C 002'OZI813 
C OOZ'OUESZ 
C 002>OZ2115 
C 002 '02Z51Z 
C 002 '022 all 
C 002l0Z2A14 
C 002'OZl114 
I: 00210Z]2'2 
C 002'OZ19'Z 
C 002'021915 
C 00Z'OZ3['2 
C 002>024OIZ 
C 002>0Z48' 2 
C 002 '0248' 2 
C 00210ZU,Z 
C 002'OZ5(:0 
C 002>0257.0 
C 002'025713 
C 002l02581Z 
C OOZI 026 5' 2 
C 002002651Z 
C 002'0265.z 
C 0 OZ '026 H' 4 
C 002>026010 
C 0021021]12 
C 002>02741] 
C 00Z'OZ78'Z 
C 002'OZ1a.z 
C 002'OZ1a'2 
C 00Z'OZ8212 
C 002'0282'2 
C 002'028Z'Z 
C 002,0UZ" 
C 002'02810 

SEGNENT 002 IS 028] LONG 
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Appendix C 

Output Listings for Simulation Runs 



I ' 

Table C-1. Simulation of experiment #1. (See Figures 10 - 12 in text.) 

oeSERVED EXPERHENTAl DATA ".E AN r EMP= 25.0 RANGE 23.4 TO 27.5 
MEA~ ~ALUES or RUNS 1.2 MEAN PH 7.1 RANGE 6.5 TO 10.0 

TOTAL NITROG£~= 1.&0 
DRY CELLULAR EXTERNAL 

TIHE itt. N N 
(DAYS) ("GIL) (HG/L) ("GIL) 

1.83 26.23 1.33 0.27 
2.10 36.54 1.41 0.19 
2 .• 67 51.20 1.30 0.30 
2.85 51.60 1.44 0.16 
3.16 51.67 1.45 0.15 
3.55 61.40 1.60 0.00 
4.18 11.60 1.60 -0.00 
4.70 72.30 1.76 -0.16 
4.73 36.40 0.16 0.84 
4.88 36.60 1.02 0.71 
5.05 31.01 1.50 0.23 
5.20 41.00 1.57 0.16 
5.52 "9.00 1.64 0.09 
5.81 55.20 1.13 -0.00 

0\ 
co 



Table C-l. Continued. 

DN/OT=-G*N.. CX/OT=U*(PERH-hMIN)-X 
N=EXTRACElLULAR NITRUGEN (MG/L) 
X=ALGAL BIOMASS AS DRY NT. (~G/L) 

PE~N=PERCENT NITROGEN=~T(T-N)/X 
NMIN=MINIMUM PERCENT NITROGE~ fOR POSITIVE G~ONTH 
NTOT=TOTAl NITROGEN (NG/L) 
C(1)=& C{Z)-U C(6)=.TOT C(T).NNIN 

EQUAfHlN SET 13 
DILUTION ROUTINE (OPTIONAL) 
N=0(1)-N+0(2) )=C(3}.X+O(~) 
C(6 )=0(9) 

< 

OEFINITION OF CONSTANTS 
CO}: .100E.00 t(21= .390E.01I eu)= .500E-01 C(\)= .380E+01 C(S}=O. e(6)= .160[+01 C(71= .211[+01 

0(1)= 0.000 0(2)a 0.930 OU) .. 0.500 

DEfiNITION OF DILUTION CONSTANTS 
TIME OF DILUTION" 4.73 

OU) .. 0.000 1)(5)'" 0.000 0(6)= 0.000 0(7)= o.oeo 1)(8)= o.oeo 0(9)= 1.730 

0'< 
~ 
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Table C-l. Continued. 
EQUA TI ON SET 13 

RESULTS Of ALGAL GRO~TH SIMULAT ION 
NUMBER OF MINUTES IN A TIME STEP IS30 

TIME N X PERCENr N 
1.83 .27426E+00 .26233[+(2 • 50~36[ +0 1 
1.90 .24522E+00 .27490E+ 02 .49 282[ +01 
1.94 .21811E+00 .28750[+(2 • 48066E +01 
1.98 • 19298E"O(l .30009[+ C2 • 46887E+Ol 
2.02 .16 985[ +00 .31264E+ (2 • 45744[ +01 
2.06 .14812£ +00 .32512E+02 .44638£+01 
2.10 .12954£+00 .33750[+(2 .43 569E+0 J 
2.15 • 11226E .. 00 .34976[+ 02 .42536[+01 
2.19 .96194£-01 .36186[+(2 .41541£ +01 
2.23 .83040E-Ol .37379[+02 .40'583£+01 
2.27 .70890E-Ol .38552[+(2 .39663[+01 

- ! 2.31 .60225E-Ol .39704£+(2 .38781[+01 
2.35 .50922[-01 .40833£"02 .37937E+01 
2.40 .42856[-01 .41938[+(2 .17129E+Ol 
2.44 .35904[-01 .43018E+(2 .3635 9[ +01 
2.48 .29947E-Ol .4't071£+C2 • 35625[ +0 J 
2.52 .24810[-01 .45098£+ (2 .34 927[+01 
2.56 .20566[-01 .46098[+ (2 • 34 263E +01 
2.60 .16938[-01 .47010[+C2 • B 632[ +01 
2.65 • 13894E-Ol .480 15[ + (2 .33034[+01 
2.69 .11353[-01 .48932[+(2 .3246E£+01 
2.73 .92411[-02 .49823[+ (2 .31 928E+0 1 
2.77 .14951E-02 .50686[+ (2 .31419E+Ol 
2.61 .60581E-02 .51523[+(2 .30917[+01 
2.65 .46194[-02 .52333[+(2 .30460[+01 
2.90 .39171£-02 .53118E+02 .30048[+01 
2.94 .31344[-02 .53818[+ 02 .29639[+01 
2.98 .25003E-02 .511& 13[ + (2 .29251£+01 
3.02 .19885£-02 .553 25E Hl2 .28884£ +01 
3.0& .15166£-02 .56013E + 02 .28536E+Ol 
3.10 .12469£-02 .56&79[+02 .28201E+Ol 
3.15 .96326£-03 .51323[+(2 .27895£ +01 
3.19 .71337£-03 .57945E+(2 .21599£+01 
3.23 .60672[-03 .58547[+ 02 .27 316E +01 
3.27 .47481£-03 .59129[+C2 .27052£+01 
3.31 .37069[-03 .59691E+02 .2& 799[ +01 
3.35 .28814£-03 .60234£ + 02 • 26 ~56£ +01 
3.40 .22441£-03 .607'59£+ C2 .26 HOE +01 
3.44 .17403[-03 .61267[+02 • 26112E +01 
3.46 .13469£-03 .61758E+C2 .25906£+01 
3.52 .10403£-03 .62232[+ (2 .25109£+01 
3.56 .80190£-04 .62690£+ 02 • 25521[ +01 

, \ 3.60 .61100[-04 .631 33E+02 • 25 34 2[ +0 1 
3.65 .47 387E-04 .63561E+C2 .25172[+01 
].69 .36330£-04 .63974£+C2 .25010[+01 
3.13 .27807E-04 .64314E+ (2 .24 854[ +01 
3.11 .21248E-04 .6 "'60E + el2 .24706[+01 
3.81 .16210E-0. .6513]£+ (2 • 24 ~65£+O J 
3.85 .12348[-04 .65493E+ C2 .24 430E +0 J 
3.90 .93925[-05 .65842E+ 02 .24301[+01 
].94 .11 H1E-05 .66118£+ (2 .24177£ +0 1 
3.911 .54112[-05 .66504[+ (2 .24 059E +01 
4.02 .40990[-05 .66818[+C2 .23946£ +01 
".06 .31009[-05 .61122E+02 • 23837E+O 1 
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r Table C-l. Continued. 

EQUATION SET .3 
RESULTS or ALGAL GROhTH SIMULATION 
NUMBER or MINUlES IN A TIME STEP 1530 

TIME N X PERCENT N 

[ 
4.10 .23430E-05 .67415E+(2 .23733E+Ol 
4.15 • 17682E-05 .6 7699E + 02 .23 63ltE to 1 
4.19 .13328E-05 .67973[+C2 • 23539E+0 1 
4.23 .10036E-05 .68238E+(2 .23447£ +C I 

[ 4.27 .75481E-06 .664 94E+ C2 .23 360E +01 
4.31 .56712[-06 .68741E+ 02 • 23276E +01 .~ 

4.35 .42567[-06 .689 eOE Hl2 .23195£ +01 
r 4.40 .31919[-06 .69211(+(2 • 23118[ +01 
J 4.lt4 .23912[-06 .694 34E + C2 • 23044E to 1 
'" 4.46 .17891E-06 .6 9649E + (2 .22972E+Ol 

4.52 .13 38 3E-06 .698S8EtC2 .22 904E +0 I 

[ 4.56 .99994E-07 .7 0059E + 02 • 22838E+0 1 
4.60 .74650E-07 .7 0253E + 02 • 22775E+0 1 
4.65 .55685E-07 .70441E+C2 .2271 4E +0 1 

[ 4.69 .41506E-07 .70623E+(2 .2265 6E +01 
4.73 .30915E-07 .70798(+02 .22 599E +0 I 
4.77 .80220E+OO .35589[+ C2 .2607 OE +01 
4.81 .69115[+00 .35963£+(2 .28887£tOI 
4.85 .59488£+00 .36038£+02 .31498£+01 

" 4.90 • 51186E +00 .36113£t02 • 33131£tO 1 
4.91t .44028E+00 .3 6168E+ C2 .35 639E to 1 

[ 4.98 .37860E+00 .36264£+ C2 .3726 6E to 1 
5.02 .32545£+00 .36339[+02 .38651E+0 1 
5.06 .21911E+00 .37396E+ (2 .38 798E +01 

f' 5.10 .23830[+00 .36lt87E+C2 • 38758E +01 

1 5.15 .20253E+00 .3 9602E+ 02 • 38571E+O 1 
5.19 .H132E +00 .407 33E+ C2 • 38266E+0 1 
5.23 • 14 " 2 3E +0 0 .41872E+C2 .37872E+Ol 

r 5.27 .12085E+00 .43013E+C2 • 37 410E +01 
'- 5.31 .10079E+00 .44151£+C2 • 3690 IE +0 1 

5.35 • 83654E-0 1 .45219£+ (2 • 36360E+0 1 

1 
5.40 .69111E-Ol .46395E+02 .35799E+Ol 
5.44 .56632E-Ol .474C;4[+ 02 .35229£ +01 
5.48 .46524E-Ol .48515[+ C2 .34657£ +0 J 
5.52 . .37915£-01 .49634 E+ C2 .34 09lE to 1 

r 5.56 .30765E-Ol .50670E+C2 .33 535E +01 
'- 5.60 .24857E-Ol .516elE+C2 .32993E+Ol 

5.65 .20001E-Ol .52667[+ C2 • 32"68E+0 1 
" 5.69 .16028E-01 .53627E+(2 • 31961E +01 I 5.73 .12793£-01 .54560[+ C2 .31 "74E +01 l 

5.77 .10173E-Ol .55467E+ (2 .31007E+Ol 
r 

5.81 .80588E"02 .56346E+ C2 • 30 ~60E +01 

l 5.85 .63612E"02 .57199E+ (,2 .30 134E +01 



Table C-2. Simulation of experiment #2 before dilution. (See Figures 13 - 15 in text.) 

OBSER~ED EXPERMENTAL DATA 
~E~~ VALUES or RUNS 4 THRU 6 

T IHE 
(OAYS) 
11 .06 
11.52 
14.97 
15.64 
15.67 
16.05 
16.56 
16.83 
16.85 
17 .06 
17.53 
18.09 
19.23 

DRY 
WT • 

("'GIL) 
38.93 
38.60 
77.61 
eo .00 
38.73 
40.93 
55.47 
59.40 
30.23 
30.77 
44.27 
55.07 
66 .13 

ME AN T EMP= 24 .9 
ME AN PH 7.1 

CELL UL AR ,.. 
(HG/U 

0.90 
1.26 
1.7 1 
1.73 
0.7 S 
1.35 
1.55 
1 .53 
0.82 
1.43 
1 .51 
1.5 ,. 
1.4 S 

EXTERNAL 
N 

( ~G IL ) 
0.78 
0.42 
-O.O~ 
-0.05 
0.74 
0.18 

-0.02 
-0.00 
0.71 
0.10 
0.02 

-0.01 
0.04 

RANGE 22.C TO 26.0 
RANGE 6.9 TO 8.5 
TOT AL N r T RO GE N = 1. (, e 

-...j 

N 
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Table C-2. Continued. 

EQUATION SET 113 
ON/OT=-G*N*X OX/OT=U*(PER~-~MIN)*X OIlUTIO~ ROUTI'4E (OPT IONAU 
N=EX TRACELLULAR tiITR OGEN (NG JL) 
X=AlGAl BIOMASS AS DRY liT. (I'G/L) 
PE RN "'PE RCEN T NIT RO GE N= NT CT-N)lX 
NMIN=HINIMUM PERCENT NITROGEN FOR POSITIVE GROWTH 
NTOT=TOTAL NITROGEN (MG/l) 

C (1);:: .100E"0 0 C (2)= • 39 OE"O C cn)= .500E-Ol 

N=O (1 l*tl+O( 2) 
C(6)=0(9) 

C (l )= G C( 2) =U 

o EFIN IT 10 N OF CON ST AN TS 
CU)= .300E"01 C (5 )= O. 

OHINlT ION OF OILUT ION CONSTANTS 
Tl M E OF 0 Il UTIO 11= 15 .67 

0(1)= 0.000 O(2)= 0.665 0(3)= 0.500 O(ltl= 0.000 0(5)= 0.000 [H6)= 0.000 
TIME OF OILUTIO~=16.85 

O(l)=: 0.000 0(2)= 0.6f5 ~O)=: 0.5eo o (l,)= 0.000 0(5)= 0.000 0(6)= 0.000 

x=O( 3)*X+OC4) 

C(6)=NTOT C (7 )=NI1 IN 

C (6)= • 168E"0 1 C(T)= .211E+Ol 

0(7)= 0.000 0(8)= O.OCO 0(9)= 1.530 

0(1)= 0.000 0(8)= 0.000 0(9)= 1.530 

'-.J 
W 
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Table C-2. Continued. 

EQUATION SET '3 
~[SULTS Of ALGAL GROIHt- 51 HULA TI ON 
NU"1B ER OF HI NUT[ 5 IN A T IH[ STEP 1530 

T IHE N X PERCENT N 
11 .06 .77964[+00 .3993H+02 .2312 6E +0 1 
11.12 .66263[+00 .39156E+02 .25983[+01 
11.16 .56245E+00 .39544 [+ 02 .28261[+01 
11 .21 .47693E+00 .39626[+ 02 • .~ 0 36 OE +0 1 
11 .25 .40!81E+00 .40273[+ 02 .31689[+01 
11.29 • 34092E +00 .41006[+02 • 32 656[ +0 1 
11.33 .1:8691[+00 .41807E4- 02 • 33 32 2[ +C 1 
11.37 • l:4062[+00 .42661E+02 .33 74 O[ 4-0 1 
11.41 • (10106[+00 .43555[+02 • n 955E +01 
11 .46 .16737[+00 .44476[+02 • ~4 009[ +0 1 
11.50 • 13B79[+00 .45418[+02 • B 934E +0 1 
11 .54 .1146 3[ +00 .46370[+ 02 .33 759[ +0 1 
11.58 .94 !O 5[ -01 .47324 [+ 02 .33 507E +0 1 
11.62 .77275[-01 .46276£+02 .33199[+01 
11 .66 .63071E-Ol .49221E+02 • 32850[ +0 1 
11 .71 .51276[-01 .50155E+02 .32474[+01 
11 .75 .41527[-01 .51074[+02 .32060[+01 
11.79 .33503[-01 .51976[+02 • 31 67 8E +01 
11.83 .26930[-01 .52860[+ 02 • H 272[ +0 1 
11 .87 • a568[-01 .53724E+02 .30870E+Ol 
11 .91 .17 212[-0 1 .54566[+02 .30 473[ +0 1 
11 .96 .13688E-Ol .55386 [+ 02 .30 086[ +01 
12.00 .1084 9[ -0 1 .56183 [+02 .29709[+01 
12.04 .85710[-02 .56956E+02 .2934~E+Ol 

12.08 .67497E-02 .57709E+02 .28994[+01 
12.12 .52990E-02 .58438E+02 .26658E+Ol 
12.16 .41477E-02 .59145 E+ 02 .28 335E +0 1 
12.21 .32372E-02 .59829 [+02 .28026[+01 
12.25 .2519 4[ -02 .60492[+02 • 27731[ +0 1 
12.29 .19555[-02 .61133[+02 .27449E+Ol 
12.33 .1513 SE -0 2 .61753[+02 .27181[+01 
12.37 .1168 9E-0 2 .62353£+ 02 .26 924[ +01 
12.41 .50C41[-03 .62934 E+ 02 .26680E+Ol 
12.46 .69191E-03 .63495E+02 .26448E+Ol 
12.50 .53048E-03 .64038E+02 .26226E+Ol 
12.54 .40580E-03 .64562 E+ 02 .26015E+Ol 
12.58 .30976E-03 '65069E+02 .25814E+Ol 

l 12.62 • <'3596E-03 .65559E+ 02 .25622E+Ol , 
12.66 .17938E-03 .66033 E+ 02 .25 439E +0 1 
12.71 • ]3611E-03 .66491 [+02 .25 265[ +0 1 
12.75 .10 ~08E-03 .66933£+ 02 .25098E+Ol 
12.79 .77924E-04 .673 60 E+ 02 .24939E+Ol 
12.83 .58804E-04 .677 74 E+ 02 .24766[+01 
12.87 .44:01E-04 .68173E+ 02 • 2464~E+Ol 
12.91 • _33 320E-04 .66559[+02 .24 504[ +0 1 
12.96 • ':5021E-04 .689 31E+ 02 .24372E+Ol 
13 .00 .16761E-04 .69292[+02 .2424 5E +0 1 
13 .04 • 14046E-04 .69640 E+ 02 • 24124E +01 
13.08 .10501E-04 .69976E+02 .24 C06E +0 1 
13 .12 .78402E-05 .70301E+02 .23897E+Ol 
13 .16 .58457E-05 .70615[+02 .23 791E +0 1 
13 .21 .43529[-05 .70919[+02 .23 689E +0 1 
13 .25 .32374[-05 .71212E+02 • 23591E +01 
13 .29 .l:4048E-05 .71496E+02 .23498E+Ol 
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Table C-2. Continued. 

EQUATION SET ,n 
R£SULT S CF ALGAL GROWn SIMULATION 
NUMB £R OF I'll NUT£ S IN A TIM£ STEP 1530 

T 1M £ N )( P£RC£NT N 
13.33 .17 84 3£-05 .717 70 £+ 02 .23408E+()1 
13.37 • 1322lt£-05 .72034£+ 02 .23322£ +0 1 
13.41 .97900[-01': .72290£+02 .23240£+01 
13.46 .72"03£-06 .72537[+02 .23 IGIE +0 1 
13 .50 .53492£-06 .72776£·02 .23085£·01 
13 .54 .39 "81£ -0 6 .73007£+02 .23012£+01 

t-
13 .58 • (:9113£-06 .73229£+02 .22942£+01 

\ 13.62 • a "48£-0 I': .734 "5£+02 .22874£ +01 
!..- 13.66 .15787£-06 .73653£+02 .22610£ +0 1 

13 .71 .11610£-0 E .73854£+02 .22748£+01 
13 .75 .65 !16£-07 .740 "9£+02 .22686£ +0 1 
13 .79 .6264"£-07 .74216£+02 .22630£ +01 

I 13 .8:5 .45961£-07 .74418£+02 .22575£+01 r 
v_ 13 .87 .33696£-07 .74593[+02 .22522£+01 

13 .91 .(:4686£-07 .74763£+02 .22"71£+01 
I- II .96 • 180nE -07 .74926£+02 .22422£+01 
, 14.00 .13222£-07 .75085 £+ 02 .22375£+01 
L 14.04 • S6 673£-0 6 .75238£+02 .22329£ +0 1 

14.08 .7063'7£-08 .75.3 65£" 02 .22286£ +01 
r 14.12 .~1582£-08 .75528£+ 02 .22243£ +0 1 

14.16 .37645£ -08 .75666£+02 .22203£+01 
I 14.21 • U459£-08 .75799£+02 .22164£ +0 1 
~ 

14.25 • (:0017£-08 .75928£+ 02 .22126£+01 
14.29 .14585£-08 .76053£+02 .22090£+01 

r 14.33 .10621£-08 .76173£+02 .22055£+01 
14.37 .77 !13£-0 9 .76289 £+02 .22021£ +0 1 

"- 14.41 .56248£-09 .76401 £+ 02 .21989£ +0 1 
14.46 .4090~£-O9 .76510£+02 .21958£+01 

I 14.50 .(:9733£-09 .76615 £+ 02 .21928£ +0 1 
14.54 • a 603£-09 .76716£+02 .21899£+01 
14.56 .15690£-09 .76814£+02 .21871£+01 
14.62 • 11 ~9 O£ -0 9 .76909£+02 .21844£+01 
14.66 .82659£-10 .77000£+02 .21618£+01 
14.71 .59963£-10 .77088£+02 .21793£+01 
14.75 .43483£-10 .77174 £+ 02 .21769£+01 
14.79 .31522£-10 .77256 £+ 02 .21746£+01 

r 
14.83 • (:2843£-10 .77336£+02 .21723£ +0 1 
14.87 .16548£-10 .77413£+02 .21702£ +0 1 

,,- 14 .91 .1198"£-10 .77467£+02 .21681£+01 
14.96 .86762£-11 .77559£+ 02 .21661£ +0 1 
15.00 .62795£-11 .77629£+02 .21641£ +0 1 

[ 15.04 .45436£-11 .77696£+02 :. 21623£ +0 1 
15.08 .32867£-11 .77761 £+ 02 .21605£ +0 1 
15.12 • i3768£-1l .77823[+ 02 .21587£ +01 
15.16 .1718 It£-11 .77884£+02 .21571£+01 

r 15.21 .12421£-11 .77943 £+ 02 .215541::+01 I 15.25 .89757£-12 .77999£+ 02 .21539£+01 

"" 15.29 .64847£-12 .76054£+02 .21524£+01 
15.33 .46839£ -12 .78107[+02 .21509£ +01 
15.37 .33825£-12 .78158£+02 .21495£ +0 1 

r 

15.41 • i4421£-12 .78207£+02 .21481£+01 I, 

I 15.46 .17629£-12 .78255 Et 02 .21468£+01 L 

15.50 .12723£-12 .78301 £+ 02 .21456£ +0 1 
15.54 .91803£-13 .78345£+ 02 .21444£+01 

! 
I 

" 

l' 
I 

L 
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Table C-2. Continued. 

EQUA TI ON SET n 
qESULTS or ALGAL GROWn SIMULATION 
NUMBER OF MINUTES IN A TIME STEP IS30 

TIME 
15.5 a 
15.62 
15.66 
15.71 
15.75 
15.79 
15.8l 
15.87 
15.91 
15.96 
16.00 
16.04 
16.08 
16.12 
16.16 
16.21 
16.25 
16.29 
16.13 
16.37 
16.41 
16.46 
16.50 
16.54 
16.58 
16.62 
16.66 
16.71 
16.75 
16.79 
16.83 
16.87 
16.91 
16.96 
17 .00 
17.04 
17 .08 
17 .12 
17 .16 
17 .21 
17.2 '5 
17 .29 
17.33 
17.37 
17.41 
17.46 
17.50 
17.54 
17.58 
17 .62 
17.66 
17.71 
17 .75 
17 .79 

N 
.66231E-13 
.47773E-13 
.34454E-13 
.56457£ +00 
• 4t 868E +00 
.40586£+00 
.34 286E +00 
• ,912 3E +00 
• ,4627£ +00 
• ,0766E +00 
.17 "56£ +00 
.14628E+00 
.12218£+00 
• 10171£ +00 
.84~92£-01 

.69790£-01 

.57523E-Ol 

.47257(-01 

.38698£-01 

.31588E-Ol 

.25703£-01 

.£0851£-01 

.1686~£-01 

.13600E-Ol 

.10937E-Ol 

.87706£-02 

.70146£-02 

.55956E-02 

.44C;2~£-02 

.35 !40£-02 
• H985E-02 
.59083£+00 
.52 !15£ +00 
.46~06£+00 

.40820£+00 

.35868£ +00 
• 31409E +00 
.£1405£+00 
• :13822£+00 
• ,0627£ +00 
.11790£ +00 
.15282£ +00 
.1307,.£+00 
.11140£+00 
.94543£-01 
.79912£-01 
.67276£-01 
.56416£-01 
.47126£-01 
.39217£-01 
• 32513£-01 
• 16857E-01 
.22107£-01 
.181H£-01 

X 
.78388E+02 
.78430E+02 
.78470 E+ 02 
.39377£+02 
.39663 E+ 02 
.39745 (+ 02 
.39828(+02 
.39911 E+ 02 
.40582 E + 02 
.41297E+02 
.42044E+02 
.42816E+02 
.43603£+02 
.44399£+ 02 
.45198£+02 
.45996£+02 
.467e9E+02 
.47572 E+ 02 
.48345£+ 02 
.49103E+02 
.49847£+ 02 
.50514E+02 
.51283E+02 
.51974E+02 
.52647E+02 
.53301£+02 
.53936 E+ 02 
.54552 E+ 02 
.55149 £+ 02 
.55728E+02 
.56289 E+ 02 
.28638£.02 
.29228£+02 
.29900E+02 
.306 U £+ 02 
.31441 £+02 
.32289£+ 02 
.33176£+02 
.34093E+02 
.35034£+02 
.35991 £+ 02 
.36958£+02 
.37930E+02 
.38903£+02 
.39872E+02 
.40833£+02 
.41783E+02 
.42721E+02 
.43642£+02 
.44547£+ 02 
.45432£+02 
.46298 £+ 02 
.47142£+02 
.47965£+1)2 

PERCENT N 
• 21432( +0 1 
.2142 OE +0 1 
.21 409E +01 
.24517£+01 
• 2650 IE to 1 
• 2828 3E +01 
.29781E+Ol 
• 31 038E +0 1 
.31633E+Ol 
.32021E+Ol 
• 3223 8E +0 1 
• !2 318E +0 1 
.32287E+Ol 
• 32169£ +0 1 
• ~1984E+Ol 
• !l746E +01 
.31411E+Ol 
• 31161'1E+0 1 
.30847£ +0 1 
.30516£+01 
• 30178£ +01 
.29841£+01 
.29506£ +0 1 
.29176£+01 
.28854£+01 
• 28540E +0 1 
.28237£+01 
.27944£ +0 1 
.27662£ +0 1 
.27391£+01 
.27 131E +0 1 
.32794E+Ol 
.34428£+01 
• 35684£ +0 1 
.36611£+01 
.37255£+01 

.• 37657£ +0 1 
.37 858£ +0 1 
• 37 89·0E +01 
• 37 78 ~£ +0 1 
.37 568£ +01 
.37263£+01 
.36890£ +0 1 
.36465£+01 
.36C02£+01 
• 35513£ +01 
.35007£+01 
.34493£ +01 
• H 978E +0 1 
• 3346 6E +01 
.32961£ +01 
.32467£ +0 1 
.31986£+01 
.31520£ +0 1 
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Table C-2. Continued. 

EQUATION SET n 
RESULTS (f ALGAL GROWTH SIMULATION 
NUMB[R Of MINUT[S IN A TIME STEP IS30 

TIME 
17.83 
17.87 
17.91 
17.96 
18.00 
18.04 
18.08 
18.12 
18.16 
18.21 
18.25 
18.29 
18.33 
18.37 
18.41 
18.4& 
18.50 
18.54 
18.5 B 
18.62 
18.66 
16.71 
16.75 
16.79 
16.83 
18.87 
18.91 
18.96 
19.00 
19.04 
19.08 
19.12 
19.16 
19.21 
19.25 
19.29 

N 
.14823[-01 
.12078[-01 
• S809 7E -02 
• 7942 7E -0 2 
.64116[-02 
.51 EO 6E -0 2 
.41419[-02 
.33152[-02 
• £6465[-02 
· a 07 2[ -02 
• Hi 717[-02 
.13261[-02 
.10483[-02 
.82680E-03 
.6507 O[ -0 3 
.51103E-03 
.40052[-03 
.31~29[-03 

• ~4 459[- 0 3 
.19061[-03 
• 1482 8[ - 03 
• 11515[ -0 3 
.89273[-04 
.69101E-04 
.53"04[-04 
• 41212[-04 
.31757[-04 
• ,4417[-04 
• 18778[-04 
.14412[-04 
• 11 04 6[-04 
.64565[-05 
.64663[-05 
• 49 ~88[-05 
.37680E-05 
.28717[-05 

X 
.48766[+02 
.49545[+02 
.50302E+02 
.51037 E+ 02 
.517"9E+02 
.52440E+02 
.53109E+02 
.53757[+02 
.54384 E+ 02 
.54992 E+ 02 
.55579 E+ 02 
.56147E+02 
.56697[+02 
.57229E+02 
.577 43 E+ 02 
.58240E+02 
.58720[+02 
.59UI4[+02 
.59633E+02 
.60067[+ 02 
.604 66E+ 02 
.606 9IE+ 02 
.61283[+02 
.6166IE+02 
.62027[+ 02 
.62360E+02 
.627 2IE+ 02 
.63051E+02 
.63370E+02 
.63678 E+ 02 
.63976[+02 
.64264[+02 
.64542Et02 
.64810[+02 
.65070[+02 

'.653 2IE+ 02 

P[RC[NT N 
• 31 07 OE +0 1 
.30637[ +0 1 
• 30 221[ +0 1 
.2982 3E +0 1 
.29442[+01 
.2907 8[ +0 1 
.28731E+Ol 
.28 "OO[ +0 1 
• 28084E +0 1 
.27 784[ +0 1 
.27 498[ +0 1 
.27 226E +0 1 
.2696 7[ +0 1 
.2672 O[ +0 1 
.26486[+01 
.2626 2[ +0 1 
• ~6 04 9[ +0 1 
.25 846[ +01 
.25653[+01 
.25468[+01 
.2529 3[ +0 1 
.2512 S[ +01 
.24965E+Ol 
.24812[+01 
.24666[+01 
.24 526[ +0 1 
.2439 3[ +0 1 
.24 266[ +0 1 
.24144[+01 
.24027[+01 
.23915[+01 
.23608[+01 
.23 705[ +0 1 
.23607E+Ol 
.23 513[ +0 1 
.23423[+01 
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Table C-3. Simulation of dilutions of experiment #2, transition point = 3.8 percent. (See Figures 
16 - 18 in text.) 

D8SER~EO EXPERHENTAl DATA 
~[AN VALUES OF' RUNS 4 THRU 6 

TIME 
(DAYS) 
11.06 
11.52 
14.97 
15.64 
15.67 
16.05 
16.5 E 
16.83 
16.85 
17 .06 
17.53 
18.09 
19.23 

DRY 
WT. 

( MG/L ) 
38.93 
38.60 
77.67 
80.00 
38.73 
40.93 
55.47 
59.40 
30.23 
30.77 
44.27 
55.07 
66.13 

MEAN TEHP=24.9 
MEAN PH 7al 

CELL UL AR 
tt 

(MG/L> 
0.90 
1.26 
1.71 
1.73 
0.7 S 
1.35 
1.55 
1.53 
0.82 
1.43 
1.51 
1.54 
1.4 S 

EX TE RN AL 
N 

( ~G IL ) 
0.78 
0.42 

-0.03 
-0.05 
0.74 
0.18 

-0.02 
-0.00 
0.71 
0.10 
0.02 

-0.01 
0.04 

RANGE 22.0 TO 26.0 
RANGE 6.9 TO 8.5 
T C T ~L NIT RD GE N= 1 .69 

-....l 
CP 



Table C-3. Continued. 

~ ON/OT=-G*N*)( o)(/OT=U*(PERN-tl" IN)* X 
N=EXTRACEllUlAR hITROGEN (MGIl) 
)(=AlGAl BIOMASS AS DRY NT. OG/U 
PERN-PERCENT NITROGEN=NTeT-N)/X 
NMIN-MINIMUM PERCENT NIT~OGEN FO~ POSITIVE GRONTH 
NT OT =T OT AL NITROGEN (MG/ll 

r~ 

EQUAT ION SET #3 
OIlUT ION ROUTINE (OPT IONAU 
N=0(1)*N+0(2) )=0(3)*)(+0(4) 
C(6 )=O( 9} 

CCl }=G C( 2) =U C (6 )=NToT C (7 )-1'114 IN 

DEfINITION OF CCNSTANTS 
cel)= .100[+00 C e 2)= • 39 OE +0 C C(3)- .500E-01 C(4)= .380[+01 C(5)=0. C(6)= .16SE+Ol C (7)= .211E+Ol 

DEfINITION OF OILUTION CONSTANTS 
TIME Of OIlUTION=t5.67 

0(1)= 0.000 0(2)= 0.665 0(3); 0.500 0(4)= 0.000 0(5)= 0.000 0(6)= 0.000 0(7)= O.OCO 0(8)= 0.000 0(9)= 1.530 
TI~[ OF OILUTIO~·16.85 

0(1)· 0.000 0(2)= 0.665 00)= 0.500 0(4)= 0.000 0(5). 0.000 !)(6)= 0.000 0(7)= O.OCO O(S}: o.ceo 0(9)= 1.530 

"-J 
\0 



Table C-3. Continued. 

EQUATION SET #3 
R[SULTS (F ALGAL GROWTH SIMULATICN 
NUMB[R OF MINUT[S IN A TIME STEP 1530 

TIME 
11 .06 
11 .12 
11 .16 
11 .21 
11 .25 
11.29 
11.33 
11.37 
11 .41 
11 .46 
11.50 
11 .54 
11.58 
11 .62 
11 .66 
11 .71 
11 .75 
11 .79 
11 .8 ~ 
11.87 
11 .91 
11.96 
12.00 
12.04 
12.08 
12.12 
12.16 
12.21 
12.25 
12.29 
12.H 
12.37 
12.41 
12.46 
12.50 
12.54 
12.58 
12.62 
12.66 
12.71 
12.75 
12.79 
12.63 
12.67 
12.91 
12.96 
i3.00 
13 .04 
13 .08 
13 .12 
13.1 E 
13 .21 
13 .25 
13 .29 

N 
.77964[+00 
.6626::1[ +00 
.56245E+00 
• "'693[+00 
.40427[+00 
.34257[+00 
• ::9018E+00 
• ::4572[+00 
• ::0800[+00 
.17601[+00 
.14888[+00 
.12563[+00 
.10551[+00 
.88216[-01 
.73419[-01 
.60828[-01 
.5017~E-01 

.41206E-01 

.33697[-01 
• ::7441[-01 
• ~2256[-01 
.17979[-01 
.14 468E-0 1 
• 11599E-0 1 
• S2646[-02 
.73740[-02 
• 5849 1[ -0 2 
.46241[-02 
.36438[-02 
• ~862 4E-02 
• ~2 418E -0 2 
.17506E-02 
.13632[-02 
.10586[-02 
.8198 4[ -0 3 
.63~34[-03 

.48805[-03 

.37519[-03 
• ~6 77 6[-0 3 
• ::2022[-03 
.16816[-03 
.12814[-03 
.971,48[-04 
.73963[-04 
.56032E-04 
• 42 ~71[-04 
.31981,[-04 
• ~4102[-04 
.18133[-04 
.13 62 0[-04 
.10215[-04 
.761,98[-05 
.57205[-05 
.1,2719[-05 

X 
.38933E+02 
.39156E+02 
.395"4E+02 
.39626[+02 
.39709E+02 
.39792E+02 
.39875E+02 
.39958 E+ C2 
.400"1E+02 
.40125 E+ 02 
.40208[+02 
.41318E+02 
.42425 E + 02 
.43524 E+ 02 
.44612 E+ 02 
.45685E+02 
.46741E+02 
.47776E+02 
.48790E+02 
.4978lE+02 
.5071,7[+02 
.51688 E+ 02 
.52604E+02 
.53494E+02 
.54358 E+ 02 
.55196 E+ 02 
.56009E+02 
.56797[+02 
.57559E+02 
.58298E+02 
.59012[+02 
.59704E+02 
.60373 [+ 02 
.61020[+02 
.61645[+02 
.62250[+02 
.62834[+02 
.63400[+02 
.6391,6[+02 
.64474[+02 
.64984[+02 
.65477 [+ 02 
.65954 [+ 02 
.66414[+02 
.66659E+02 
.67289E+02 
.67705[+02 
.68106[+02 
.68495E+02 
.68670[+02 
.69232 [+ 02 
.69582E+02 
.&9920[+02 
.70247[+02 

P[RC[NT N 
.23126[+01 
• 2598 3E +0 1 
• 28 261[ +0 1 
.30360[+01 
.32127[+01 
.33611E+01 
• ~485~[ +0 1 
• 35895E+01 
• 3676 2[ +0 1 
• 37 "8 3[ +0 1 
.38080E+Ol 
.37620E+01 
.37112[+01 
.36572E+01 
.3&012[+01 
• 3544 2[ +0 1 
.34869[+01 
.34301[+01 
• 33 74 2[ +0 1 
.33197[+01 
• ~2 66 7[ +0 1 
• 3215 5E +0 1 
• 31 6& 2[ +0 1 
.31189[+01 
• 30736[ +0 1 
• ~O 30 3[ +0 1 
.29891[+01 
.29498[+01 
.29 124[ +0 1 
.2876 9[ +0 1 
.28431E+Ol 
.28110[+01 
.2780~[+Cl 

• 27515 [ +0 1 
.2123 9[ +0 1 
.2697 8[ +01 
.26729[+01 
.2&493[+01 
• 26 2& 6[ +0 1 
.26054[+01 
.2585C[+01 
.2565&[+01 
.25471[+01 
.25295[+01 
.25127E+Ol 
• ~4 9&&[ +0 1 
.24811[+01 
.24667[+01 
• 2452 7[ +0 1 
• 2439 4[ +01 
.24266E+Ol 
.24144E+Ol 
.24 OU[ +01 
.23915[+01 

80 
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Table C-3. Continued. 

EQUATION SET 13 
RESULTS OF ALGAL GROWTH 51 HUlATION 
NUMBER OF MINUTES IN A TIME STEP I S3 0 

TIME N X PERCENT to 
13.33 .311:!58E-05 .70563E+02 .23 808[ +01 
13.37 • ~3728E-05 .70869[+ 02 • 23706[ +0 1 
13.41 .17651[-05 .71164[+02 .23608[+01 
13 .46 .13114E-05 .714 49E+ 02 .23513[+01 
13.50 .97:!20E-06 .71724 E+02 .23 1t2 3[ +0 1 
13 .54 .72141E-06 .71990E+02 .23336[+01 
13.58 .53418E-06 .72248E+02 .23253£+01 
13.62 .39512E-06 .72496E+02 .23 17 4[ +0 1 
13 .66 .i9197E-06 .72736 E+ 02 .23097[+01 
13 .71 • H 5.5 3E -06 .72968[+02 .23 e24[ +01 
13 .75 • 15896[ -06 .73192E+02 • 22953E +0 1 
13.79 • 11712[-Of .73,*09E+02 • 22 88 ~E +0 1 
13 .83 .86223[-07 .7 3619E+ 02 .22820£+01 
13 .87 • 63420E-0 7 .73821E+02 .22758E+Ol 
13 .91 .46610E-07 .74016[+ 02 .22698[+01 
13 .96 .34228[-07 .74205[+02 .22 640E +0 1 
14.00 • c5115E-07 .7,*388E+02 .22584E+Ol 
14.04 .18415[-07 .74564 E+ 02 .22531E+Ol 
14.08 .13493E-07 .74735E+02 .22lt80E+Ol 
14.12 • 9879 ~[-08 .74899 E+ 02 .22430E+Ol 
14.16 .72287[-08 .75058[+02 .22383E+Ol 
14.21 .5285 7E-0 8 .75212E+02 .2233 7E +0 1 
14.25 .38626[-08 .75361E+02 .22293E+Ol 
14.29 .28209E-08 .75504 [+ 02 .22250[+01 
14.33 • ,0 589E -0 8 .7 56lt3[+ 02 .22210[+01 
14.37 • 15019E -0 8 .75777E+02 • 22170E +01 
14.41 .10950[-08 .75907E+02 • 22132[ +0 1 
14.46 .79 791E -0 9 .76032£+02 .22096E+Ol 
14.50 • 58113[ -0 9 .76153E+02 .22 061E +01 
14.54 • 42:!0 3E-0 9 .762 70E+ 02 • 22027E +0 1 
14.58 .30780E-09 .76383£+ 02 • 21994E +0 1 
14.62 .22 :!85E-09 .76492[+02 .21963£ +0 1 
14.66 .1627 2[ -0 9 .76597E+02 • 21933E +01 
14 .71 • 1182 t.E -0 9 .76699[+ 02 • 21 904[ +0 1 
14.75 .85880E-I0 .76798E+02 .21876E+Ol 
14.79 .62351E-I0 .76893£+ 02 .21849£+01 
14.83 .45251E-I0 .76985 E+ 02 .21822E+Ol 
14.87 .32e28E-I0 .77074 E+02 .21797E+Ol 
14 .91 .23807E-I0 .77160[+02 .2177 3[ +01 
14.96 .17259E-I0 .772lt3E+ 02 .21750E+Ol 
15.00 .12508E-I0 .77323E+02 .21727[+01 
15.04 • SOH6E-ll .77400£+02 .21705[+01 
15.08 .65628E-l1 .77475£+02 .21684E+Ol 
15.12 .47516E-ll .77547E+02 .21664£+01 
15.16 .34392[-11 .77617£+02 .2164~[+01 

15.21 .24886E-ll .77685 E+ 02 .21626E+Ol 
15.25 • 18002[-11 .77750[+02 .21608[+01 
15.29 .13019[-11 .77813 [+ 02 .2159 O[ +0 1 
15.33 • S4132E-12 .77874E+02 .21573E+Ol 
15.37 .68042E-12 .77933E+02 .21557£ +01 
15.41 .49171[-12 .77990E+02 .21541[+01 
15.46 .35526E-12 .78045 E+ 02 .21526E+Ol 
15.50 .25662E-12 .78098[+02 .21511E+Ol 
15.54 .18532[-12 .78149E+02 .21497(+01 



Table C-3. Continued. 

EQUATION SET n 
RESULTS CF ALGAL GROWn SIMULATION 
NUMBER OF MINUTES IN A TIME STEP ISH 

TIME 
15.58 
15.62 
15.66 
15.71 
15.75 
15.79 
15.83 
15.87 
15.91 
15.96 
16.00 
16.04 
16.0B 
16.12 
16.16 
16.21 
16.25 
16.29 
16.33 
16.37 
16.41 
16.46 
16.50 
16.54 
16.5B 
16.62 
16.6 Ii 
16.71 
16.75 
16.79 
16.83 
16.87 
16.91 
16.96 
17 .00 
17 .04 
17 .08 
17 .12 
17.16 
17 .21 
17 .25 
17 .29 
17.33 
17.37 
17.41 
17.46 
17 .50 
17 .54 
17.58 
17.62 
17.66 
17 .71 
17 .75 
17.79 

N 
.13!81E-12 
.96591E-13 
.69713E-13 
.56478[+00 
.47 922[ +00 
.40 629[ +00 
.34435E+00 
.2917 4E +00 
.24709[+00 
• 20920[ +00 
.17 706[ +00 
.14980[+00 
.12 670E +00 
.10712[+00 
.90535E-Ol 
.76491E-Ol 
• 64E03[ -01 
.5454~E-Ol 
.460HE-Ol 
.38838[-01 
• 32756E-0 1 
• (7616E-Ol 
• 23275E-Ol 
.19609[-01 
.16514[-01 
.13876[-01 
.11610[-01 
.96740[-02 
.80291[-02 
• 66 ~8 3E-02 
.54679[-02 
.60220[+00 
.54~79[+00 

.4895 2E +00 
• 43917E+00 
.39259E+00 
.34962[+00 
• 31012E +00 
.H397E+00 
• ::410 2E +00 
· a 11 4E+00 
.18416E+00 
.15993[+00 
• 13 629[ +00 
.1190 5[ +00 
.10205[+00 
• 87098E-0 1 
• 74021[ -0 1 
.62643[-01 
.52795[-01 
.44!15[-01 
.37048[-01 
.30853[-01 
• ::5 596[ -0 1 

X 
.78199E+02 
.78247 E+ 02 
.78293£+ 02 
.3 9292E+ 02 
.39580[+02 
.39662E+02 
.39745 E+ 02 
.39628 E+ 02 
.39911 E+ 02 
.39994E+02 
.40077E+02 
.40161E+02 
.4 02 ~5E+02 
.40329E+02 
.40413E+02 
.40497E+02 
.40582E+02 
.40666E+02 
.40751 E+ 02 
.408 36E+ 02 
.40921 E+ 02 
.41006E+02 
.41092E+02 
.41178E+02 
.41264E+02 
.42293[+02 
.4329lE+02 
.44259E+02 
.45197E+02 
.46106E+02 
.46986E+02 
.24134E+02 
.24850E+02 
.25632E+02 
.264 7lE+ 02 
.27360E+02 
.28289E+02 
.29254 E+ 02 
.30246E+02 
.31260E+02 
.32289[+02 
.33330[+02 
.34376 E+ 02 
.35424 E+02 
.36469 E+ 02 
.37508E+02 
.38537£+ 02 
.39553E+02 
.40555[+02 
.415 4lE+ 02 
.42507[+02 
.43454 [+ 02 
.44379E+02 
.45282[+02 

PERCENT N 
.21484[+01 
.211!71E+Ol 
.21458[+01 
.24566[+01 
.2654 8E +01 
• 28332[ +0 1 
.2983 2E +0 1 
.31090[+01 
• 32 144E +01 
• JJ 02 SE +0 1 
• 33158E +0 1 
.34 30rE +0 1 
.34869E+Ol 
• ~5 ;:82E +0 1 
.35619E+Ol 
.35892[+01 
• 3611 OE +0 1 
.36282[+01 
.36415[+01 
.36516[+01 
.36589[+01 
.36638[+01 
• 3666 7E +0 1 
• 36680E+Ol 
.36679E+Ol 
.35848E+Ol 
.35014E+Ol 
• ~4 351[ +0 1 
.33 674E +0 1 
• 31 04 OE +0 1 
• ~2 44 6E +0 1 
• 3844 3E +0 1 
.39 686E +0 1 
• 40593E +0 1 
.41208E+Ol 
.41513E+Ol 
.41725EtOI 
.41700E+Ol 
• 41527Et() 1 
.41234E+Ol 
• 40845 E +0 1 
.40319E+Ol 
• 39855E +0 1 
• 3928 7[ +01 
.38689[+01 
• 38 e11E +0 1 
.31442E+Ol 
.36810E+Ol 
• 36 181[ +0 1 
.35560E+Ol 
.34 'ISlE +0 1 
.34357[+01 
.33780[+01 
.3322 3[ +0 1 
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Table C-3. Continued. 

EQUATION SET .3 
RESULTS cr ALGAL GROWTH SIMULATION 
NUMBER Of MINUTES IN A TIME STEP 1530 

TIME 
17 .83 
17 .87 
17 .91 
17 .9& 
18.00 
18.04 
18.08 
18.12 
16.16 
18.21 
18.25 
18.29 
18.33 
18.37 
18.41 
18.46 
18.50 
18.54 
16.5 S 
18.62 
18.66 
18.71 
18.75 
18.79 
ta.S3 
18.87 
18.91 
18.96 
19.00 
19.04 
19.08 
19.12 
19.16 
19.21 
19.25 
19.29 

N 
· a 156E-0 1 
.17423E-Ol 
.14298[-01 
• 1169IjE-01 
• S5 :19E -02 
.77446E-02 
.62728[-02 
.50653E-02 
.40782E·02 
.32741E-02 
• ,621 ~E-02 
• ;:0931E-02 
.1667 O[ -02 
• 1324IjE-0 2 
.10496E-02 
.82987[-03 
.6546 7[ -03 
.51 '533[-03 
.40479[-03 
•. 31732E-03 
• ;:4825[-03 
• 19 ~85E-03 
.15109E-03 
.11755[-03 
.91~03[-04 

.70796[-04 

.54807E-04 

.42 !61jE -04 

.32696[-04 
• ,5198[-04 
.19 :392[-04 
• 1490 4[ -0 4 
.11439[-04 
.8769 OE-O 5 
.67139[-05 
• 51 ~4 3[-05 

X 
.4&163E+02 
.47020E+02 
.47854 E+ 02 
.48665[+02 
.49452 E+ 02 
.50215E+02 
.50956[+02 
.51673E+02 
.52366[+02 
.53041[+ 02 
.53693[+02 
.54324[+02 
.54934 [+ 02 
.55524 [+02 
.56095 [+ 02 
.56646 E+ 02 
.57180[+02 
.57696[+02 
.5tH 94 E+02 
.58677[+02 
.59142E+02 
.59593[+ 02 
.6002SE+02 
.60446[+02 
.60655 E+ 02 
.61246[+02 
.61627E+02 
.61994 [+ 02 
.62349[+02 
.62691[+02 
.63022[+02 
.63342[+02 
.63651 (+02 
.63950[+02 
.64238E+02 
.64517[+ 02 

PERCENT N 
.32685[+Cl 
• !2 16 9[ to 1 
• H673E +01 
• 31199E +01 
.30747E+Ol 
• 30 U5E +0 1 
.2990 3E +0 1 
.29511E+Ol 
.29138E+Ol 
• 28 784[ +0 1 
.281j46E+Ol 
.28126[+01 
• 27 621[ +0 1 
.2753 2[ +0 1 
.27 257E +0 1 
.26 995[ to 1 
.26 74H +0 1 
.26 509[ +0 1 
.26 284E+C 1 
.26 C7 OE +0 1 
• 2586 6E +0 1 
.25671[+01 
.25 486[ +0 1 
.25309[+01 
.2514 OE +01 
• 24979E+0 1 
.241326[+01 
.24679[+01 
.24 5H[ +0 1 
• 241j0 'S[ +0 1 
.24 271E +0 1 
.24154E+Cl 
.24C37[+OI 
.23925E+Ol 
.23818[+01 
• 23715[ +C 1 
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Table C-4. Simulation of dilutions of experiment #2, transition point modified to 3.0 percent. (See 
Figures 19 - 21.) 

OESERVED EXPERMENTAL DATA 
ME AN VAL UE S or RUN 3 

T IKE 
(DAYS) 
0.93 
1.50 
2.00 
3.05 
4.03 
5.01 

11.04 

DRY 
liT. 

( MG/L ) 
3.13 
9.17 

23.40 
'7.33 
58.20 
69.27 
19.00 

MEAN TEHP=21t.9 
HE AN P" 7.1 

CELLULAR 
N 

(HG/L) 
0.19 
0.69 
1.26 
1.51 
1.56 
1.51 
1.68 

EX TE ~NAL 

" (HG/L) 
1.38 
0.88 
0.31 
0.00 
0.01 

-0.00 
-0.11 

RANGE 22.0 TO 26.0 
RANGE 6.9 10 8.5 
feTAL NITROGEN= 1.51 

00 
~ 



Table C-4. Continued. 

DN/OT=-G*N*X OX/OT=U*(PERN-NMIN,*X 
N=EXTRACELLUlAR NITROGEN (MG/L) 
X:ALGAl 8IOMASS AS DRY lIT. ("GIl) 
"ERII=PERCE NT "IT ROGE N=NT OT-N )IX 

EQU n ION SET t3 
OILUT ION ROUTINE (OPTIONAL) 
N=O(1)"N+DUD X=Dcn"l(+OC4) 
CH. '=OC 9) 

NMI"=MINIMUM PERCENT NITROGEN FOA POSIHVE GROWTH 
NTOT=TOTAL IUTROGEN ("GIl> C(l)=G C(Z)=U C(6)=NTOT e(1)-NMIN 

C( U= .100E+00 e (2~)= • 39 OE +00 CUI: 
DEF IN IT ION OF C ONST ANTS 

.50 OE -Ole,,): .38 OE +01 C (5)= O. 
o EFtN lTIO N OF a lLur ION CONS TA NT S 

TlIIE CF DILUTION= 0.00 

C(6)- • 151E +0 1 C (1)- • 21lE +0 1 

OU)= 0.000 O(l): 0.0 co 0(3)= 0.000 0,.)= 0.000 D(5)= 0.000 D(6)= 0.000 0(1)= 0.000 0(8): 0.000 0(9)= 0.000 

00 
V1 



Table C-4. Continued. 

£QUA TI ON SET n 
R£SULTS Of ALGAL GROWTH SIMULATION 
NUMBER or MINUT£S IN A TIME STEP IS30 

TlM£ 
0.93 
0.99 
1.03 
1.08 
1.12 
1.16 
1.20 
1.24 
1.28 
1.33 
1.37 
1.41 
1.45 
1.49 
1.53 
1.58 
1.62 
1.66 
1.70 
1.74 
1.78 
1.81 
1.87 
1.91 
1.95 
1.99 
2.03 
2.08 
2.12 
2.16 
2.20 
2.24 
2.28 
2.33 
2.37 
2.41 
2.45 
2.49 
2.53 
2.58 
2.62 
2.66 
2.70 
2.74 
2.78 
Z .83 
2.87 
2.91 
2.95 
2.99 
3.03 
3.08 
1.12 
3.16 

N 
.13841£ +0 1 
.13655£+01 
.13460E+Ol 
.13255£+01 
• 130.J8£+01 
.12809£+01 
.12561£+01 
.12312£+01 
.1204U+Ol 
• 11161E+Ol 
.1146 4E +0 1 
.11153£+01 
.10827£+01 
.10488£+01 
.10134E+Ol 
.91680£+00 
• 93894E+00 
.89996£+00 
•. 85999E+00 
.81911E+00 
.77767E+00 
.73568E+00 
.69339£+00 
.65104£ +00 
.60883£+00 
.56101£ +00 
.52581£+00 
.48545£+00 
.44611£ +00 
.40818£+00 
.37165£ +00 
.33671£+00 
.30367£ +00 
.27248£+00 
.24327£ +00 
.21611£+00 
.19103£+00 
.16800£+00 
.14702£ +00 
.12802£+00 
.11092£+00 
.95645£-01 
.82074£ --0 1 
.10095£-01 
.59586£-01 
.50421£-01 
.42415£-01 
• 3562 5£ --0 1 
.29751£--01 
.24143£--01 
.20 494E *01 
.16907£-01 
.13895£-01 
.11376£-01 

X 
.31333£+01 
.33395£+01 
.35691 £+01 
.• 38229£+01 
.41019£+01 
.44072£+01 
.47397£+01 
.51007£+01 
.54913£+01 
.59128£+01 
.63664£+01 
.68532£+01 
.13746E+Ol 
.19315£+01 
.85250£+01 
.91560E+Ol 
.98253£+01 
.10533£+02 
.11281£+02 
.12061£+02 
.12893£+02 
.13758£+02 
.14661£+02 
.15601£+02 
.16571£+02 
.17588£+02 
.18630£+02 
.19103£+02 
.20803E+02 
.Z1928E+02 
.23014(+02 
.24239£+02 
.25419E+02 
.26610£+02 
.27810£+02 
.29014£+02 
.30219(+02 
.3 U 22 £+ 02 
.32620£+02 
.33809£+02 
.34981£+02 
.36151E+02 
.31299 £+02 
.38428£+02 
.39538£+02 
.40625E+ 02 
.41690£+02 
.42731E+02 
.43746£+02 
.44736£+02 
.45700E+02 
.466 38E+ 02 
.41550£+02 
.48435£+02 

P£RC£NT N 
.59H9E+Ol 
.61224£ +01 
.62750£ +01 
.63961£ +01 
.64899£+01 
.65600£ +01 
.66096£+01 
.66415£ +01 
.66582£+01 
.66616£+01 
.66534£+01 
.66349£ +0 1 
.66 074E +0 1 
• 65117E +01 
.65286£ +01 
.64789£ +01 
.64229£+01 
.63 612£ +01 
.62941£ +01 
.62220£+01 
• 6145!E +01 
.60 642E +01 
.59791£ +01 
.58903£ +0 1 
.57981£ +0 1 
.57028£ +01 
.56048£+01 
.55045£+01 
.54 OUE +01 
.52984£ +01 
.51935£ +01 
.50818£ +01 
.49818£ +01 
.48 760£ +01 
.41107£ +01 
.46663£ +01 
.45632£+01 
.44 618£ +0 1 
.43 623£ +01 
.42651£+01 
.41703£+01 
.40183£+01 
.39892£ +01 
.39031£+01 
.38202£+01 
.31405£+01 
.36640£+01 
.35908£ +0 1 
.35209£+01 
.34541£+01 
.33 906£ +01 
• 33 301E +01 
.32126E+OI 
.32 180E +01 
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Table C-4. Continued. 

EQUATION SET IJ 
RESULTS or AlGAL GRONTH SIMULA nON 
NUMBER OF MINUTES IN A TIME STEP I S30 

TIME N X PERCENT N 
3.20 .92/J07E-02 .49294E+02 • 31661E +01 
3.24 .75444E-02 .50127E+02 • 31170E +0 1 
3.28 .61121E-02 .50935E+02 .30704E+Ol 
3.33 • 49353E -02 .51717E+02 .30262E+Ol 
3.31 .39723E-02 .52475 E+ 02 .2984 3E +0 1 
3.41 • 31873E-02 .5320U+02 .2944 7E +0 1 
3.45 .25497E-02 .53918 E+02 .29071E+Ol 
3.49 .2033aE-02 .54605E+02 • 28715E+Ol 
3.53 • 16177E-02 .55270E+02 .28377E+Ol 
3.58 .12832E-02 .55913E+02 .2805 7E +01 
3.62 .10152E-02 ~56534E+02 .27 753E +0 1 
3.66 .80114E-03 .57135E+02 .27465E+Ol 
3.70 .63066£ -03 .57716002 .27191E+Ol 
3.74 .49528E-03 .58278E+02 .26 9HE +01 
3.78 .38806E-03 .58821E+02 • 26655E+0 1 
3.83 .30338E-03 .59346E+02 • 26.50E+Ol 
3.87 .23667E-03 .59853E+02 • 26227E +01 
3.91 • 184Z4E-03 .60343E+02 .26015E+Ol 
3.95 .14314[-03 .60817E+02 • 25813E +01 
3.99 .11100E-03 .61275E+02 .25620E+Ol 
4.03 .85907E-04 .61717E+02 .25437E+Ol 
4.0/J .66369E-0. .62145E+02 .25 262E +01 
4.12 • 51184E-04 .62558 E+02 .25096E+Ol 
4.16 • 39.0 7E -04 .62958E+02 .24937E+Ol 
4.20 .30290E-04 .63343[+02 .24 785E +0 1 
'4.2. .23246E-04 .63716E+02 .2464 OE +0 1 
4.28 .17 8l2E-04 .64077E+02 .24502E+Ol 
4.33 • 13629E-04 .64425E+02 .24369E+Ol 
4.37 .10413E-04 .64761E+02 .2424 3E +01 
4.41 • 79451E -05 .65086[+02 .24122E+Ol 
4.45 .60540E-05 .65401E+02 • 24006E +01 
4.49 .46071E-05 .657 0It E+ 02 .23895E+Ol 
4.53 • 35016E-05 .65998E+02 .23789E+Ol 
4.58 • 26582E-05 .66281E+02 .23687E+Ol 
4.62 .20156E-05 .66555E+02 .23589E+Ol 
4.66 .15266£ -05 .66820E+02 • 23496E +01 
4.70 • 11550E"05 .67075E+02 .23 406E +01 
4.7. .87298E-06 .67323E+02 • 23321E +01 
4.78 .65912E-06 .6756lE+02 • 23238E +01 
4.83 .49717E-06 .67792E+02 .23 159E +01 
4.87 .37466E-06 .68015E+02 .23 083E +01 
4.91 .28208E"06 .68231E+02 .230IOE+Ol 
4.95 .21219E-06 .68439E+02 .22 940E +01 
4.99 • 159U[-06 .68640E+02 • 22873E+Ol 
5.03 .11976£-06 .68834E+02 • 22/J08E +0 1 
5.08 .89866E-07 .69022[+02 .22 746[ +01 
5.12 • 67.38 IE -0 7 .69204E+02 • 22687E +01 
5.16 .50484E"07 .69379E+02 .22629E+Ol 
5.20 • 37798E-07 .69549[+02 .22514E+Ol 
5.24 .28279E-07 .69712E+02 .22521E+Ol 
5.28 • 21llt4E -0 7 .69871E+02 • 22470E +0 1 
5.33 • 15799E-07 .70024[+02 • 22421E +01 
5.37 • 11797E-07 .70171£+02 .22 374E +01 
5.41 .88039E-08 .70314E+02 .22 328E +01 
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Table C-4. .Continued. 

EQUATION SET '3 
RESULTS Of ALGAL GROWfH SIMUU flON 
NUMBER OF' MINUTES IN A lIME STEP I S30 

TIME N II PERC£NT N 
5.45 .65663£ -08 .70452£+02 .22 285E +0 1 
5.49 .48946E-08 .70585E+02 .22ZH£+01 
5.53 .36465E-08 .1D714 £+OZ .2ZZ0Z£+01 
5.58 • Z7153£-08 .10839£+02 • 22163E +01 
5.6Z .20208E-08 .10959£+OZ .22125£+01 
5.66 .15032£ -08 .11015 E+02 • ZZ089£+01 
5.10 • 11117E-08 .11188h02 • ZZ 054£ +0 1 
5.14 .8306ZE-09 • 71Z96E+ 02 • ZZOZl£ +01 
5.78 .61702£-09 .1140lE;+02 .Z1988£+01 
5.83 .45815E-09 .1150Z£+02 .21951£ +0 1 

! . 5.81 .34005£ -09 .11600£"OZ • Z19Z1£ .01 
5.91 .. 25229£"09 .71695£"02 .21898£ "01 
5.95 .18111E-09 .11186£+02 .21870£ +01 
5.99 • 13811E-09 ;.71875E"02 • 211144E+Ol 
6.03 .10Z80E"09 .11960E .. 02 .21818£ +01 
6.08 .76155£ -10 .72043[+02 .21 7UE +01 
6.12 .56399£-10 .7212Z£+OZ • 21769E +01 
6.16 .41754£-10 .7Z199£"02 • Z1745£+01 
6.Z0 .3090ZE-l0 .72274£+02 .21123£ +01 
6.24 .2Z864£-10 .72346£ .. 02 • Z170 1£ +01 
6.Z8 .IUllE -10 .72415£+02 .21681£ +01 
6.33 .12505E"10 .7 Zlt8Z£+OZ • Z1660£ +01 
6.31 • 9Z44 3E -11 .7Z547E+02 • ZI641£+0 1 
6.41 .68320E-11 .7Z610E+02 • 2162Z£ +0 1 
6.45 .50478£ -II .7Z671£+02 • Z1604E +01 
6.49 • 37Z87E-ll .721 Z9E+02 • Z1587£ +01 
6.53 .21536E-11 .7Z786£ .. 02 • ZIS70E +0 1 
6.58 .20331£-1l .7 Z840E"02 • 21554E"01 
6.62 .15007£-11 .7Z893[+02 • ZI538E +0 1 
6.66 .11016£ -ll .72944£+02 .21523£ "01 
6.70 .817Z1£-IZ .1Z994£+02 .21509£+01 
6.14 • 60Z85E-12 .13041[+OZ • Z1495E +01 

r 6.78 .44464£-IZ .73087£+OZ .ZI481E+Ol 
6.83 • U788£ -12 .7313ZE"OZ • 21468E +01 
6.87 .24174£-IZ .73175E+OZ • Z1455E +01 
6.91 • 17820E-12 .71216E .. OZ .2144 3E +0 1 
6.95 • 13134E-IZ .73256E"OZ • 2143ZE +0 1 
6.99 .96783£-13 .73295E+OZ • Z1420E +01 
7.03 • 71309E -13 .733 33£+02 • Z1409E +0 1 
7.08 .52531E-13 • 73l69E+OZ • Z1399E +0 1 
1.1Z .38693£-13 .73404£+OZ • Z1388£ +01 
7.16 .28496E-13 .73438E+OZ .Z1319£+01 
7.Z0 .Z0983E-13 • 73470£+OZ • ZI369£ +01 
1.Z4 • 15U9£-13 .7350ZE+OZ • Z1360£ +01 
7.Z8 .11373£-13 .73533hOZ • Z1351E +01 
7.33 .83713E-1'I .7356Z£+02 • Z13U£ +01 
7.37 .61611E-1'I .73591E+02 • ZI334E +01 
7.U .45339£-14 .73618E+OZ • Z1326E +01 
7.45 • 33361E-H .73645E+OZ • 21319E+0 1 
1 .It 9 • Zlt 5UE -1 It .73670E+OZ • Z1311E +0 1 
7.53 • 18057E-14 .73695£+OZ • Z1 30 ltE +0 1 
7.58 .1$282E-14 .73719£+OZ • ZI Z9 7E +0 1 
7.62 .97691£-15 .7.J7UE+OZ • Z1290E+Ol 
7.66 ;. 71U6E-15 .73765£+OZ • ZI Z84E +01 
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Table C-4. Continued. 

EQUA TION SET '3 
RESULTS OF' ALGAL GROWTH SIMULATION 
NUMBER OF' MINUTES IN A lIME STEFl 1530 

TIME N • PERCENT N 
1.10 • 52834E-l t; .13181£*02 .21218E+Ol 
1.14 .38849E-15 .13808H02 • 21212E +01 
1.18 .28563£ -15 .13828E+02 • 21266E +01 
1.83 .20999E-15 .138UE+02 .21260E+Ol 
1.81 • 15437E-15 .13866E+02 • 21255[ +0 1 
1.91 • 11341E -15 .13884E+02 • 21249E +01 
1.95 .83404E-16 .13902E+02 • 212.,.E +01 
1.99 • 61298E -16 .13919E+02 .21239£ +0 1 
8.03 .45049£-16 .13936E+02 .21235E+Ol 
8.08 .33104E-16 .13951E+02 • Z1230E +01 
8.12 .24 325E -16 .13961[+02 • 21226E +01 
8.16 • 11813E-16 .73982E+02 • 21221E +0 1 
8.20 • U132E -16 .13996E+02 .21211£ +01 
8.24 .96 411E-l i ~14010E+02 • 21213E +01 
8.28 .10815E-11 .14023£*02 .21210E+Ol 
8.33 .52065E -17 .14036E+02 .21 206E +0 1 
8.31 .38244E-17 .74049E+02 • 21202E +01 
8.41 • 28091E-17 .14061002 .21 199E +0 1 
8.45 .20632[-11 .14013E+02 .21195E+Ol 
8.49 • 1515lE-11 .14084E+02 .21192£ +0 1 
8 .. 53 .11129[-11 .14095E+02 • 2t 18fE +01 
8.58 .81728[-18 .14105E+02 • 21186E +01 
8.62 .60016E-18 .14116E+02 .21183E+Ol 
8.66 .44011E-18 .14125E+02 • 21180E +01 
8.10 .32 361E-18 .14135E+02 .2t H8E +01 
8.14 .23161E-18 .14144E+02 .21115E+Ol 
8.18 • l1U6E-18 .14153£+02 • 2t 112E +0 1 
8.63 • 12809[ -18 .14162E+02 .21110£+01 
8.81 .94041E-19 .14110E+02 .21168E+Ol 
8.91 • 69041E-19 .14118E+02 .21 165E +01 
8.95 .50685E-19 .14186E+02 • 21163E +01 
8.99 • U208E -19 .1UnE+02 • 21161E +0 1 
9.03 .21314[-19 .14200E+02 • 21159[ +01 
9.08 .20050E-19 .74207[+02 .21157[+01 
9.12 • 14118E-19 .74214 [+ 02 .21155E+Ol 
9.16 .1080lE-19 .14221E+02 .2115 3E +0 1 
9.20 .1929 4E -20 .14221E+02 .21151E+Ol 
9.24 .58200£-20 .142 33[+02 .21150E+Ol 
9.28 • 42111E -20 .14239E+02 • 21148E +01 
9.33 .31352E-20 .14245E+02 .21146E+Ol 
9.37 .21010E-20 .14250E+02 • 21145E +01 
9.41 .16881E-20 .14255E+02 .2114 3E +01 
9.45 • 12394E-20 .14260E+02 • 21142E +0 1 
9.49 .90954E*21 .74265E+02 .21140E+Ol 
9.53 .66748E-21 .74210E+02 • 2t 139E +01 
9.58 .48983£-21 .14215E+02 .21138[+01 
9.62 .35946£-21 .1lt219[+02 .21136[+01 
9.66 .26318[-21 .14284[+02 .21135[+01 
9.70 • 19356E-21 .14288E+02 • 21134[ +01 
9.14 .14204E-21 .7,.292[+02 .21 133E +01 
9.18 .10422[ *2 1 .14296E+02 • 21132E +0 1 
9.83 .16411£-22 .14300[+02 • 21131E +0 1 
9.81 .56116E*22 .14303E+02 .21130[+01 
9.91 .41115£"22 .14301E+02 • 21129[ +01 



Table C-4. Continued. 

EQUATION SET n 
RE SU LT S OF AlGAL GROWT H SINU LA n ON 
NUMBER OF MINUTES IN A JIME STEP ISlO 

TIME 
9.95 
9.99 

10.03 
10.08 
10.12 
10.16 
10.20 
10.2. 
10.28 
10.B 
10.37 
10.H 
10 •• 5 
10.49 
10.53 
10.58 
10.62 
10.66 
10.10 
10." 
10.18 
10.83 
10.81 
10.91 
10.95 
10.19 
11.03 
11.08 

N 
.30212[-22 
.22168[-22 
• 16265E -22 
.11934E-22 
.81 558E-23 
.64241£-23 
• .'132[-23 
.34580E-23 
• 25310[-23 
• 1861lE-23 
• 13656E-23 
.10018£-23 
.11499E-U 
.53921E-24 
.39558[-U 
.290Z1[-2. 
• 21Z90[-U 
• 1561S[ -2. 
.11458[-H 
.8U5.E-Z5 
.61661E-25 
• .5ZHE -25 
.33183E-25 
.2H.2E-25 
• 11857E-25 
.13099[-25 
.96089[-26 
.70U7E-26 

)I 

.74310E+OZ 

.74313E+02 

.H317E+02 

.74320E+OZ 

.743ZlE+02 
.143Z5[+OZ 
.743Z8E+02 
• 74331E+ 02 
.74333(+OZ 
.14336E+OZ 
.74338[+OZ 
.741UE+OZ 
.74343[+02 
.74345E+OZ 
.74347E+02 
.14349E+OZ 
.74351E+OZ 
.H353E+OZ 
.14355[+02 
.74351E+OZ 
.74358E+OZ 
.74360E+OZ 
.7436ZE+OZ 
.74363E+02 
.74165E+02 
.14366[+02 
.14368E+02 
.74369E+02 

PERCENT N 
.21128E+Ol 
• 21127E +01 
• 211Z6E +01 
• 211Z5E +01 
.211Z4E+Ol 
• 211Z 3E +01 
.21123E +01 
.21122E+Ol 
.ZI121E+Ol 
.21120[+01 
• 21120E +0 1 
.21119[+01 
• Zl118[ +0 1 
• Zl 118[+01 
• 21117E +01 
• 21117E +0 1 
.21116E+Ol 
• 21115E+Ol 
.21115£+01 
• ZllHE +01 
• 21114E +01 
• 21113E +01 
.21113[+01 
.21113E+Ol 
.21112E+Ol 
• 21112E +0 1 
• Zl11lE +0 1 
.21111E+Ol 
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