

Carbon Nanotube Flat Plate Blackbody Calibrator

Sandra Collins, John Fleming, Beth Kelsic, David Osterman, Bevin Staple

> CalCon August 23, 2016

Outline

- InVEST CIRiS project
- Overview of the CNT flat plate blackbody calibrator
- Results
 - Environmental
 - Ambient breadboard tests

Compact Infrared Radiometer in Space (CIRiS) to Validate CNT Blackbody

- ESTO InVEST-15 (In-space Validation of Earth Science Technologies) program to validate microbolometer detector arrays and CNT blackbodies
- BESST (Ball Experimental Sea Surface Temperature) airborne LWIR three channel radiometer modified for a CubeSat
- Program began in January, 2016

CIRiS Blackbody Based on Laboratory Breadboard

General Requirements for the CIRiS calibrator

Performance Metric	Flat Plate CNT BB Requirements
Spectral Range	9 – 14 µm
Temperature Range	270 – 330 K
Emissivity	>0.995
Weight (kg)	< 1
Time to change temperature	2 K/min (heating)
Time to stabilize	Seconds
Uniformity at 350K	230 mK
Temperature accuracy	200 mK

Breadboard calibrator Carbon Nanotube surface **PRT** cables Heater cables

Carbon Nanotubes are Unique from all other Forms of Carbon

- Vertically Aligned Carbon Nanotubes (VACNTs) are hollow cylinders of sp2 bonded carbon
- 10s of nm diameter, 100s of µm length,
 >10¹⁰ CNTs/cm2 density

Vertically aligned CNTs (VACNTs)

Optimal Substrate and Growth Parameters Determined

Emissivity of CNT Samples Verified by NIST

- Highly emissive and Lambertian surface in the IR
- NIST measurement uncertainty ±10⁻⁴

Emissivity and BRDF comparable to cavity blackbodies

No Visual Change or Measurable BRDF change after Thermal Cycling Demonstrates Survivability

Ball

Vibration Testing Shows Almost No Particulates

- Results from all CNT vibration tests < Level 300
 - Tested CNTs from multiple vendors
- All particulates found are counted even though they are not all CNTs
- Vibration in 2 axes at 14.1 Grms (GEVS) and 43.8 Grms
- Typical particle counts for Martin Black > Level 300
- Typical particle counts for Ball IR Black (JWST) = Level 300

No Change in Visible Reflectance Due to Radiation Exposure

 Exposure equivalent to 5 years in a 700 km sun-synchronous orbit with 5 mils aluminum equivalent shielding

Ral

Breadboard CNT Blackbody Tested From 297 K to 350 K in Ambient Laboratory Environment

CNTs Are an Enabling Technology

- CNT blackbodies are highly emissive and Lambertian
- Survive relevant environments (thermal, vibration and radiation)
- Breadboard calibrator performance demonstrated
- Thermal vacuum tests are ongoing
- CNT blackbodies are an integral part of the INVEST CIRiS project

Thanks to a LARGE Cast of Characters

Bevan Staple Tim Valle Matt Gross **Beth Kelsic** Lindon Lewis Carol Dunn Keith Spargo **Kevin Weed** David Osterman Kim Kish Valaree VanDyken **Diane Fear** Richard Jetley Neil Doughty

John Fleming Laura Coyle Zongying Wei Ray Rehberg Glenn Taudien **Jerry Valentine Robert Johansson** Jordan Marks Holden Chase Allan Sword Paul Hauser **Richard Gonzales** Nathan Meister Aaron Seltzer

Joe Sprengard and Jae Hak Kim at General Nano

The Contributors Include

- Ball Internal Research and Development
- General Nano
- JPL SBIR sponsorship
- Nanolab
- NASA Earth Science Technology Office (ESTO) InVEST-15
- NIST Physical Measurement Laboratory
- NASA GSFC
 - JWST BIRB particle data

