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THE DYNAMIC STRUCTURE OF OPTIMAL TAX UNDER 

ENVIRONMENTAL POLLUTION 

Dug Man Lee and Kenneth S. Lyon 

ABSTRACT 

111 

In this paper, we present a nomenewable resource model including 

environmental pollution stock as a state variable to analyze the dynamic structure 

of an optimal tax. Based on the optimality conditions of our model, we showed 

that the optimal time path of the shadow cost of environmental pollution stock is 

the same as that of the costate variable of environmental pollution stock. We 

derived this statement by applying the Continuous Dependence on Initial 

Conditions Theorem (Coddington, E.A. & N. Levinston 1984, pp. 22-27) to the 

optimal control problem. Thus, this result provides a theoretical basis to 

determine the magnitude of optimal tax to be imposed over time. In addition, we 

observed the characteristics of two costate variables included in our model. We 

identified that the costate variable for resource stock is decomposed between the 

scarcity 3effect and the cost effect. On the other hand, the costate variable for 

environmental pollution stock is solely due to the disutility effect. 

JEL classification: Q30 

Key words: nomenewable resource, environmental pollution stock, costate 

variables 



THE DYNAMIC STRUCTURE OF OPTIMAL TAX UNDER 

ENVIRONMENTAL POLLUTION 

Introduction 

There are few subjects in economics that have been discussed as extensively as 

the problem of environmental pollution. Following Pigou ' s initial insight on this subject 

(1932), a numerous of studies have been undertaken to design environmental pol icies 

for pollution abatement. In a static model analysis, it has been significantly suggested 

that if a regulatory agency imposes the value of marginal social damage incurred by 

environmental pollution as a Pigouvian tax, then the Pareto optimality in a society 

would be attained (Baumol 1972, Baumol and Oates 1988). In this analysis, the value of 

marginal social damage is denoted as the sum of the value of marginal disutility of 

consumers and the marginal cost of firms with respect to the increment of 

environmental pollution. On the other hand, as concerns about the spillover effect of 

pollution in economic growth process have increased (Mishan, 1969, IPee 1990) two 

approaches have been directed to observe the side effect of pollution on the optimal 

endogenous variables in the model. One approach has modified the optimal growth 

model to reflect environmental pollution (Forster 1973, Gruver 1976, Nordhaus 1993, 

Selden and Song 1995) and the other one has changed the nonrenewable resource model 

to include environmental pollution stock as a state variable (Forster 1984, Kolstad and 

Toman 2001). 

The main result of the modified optimal growth model is that the rate of both 

the optimal consumption and capital at stationary state are lower than when 
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environmental pollution is not considered (Forster 1973, Selden and Song 1995). A 

modified nonrenewable resource model has shown that the optimal extraction of 

resource is slowed in responding to the accumulation of pollution stock (Forster 1984, 

Kolstad and Toman 2001). Similar to the suggestion in a static model analysis, dynamic 

analyses considering environmental pollution have also proposed that levying the 

shadow cost of environmental pollution stock as an optimal tax reduces the rate of 

consumption of goods and extraction of resource stock over time; thereby, slowing the 

accumulation of environmental pollution in the" future (Nordhaus 1993, Kolstad and 

Toman, 2001). To support this proposition, we showed that the shadow cost of 

environmental pollution stock at time t is equal to the costate variable for environmental 

pollution stock at that time. We did this by applying the Continuous Dependence on 

Initial Conditions Theorem (Coddington, E.A. and N. Levinston 1984, pp 22-27) to the 

optimal control problem. Thus, if we identify the optimal time path of the shadow cost 

of environmental pollution stock, then we can elicit the appropriate information about 

the magnitude of optimal tax. For this purpose, below we first present a simple 

nonrenewable resource model with environmental pollution stock. Second, we discuss 

the characteristics of the costate variables for both resource stock and environmental 

pollution stock, which are included in the model. 

Nonrenewable Resource Model with Pollution Stock 
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The objective of this problem is to maximize the discounted present value of 

the net surplus stream subject to two constraints. These constraints are the laws of 

motion for both nonrenewable resource stock and the environmental pollution stock. 

The instantaneous utility function is assumed to be twice continuously differentiable, to 

increase at a decreasing rate with extraction of nonrenewable resource, x , and to 

decrease at an increasing rate with the environmental pollution stock, p. This properties 

implies that U c > 0, U cc < 0, and up> 0, u pp < 0. In addition, we assume that the cross 

partial derivative of the resource stock and environmental pollution stock is zero, 

i.e. uxp = 0. The extraction cost function is written as c(x(t), z(t» where z(t) is the 

nonrenewable resource stock. We assume that extraction costs are increasing at an 

increasing rate with the rate of extraction, c x > 0, c xx > 0, and are increasing as the 

nonrenewable resource stock decreases, Cz < o. Following the tradition of Forster 

(1984) and Kolstad and Toman (2001), the dynamic optimization problem is to 

maximize3 

T 

(1) W = fe-PI {u(x(t),p(t»- c(x(t),z(t»}dt + e-PTS(p(T» 
o 

subject to 

3 In Forster (1984), he maximized the objective function under given T instead of considering it as 

control parameter. In addition, he did not consider the terminal (scrap) value of environmental pollution 



dz(t) = _ x(t) 
dt 

dp(t) = _ fJ p(t) + (J" x(t) 
dt 

z(o) = ZO given, p(O) = pO given 

x(t), z(t), p(t) > 0 

4 

In the law of motion for the stock of environmental pollution, the first term on the right-

hand side denotes the natural rate of dissipation and decomposition of the existing 

environmental pollution stock and the second term indicates that the generation of new 

pollution is proportional to the extraction of the nonrenewable resource. Thus, 

fJ and (J" are parameters with given values. p is the rate of time preference, and S( ) is 

the terminal (scrap) value function at time T. The present value Hamiltonian with two 

state variables is 

(2) H = e-pl {u(x(t), pet)) - c(x(t), z(t))} + A) (t){-x(t)} + ,.1,2 (t){-fJ pet) + (J" x(t)} 

where A) (t) and ,.1,2 (t) are the present value costate variables for nonrenewable resource 

stock and environmental pollution stock, respectively. We use the optimality theorem 

for the Hestenes Bolza problem as stated in Long and Vousden (1977, pp 11-34) in 

Theorem 1. In the terminology of this theorem, we have three control parameters. They 

are T , the stopping time for extractions, z(T) , the nonrenewable resource stock at that 

time, and p(T) , the environmental pollution stock at that time, In addition, we have a 

stock in his model. 



control variable, x(t). The present value necessary conditions for the optimality of 

Equation (1) are 

dA~ (t) pi • • 
-d - = e- c~(x (t),z (t)) 

t -

dA; (t) • pi • • -;;t = f3 A 2(t) - e- up (x (t), p (t)) 

dz· (t) = _ x· (t) 
dt 

dfl· (t) • • 
_:t-'_ = -f3 p (t)+a x (t) 

dt 

z(O) = zo, p(O) = po 

And the present value transversality conditions are 

A; (T · ) = e-rT
• S· (p(T·)) 

e-pT {u(x· (T·), p. (T·)) - c(x - (T·), z - (T-))} - A; (T-)x· (T·) 

+ A; (T·){-f3 p. (T-) + a x· (T·)) = 0 

where asterisk (*) denotes the optimum .. Let us define current value costate 

variables, If/i (t) ,as If/i (t) = epl Ai (t) (i = 1, 2). Then, the current value necessary 

conditions are 

5 
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dlf/; (t) • •• 
-'-- = P If/I (t) + Cz (x (t), z (t)) 

dt 
(4) 

(5) 
dlf/; (t) • •• 

dt = (P+!3)1f/2(t)-U P (X (t),p (t)) 

(6) dz· (t) = _ x· (t) 
dt 

(7) 
dr> * (t) • • 
_1:'_ = -!3 p (t) + a x (t) 

dt 

(8) z(O) = zo, p(O) = po 

And the current value transversality conditions are 

(9) If/; (T·) ~ 0, If/; (T·)z· (T·) = 0 

(10) 1f/;(T*)=S'(p(T*)) 

(11) u(x * (T·), p * (T·)) - c(x· (T·), z· (T·)) -If/; (T·)x· (T·) 

As a marginal arbitrage equation, Equation (3) proposes that the marginal net surplus 

(benefit) of resource extraction is equal to the shadow value of resource stock adjusted 

to account for the shadow cost of additional pollution stock. The part of this sum on the 

right-hand side of Equation (3) exists because the marginal unit of the resource has 

value in other time periods, and the second part exists because the marginal unit of 

extraction causes pollution. In both cases the marginal units are valued at the value of a 

unit of the stock. This proposition implies that the optimal rate of resource extraction is 

lower due to the negative external effect of increasing the stock of environmental 
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pollution than when the externality is ignored. This slows the accumulation of 

environmental pollution. Equation (4) shows the dynamic equation of the shadow value 

of resource stock, and is consistent with the Hotelling's rule (1931). Equations (3) to (5) 

give the information about how both economics and environmental pollution are 

interrelated in determining the optimal time path of endogenous variables in the model. 

Based on current value necessary as well as transversality conditions stated above, we 

begin to examine the characteristics of costate variables included in this model4
• 

The Characteristics of Costate Variables 

We first discuss the role of the optimal current value of costate variable for the 

resource stock, If/; (t) . The primary role of the shadow value of resource stock is to 

ration the use of the resource stock between time periods. It does this by insuring that at 

the margin the resource has the same discounted value in each time period. In addition, 

as can be seen in Equation (9), at the optimal stopping time, T* , either the resource 

stock is exhausted or the terminal shadow value is zero. At the terminal time, as shown 

below the shadow value is due solely to a scarcity effect; therefore, if the resource stock 

is not exhausted, it is not scarce and it's scarcity value is zero. The resource stock will 

not be exhausted if extraction cost rise to a sufficiently high level relative to demand. 

4 Lyon (1999) analyzed the costate variables for nonrenewable and renewable resource stock in separated 

models, respectively. Our model is a good example to illustrate the characteristics of costate variables for 

both nonrenewable and renewable resource stock at once. 
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The optimal stopping time will be reached when the marginal net surplus (benefit) of 

last time period is zero. This is the result of Equation (11). 

The differential equation (4) with terminal value, If/; (T*) , has the solution (See 

Appendix A for derivation). 

T" 

(13) If/ ; (t) = e -peT -I ) If/ ; (T * ) - J e -p( S-I) C z (x * (s ), z * (s)) ds 

This equation shows the shadow value of the resource stock at time t, and it implies the 

current value rate of change in the solution value of Equation (1) per unit change in 

resource stock in time t. From time zero this can be stated as 8W* = If/; (0), where 
8zo 

W* is the optimal solution of Equation (1). The shadow value of resource stock can be 

decomposed into two parts such as 

-peT -I ) * (T*) e If/2 , as the Scarcity Effect 

T' 

and - Je-P(S-')cz(x*(s),z*(s))ds as the Cost Effect 

As discussed above, if the resource stock is not exhausted there exists no scarcity effect, 

or a scarcity can occur only if the resource stock is exhausted. For the cost effect, the 

cost effect approaches zero as t approaches the optimal stopping time, T* and in addition, 

ifcz = 0 for all z, the cost effect is zero. Thus, the scarcity effect at time t shows simply 

the terminal scarcity value discounted to the current time t, and the cost effect is the 

present val ue of the cost saving associated with the marginal unit of resource stock. 
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Suppose we were to inject an epsilon unit of resource into the resource stock at time t. 

This will affect the marginal unit all along the optimal path, starting at time t. In doing 

so it affects the extraction cost all along the path from time t on. The cost effect is the 

present value of these cost savings, as of time t. For the case where the resource stock is 

exhausted and C z < 0, the shadow value contains the cost savings associated with the 

marginal unit and the present value of the scarcity effect of that unit. However, if the 

resource stock is not exhausted but optimal extractions take place over a positive time 

period, then the shadow value is due solely to the cost savings. At the other extreme, if 

Cz = 0, then the shadow value is due strictly to scarcity. For the case wherecz < 0 and 

the extractions are stopped before the resource stock is exhausted, the extraction cost 

simply become too high to warrant further extractions. In this case, it is not the scarcity 

that rations the extractions of the resource, but it is the extraction cost for further 

depletion. 

Second, we discuss the costate variable for the stock of environmental 

pollution. To gain information about '1/; (t), we examine Equation (5). This differential 

equation with the terminal value, '1/; (Tt) = S· (p(Tt)) , has the solution (See Appendix 

B for derivation). 

r* 
(14) 'I/;(t) = e-(P+P)(T*-/)'I/;(Tt ) + fe-(p+P)Sup(xt(s),pt(s)) ds 

The optimal current value costate variable, '1/; (t), gives the time path of the shadow 
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cost of the environmental pollution stock. The costate variable for the stock of 

environmental pollution, If/ ~ (t) , is the current value of the change of the solution of 

Equation (1) per unit change in environmental pollution stock at time t. For time zero, 

this can be stated as 8Wo• = If/ ~ (0) 5. Below, we derive this statement. To do this 
8p 

rigorously, let us define p. (t) = ¢/ (t, pO) be the optimal time path of p given the initial 

condition is pO. With this we can write the optimal solution of Equation (1) as 

r' 
(15) W· (po) = fe-pi {u(x· (t),~f (t, pO)) - c(x· (t), z· (t)} dt + e-pr' S(¢· (T·, pO) 

° 
Differentiation Equation (14) with respect to pO yields 

(16) 

We use Continuous Dependence on Initial Conditions Theorem (CDICT) to get the 

information about¢·o(t,po). Write Equation (7) as 
p 

ti1'';;I) = )'(1,1"(1)) with p. (0) = pO 

By CDICT, ¢* 0 (t, pO) satisfies the initial value problem 
p 

(17) 

5 This is the common statement that the costate variable is the shadow value of the state variable. 



11 

This initial condition,~* () (O,po) = 1, exists so that p*(O) = ~*(O,po)will change at the 
p 

same rate as pO, keeping p * (0) = pO. To gain some feel for this equation, note that a 

solution of Equation (7),~*(t,po), means 

o¢/ ~;pO) = f(t,tP' (t,po)) 

Hence, 

a(a~* / at) = I" (;/,*( o));/,* ( 0) 
~~o~ Jp' t,'P t,p 'P 0 t,p 

ap P 

and by Young's Theorem, 

a(a~· / at) a~;o 
apo -----at 

Combining these yields Equation (17) 

From Equation (5), f· (t,p*(t)) = -/3, 
P 

Thus 

(18) 

The solution of this initial value problem is 

(19) ;/,* ( 0) _ -PI 
'P o t,p -e 

P 

Inserting Equation (10), and (19) into the right-hand side of Equation (16), and 

simplifying yields 



8W* * 
--0 = 1j/2 (0) . 
8p 

This result shows that the costate variable for environmental pollution stock is the 

present value of cost stream of the marginal unit of environmental pollution stock. If 

there is private ownership of the exhaustible resource and the sellers are price takers, 

12 

then the value of the resource will be competed into the market price of x; hence we can 

generate the equality in Equation (3) by imposing an optimal tax of G'1j/; (t) per unit of 

x . If this resource is fossil fuels then the tax results in reduced the rate of fossil fuel 

extraction and thereby a reduction in the accumulation of environmental pollution. 

In addition, we can separate the shadow cost of environmental pollution stock 

into two components according to Equation (14): 

e -(p+{J)(r· -I ) Ij/; (T*) as the Undesirable Plenty Effect 

r· 

and fe-(p+{J)Sup(x*(s),p*(s)) ds as the Disutility Effect 

The undesirable plenty effect is simply that the terminal value of environmental 

pollution stock discounted to the current time t , and the disutility effect shows the 

present value of the increment of disutility associated with the marginal unit of 

environmental pollution stock increase. If we investigate this variable furthermore, 

however, we identify that there are not two effects, but only one effect. They are both 

the present value of the disutility effect. If the optimal stopping time comes from the 
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nonrenewable resource and nonrenewable resource is only the source of environmental 

pollution, the stock of environmental pollution will not be accumulated any more after 

the optimal stopping time, and it will gradually disappear. Consequently, the stock of 

environmental pollution is negligible when the time is extremely larger than the optimal 

stopping time. In this sense, the terminal value of environmental pollution stock is 

co 

(20) If/;(T*) = fe-CP+P)Sup(O,p*(s)) ds 
T' 

which is the disutility effect. Hence, in this case the undesirable effect is the disutility 

effect. As a result, we conclude that the costate variable for the stock of environmental 

pollution is solely due to the disutility effect. This is the difference from the costate 

variable for resource, which is decomposed between the scarcity effect and the cost 

effect. 

Summary 

We presented a nonrenewable resource model including environmental 

pollution as a state variable. Based on the optimality conditions of our model, we have 

shown that the optimal time path of the shadow value of environmental pollution stock 

is the same as that of the costate variable for environmental pollution stock. Thus, if a 

regulatory agency imposes some portion of the costate variable for environmental 

pollution stock as optimal tax over time, it will reduce the rate of resource extraction, 

and thereby slow the accumulation of environmental pollution. In addition, we have 
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discussed the characteristics of costate variables for both resource stock and 

environmental pollution stock included in our model. We observed that the costate 

variable for resource stock is decomposed between the scarcity effect and the cost effect. 

On the other hand, we have shown that the costate variable for the stock of 

environmental pollution is solely due to the disutility effect. 

REFERENCES 

Baumol, W.J. , 1972, On Taxation and the Control of Externalities, American Economic 

Review, Vol 62(3), pp 307-22. 

Baumol, W.J. and W.E. Oates, 1988, The Theory of Environmental Policy, second ed., 

Cambridge Univ. Press, Cambridge, England, pp 36-56. 

Conddington, E.A. and N. Levinson, 1985, Theory of Ordinary Differential Equations, 

Robert E. Krieger Publishing Co., Malabar, Fla. , pp 22-7. 

Forster, B.A., 1973, Optimal Capital Accumulation in a Polluted Envionment, Southern 

Economic Journal, pp 534-47. 

Forster, B.A., 1980, Optimal Energy Use in a Polluted Environment, Journal of 

Environmental Economics and Management, 7, pp 321-33. 

Gruver, G.W., 1976, Optimal Investment in Pollution Control Capital in a Neoclassical 

Growth Context, Journal of Environmental Economics and Management, 3, pp 165-77. 

Kolstad, C.D, and M. Toman, 2001 , The Economics of Climate Policy, Resource for the 



15 
Future, Discussion Paper 00-22, Washington, D.C. pp 263-86 

Long, N.V. and N. Vousden, 1977, Optimal Control Theorems, in: J.D. Pitchford and SJ. 

Turnovsky, eds, Application of Control Theory to Economic Analysis, North Holland, 

Amsterdam, Netherland, pp 11-34. 

Lyon, Kenneth S., 1999, The Costate Variable in Natural Resource Optimal Control 

Problems, Natural Resource Modeling, Vol. 12, Num. 4, pp 413-426. 

Mishan, EJ., 1969, The Costs of Economic Growth, Staples Press, London, England. 

Nordhaus, W., 1993, Optimal Greenhouse-Gas Reductions and Tax Policy in the 

"DICE" Model, American Economic Review, Vol. 83, Issue 2, pp 313-317. 

Selden, T.M. and D.Song, 1995, Neoclassical Growth, the J curve for Abatement, and 

the Inverted U Curve for Pollution, Journal of Environmental Economics and 

Managemnet, 29, pp 162-168. 

APPENDIX A 

The proof of Equation (13) 

The Equation (4) is 

dV; (t) • •• -'--- = P VI (t) + c~ (x (t), z (t)) 
dt ~ 

with V; (T*) given by current value transversality condition. This can be arranged into 

dV\* (t) • *. ---PVI(t)=Cz(x (t),z (t)) 
dt 

which is a linear first order differential equation with a variable term. Then, the general 
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solution of this differential equation can be written 

'1/; (t) = ePI (A + fe -PI Cz (x * (t) , z * (t))) dt 

where A is the constant of integration. 

Let us define 

Thus, Equation (A -1 ) can be written 

'1/; (t) = e P1 (A + F(t)) 

Thus, 

Therefore, 

T· 

'I/ ; (t) =e-P(T· -I)'I/;(T*)- fe-P(.H)cz(X*(s),z*(s)) ds 
I 

APPENDIXB 

The proof of Equation (14) 

The Equation (5) is 

d'l/; (t) * * * 
dt = (p + fJ) '1/2 (t) - Up (x (t), p (t)) 
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with If/; (T · ) given by current value transversality condition. This can be arranged into 

which is a linear first order differential equation with a variable coefficient and a 

variable term. Then, the general solution of this differential equation can be written 

where A is the constant of integration. 

Let us define 

Thus, Equation (B -1 ) can be written 

If/; (t) = e(p+{3)1 (A + G(t)) 

and If/; (T·) = e(p+{3)T" (A + G(t)) 

Thus, 

Therefore, 

T" 

If/;(t) = e-(P+{3)(T"-/)If/;(T*)- fe-P( .H)Up(X*(s),p*(s)) ds 
I 
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