CHARACTERIZING DEEP CONVECTIVE CLOUDS (DCC) AS AN INVARIANT CALIBRATION TARGET

David Doelling¹, Conor Haney², Rajendra Bhatt² and Benjamin Scarino²

¹NASA-Langley, ²SSAI

CALCON Technical Meeting 2016 Logan, Utah, August 22-25, 2016

DCC as Earth Invariant Targets

- DCC are bright tropical at tropopause level clouds offering the brightest Earth invariant targets
 - Found over all GEO and LEO satellite domains
 - Optically thick clouds found over both land and water with no surface radiation contribution at cloud top
 - Easily identifiable using an IR window channel temperatures threshold, good visible and IR co-registration required
 - DCC are dynamic targets and occur ~0.5% over the tropics, unlike desert targets, good navigation is not required.
- Small spectral band adjustments to account for spectral band differences
 - Little water vapor and atmospheric absorption above the tropopause
 - DCC are spectrally flat for wavelengths less than 1 μ m
- DCC calibration is a large ensemble statistical approach
 - Near Lambertian solar diffusers
 - Slight regional (land/ocean), diurnal, seasonal and inter-annual DCC reflectance variations

DCC Invariant target methodology (stability monitoring)

- Identify monthly all DCC pixels over the GEO domain
 - Assume that the GEO and MODIS window channel IR temperatures are stable
 - Use an IR and visible spatial homogeneity thresholds to capture the core rather than the anvil
- Convert the DCC radiance to an overhead sun radiance using a DCC BRDF model
- Apply a spectral band adjustment factor (SBAF) to the Aqua-MODIS sensor radiance to convert the radiance to an equivalent GEO sensor radiance using SCIAMACHY hyper-spectral radiances.
 - $-\,$ very small adjustment for DCC <1 μm
- Histogram all of the pixel level DCC overhead sun radiances and determine the PDF mode radiance.
- Monitor the drift of the monthly GEO PDF mode radiances, which represents the visible degradation of the sensor

DCC identification

• Between 40k and 250K GOES-12 pixels are identified monthly

GOES-12 (0.65µm) DCC monthly PDFs

Monthly PDFS

 Monthly PDF modes and means show a decrease, which indicates that GOES-12 is degrading over time

Monthly PDF modes and means

VIIRS I1 (0.65µm) DCC mode radiances

The VIIRS I1 NASA LandPeate calibrated radiances appear stable over time
The PDF mode has a smaller standard error than the mean in this case

DCC Invariant target methodology (absolute calibration)

- Assume that the GEO (monitored) sensor and Aqua-MODIS (reference calibration) sensor have the same DCC PDF mode radiance
 - Both MODIS and GEO observe the same DCC over the GEO domain at the time of the Aqua-MODIS overpass
 - Bu using the same local time period and GEO domain, reduces the calibration transfer uncertainty due to the slight regional and diurnal DCC reflectance variations
 - This method does not need any contemporary Aqua-MODIS observations making it possible to calibrate historical GEOs referenced to the MODIS calibration, by assuming small inter-annual DCC reflectance variations
- Validate with GEO/Aqua-MODIS ray-matched calibration
 - Ray-match over both all-sky tropical ocean and DCC cores.
 - Consistency among all independent methods validates all methods

All-sky Tropical Ocean Ray-match Calibration

- Grid MODIS and GEO pixel-level radiances into 0.5° latitude by 0.5° longitude grid over the GEO domain
 - If within 15 minutes
- Gradual Angular Match (GAM) the MODIS and GEO radiance pairs, begin with 5° view and azimuthal angle differences for clear-sky conditions and gradually increase the tolerance to 15° for bright clouds
 - Clear-sky is more anisotropic and requires strict angle matching, whereas bright clouds are more Lambertian and can allow for more tolerant angle matching
 - Most of the sampling is over clear-sky, least over bright clouds
- Apply an SCIAMACHY hyper-spectral based spectral band adjustment factor (SBAF) to account for spectral band difference
- Apply a visible spatial Homogeneity Filter (HF) to account for missnavigation, parallax error, and time induced radiance field mismatch errors due to advection

Doelling et al. 2016, submitted

All-sky Tropical Ocean Ray-match calibration

Red line = linear regression through the space clamp offset (force fit) Black line = linear regression

Under perfect ray-matching conditions, the force fit and the linear regression should be equal

• Lax angular matching and not accounting for spectral band differences, introduces a bias = 2.6%

All-sky Tropical Ocean Ray-match calibration

Satellite		GOES-13	GOES-15	Met-7	Met-9	MTSAT-2
Linear – Space	Ed3	6.4	4.6	1.2	2.7	-2.6
Offset (counts)	add GAM	4.1	4.4	1.1	2.8	-4.3
	add SBAF	1.5	1.4	-0.1	1.1	-0.9
	add HF (Ed4)	1.4	1.1	0.0	1.1	-0.3
Linear - Force	Ed3	4.2	3.0	2.0	1.0	-0.6
Fit Gain (%)	add GAM	1.6	1.7	1.1	0.5	-1.3
	add SBAF	0.4	0.4	-0.5	0.5	-0.5
	add HF (Ed4)	0.3	0.0	-0.4	0.2	-0.4

• GAM+SBAF+HF, the force fit and linear regression gains are within 0.4% (No GAM, no SBAF, no HF 4.2%)

• The GAM+SBAF+HF, the linear fit and the space clamp offset are within 1.4 counts (No GAM, no SBAF, no HF 6.4 counts)

• In order to get calibration coefficients within 1%, precise angle matching and spectral band adjustment factors must be taken into account.

DCC ray-match calibration

• Find DCC core centers by finding the coldest pixel temperature and averaging all pixel visible radiances within either a 10-km or 30-km diameter core in the MODIS image

The mean core temperature < 220K

- Use MODIS DCC core center locations to compute the the corresponding GEO radiance mean
 - The scattering angle must be within 15°
 - GEO must be within 15 minutes of MODIS
- Apply an SCIAMACHY hyper-spectral based spectral band adjustment factor (SBAF) to account for spectral band difference
 - Same as the the DCC invariant target calibration

Doelling et al. 2016, submitted

MTSAT-2, July 20, 2011, 2:32 GMT, 1-km visible image

• The cyan lines indicate a 1° latitude by 1° longitude grid

Ray-matched monthly force fit regression pairs for DCC and ATO methods

MTSAT-2/Aqua-MODIS, Jan. 2013

- Most of DCC radiance pairs fall along the force fit line
- Both the 30-km and 10-km DCC core diameters force fit gains are very consistent

Comparison of Met-10 VIS/NIR calibration methods

- Validate that the Aqua-MODIS DCC mode radiance equals the Meteosat-10 DCC mode radiance over the Met-10 domain
 - thereby validating that the DCC mode algorithm properly transferred the calibration reference
- All calibration methods are within 0.4%, DCC RM and mode within 0.2%

ATO: All-Sky Ocean Ray Matching DCC (RM): DCC ray-matching Libya-4: Based on Met-9 Libya-4 model DCC (Mode): DCC mode radiance method (GSICS)

Doelling et al. 2016, in preparation

Comparison of all-sky tropical ocean ray-matching, DCC ray-matching and DCC invariant target approaches

• All DCC calibration methods are within 0.3%

DCC mode absolute calibration verification

- Use both MODIS B1, VIIRS M5, and VIIRS I1 as calibration references
- Does the DCC mode radiance ratio of the calibration references equal the all-sky and DCC ray-matching ratios?
- Do each of the calibration references show the same GEO domain/global DCC mode ratio?

MODIS and VIIRS DCC mode radiance comparison

MODIS/VIIRS band ratio comparisons

%	MODIS- VIIRS M5	MODIS- VIIRS 11
DCC mode	-0.7 ± 0.5	1.3 ± 0.4
DCC RM	-1.3 ± 0.5	0.9 ± 0.5
All-sky Ocean RM	-1.0 ± 0.3	1.1 ± 0.3

• The DCC mode radiance and RM are consistent within 0.6%

-Need to get more DCC ray-matched data

- The DCC mode radiance and all-sky RM are consistent within 0.3%

• This allows the DCC mode to transfer the reference calibration (~0.5%) to other sensors and need not be contemporary and can be applied historically

MODIS and VIIRS DCC mode radiance GEO domain differences

%	MODIS B1	VIIRS I1	VIIRS M5
Global	464.4	458.5	467.7
GOES-W 135°W	$+0.5\pm1.1$	$+0.1\pm1.0$	-0.1 ± 1.0
GOES-E 75°W	$+0.4\pm0.5$	$+0.1\pm0.6$	$+0.1\pm0.5$
Met-100°E	$+0.6\pm0.7$	$+0.6\pm0.8$	$+0.6\pm0.7$
Met-7 60°E	$+0.1\pm0.9$	-0.0 ± 1.2	$+0.1\pm0.9$
FY2E 86°E	-0.6 ± 0.8	-0.3 ± 0.8	-0.3 ± 0.7
MTSAT-2	-0.6 ± 0.8	-0.3 ± 1.0	-0.4 ± 1.0

1 • The GEO domain minus the global DCC mode radiance is consistent within 0.3% between MODIS B1, VIIRS I1, and VIIRS M5, except for GOES-W
• This allows the DCC mode to transfer the reference calibration to other sensors and need not be contemporary and can be applied historically

Conclusions

- DCC invariant target calibration has been extensively used to verify satellite sensor stabilities
 - DCC provide the greatest Earth target signal to noise ratio and the with the least water vapor absorption, that behave as near Lambertian solar diffusers
- DCC invariant target calibration can also successfully transfer the calibration of one sensor to another sensor
 - This assumes that both sensors have the same DCC PDF mode radiance over the same local time and spatial domain
 - Does not require coincident or ray-matched DCC
 - This allows the DCC invariant target calibration method to be applied to historical sensors
 - Assume small inter-annual variability
 - Similar to the deserts and polar ice approach