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This tutorial addresses the techniques used in 
the processing of cereal grains and cereal products 
for various aspects of transmission electron 
microscopy (TEM). While much of the information 
presented will deal specifically with TEM, many of 
the techniques could be adapted to other 
microscopic methods such as I ight and scanning 
electron microscopy. The specime n preparations for 
t hese various techniques so often closely parallel 
each other that one can utilize a si ngle tissue 
preparation for seve ral different 11icroscopic 
techniques. 

Not presented is a review of the history of 
ce r e a I structure, The reader is referred to the 
review by O'Brien ( 1983) for such inforu~ation. 

Indeed, much of this paper wi II deal wi th research 
presented foll owing the period I desi gnate as t he 
post-paraffin era . The paraffin era of I ight 
microscopy concluded with two beautifully conducted 
studies; the first a series of papers on maize 
(Wolf et al., 1952a. b , c, d) followed by a similar 
study o n the wheat caryopsis (Bradbury et al., 
1956a, b, c, d). These two studies, in my eyes, 
were the final word on cerea l structure unti I the 
adaptation of techniques for e l ec tron microscopy. 

This review wi II also not deal with 
generalized descriptions of microscopy techniques 
as they have been covered numerouS times in volumes 
such as: The Study of Plant Structure; Principles 
a nd Sel ec ted Methods by 0' Brien and McCully ( 1981); 
Botanical Histochemistry by Jensen (1962); 
Botanical Mi crotec hnique and Cytochemistry by 
Berlyn and Miksche ( 1976 ); Botanical Hi crotec hnique 
by Sass ( 1958 ); as well as nany other papers and 
books. 

Many of the comments and descriptions 
concerning the preparation of cereals for TEM have 
not yet been brought together in a volume and 
reflect answers to numerous questions received over 
the years. These include the whole range of 
procedures from fixation, dehydration, embedding, 
and sectioning, to understanding what the lini ­
tations are with the techniques used. Hopefully, 
the reader will find inforTIIAtion that will help in 
solving techni ca l problems associated with studying 
cereals, seeds, or ot her difficult-to-prepare 
samples. Little transmission electron microscopy 
has been published on cereal-based products such as 
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bread and crackers resulting in a Sllall data base 
of techniques for this area. 

Obtaining Saaples 

The way in whi c h samples are obtained can be 
extremely impurlanl and is often glossed over or 
totally ignored in materials and methods sections 
of papers. If the samples of grain are developing 
out in the field, they either need to be brought 
back into the laboratory for processing or 
initially processed in the field. Samples brought 
back to the laboratory for processing can not be 
expected to resemble the "field" condition if they 
are treated hars hly with excessive heat or cold. 
It is well known that both of these te•perature 
extremes affect the biochemical -raachinery of 
plants. Still, many samples are transported back 
to the laboratory close to freezing. Plants also 
can not be allowed to become dehydrated prior to 
preparation . The technique I prefer is to cut off 
the cereal head and 15 to 20 em of stem, place the 
cut end immediately into a flask of water and 
transport the sample back to the laboratory without 
exposure to tenperature extremes or wind . Once in 
tlle laboratory, individual caryopses be 
dissected froa the head and processed. 

I have found that developina; grains. 
especiall y the young stages, tend to be very 
susceptible to mechanical damage whi ch necessitates 
handling them very gently. Since entire caryopses 
are too large to fix whole, even at early stages ot 
development, they need to be cut into smaller 
pieces without causing damage. One method found to 
reduce damage is to place the grain on a piece of 
dental wax and use a clean, new, s harp stainless 
steel razor blade to slice the caryops is by drawing 
the blade in one direction while gently pressing 
down. This method has reduced mu c h of the damage 
caused by cutting . Even with gentle handling soae 
damage will occur and recognizing it is important 
to avoid reporUng artifacts (Figs. 1 and 2). The 
aleurone l ayer seems to be particularly susceptible 
to mechanical stress (Fig. 1), even at maturity 
(Bechtel and Poneranz, 1977; 1978c). 

The presence of waxy cuticles o n and in the 
caryopsis coats (Morrison, 1975; Bechtel and 
Pomeranz, 1977) makes it important to have two cut 
ends on each sample and to keep thickness of 
samples to 1 mm or less in order to allow fixative 
penetration. Sample thickness depends upon stage 
of development a nd size of the cells: the larger 
the cells the larger the blocks of tissue have to 
be. The larger block size can result in poor 
overa ll fixation quality, however. A certain 
amount of compromise has to be accepted. 

Si mi lar care nust also be taken when sampling 
grain products such as bread doughs and baked 
goods. While these systems are inanimate (except 
for the yeast in yeast- leavened products ), they are 
also quite dynamic and require careful handling to 
avoid mecha ni cal artifacts. Doughs in particular 
are susceptible to "relaxation" following optimal 
mixing, therefore, sampling must occur immediately 
after the mixer has stopped (Bechtel et al. 1978). 
Another problem o ne has to contend with involving 
bakery products is deformation of the product 
during sampling . Some problems just do not have 
any easy solutions ; one must make the best of a 
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difficult situation and keep these problems in 11ind 
when flaking interpretations. 

Fixation Procedures 

Fixation is the process of stabilizing the 
ce ll's structure and contents in as near a life­
like condition as possible, or in the case of grain 
products, in a condition close to the real state at 
the time of sampling. There are two aeneral 
classes of fixation techniques, che11ical and 
physical. Chemical fixatives can be further 
divided into coagulant and non-coagulant types 
based on their ability to coagulate albumin 
proteins. Very early in electron microscopy, it 
was found that the coagulant type fixatives were 
not applicable. The non-coagulant types have, 
therefore, been used nearly exclusively for 
electron microscopy, primarily because aany are 
able to cross-link various cellular components 
without large changes in cellular appearance. 
Cheaical Fixation 

Early studies on cereal ultrastructure relied 
on potassium permanganate (KMn04), osnium tetroxide 
(OsO~) and fornald e hyde by themselves or in various 
combinations. Buttrose (1960. 1963) used KMnO• or 
Os04 in buffered veronal-acetate to fix developing 
wheat endospern. MacLeod and coworkers ( 1964) used 
buffered KMn04 t o study the endospern of barley and 
Bromus. In a series of studies on wheat endospern, 
Morton and coworkers uti I ized various combinations 
of formaldehyde and KMn04. as well as Os04 and KMn04 
i ndividually (Morton and Raison, 1963; Horton et 
al., 1964; Jennings et at., 1963; Graham et al., 
1962). Rice endospern development was studied by 
Hoshikawa ( 1968; 1970) using only KHn04 as a 
fixative . 

Glutaraldehyde was introduced as a fixative by 
Sabatini et al., in 1963, and the quality of 
ce llular preservation improved dramati cal ly as its 
use spread in the study of cereal structure 
(O'Brie n, 1967; O'Brien and Thimann, 1967a, b; 
Jones, 1969a, b, c). The concentration of 
glutaraldehyde, the type of buffering system, 
length of fixati o n, temperature of fixatives and 
use of various additives are all variables that 
nmst be established for each system. There are no 
set rules as to which co11bination of fixatives and 
procedures are best. Generally, one wi II test a 
variety of fixati on scher~es and select the one that 
gives the best ove rall fixation quality (see 
Parker, 1980 as an example). Concentration of 

Figs. 1-5 . Fixation of cereal endosperm. 1. 
Aleurone region of 12 DAF (days after flowering) 
developing barley e ndosper11 showing daaage caused 
by cutting caryopsis during tissue preparation 
(arrows). 2. Probable 11echanical damaa:e in 12 DAF 
barley endosperm r evealed by broken tonoplast 
(arrow) and washed out cytoplasn ( 111 ). 3. Freeze 
fracture micrograph o f bread dough showing portion 
of yeast cell (Y), gluten strand (G), and starch 
granule (S). Note lack of ice crystal formation. 
4. Free ze -fracture o f freshly frozen 21 DAF wheat 
endosperm showing large ice crystals (I) that are 
located between ce ll wall (CW) and vacuole (V). 5. 
Freeze -substituti on of deve loping wheat endosperm 
showing freezing damage (arrows) in the cytoplas11 
and protein bodies (PB). 
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glutaraldehyde has varied froa lows of 2% (Cameron­
Hills a nd von Wettstein , 1980) and 2.5% (Briarty et 
al., 1979; Oparka a nd Harris , 1982) to a high of 6% 
(Swift and O'Bri e n, 1972; Hallam , 1972; Hallam e t 
al., 1972; 1973; Morr ison, 1975; Morrison et a l., 
1975; Cameron-Mills and von Wettstein , 1980) . 
Percentages o f glutaraldehyde that were in be twee n 
t hese va lues have also been co~monly used (Jacobsen 
et a l . , 1971; Parker and Hawes, 1982; Hinch11an, 
1972 ; Simmonds , 1972a; Barlow et al ., 1974; 
Parker, 1980; 1981b; 1982; Campbell et al., 1981; 
Morr ison and 0' Brien, 1976). Some investiaators 
have used combinations of glutaraldehyde a nd 
paraforraaldehyde after the Karnovsky ( 1965) aethod 
to improve fixative penetration of the caryopsis, 
especially in more mature staaes of development 
(Fi neran et al., 1982; Parker, 1980 ; 1981a; Bechtel 
and Pomeranz, 1977; 1978a; b; 1979; 1981; Bechtel 
a nd Juliano, 1980; Bechtel et al., 1982a; b; 
Bechtel and Gaines, 1982). The use of a third 
aldehyde (acrolein) added to the above fixation 
medium has also been tried (Buckhout et al ., 1981; 
Sraon, 1972 ). The quality o f fixation , i n IIY 
opinion, is not as good with the combination type 
fixat ives as with glutaraldehyde alone. When 
penetration of a mature caryopsis at 12% moisture 
is needed, the coab i nation type fixatives prov ide 
satisfac t o r y tissue pr eserva ti on that wou ld 
othe rwise not be obtainabl e with glutaraldehyde 
alone. A phosphate buffering system is 11oat 
common l y used , followed by cacodylate . Certain 
cytoc hemi cal procedures, pa r ticularly involving 
e nzyme locali zations , require specific bufferi ng 
systems to avoid i nterference. For example, 
localization of aci d phosphatase (Bechtel et a l., 
1990 ) requires the use o f sodium cacodylate buffer 
because phosphate buffer would cause heavy metal 
precipitation duri ng the procedure . 

Few studi es have been conducted on doughs and 
bread (Simmonds, 1972b; Khoo et a l., 1975; Bechtel 
eta}., 1978). Khoo et al. (1975 ) used a variety 
of fixative methods including OsO• vapor and 
acro lein vapo r f oll o wed by Os04 va po r . These two 
me thods were found to be unsatisfacto ry. Best 
results were obtained with 3% glutaralde hyde 
f o llowed by Os04 . Sinilar fixation procedures were 
empl oyed by Simmonds (1972b) and Bechte l et al. 
( 1978 ). 

Post-fixation i n 1-2% osmi u11 t e troxide in the 
sane buffer as the primary fixative is r outinely 
used to further s tabili ze and stain cellular 
comp onents . Nearly all cytochemical proce dures are 
interfered with by Os04 and pos t -fixation should be 
omi tted from these samples. A post-fixation 
procedure used in conjunction with high voltage 
e l ectron mi croscopy (HVEM) but used infrequently in 
the s tudy of cerea l s is fixation with an a ldehyde 
followed by a z inc iodide-osmium t et r oxide 
impregnation (Pa rker and Hawes, 1982). This method 
impregnates the double nembrane bounded organelles 
such as RER, Golgi bodies, mitochondria and nuclear 
membra nes with a n electron dense preci pitate . 
Examination of sections up to 1 pm thi c k in the 
lNEM allows stereo pairs to be taken and three ­
dimensional views of organelles established. 

As fixatives are extremely reactive chemicals, 
protective equi pment such as a fume hood , a:loves 
and protective g l asses must be use d . Many of the 
c he mica l s for mi croscopy are da nserous. As 11o re 
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studies are conducted on the toxicology of these 
chemicals. mi croscopists should keep up-to-date o n 
the r esults. A recent review covers the hazards of 
handling microscopy c hemical s ( Ellis, 1989 ). 
Physical Fixation 

Physical methods of fixation are Unite d to 
freezing the samples. Several differe nt methods 
are ava ilabl e to visualize the samples a ft er they 
have been frozen. One is to replace the wate r 
whil e the sampl e is still frozen using a process 
ca ll e d freeze-substitution. Another is to fracture 
the frozen sampl e a nd then make a replica of the 
fractured surface using the freeze-fracture, 
freeze-etch t echnique. Frozen sanp les can also be 
sec ti one d while in the froze n state and the froze n 
sections v i e wed. The fina l freezi ng 11ethod 
involves sublimation of i ce from the frozen sanple 
in order to render it dry. Only the freeze­
fracture, freeze-etch and freeze-substitution 
methods have been a pplied to t he study o f cereal 
caryopses to ny knowledge. Regardless of the 
technique, sanples are qui c kl y (snap ) frozen using 
a varie t y of methods to preserve the ce ll 
ultrastructure i n near 1i fe-1 ike conditions without 
detrimental ice damage. Some o f these met hods 
include: que nc hing <imme r sion in a varie ty of 
freezing fluid s s uch as propane or one o f the 
freo ns), fre ezing agains t a cold meta l bloc k, jet 
freezers whi c h utilize a high pressure jet o f 
f reezi ng fluid to freeze the sampl e, or high 
pressure fre ezing (Moor, 1987). Freeze-etc hing o f 
ungerminated a nd ge rminated barley aleurone cel ls 
was successfully conducte d (Butt rose, 1971), 
pr imari l y due to low wate r concentratio ns in the 
dormant o r near dorn.ant tissue. Simi lar success 
was obtained with ungeminated rice co leoptil e 
cells (Buttrose and Soe ffky , 1973 ). Fre tzdorff and 
coworkers ( 198 2; 1983) found that freeze-fracture 
cou ld be conducted o n bread dough samples without 
ice damage even though water conce ntrati on was 
about 65% (Fig. 3). When similar studies were 
conducted on developing wheat caryopses , howeve r, 
ice danage became a problem (Bec hte l and Barnett. 
1986a, b). Even samples that contai ned l ess than 
50% moisture exhibited ice crysta l damage (Fi g . 4). 
Apparently t he wate r is selectively segregated in 
the endosperm ce ll s so ce ll functions can be 
maintained even whil e the overall moisture content 
of t he car yopsis has dropped below 50%. This 
prese nte d the difficult proble11 o f trying to freeze 
a relatively large piece of endosperm tissue fast 
enough not to cause ice crysta l damage. A variety 
o f c ryoprotectants have been used, but glycerol 
worked well with wheat grains (Bechtel and Barnett. 
1986a). Freezing developing ce real s without 
cryoprotectanls has not produced ve r y promising 
results for either freeze-fracture ( Bec hte l and 
Barnett, 1986a , b ) or freeze-substitution 
(Unpublished results; Fig . 5) . Whichever s ystem is 
used , appropriate controls must be conducted to 
determine the effects of the cryoprotectant agent 
on cel lular ul trastruc ture. 

DehYdration 

Following c hemical fixation, sampl es are 
typica lly was he d in water or buffer to remove 
unreacted OsO~ and are dehydrated in a graded 
so l vent s ys t em that is conpat i ble with the 
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embedding medium. It the solvent is not 
compatible, then a transitional solvent must be 
used that is compatible with both the dehydration 
solvent and embedding medium. An example of this 
would be using propyl e ne oxide as the transition 
between ethanol and Epon 812. Che111ical fllethods of 
dehydration such as 2,2-dimethoxypropane can be 
useful in some situati ons. This chemical reacts 
with water to form acetone and methanol; once 
conversion of the water to organic solvents is 
complete, the mixture is replaced by acetone. The 
2 ,2-dimethoxypropane has not worked well for cereal 
grains in my hands, I believe primarily due to poor 
penetration. The importance of excellent 
dehydration techniques can not be overstated for 
ce real grains. I have found that it is poor 
dehydration that causes poor infiltration and 
polymerization of the embedding resin. Maturing 
ce real grains require additional time to complete 
dehydration in comparison to many other tissues. 
It may take as long as a day to fully dehydrate 
nearly mature samples. The tell-tale signs of poor 
dehydration are samples that are sticky or gummy on 
the bottom and/or have little embedding mediu11 
present in the interior of the block of tissue. 
Dehydration fluids that are typically used are 
acetone and ethanol. Acetone may act as a radical 
scavenger and can interfere with polymerization of 
some acrylic resins. Similarly, use of 2.2-
dimethoxypropane must be avoided when embedding in 
aery} ic resins. 

Fabedding Sa•ples 

Numerous resins for e lectron microscopy are on 
the market. They need to be selected on the basis 
of type of intonation sought and type of 
procedures to be conducted, as well as their 
compatibility with the system. For cereals, a low 
viscosity type resin is needed for routine work, 
such as Spurr ( 1969) resin or Effapoxy (Ernest F. 
Fullam, Inc.) or an ult ra -low viscosity formulation 
such as that used by Mascorro et al. (1976). Many 
of the epoxy resins such as Epon 812 (now replaced 
by resins such as Pol y/ Bed 812, LX-112, EMBed 812, 
Eponate 12, Epox 812) tend to be very viscous and 
do not penetrate well e nough to obtain satisfactory 
sections. Even with the lower viscosity resins, 
long infiltration times from 2 to 6 wks may be 
necessary to obtain satisfactory sections (Parker, 
1980). Several of the newer acrylic resins will 
probably be finding their way into cereal structure 
research. Once a freezing system free of ice 
artifacts has been worked out. the acrylic Lowicryl 
embedding kits such as K4M and HM20 wi II be very 
useful in low temperature studies. Similarly, the 
LR Gold and White resins should be tried. LR White 
has several advantages: it is low in viscosity, 
wi II accept samples froRI 70% ethanol, and can be 
heat cured. Aside from the advantages 1 isted above 
for LR White, both LR White and Gold consist of a 
single resin system and both be 
photopol yroerized. 

One aspect of embedding that has not received 
much attention in this country is the toxicity of 
the unpolymerized components as well as the 
polymerized resins. The toxicological properties 
of roost of the resins and resin components have not 
bee n studied in any great detail (see Ellis, 1989). 
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Great care should be used in their handling, 
especially when blocks are being cut with saws, 
files or grinders. Even polyme rized blocks contain 
unpol ymerized components. Fume hoods, gloves and 
dust masks must be used and the dust created picked 
up and disposed of Proper I y. One foreia:n coJtpany 
that markets Spurr resin I ists the resin components 
and the polymerized plastic as suspected 
carcinogenic compounds. Safety can not be over­
emphasized when using these chemicals. 

Sectionina 

Sectioning hard materials is probably the most 
difficult a nd frustrating experience one can 
encounter. There are several factors why cereals 
are so difficult to thin section. One is the grain 
density and large amount of material present. 
Mature ce r eals at 10-14% moisture are much more 
dense than l eaf or stem tissue at 70-90% moisture. 
A caryopsis also contains fewer air spaces into 
which the plastic has an opportunity to infiltrate. 
Cere a 1 s a 1 so tend to be very hard and some possess 
inorganic crystals in various portions of the 
grain. These fa c tors contribute to cutting down 
the amount of plastic that can be present in the 
tissue that acts as a support for sectioning. 
Coupl e this lack of plastic support with difficult­
to-section components such as starch and protein 
bodies and it is no wonder one has difficulty in 
obtaining thin sections. Fortunately, there are 
several partial solutions to this sectioning 
problem. Several have already been alluded to such 
as complete dehydration, long-term infiltration of 
plaslic, and the use of low viscosity resins. One 
sectioning technique that works for rice endosperm 
tissue involves sectioning for l o ng periods of time 
(30-60 min) at very slow speeds (0.2 lUll/sec; 
Bechte I and Pomeranz, 1978b). It seemed to take a 
long time for the block, knife. and microtome to 
equilibrale with eac h other in order for sections 
to be cul. Other suggestions include choosing 
small samples. trimming them so that plasti c 
completely surrou nds the tissue, and using low 
water l eve ls in the boat of the diamond knife. We 
have since found that sectioning quality can be 
improved if lhe sample block is re-embedded by 
first trimming, thick sectioning, and retrilllDing 
for thin sectioning. Then the block is placed in 
a Beem or gelatin capsule, fresh plastic poured 
around the block, the capsule placed in a vacuum 
desiccator, a vac uum drawn unti I bubbles stop 
emitting from the trimmed surface, and the capsule 
is then polymerized in the usual fashion. The 
reinfiltrated block is carefully retriramed 
following polymerization to 3void cutting into the 
tissue. Thin sections are cut from the new 
reinfiltrated block face. Hany quality sections 

be obtained in this manne r. 

Specialized Techniques 

Immunocytoche•istry 
Immunocytochemistry is a very powerful 

technique that can be applied to cereals for 
localizing proteins. Three methods are commonly 
used . The first is direct Iabell ing in which the 
specifi c pri mary antibodies are conplexed with 
collcddal gold. The labelled antibodies are then 
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iTITIUnospecifically bound toTEM thin sections. 
second 11ethod, indirect labelling, involves 
reacting primary antibodies with the thin sections 
and then localizing the bound antibodies with a 
colloida l gold-Protein A complex. The third 11ethod 
is also an indirect method and uses secondary 
antibodies made against the primary antibodies and 
is complexed with colloidal gold. 

There are a multitude of ways for conducting 
the technique and fine tuning the procedures can 
require considerable time. Almost every step of 
the speci men preparation can influence the results. 
The type of fixative used can block or alter the 
antigenic determinants so as not to be recognized 
by the antibody. Osraiun tetroxide should be 
avoided because of its interference, but, if it is 
used, a treatment with 3% hydrogen peroxide 
(Bechtel and Gaines, 1982) for 30 11in or 1% 
periodic acid for 10 nin (Parker, 1982) 11ay be 
helpful in removing the osmiufl. E•bedding resins 
can simi l ar ly prevent the procedure fro11 working 
properly. Spurr's resin has been shown to have a 
pronounced detrimental effect on the localization 
of anligens, whereas the acrylic resins appear to 
giye much more labelling (Craig and Goodchild, 
1982). Our work with wheat endospertl has revealed 
t hat immunocytochemistry can be highly varied and 
each antiserum should be tested separately (Figs. 
6-8). 

The procedure used in my laboratory for wheat 
e ndosperm sections is as follows: grids are first 
rinsed on a drop of distilled water for 10 nlin, 30 
min on sodium metaperiodate, 5 nin on distilled 
water, 15 min on 3% bovine serum albunin (BSA), 1. 5 
h on primary antibodies (dilution varied from 1:50 
to 1: I 000 depending upon anti body concentration and 
specificity), 2, 5-nin rinses on buffer (0.5% BSA, 
0.05% Tween 20, 0.5 M NaCl, 0.01 M sodiu11 dibasic 
phosphate buffered to pH 7.2 with 0.01 M sodiu11 
monobasic phosphate), 1. 5 h on gold-congugated 
secondary antibodies, 2, 5-Din rinses on buffer, 2, 
5-min rinses on phosphate buffered saline (0.01 M 
phosphate bufrer in 0.15 M NaCl at pH 7.2), and 
finally 2, 5-JJin rinses on water. Grids are dri ed 
wi t h fi l ter paper and the sections checked in the 
electron microscope unstained or stained with 
aqueous uranyl acetate and lead citrate. Controls 
should also be conducted: preiiiiDune serum and 
buffer should be substituted for the primary 
anti bodies. One of the most important factors 
regarding i mmunocytochemistry is the dilution of 
the primary antibodies, secondary antibodies, and 
Protein A solutions. Extremely dilute antisera 
yield much specific labellina than 
concentrated ones. We have found that the primary 
antisera can be diluted as much as 1000x and that 
the gold- labe lled secondary antibodies can be 
diluted 50-100x to yield high specific labelling. 
In our hands, Protein A yields a great deal of 
nonselective but spec ific binding of wheat storage 
proteins. As a result. we have used the secondary 
antibody indirect method exclusively. Protein A 
also seens to give much nore background labelli ng 
and tends to label less when compared to use of a 
secondary antibody (Fig. 9 and 10). 
Enzv•atic Digestions 

Enzymatic digestions can provide useful 
information regarding the composition of cel lular 
compo nents. Bulk digestions of rice caryopses with 
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either pepsin or Pronase revealed that lhe core of 
the large spherical protein body in the starchy 
e ndosperm was resistant to diaest ion while the 
ot her two types of protein bodies were susceptible 
(Bechtel and Pomeranz, 1978b). Wheat was also· 
shown to possess portions of protein bodies, the 
densly-stained inclusions, that were resistant to 
proteases when thin sections were digested (Parker, 
1980; 1982; Bechtel et al., 1982b). More recent 
preliminary data suggests that the erabedding resin 
has a substantial effect on the rate at which the 
substrate can be digested. We have found that the 
matrix of wheat protein bodies are digested much 
faster (1 hr rather than 24 hr) when e11bedded in LR 
White instead of Spurr resin (Figs. 11-15). More 
importantly, the dense inclusions that were 
resistant to proteases when embedded in Spurr resin 
were completely digested after o nly 4 hr if 
embedded in LR White (Figs. 13- 15). Fixation can 
also have a detri11ental effect o n the digestibility 
of components (Bechtel and Gaines, 1982). As with 
any other technique, the 1 i11i tations must be fully 
understood before conc lusions can be drawn froa the 
results. 
Carbohydrate Localization 

Carbohydrates can be localized utilizing the 
periodic acid-thiocarbohydrazide-si I ver protein 
technique, the cytochemical equivale nt of the 
periodic acid-Schiff's reaction used for 
histochemistry. This cytochemical procedure is 
dependent upon the detection of adjacent hydroxyl 
or amino groups of sugar r esidues. These groups 
are first oxidized with periodic acid, detected by 
thiocarbohydrazide or thiosemicarbazide, and 
visualized for e l ectron mi croscopy with silver 
proteinate. OsTtium tetroxide should not be used in 
the fixation scheme if th is procedure is to be used 
as it resul ts in nonspecific si Iver deposition. 
Even fixatives such as glutaraldehyde and acrolein 

induce free aldehyde groups and cause 
interference. Formaldehyde fixation see11s to be 
the best choice, but lack of quality fixation 
usually forces the use of g lutara ldehyde coupled to 
stringent controls. free aldehydes induced by 
fixation can be blocked using compounds such as 

Figs. 6-10. Immunocytochemistry of developing 
wheat starchy endosperm. 6. Wheat e ndospern fixed 
in glutaraldehyde and paraformaldehyde, post-fixed 
in Os04, embedded in Spurr resin, and labelled with 
anti-triticin/gold-goat anti-rabbit. Note limited 
amount of label on both the matrix protein (M) and 
inclusions(*) of protein body (PB). 7. Developing 
wheat endosperm fixed with paraforroaldehyde only, 
embedded in LR White, and labelled with anti­
triticin/gold-goat anti-rabbit. Note heavy label 
on both matrix and dense inclusions (*) of protein 
body (PB). 8. Developing wheat e ndosperq fixed in 
g I utaral de hyde on I y, enbedded in LR White, and 
labelled with anti-triticin/gold goat anti-rabbit. 
Labelling is heavy on both the natrix and inclusion 
(*) of protein body (PB). 9. Protein body (PB) 
with inclusion (*) of developing wheat labelled 
with anli-C llunlein/gold protein A. Note 
background labelling (arrows). 10. Wheat protein 
bodies (PB) labelled with anti-high molecular 
weight subunit glutenin/gold goat a nti-rabbit. 
Note large amount of label and lack of background. 
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dime don e or sodium borohydride a nd interferrence of 
sulf hydryl g roups can be eli minated by treatment 
with P -mercaptoethanol and i odoacetate . This 
method was used to investigate the presence of 
carbohydrates in prote in bodies of mature oat 
e ndosperm (Bechtel and Pomeranz, 1981) . Alt houg h 
some stai ning of protein bodies was initiall y 
obtai ned, cont r ol tests revea l ed the stai ni ng was 
due to the glutaraldehyde fixation. Starc h is t he 
most abundant component i n cerea l caryopses a nd is 
easily identified using the thiocarbohydrazide 
method (Fig . 16). The major source of non-starc h 
polysaccharides in cerea l e ndosperm is t he cell 
wal l s. The peri odic acid-thi ocarboh yd r azide-si l ver 
protei n method ca n not o nl y demonstra te the 
presence of polysaccharides in the cel l walls, but 
also show how they are transported through t he 
cytoplasm (Fig . 17). 
Lectin Cytoche•istry 

Lectins are carbohydrate-binding protei ns with 
binding sites that recog ni ze speci fie s ugar 
sequences. Several of t hese l ecti ns have been used 
to labe l protein bodi es and ce ll walls of wheat 
grain (Baldo and Lee, 1987). The nucella r 
e pide rmal cell wall and starchy e ndosperm protein 
bodies sta ined when treated with gol d-label l ed 
whea t gem and peanut l ectins. Samples we r e f ixed 
i n 4% buffered parafortlaldehyde and embedded in 
Lowicryl K4M resin. Sections were t r eated with 
test solutions for 40 mi n a nd washed with 500 mM 
sodi um c hloride in 0.5% Tween 20 and then washed in 
water. The use of t he large number of lectins 
availab l e should provide a n i nteresting a pproac h to 
t he study of lectin binding in cereal caryopsis 
tissues. 

Conclusions 

The stud y of the microscopic structure o f 
cerea l s and cerea l pr oducts is fraught with 
numerous technical problems. Many o f these 
diffi culti es lack specific sol utions and o ne mu s t 

Figs. 11-17. Cytoc hemistry of deve l oping 
cereal e ndosperm. 11. Large protein body (PB) in 
deve l oping whea t e ndosperm which was em be dd e d in 
Spurr resin. Section was unstained. Note de nse 
inclusions (arrows). 12. Unstai ned serial section 
adjacent to the one in Fig. 11 treated f or 24 hr 
with pepsin. Note undigested inclusions (arrows) . 
13. LR White-embedd ed wheat e ndosperm digeste d for 
30 min in pepsin l eaving o nly the dense inc lusions 
undiges ted. 14. LR White-embe dded wheat sample 
di gested for 30 min with Protease VI a nd labelled 
with a nti triti cin/gold goat a nti rabbit. Ma trix 
of protein body ( PB ) was co•p le te l y digested, but 
l abel indicates that triti ci n still present in 
inc lusion ( * ). 15. LR White eabedded whea t 
endosperm digested f or 4 hr with pepsin. Entire 
prote in body ( PB ) including inclusion ( *) is 
digested. 16. Portion of starch granule stai ned 
with the periodic acid thiocarbohydrazide -s ilver 
protein technique showing dense granular silver 
deposition. 17. Peri odic acid-thiocarbo hydrazide ­
silver protein staining of deve loping W'h ea t 
e ndosperm showing l ocalization o f carbohydrate in 
ce ll wall (CW) and i n various ves i c l es (arrows) 
associated with cell wall. 
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experime nt to o btain the best r esults. The area of 
food structure related to ce r ea ls and cereal based 
products is wide open for investigation. 
Techniques suc h as those described here can be 
adapted to investigate a very wide range of 
probl efls now facing the cereal industry. 

References 

Baldo BA , Lee JW. (1987) . Lectins as 
cytochemica l probes of t he developing wheat grain. 
VII. Ultrastructural locati on of protein bodies and 
nucellar epidermis with lectin-go ld complexes. J. 
Cerea l Sci. Q.:2 11-218. 

Barl ow KK, Lee JW, Vesk M. (1974). 
Morpho l ogical development o f storaae protei n bodies 
in wheat. In: Mec hani s•s of regulation o f plant 
growth , Bieleski, RL. Fe r guson , AR, Cresswe ll, MM 
(eds) Royal Society of New Zealand , Wellington, 
793-797. 

Bec htel DB , Barnett BD. ( 1986a). Development 
a nd evaluation of a freeze - etch, freeze-fracture 
technique applied to developing wheat endosperm. 
Amer . J . Bot. 11:863-873. 

Bechtel DB, Barnett BD. (1986b ). 
freeze-fract ure study of storage pro tein 
accumul ation i n unfixed wheat starchy endosperm. 
Cereal Che11. 63:232-240. 

Bechte l D~Gaines RL . ( 1982 ). The presence 
of protease -di gestib le material in Golgi vesicles 
during e ndosperm develop11ent of selected cereals. 
Amer. J. Bot. !2_: 880-884. 

Bechte l DB, Juliano BO. ( 1980) . Formation of 
p r otei n bodies in the starchy e ndospertl!l of rice 
COryza sativa L. ): A re-investigation. Ann. Bot. 
.'!.,2' 503-509. 

Bec htel DB, Po11era nz Y. ( 1977). 
Ul t rastructure o f the mature ungerni nated ri ce 
(Oryza sativa) caryopsis. The ca r yopsis coat and 
t he aleurone ce lls. Amer. J. Bot . .2!t.:966-973. 

Bec htel DB, Pome ranz Y. ( 1978a). 
Ultrastructure of the mature ungerminated ri ce 
COryza sativa) caryopsi s. The germ. Amer. J. Bot. 
Q.2.d5-85 . 

Be c htel DB, Pome ranz 
Ultrast ructure o f the mature 
(Oryza sativa) caryopsis. The 
Amer. J . Bot. .Q.i:684-691. 

Bec htel DB, Pomeranz 

y. ( 1978b). 
ungerminated rice 
starchy e ndosperm. 

Y. ( 1978c) . 
Implicati ons of the rice kernel structure in 
storage, marketi ng , and processing: A review. J. 
Food Sci. !!ld 538-1542,1 552. 

Bec hte l DB, Pomeranz Y.. ( 1979). Endospe rra 
structure of barley isogeni c 1 i nes. Cereal Chem. 
2§.,446-452. 

Bec htel DB, Pooera nz Y. ( 1981 ). 
Ultrastructure and cytoche11istry of 11ature oat 
(Ocyza sativa L.) endospera. The aleurone l ayer 
and starc hy e ndosperm. Cerea l Che RI . 2!!.:6 1-69. 

Bec htel DB, Gaines RL, Pomeranz Y. ( 198 2a). 
Early stages of wheat endosperm fonnation and 
protein body initiation. Ann. Bot . . d.Q.:S07-518. 

Bechtel DB, Gaines RL, Pomeranz Y. (1982b). 
Protein secretion in wheat e ndospe rm - Formation of 
t he matrix protein. Cerea l Chell . 22_:336- 343. 

Bec hte l DB, Pomeranz Y, de Francisco A. 
( 1978). Breadmaking studied by light a nd 
trans11i ssion elec tron microscopy. Cereal Chen. 
5.2,392-401. 



D.B. Bechte l 

Bechtel DB, Frend A, Kaleikau LA, Wilson JO, 
Shewry PR. (1990). Vacuole formation in wheat 
starchy endosperm. Food Microstruct. .ft: 183-190 . 

Berlyn GP, Miksche JP. (1976). Botanical 
microtechnique and cytochemistry. Iowa State 
Unive rsity Press, Ames, 24-129. 

Bradbury D, Cull IM, MacMasters MM. ( 1956a). 
Structure of the mature wheat kernel. I. Gross 
anatomy and relationships of parts. Cereal Chell. 
Jd'329 - 342. 

Bradbury D, Cull IM, HacHasters MM . (1956b). 
Structure of the mature wheat kernel. II. 
Microscopic structure of pericarp, seed coat, and 
other coverings of the endosperm and germ of hard 
red winter wheat. Cereal Che•· 33:342-360. 

Bradbury 0, Cull IM, HacMasl;rs MM. ( 1956 c>. 
Structure of the mature wheat kernel. III. 
Microscopic structure of the endosperm of hard red 
winter wheat. Cereal Chem. 11:361-373. 

Bradbury D, Cull IM. MacMasters MM. (1956d). 
Structure of the mature wheat kernel. IV. 
Microscopic structure of the gern1 of hard red 
winter wheat. Cereal Chem. 33:373-391. 

Briarty LG, Hughes CE, ~rs AD. <1979). The 
developing endosperm of wheat - A stereological 
analysis. Ann. Bot. ~:641-658 . 

Buckhout TJ, Gripshover BM, Morr~ OJ. (198 1). 
Endoplasnic reticulum tarnation during gernination 
of wheat seeds. Plant Physiol. 68:1319-1322. 

Butt rose MS. ( 1960). - Submicroscopic 
development and structure of starch granules in 
cereal endosperm. J. Ultrastruct. Res. !!.:231-257. 

Butt rose MS. ( 1963) . Ultrastructure ot the 
developi ng wheat e ndosperm. Aust. J. Biol. Sci. 
J.Q_,305-3 17 . 

Buttrose MS. ( 1971 ). Ultrastructure of 
barley aleurone cells as shown by freeze-etching. 
Planta .2Q : 13-26. 

Butt rose MS, Soeffky A. ( 1973). 
Ultrastructure of lipid deposits and other contents 
in freeze-etched coleoptile cells of ungerninated 
rice grains. Aust. J. Bioi. Sci. M: 357-364. 

Cameron-Mi ll s V, von Wettstein D. (1980). 
Protein body fortlation in the developing barley 
endosperm. Carlsberg Res. Collti.Un. ~:577-594. 

Campbell WP, Lee JW, O'Brien TP. Smart HG. 
( 198 1). Endosperm morphology and protein body 
formation in developing wheat grain. Aust. J. Plant 
Physiol . .f!:S-19. 

Craig S, Goodchild OJ. (1982) Post-erabedding 
immunolabell ing. Solie effects of tissue 
preparation on the antigenicity of plant proteins. 
Eur. J. Cell Biol. 28:251-256. 

Ellis EA. <19 89). Ellbedding media: An 
overview of hazards and safe handling. Electron 
Hi erose. Soc. Amer. Bull. 12.:83, 86-87. 

Fineran BA, Wild DJC, Ingerfeld M. ( 1982 ). 
Initial wall formation in the endosperm of wheat, 
Triticum aestivum: a reeval uation. Can. J. Bot. 
~d776-1795. 

Fretzdorff B, Bec htel DB, Pooeranz Y. (1982}. 
Freeze-fracture ultrastructure of wheat flour 
ingredients, dough, and bread. Cereal Chen. 
22,d13 -120. 

Fretzdorff B, Bechtel DB, Pomeranz Y. (1983). 
Fine structure of wheat flour doughs and bread. 
Getreide Mehl Brot l.Z:43-45. 

250 

Gra ham JSD, Jennings AC, Horton RK, Palk BA, 
Raison JK. ( 196 2) . Protein bodies and protein 
synthesis in developing wheat endosperm. Nature 
lli' 967-969 . 

Hallam ND. ( 1972). Erabryogenesis and 
gemination in rye (Secale cereale L.}. 1. Fine 
structure of the developing embryo. Planta 
~' 157-166. 

Hallam ND, Roberts BE, Osborne DJ. (1972). 
Embryogenesis and germination in rye. II. 
Biochemical and fine structural changes during 
germination. Planta .1...Q2.:293-309. 

Hallam ND, Roberts BE, Osborne DJ. (1973). 
Embryogenesis and germination in rye. III. Fine 
structure and biochemistry of t he non-viable 
embryos. Planta .11Q_:279-290. 

Hinchman RR. (1972). The ultrastructural 
morphology and ontogeny of oat col eoptile plastids. 
Amer. J. Bot. 22_,805-817 . 

Hoshikawa K. (1968). Studies on the 
development of endosperm in rice. 10. Electron 
microscopic studies on the development of starch 
granules in the endospera cells . Proc. Crop Sci. 
Soc. Jap . ..ll.:97-106. 

Hoshi kawa K. ( 1970 ). 
development of endosper• in rice. 
of the protein-forraing plastids. 
Soc. Jap. 1.2_, 295-300. 

Studies on the 
12. Development 
Proc. Crop Sci. 

Jacobsen JV, Knox RB, Pyliotis NA. ( 1971). 
The structure and composition of aleurone grains in 
the barley aleurone layer. Planta .!Ql: 189-209. 

Jennings AC, Morton RK, Palk BA. (1963). 
Cytochemical studies of proteins of developing 
wheat endosperm. Aust. J. Bioi. Sci. .1..6.:366-374. 

Jensen WA. (1962). Botanical histochemistry. 
Principles and practice. W. H. Freeman and 
Company. San Francisco, 189-386. 

Jones RL. ( 1969a). The tine structure of 
barley aleurone cells. Planta ll:359-375. 

Jones RL. ( 1969b). Gibberellic acid and the 
fine structure of barley aleurone cells. I. 
Changes during the lag-phase of 0: -ailylase 
synthesis. Planta 87:119-133. 

Jones RL. ( t969 c) . The effect of 
ultracentrifugation on the fine structure and o:­
amylase production in barley aleurone cells. Plant 
Physiol. ~: 1428-1438. 

Karnovsky MJ. (1965). A foraaldehyde-
glutaraldehyde fixative of hia:h osraolarity for use 
in electron microscopy. J, Cell Bioi. l1_:137A­
l38A. 

Khoo U, Christianson DD. Inglett GE. (1975). 
Scanning and transmission microscopy of dough and 
bread. Bakers Dig. i2_(4):24-26. 

MacLeod AM. Johnston CS, Duffus .JH. (1964). 
Ultra-structure of caryopses of the Gramineae. I. 
Aleurone and central endosperm ot Bromus and 
barley. J. Inst. Brew. l.Q.:303-307. --

Mascorro JA, Ladd MW , Yates RD. ( 1976). 
Rapid infi I tration of biological tissues utilizing 
n-hexenyl succinic a nhydride (HXSA)/vinyl 
cyc l o hexene dioxide (VCD), an ultra-l ow viscosity 
embedding medium. 34th Ann. Proc. EMSA 346-347. 

Moor H. (1987). Theory and practice of high 
pressure freezing. In: Cryotechniques in biological 
electron microscopy, Steinbrecht RA, Zierold K 
(eds), Springer-Verlag, Berlin, 175-191. 



Preparation of Cereals for Mi croscopy 

Morrison IN . ( 1975). Ultrastructure of the 
cuticu lar membranes of t he developing wheal grai n . 
Ca n. J. Bot. _ll,2077-2087. 

Morrison IN, O'Brie n TP. ( 1976 ). Cytoki nes is 
in the developing wheat grain; Division without a 
p hrllg111oplast. Planta J.J.Q.:56-67. 

Morrison I N, Kuo J, O'Brien TP . ( 19 75 ). 
Histochemistry and fi ne structure of developing 
wheat aleurone cells. Pl a nta 123:105- 11 6. 

Horton RK, Raison JK. (1"9'63). A compl ete 
intracellular unit for the incorporation of ani no­
acid into storage protein utilizing adenosine 
trip hosphate generated from phytate. Nature 
200,429-433. 

Morton RK, Palk BA, Raison JK. ( 1964). 
Intracellular compone nts associ ated with protein 
synthesis in developing whea t e ndosperm. Bioche11. 
J . .2.1'522 - 528 . 

O'Brie n TP. ( 1967). Observations on t he fine 
structure of the oat coleoptil e. I. The epide rmal 
ce ll s o f the extreme apex. Protoplasma 63:385-416. 

O'Brien TP. (1983). Cerea l str~ture : An 
historica l perspective. In: New frontiers in f ood 
microstructure, pp. 3- 25, Bechtel, DB., ed. 
American Association of Cer ea l Chemists, St. Paul, 
MN. 

O'Brien TP , McCully HE. ( 1981 ). The study of 
plant structure. Principles and selected methods. 
Ternarcarphi Pty. Ltd., Melbourne, 2.2-4.56. 

0' Brien TP, Thimann KV. ( 1967a). 
Observations on the fine structure o f the oat 
coleopti l e. II. The parenchyma cells of the apex. 
Protoplasma 63:417-442. 

0' Brien- TP, Thimann KV. ( 1967b). 
Observations on the f i ne s tructu re of the oat 
coleopti le . III . Correlated l ight and e l ectron 
mi croscopy o f t he vascular tissues. Protoplasma 
.QJ_,442-478. 

Oparka KJ, Harris N. (1982). Rice prote in ­
body formation: all types are initiated by dilation 
of the endoplasmic reticulum. Planta 154:184-188. 

Pa r ker ML. ( 1980). Protein bodYi'nc lusions 
i n developing wheat e ndosperm. Ann . Bot. i!.Q.:29-36. 

Parker ML. ( 1981a) . The struc ture o f mature 
rye endosperm. Ann. Bot. Q :t81-186. 

Parker ML. ( 1981b ). Storage pr otein 
deposition in deve l oping whea t e ndospem . Mi cron 
.11.' 187-188. 

Pa rker ML. ( 1982). Protein acc umula tion in 
developing e ndospem of a high-protein line of 
Triticum di coccoides. Plant Cell Environ . ..2_:3 7-43 . 

Parker ML, Hawes CR. (1982). The Golgi 
apparatus in deve l oping e ndosperm of whea t 
(Triticum aestivutl L. ). Planta 154 :277-283. 

Sabatini DO, Bensch K, Barrnett RJ. (1963). 
Cytochenistry and e l ect ron nicroscopy: The 
preservation of ce llul ar ultrastructure a nd 
e nzymatic acti v ity by aldehyde fixati o n. J. Ce ll 
Bioi. ll ' 19-58. 

Sass JE. (1958). Botanical microtechnique. 
IoW"a State College Press, Ames , 1-74. 

Simmonds DH. (1972a). The ultrastructure of 
t he mature wheat e ndospe rm. Cereal Chern. !2.:2 12-
222. 

Simmonds DH. ( 1972b). Wheat -grain 11o rpho l ogy 
and its relationship to dough structure. ~:324-
335. 

25 1 

Spurr AR. ( 1969 ). A I ow-viscos ity e poxy 
resin embedding medium for electron microscopy. J. 
Ul trastruct . Res . 26:31-43. 

Sraon HS. ({972) . An electron 11icroscope 
study o f protei n bodies of t he developing oat seed. 
Proc. South Dakota Acad. Sci. 2.1.:69-72. 

Swift JG, O'Brien TP . ( 1972). The fin e 
structure of the wheat scutel lum before 
germination. Aust. J. Bioi . Sci. 1.1:9 -22. 

Wolf MJ, Buzan CL, Mac Masters MM , Rist CE. 
( 195 2a). Structure of the matu r e corn kernel. I. 
Gross anatomy a nd structu re re l a tionships. Cereal 
Chern. 12_,32 1-333. 

Wolf MJ, Buzan CL, MacMaste rs MM. Rist CE. 
( 1952b ). Structure of t he mature corn kernel. II. 
Microscopi c structure of peri ca rp , seed coa t , a nd 
hi lar layer of dent corn . Cerea l Chem . 1.2.:334-348. 

Wolf MJ, Buzan CL , MacMasters MM . Rist CE. 
( 1952c). Structure o f t he mature corn kerne l. 
III. Microscopic s truc t ure of the endosperm o f 
dent corn. Cerea l Chern. 1.2_:349-36 1. 

Wo l f HJ, Buzan CL, MacHasters MM, Rist CE. 
(1952d). Structure of the mature corn kernel. IV. 
Microscop ic struc ture o f t he germ of dent corn. 
Cereal Chem. 1.2,:362 -382 . 

Discussion with Reviewers 

F. Felker: Since bread doughs contain live yeast, 
aren't they a nimate? 
Author: Some dough systens are c hemi ca lly leave ned 
W"hil e ot hers are yeast leave ned. Bread doughs do 
contain I ive yeast ce ll s, but these ce lls do not 
contribute substanti al l y to t he inanimate dough 
structure. Hany of our stud ies W"ere conducted o n 
water flour doughs. We typically use the fixation 
qual ity o f the yeas t cells as an internal guide as 
to the quality of the overal l fixation o f the dough 
system wh e n a complete formulatio n is used. 

F. Felker: Don 't t he starc h granu les swell wh en 
sections are cut and fl oated out on the water 
filled trough? 
Aut hor: Starch gra nules most certai nl y swell during 
section ing a nd in the process te nd to cause a 
wetting o f t he block f ace that can r esu l t in 
sectioning difficulti es . The r e are only partial 
solutions to this probl em: r e - embed t he sample, l ow 
water l eve ls i n t he trough , a nd have pl astic 
surround the sampl e compl etely. The wetting of t he 
starch also l eads to artifacts such as the folding 
described by Ga llant D, Guilbot A. ( 1971) 
Artefacts during the preparation o f sections o f 
starch granules. Studies under light and electron 
mi croscope. Starc h 12:244-250. The use of 
nonwater-containing solutions in the knife boat, to 
m)· knowl edge, have no t been successful. 
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