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reinforced by Nancy DeRosa, owner of the Villas DeRosa Resort and head coordinator of 

the Aquatec Dive Center, who states that she has observed brown clouds in the salt-water 

zones of the cenotes at approximately 35 feet, but that the clouds appeared to stay below 

the halocline.  However, upwards vertical transport of wastewater from deep-injection 

wells into potable aquifers has been documented in other areas where karstic systems 

dominate the landscape (Maliva et al. 2007).   

 There are noted indicator species for eutrophication such as the green alga 

Codium spp. (Lapointe et al. 2005), and the red filamentous cyanobacteria, Lyngbya 

(Tichener 2006).  Codium was not identified in any of the dives at Akumal or Chemuyil 

in either 1988 or 2005, but the presence of Lyngbya was observed at most sites in 2005.  

Anecdotal accounts from inhabitants of the Akumal/Chemuyil area indicate an increase 

in a red filamentous material growing on the reefs since development began along the 

Mayan Riviera. Lyngbya exhibits a low frequency in the data sets for 2005, but this is 

likely because of the tendency of Lyngbya to grow on sea fans and other gorgonians (Fig. 

17).  The elevated position of Lyngbya on gorgonians would be out of the range of the 

camera lens during data collection.  Thus, Lyngbya is likely underrepresented in the data 

sets from 1988 and 2005.  The way in which Lyngbya was observed growing on 

gorgonians in Akumal and Chemuyil is much like the manner described by Tichener in 

Florida (Tichener 2006).  

 Many studies show that eutrophication can cause algal blooms even when 

herbivory is high (Hay 1981; Hatcher 1983; Carpenter 1986), however, overfishing has 

been documented in the Akumal and Chemuyil areas (Bellwood et al. 2004; Roy 2004). 
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Anecdotal evidence documented in logs from the 1988 data collection mention that the 

reefs appeared to be overfished. 

  

Data Slide 5 

 
Fig. 17  Photograph of the red filamentous cyanobacteria Lyngbya spp. growing on the 
gorgonian Pseudopterogorgia bipinnata. 
 
    
  
 The depletion of herbivorous fish gave way to large populations of Diadema 

antillarum sea urchins during the 1970’s, which became the primary herbivores on 

Caribbean reefs (Bellwood et al. 2004).  Sea urchin levels are typically higher in areas of 

heavy fishing due to urchin-eating fish typically being target fish for fishermen (Jennings 

and Polunin 1997).  Other species of sea urchins (Echinometra) served as the principal 

grazers following the massive die-off of Diadema in 1983-1984 and prevented a 

complete inundation of algae on the reefs (Bellwood et al. 2004).  The data used in this 
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research collected by Liddell and Torruco in 1988 was collected 5 years after the die-off 

of Diadema antillarum.  Roy (2004) states that substantial populations of D. antillarum 

exist in patch reefs of Akumal, and densities of these urchins have been increasing on the 

fore reefs as well.  However, low herbivory rates by fish appear to be facilitating the 

growth of benthic algae.  Rates of herbivory at Akumal in 2000 were nearly identical to 

those of the highly overfished reefs of northern Jamaica (Roy 2004).   

Another problem associated with turf algae is its ability to trap sediment.  Turf 

algal-sediment mats, or TAS mats often occur in areas of sediment resuspension, such as 

the fore reef slope (Roy 2004).  Turf filaments restrict water flow, which allows sediment 

to fall out of the water column and onto the algae, forming TAS mats.  Damage to corals 

has been documented when contact with a TAS mat occurs, and TAS mats have been 

observed to appear as if they are growing over coral colonies (Roy 2004).  TAS mats are 

typically scarce in areas where herbivory is high; however reduced herbivory may allow 

for TAS mats to proliferate.  Once TAS mats are established, the sediment trapped in the 

filaments of the algae can deter herbivores (Roy 2004).  Areas that could be classified as 

TAS mats were observed at many of the sites during data collection in 2005 (Fig. 6). 

 Littler et al. (2006) constructed the Relative Dominance Model (RDM).  The 

RDM (Fig. 18) shows hypothetical phase shifts that occur when increasing human 

impacts alter the nutrient levels in the water column and/or the amount of grazing activity 

on a coral reef.  The relative dominance model suggests that reduced herbivory on coral 

reefs results in an increase in the relative dominance of turf algae, and that increased 

nutrients results in the relative dominance of crustose coralline algae. The model also 
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suggests that a combination of reduced grazing activity and increased nutrients results in 

increased macroalgae. 

 
 

The Relative Dominance Model 

 
 
Fig. 18  The Relative Dominance Model.  The vectors on the x and y axes are indicative 
of increasing human impact resulting in declining coral reef resiliency, due to either the 
removal of herbivores or increasing nutrient levels.  Modified from Littler et al. (2006). 
   

 The site at Akumal 5m showed significant increases in crustose coralline algae 

and filamentous/turf algae. According to the RDM, this suggests a combination of 
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eutrophication and the removal of herbivores, though the exceptionally large increase in 

filamentous/turf algae indicates that reduced herbivory is the principle reason behind this 

change.  The same trends are also observed at Akumal 12m, Akumal 30m, Chemuyil 5m, 

and Chemuyil 12m, though the rise in crustose coralline algae at Chemuyil 12m is not 

statistically significant.  The sites at Akumal 20m, Akumal 25m, Chemuyil 15m, and 

Chemuyil 35m exhibit relatively equal rises in crustose coralline algae and 

filamentous/turf algae, accompanied by either a significant rise or a relatively high 

frequency of macroalgae.  This suggests that eutrophication and reduced grazing are 

equally responsible for the changes observed.  Fish were fairly numerous on the reefs at 

Akumal and Chemuyil, however, it is possible that the fish observed may not be fish that 

serve as principal herbivores in the reef community.  There is a tendency for fishermen to 

fish “down the food web” (Roy 2004), as the desired carnivorous fish populations are 

diminished by overfishing, herbivores become the targeted fish. 

 The RDM may seem to be a good tool for determining the cause of community 

composition changes on a coral reef, however more recent research has shown that the 

RDM is not completely accurate in it’s assumptions.  This is likely due to the fact that the 

RDM was developed through laboratory experiments.  Laboratory simulations are useful 

for providing insight into how ecosystems work, but they typically cannot account for all 

the biotic and abiotic factors that occur in a natural setting.  McClanahan et al. (2003, 

2004, 2007) performed a series of in situ experiments comparing the effects of herbivory 

and eutrophication in Glover’s Reef, Belize. These studies showed that turf algae 

dominated areas with high nutrients and high grazing, where the RDM predicts that 

crustose coralline algae should dominate these conditions.  Macroalgae survived well 
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under low grazing, but macroalgal growth, particularly frondose brown algae, was 

inhibited with fertilization (McClanahan et al. 2003).  The study performed by 

McClanahan et al. (2007) showed that Lyngbya confervoides was prolific in fertilized 

areas, but did not develop under control conditions.  This study also showed that turf 

algae was the only type of algae that responded significantly to fertilization.   

 The results from the experiments performed by McClanahan et al. (2003, 2004, 

2007) are likely more suitable for determining the source of changes on the reefs at 

Akumal and Chemuyil because they were performed in situ.  This manner of study is 

preferable for coral reef studies since the experiment is not removed from the biotic and 

abiotic factors of the ecosystem.   Using the results of the McClanahan et al. (2003, 2007) 

experiments for interpreting the changes in reef community in this research suggests 

different conclusions.  It appears that eutrophication is likely more responsible for the 

observed changes than overfishing.  This seems logical, given the nature of the data 

results and the geology of the area.  The large, mostly significant increases in turf algae, 

and the presence of Lyngbya on the reefs at Akumal and Chemuyil suggest that 

eutrophication is playing a much larger role than predicted by the RDM.  In addition, 

there is no clear trend in macroalgae over the two time periods.  The two dominant 

macroalgae species present at Akumal and Chemuyil were Dictyota spp. and Lobophora 

variegata, both of which are brown algae.  Filamentous turf algae showed a higher 

frequency than macroalgae in all but two sites in 2005.  According to McClanahan et al. 

(2003, 2007) studies, this could be explained by eutrophication facilitating the growth of 

filamentous turf algae, and inhibiting the growth of brown macroalgae.  The increases in 

crustose coralline algae due to eutrophication is supported by the RDM, and it has been 



 

 

55  
further documented that increased nutrients can result in increases in crustose coralline 

algae (Dethier and Stenek 2001; Smith et al. 2001).  It is also likely that herbivorous fish 

are feeding on the macroalgae.  Furthermore, fish populations at Akumal and Chemuyil 

appeared to be relatively healthy in 2005, exhibiting fish from all functional groups.  

These conclusions are further supported by Paul Sanchez Navarro, director of the Centro 

Ecologico Akumal.  He professes to have data supporting eutrophication as the cause of 

the changes on the reefs at Akumal and Chemuyil.  He claims that overfishing has 

occurred in these areas, but it has not had effects on the reefs to the degree that 

eutrophication has. 

Akumal and Chemuyil are located on the eastern side of the Yucatan Platform, 

which is dominated by karst topography.  This topography minimizes surface water 

drainage and thus the deposition of terrigenous sediment onto the reefs (Liddell 2007).  

The only sediment observed on the reefs at Akumal and Chemuyil was that which was 

generated by the reef system itself, either in fissures or crevices in the reef framework or 

trapped in mats of filamentous and turf algae.  Hurricanes such as Gilbert (1988), Mitch 

(1998), Georges (1998), Floyd (1999), Gordon (2000), and Claudette (2003) frequently 

strike the coast of Quintana Roo.  Hurricanes can severely damage reefs by breaking 

coral heads and redistributing sediment, and a higher frequency of algal growth is 

common after a hurricane (Liddell and Ohlhorst 1986, 1992; Gardner et al. 2005).  Coral 

reefs take no less than 8 years to fully recover from hurricane damage (Gardner et al. 

2005), which would put the sites at Akumal and Chemuyil within the recovery window of 

hurricanes Mitch, Georges, Gordon and Claudette for the present study.  However, the 

trends of increased algal growth were observed at all sites, including those deeper than 
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the range of hurricane-force waves, which essentially excludes hurricanes as a possible 

source of the changes.  Furthermore, no indications of other types of stress such as severe 

bleaching (from elevated sea-surface temperatures), scrapes on coral surfaces or broken 

coral framework (indicative of anchor damage or fin scraping from divers), or coral 

diseases, were observed on the reefs. 

 While the causes of the changes on the reefs at Akumal and Chemuyil seem clear, 

there may be issues with data collection that affect the results of the analysis.  Data from 

2005 were collected at essentially the same depths as the data from 1988, though it is not 

likely that data were collected at the exact same locations on the reef.  Localized small-

scale variations in benthic composition from sites in 1988 and 2005 at the same depths 

may cause some changes to appear more or less significant per site, though an overall 

trend at all the sites appears to be quite clear.  For example, data for a site in 1988 at a 

particular depth may have been collected on an area of reef where there was a high 

frequency of sand.  If data were collected in 2005 at the same depth but were collected 

over an area where more scleractinian reef framework was present, the site may not be 

completely representative of the changes occurring on the reef as a whole. 
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CHAPTER VII 

CONCLUSIONS 
 
 

Data analysis shows that significant changes have occurred on the reefs at Akumal and 

Chemuyil.  The increases of filamentous and crustose coralline algae on the reefs, 

anecdotal accounts, and the absence of any other indicators of stress on the reefs (e.g. 

bleaching, sedimentation, scrapes on coral surfaces, broken coral framework, or coral 

diseases), suggest that eutrophication is primarily responsible for the phase-shifts on the 

reefs at Akumal and Chemuyil, while minor to moderate overfishing may play a small 

role in the changes observed as well.  These changes are likely linked to the large 

increase in the tourism industry along the Mayan Riviera.   

 More research is clearly needed to determine to what degree eutrophication and 

overfishing are contributing to the phase shifts that have occurred on the reefs of Akumal 

and Chemuyil.  A census of the herbivores and grazers present, water chemistry, and a 

quantification of actual grazing rates would be advantageous in diagnosing the noted 

changes.  Testing for seasonal variation in nutrient concentrations and the presence and 

concentrations of fecal coliform bacteria as done by Costa et al. (2000) at Bahia, Brazil 

would give further insight as well. 
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Appendix A.  Species and their occurrence (points) for each 10m photographed line 
at their respective depths at Akumal in 1988.  Data were collected by W. David 
Liddell and Daniel Torruco. 
  Akumal 5m 1988  
     
 Line 1 Line 2 Line 3 Line 4 
Coral     
M. annularis 34.00 32.00 4.00 0.00 
P. asteroides 0.00 9.00 3.00 3.00 
P. porites 0.00 1.00 0.00 0.00 
S. siderea 0.00 2.00 4.00 4.00 
D. strigosa 3.00 6.00 3.00 1.00 
A. cervicornis 1.00 1.00 0.00 0.00 
M. cavernosa 0.00 3.00 0.00 0.00 
A. agaricites 0.00 2.00 1.00 1.00 
A. tenuifolia 48.00 2.00 1.00 0.00 
P. furcata 5.00 5.00 1.00 1.00 
D. labyrinthiformis 0.00 1.00 0.00 0.00 
S. michilinii 3.00 2.00 1.00 2.00 
A. palmata 8.00 0.00 10.00 0.00 
I. sinuosa 0.00 0.00 1.00 0.00 
     
     
Gorgonians     
P. flexuosa 1.00 0.00 2.00 0.00 
P. bipinnata 0.00 5.00 17.00 0.00 
G. flabellum 9.00 0.00 0.00 0.00 
P. acerosa 2.00 1.00 1.00 0.00 
M. muricata 0.00 2.00 0.00 0.00 
P. grisea 2.00 2.00 0.00 7.00 
P. americana 2.00 5.00 4.00 6.00 
     
     
Macroalgae     
Dictyota 9.00 5.00 7.00 2.00 
Caulerpa 1.00 0.00 1.00 0.00 
Penicillis 0.00 0.00 0.00 1.00 
Turbinaria 0.00 0.00 0.00 1.00 
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Erect Coralline Algae     
Erect Cor. 0.00 0.00 4.00 0.00 
     
     
Calcareous Algae     
Halimeda 22.00 8.00 9.00 4.00 
     
     
Filmentous/Turf 
Algae     
Fil./Turf 21.00 34.00 108.00 34.00 
     
     
Non-Living Substrate     
Sand 0.00 0.00 20.00 93.00 
Rock 109.00 137.00 103.00 42.00 
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  Akumal 12m 1988  
     
 Line 1 Line 2 Line 3 Line 4 
Coral     
M. annularis 0.00 2.00 3.00 2.00 
P. porites 0.00 4.00 5.00 10.00 
S. siderea 0.00 12.00 5.00 0.00 
D. strigosa 16.00 3.00 1.00 2.00 
A. cervicornis 0.00 0.00 1.00 2.00 
M. cavernosa 0.00 1.00 9.00 0.00 
A. agaricites 5.00 2.00 2.00 3.00 
D. stokesii 0.00 2.00 0.00 0.00 
A. tenuifolia 29.00 19.00 2.00 9.00 
P. furcata 17.00 2.00 3.00 1.00 
D. labyrinthiformis 0.00 0.00 1.00 0.00 
S. michilinii 0.00 0.00 0.00 10.00 
D. cilindricus 0.00 15.00 2.00 0.00 
     
     
Gorgonians     
P. flexuosa 1.00 0.00 0.00 0.00 
G. flabellum 9.00 4.00 5.00 10.00 
B. asbestinium 2.00 1.00 0.00 0.00 
P. acerosa 1.00 0.00 6.00 1.00 
M. muricata 7.00 0.00 5.00 0.00 
P. grisea 0.00 0.00 5.00 0.00 
P. americana 19.00 1.00 0.00 1.00 
     
     
Macroalgae     
Dictyota 5.00 14.00 49.00 25.00 
Udotea 0.00 0.00 0.00 2.00 
Turbinaria 0.00 0.00 0.00 1.00 
     
     
Erect Coralline Algae     
Erect Cor. 0.00 1.00 2.00 0.00 
     
     
Calcareous Algae     
Halimeda 15.00 20.00 9.00 5.00 
     
     
Filamentous/Turf Algae    
Fil./Turf 20.00 32.00 28.00 5.00 
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Non-Living Substrate     
Sand 15.00 101.00 89.00 18.00 
Rock 82.00 57.00 67.00 42.00 
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  Akumal 20m 1988  
     
 Line 1 Line 2 Line 3 Line 4 
Coral     
M. annularis 0.00 7.00 1.00 1.00 
P. porites 2.00 6.00 9.00 0.00 
A. cervicornis 0.00 0.00 3.00 0.00 
A. agaricites 2.00 5.00 4.00 0.00 
A. tenuifolia 45.00 46.00 15.00 14.00 
P. furcata 3.00 7.00 13.00 2.00 
C. natans 1.00 0.00 0.00 0.00 
A. lamarcki 0.00 0.00 1.00 0.00 
S. michilinii 0.00 5.00 0.00 0.00 
M. mirabilis 1.00 2.00 2.00 0.00 
M. lamarckiana 0.00 2.00 2.00 0.00 
     
     
Gorgonians     
G. flabellum 3.00 0.00 6.00 19.00 
E. mammosa 5.00 3.00 5.00 0.00 
B. asbestinium 0.00 1.00 0.00 0.00 
P. acerosa 1.00 1.00 1.00 0.00 
M. muricata 1.00 6.00 7.00 0.00 
P. grisea 0.00 2.00 0.00 0.00 
     
     
Sponges     
Red Encrusting Sponge 1.00 0.00 0.00 0.00 
C. delitrix 0.00 1.00 0.00 1.00 
     
     
Macroalgae     
Dictyota 9.00 2.00 22.00 1.00 
L. variegata 6.00 2.00 15.00 5.00 
S. hystrix 1.00 0.00 0.00 0.00 
Caulerpa 1.00 0.00 0.00 0.00 
     
     
Erect Coralline Algae     
Erect Cor. 1.00 0.00 2.00 0.00 
     
     
Calcareous Algae     
Halimeda 9.00 10.00 7.00 3.00 
     
     
Crustose Coralline Algae    
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C.C. Green 1.00 0.00 0.00 0.00 
     
     
Filamentous/Turf 
Algae     
Fil./Turf 20.00 18.00 23.00 4.00 
     
     
Non-Living Substrate     
Sand 0.00 0.00 0.00 0.00 
Rock 96.00 95.00 68.00 4.00 
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  Akumal 25m 1988  
     
 Line 1 Line 2 Line 3 Line 4 
Coral     
M. annularis 52.00 92.00 93.00 18.00 
P. asteroides 27.00 3.00 0.00 1.00 
M. decatus 0.00 0.00 2.00 0.00 
S. siderea 0.00 2.00 0.00 0.00 
A. cervicornis 3.00 1.00 0.00 0.00 
A. agaricites 6.00 11.00 0.00 1.00 
M. meandrites 0.00 0.00 0.00 1.00 
P. furcata 0.00 1.00 4.00 3.00 
M. barbadensis 0.00 0.00 2.00 0.00 
     
     
Gorgonians     
G. flabellum 4.00 0.00 0.00 0.00 
E. mammosa 0.00 11.00 1.00 0.00 
B. asbestinium 8.00 8.00 13.00 1.00 
P. acerosa 3.00 1.00 0.00 0.00 
M. muricata 10.00 0.00 4.00 17.00 
P. grisea 0.00 1.00 0.00 0.00 
P. americana 1.00 0.00 0.00 5.00 
     
     
Sponges     
N. digitalis 0.00 0.00 2.00 0.00 
     
     
Macroalgae     
Dictyota 9.00 9.00 7.00 1.00 
L. variegata 38.00 37.00 74.00 16.00 
S. hystrix 0.00 1.00 1.00 1.00 
Caulerpa 1.00 0.00 0.00 0.00 
     
     
Erect Coralline Algae     
Erect Cor. 0.00 0.00 2.00 1.00 
     
     
Calcareous Algae     
Halimeda 3.00 2.00 6.00 4.00 
     
     
Crustose Coralline 
Algae     
C.C. Green 0.00 3.00 2.00 0.00 
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Filamentous/Turf 
Algae     
Fil./Turf 9.00 22.00 9.00 17.00 
     
     
Non-Living Substrate     
Sand 0.00 1.00 0.00 0.00 
Rock 29.00 31.00 25.00 7.00 
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  Akumal 30m 1988  
     
 Line 1 Line 2 Line 3 Line 4 
Coral     
M. annularis 56.00 90.00 83.00 32.00 
P. porites 2.00 0.00 1.00 0.00 
S. siderea 3.00 0.00 0.00 0.00 
A. cervicornis 13.00 0.00 1.00 0.00 
M. cavernosa 0.00 0.00 3.00 1.00 
A. agaricites 11.00 3.00 4.00 3.00 
M. meandrites 0.00 2.00 0.00 1.00 
C. natans 7.00 0.00 0.00 0.00 
A. lamarcki 1.00 0.00 0.00 0.00 
M. lamarckiana 6.00 0.00 0.00 0.00 
     
     
Gorgonians     
P. flexuosa 0.00 0.00 0.00 2.00 
G. flabellum 2.00 8.00 5.00 0.00 
P. acerosa 1.00 11.00 11.00 15.00 
M. muricata 1.00 1.00 1.00 8.00 
P. grisea 4.00 1.00 0.00 0.00 
P. americana 5.00 0.00 1.00 0.00 
     
     
Sponges     
N. digitalis 1.00 0.00 0.00 0.00 
C. delitrix 0.00 0.00 1.00 0.00 
Red Encrusting Sponge 0.00 0.00 0.00 1.00 
Unidentified Sponge 0.00 4.00 0.00 0.00 
A. schmidti 2.00 0.00 0.00 0.00 
S. plicifera 1.00 0.00 2.00 0.00 
     
     
Macroalgae     
Dictyota 0.00 4.00 4.00 1.00 
L. variegata 36.00 46.00 38.00 19.00 
Udotea 0.00 1.00 13.00 0.00 
S. hystrix 0.00 4.00 0.00 2.00 
Caulerpa 0.00 1.00 4.00 0.00 
     
     
Erect Coralline Algae     
Erect Cor. 2.00 2.00 3.00 0.00 
     
     
Calcareous Algae     
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Halimeda 10.00 6.00 5.00 16.00 
     
     
Filamentous/Turf Algae    
Fil./Turf 5.00 0.00 34.00 9.00 
     
     
Non-Living Substrate     
Sand 2.00 2.00 0.00 56.00 
Rock 57.00 35.00 54.00 35.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

89  
Chemuyil 35m 
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Chemuyil l5m

Line 0
Coral
M. annularis
M. franksi

P. asteroides
M. faveolata

P. porites

S. siderea
A. cervicornis
A. agaricites
D. stokesii
M. meandrites
A. tenuifolia
C. natans

Gorgonians
P. bipirurata
G. flabellum
E. mammosa
E. caribaeorum
B. asbestinium

Sponges
C. podatypa

C. delitrix
S. coralliphagum
I. strobilina
A. fistularis
E. ferox
N. nudicollis

Mrcroalgae
Dictyota
L. variegata
Udotea
S. hystrix

Erect Corelline Algae
Erect Cor.

Calcareous Algee
Halimeda

Crustose Coralline Algee
C.C. Red
C.C. Purple
C.C. Green
C.C. Orange

Filementous/Turf Ngae
Fil./Turf

Non-Living Substrete
Sand
Rock

Line I

1.00
0.00
3.00
3.00
6.00
0.00
2.00
0.00
0.00
0.00
0.00
0.00

8.00
0.00
5.00
0.00
0.00

0.00
1.00
0.00
3.00
1.00
0.00
0.00

l1.00
30.00
0.00
1.00

0.00

5.00

22.W
7.00

12.00
0.00

82.00

1.00
17.00

Line 4

0.00
0.00
0.00

12.00
9.00
0.00
1.00
3.00
0.00
0.00
0.00
3.00

9.00
1.00
0.00
0.00
0.00

1.00
r.00
0.00
1.00
0.00
0.00
0.00

15.00
24.00
0.00
0.00

1.00

I1.00

26.00
7.00
9.00
0.00

32.00

5.00
34.00

0.00
0.00
3.00

r9.00
2.00
0.00
2.00
7.00
0.00
0.00
0.00
0.00

8.00
5.00
0.00
0.00
0.00

0.00
0.00
0.00
2.00
0.00
1.00
0.00

9.00
51.00
0.00
2.00

0.00

3.00

20.00
t3.00
7.00
0.00

32.00

3.00
21.00

0.00
0.00
8.00
r.00
4.00
0.00
0.00
3.00
2.00
0.00
5.00

15.00

r7.00
10.00
2.00
0.00
L00

9.00
2.00
0.00
0.00
0.00
0.00
1.00

23.00
37.00
0.00
1.00

3.00

9.00

16.00
4.00
2.00
0.00

33.00

t.00
29.00

12.00
2.00
8.00
0.00
6.00
0.00
0.00
7.00
0.00
0.00
0.00
0.00

4.00
0.00

I1.00
2.00
0.00

6.00
0.00
0.00
0.00
0.00
0.00
0.00

19.00
22.00
0.00
0.00

3.00

2.00

16.00
4.00
1.00
1.00

55.00

3.00
16.00

2.00
2.00
7.00
|.00
3.00
1.00
0.00

13.00
0.00
4.00
8.00
0.00

10.00
1.00
3.00
1.00
2.00

9.00
r.00
2.00
0.00
0.00
0.00
0.00

13.00
24.00
2.00
0.00

1.00

5.00

10.00
10.00
1.00
0.00

8r.00

4.00
22.00
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Line 0 Line I

r 7.00
0,00
0.00

23.00
3.00
0.00
0.00
2.00
4.00
6.00
0.00
0.00
0.00
1.00
0.00
0.00

11.00
0.00
0.00
5.00
0.00
0.00
2.00

3.00
0.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
1.00
0.00

0.00
35.00
0.00
6.00
0.00
0.00

4.00

0.00

14.00
2.00
0.00
r.00

53.00

1.00
4.00

Chemuyil 35m

Line 3 Line 4

14.00 3.00
0.00 3t.00
r.00 0.00

11.00 20.00
0.00 0.00
0.00 0.00
7.00 0.00
9.00 0.00
3.00 0.00
0.00 0.00
0.00 8.00
0.00 0.00
1.00 t.00
0.00 0.00
0.00 0.00
0.00 12.00

| 6.00 27 .00
0.00 0.00
0.00 2.00
0.00 0.00
0.00 0.00
0.00 4.00
0.00 0.00

7.00 16.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 3.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 1.00
0.00 0.00
r.00 0.00

0.00 t.00
47.00 42.W
0.00 4.00
8.00 2.00
2.00 0.00
0.00 0.00

2.00 1.00

3.00 3.00

7.00 11.00
0.00 0.00
0.00 0.00
0.00 t.00

63.00 44.00

r 8.00 15,00
0.00 5.00

Conl

M. annularis

M. franksi

P. asteroides

M. faveolata

P. porites

S. siderea

A. cervicomis

M. cavernosa

A. agaricites

A. tenuifolia

C. natans

M. fonnosa

A. larnarcki

S. hayades

D. clivosa

S. michilinii

Gorgonirns

P. bipinnata

E. calyculata

B. asbestinium

M. pinnata

M. laxa

P. acerosa

L. virgulata

Spongcs

C. podatlpa

A. cauliformis

C. delitrix

N. cr€cta

S. corallipbagum

Diplastrclla sp.

A. fistularis

E. ferox

N. digitdis

P. amaranthus

A. clathrodes

Mrcrnr[re

Dictyota

L. varicgata

Udotea

S. zonale

P. glmnospora

U. fasciata

Erect Conlline Algae

Erect Cor.

Celcereous Alee

Halimeda

Crustose Conlline A[ee

C.C. Red

C.C. Purple

C.C. Grcen

C.C. Brown

Filamentous/Turf Algee

Fil./Turf

Non-Living Substrete

Sand

Rock

15.00
0.00
0.00

23.00
0.00
3.00
5.00
1.00

t0.00
0.00

r3.00
1.00
0.00
0.00
3.00
0.00

26.00
14.00
0.00
0.00
4.00
0.00
0.00

3.00
1.00
0.00
6.00
t.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
46.00
3.00
1.00
r.00
1.00

1.00

2.00

17.00
0.00
0.00
r.00

12.00

t6.00
0.00

1.00
21.00
0.00

r2.00
0.00
0.00
6.00
0.00
t.00
0.00

10.00
0.00
s.00
0.00
0.00
0.00

16.00
0.00
0.00
0.00
0.00
0.00
0.00

7.00
1.00
1.00
0.00
0.00
0.00
2.00
1.00
0.00
9.00
0.00

0.00
4l.00
5.00
2.00
0.00
0.00

2.00

6.00

22.00
0.00
2.00
2.00

62.00

7.00
9.00


