planet

Absolute Calibration of a 5 Satellite Constellation Using Vicarious Calibration – 7 Years of Operational Experience

Dr. Andreas Brunn, Dr. Horst Weichelt, Sara Bahloul

Dongtaijinai'er Salt Lake, China MAY 3, 2016

Content:

- Planet and the RapidEye Satellite Constellation
- Calibration Goals
- Past Vicarious Calibration Campaigns
- Methods
- Results

London Array Wind Farm, United Kingdom, APR 17, 2016

OUR PRODUCTS

Monitoring Programs

Our subscription program of continuous imaging of places you care about.

Imagery à la Carte

À la carte imagery that is tailored for one-time purchase of satellite data.

Global Basemaps

Seamless, color-balanced, cloud-free mosaics – ready for immediate use.

Imagery Archive

Explore one of the largest archives online today – dating back to 2009.

Planet operates the largest fleet of earth observation satellites available

 5 Satellite RapidEye constellation (launched 2008, expected live at least until 2020 and beyond)

 Fast growing number of cubesats (doves in flocks)

The Satellite Constellation

Launch date:	August 29, 2008
No. of satellites:	5
Orbit:	Sun synchronous
Equator crossing time:	11:00
Orbits per day:	14.8 per satellite
Nominal altitude:	630 km
Swath width:	77 km
Imaging capacity:	max. 1,500 km /orbit
System image capture capacity:	Up to 6 million km ² /day

The Spacecraft

Weight	156.4 kg	
Bus:	112.9 kg	
Payload:	43.5 kg	

Bus built by: SSTL (UK)

Payload built by: Jena Optronik (Germany)

Sensors Onboard the Satellites

Manufacturer:	Jena Optronik, Germany
Model:	JSS56 Spaceborne Scanner
Design:	TMA (Al mirror)
Eff. focal length:	633 mm
Entrance Pupil Ø:	147 mm
f-number:	4.3
CCD:	Atmel (AT71544)
Pixel Size:	6.5 m
Pixels per line:	12,000
Camera dynamic range:	12-bit

Satellite Orbit Characteristics

All 5 RapidEye satellites in the same orbit

"Flying" from north to south

Image take(s): up to 40-50 per satellite, per day

Swath: 77 km

Path Length: ~1200 km

Satellite Orbit Characteristics

Sun-synchronous orbit

Equally spaced in one orbital plane

Calibration Goals

• Cross calibrate the satellites and deliver stable response over time

• Transfer the relative response to absolute radiance units

Temporal Calibration Approach

26 Calibration Sites, imaged every 2 Weeks with all Satellites

Temporal Calibration Approach

Per Band Normalized Image Mean Values

Temporal Calibration Approach

Detector Degradation since beginning of operations until July 2015

Degradations are corrected in image products

Absolute Calibration

- RapidEye Cameras do not have on board calibration means (no shutter door, no light, no diffusors, ...)
- Absolute Calibration is done using vicarious calibration approaches
 - Since 2009 using Railroad Valley and Ivanpah desert site

Railroad Valley

Ivanpah Playa

Absolute Calibration

Since 2013 Brookings (South Dakota) Grass Site

- Less stable atmosphere
- easier accessible
- Darker site (except NIR)

Absolute Calibration Reference Sets

	U o Arizona	South Dakota SU
2009 - 2010	10	-
2011	5	-
2012	25	-
2013	5	9
2014	10	12
2015	35 (incl. RadCats)	10

Number of collects per site and year

Data Acquisition

LOSR, wide angle photometer, sky camera, etc

Establish the Known Radiance

On-site: Measure the surface reflectance of the target area.

On-site: Measure the atmospheric conditions above the site

In-Lab: Use accepted values for the atmospheric scattering & absorption, and the sun-target geometry at the time of collection.

In-Lab: Ingest all of these into a radiative transfer algorithm and compute a predicted spectral radiance reaching the top of the atmosphere after reflection from the target.

Derived from Ground measurements

(p)

Results

Muir Woods & Mt. Tamaipais, California, USA DEC 23, 2015

RE 1 Band 1

Calibration accuracies

All in all the temporal and absolute calibration approaches lead to these accuracies:

	RE1	RE2	RE3	RE4	RE5
Bd1	-2.52%	-1.34%	2.24%	3.04%	3.29%
Bd2	0.86%	-3.27%	-1.27%	-3.08%	0.50%
Bd3	2.41%	3.31%	1.12%	1.98%	1.23%
Bd4	0.42%	-0.10%	-0.18%	2.18%	-3.19%
Bd5	0.33%	-0.24%	1.56%	-0.35%	-1.95%

Lessons Learned

 Even with daily coverage possibilities and automated sites it is hard to get enough good reference points

 One calibration site is not enough: more than one sites on different brightness levels are required to correct gains

Thank You! Questions?

andreas.brunn@planet.com horst.weichelt@planet.com sara.bahloul@planet.com

