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The Great Salt Lake: 
A Barometer of Low Frequency Clhnatic Variability 

Upmanu Lall1
t and Michael Mann2 

Low frequency (interannual or longer period) climatic variability is of interest because of its 

significance for the understanding and prediction of protracted climatic anomalies. Closed basin 

lakes are sensitive to long term climatic fluctuations and integrate out high frequency variability. It 

is thus natural to examine the records of such lakes to better understand long term climate 

dynamics. Here we use Singular Spectral Analysis (SSA) and Multi-Taper Spectral Analysis 

(MTM) to analyze the time series of Great Salt Lake (GSL) monthly volume change from 1848-

1992, and monthly precipitation, temperature and streamflow for nearby stations with 74 or more 

years of data. This analysis reveals high fractional variance in 15-18, 10-12, 3-7 and 2 year 

frequency bands, which seem to be consistent across time series. The putative decadal and 

interdecadal signals appear to be related to large scale climate signals discussed recently. The 

interannual signals are consistent with EI Nino Southern Oscillation (ENSO) and quasi-biennial 

variability identified by others. Prospects for improved prediction of the GSL volume and of 

protracted wet/dry periods in the Western United States are discussed. 

lUtah Water Research Laboratory, Utah State University, UMC82, Logan UT 84322-8200 

2Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven CT 06520-8109 



Introduction 

Our fascination with climatic cycles goes back as far as recorded history. Almost every 

possible periodicity between 2 and 200 years has been observed with some certainty (Burroughs, 

1992, p. 60). Burroughs also observes that "the history of meteorology is littered with the 

whitened bones of claims to have demonstrated the existence of reliable cycles in the weather". 

Often, the "cycle" is wont to disappe~ soon after its discovery-, and may spontaneously reappear 

later. The existence and understanding of all but the diurnal and the annual cycle is polemical. 

The search for hidden order is one of science's aspirations. Moreover, given the socio-eco­

geo-political implications of successful long term climatic forecasts, interest in the identification 

and explanation of recurrent climatic patterns is natural. Recently (see Diaz and Pulwarty (1994), 

Mann and Park (1993, 1994) (hereafter, MP93, MP94), Houghton and Tourre (1992), Currie and 

O'Brien (1992), Ghil and Vautard (1991) (hereafter, GV), Dettinger and Ghil (1991), Trenberth 

(1990), and Levitus (1989» interest has focused on the possibility of decadal/interdecadal climatic 

variability that may be due to internal (e.g., ocean-atmosphere interaction) or external (e.g., 

sunspot cycles or lunar tides) factors. Indeed, GV and MP94 argue that a large part of the recent 

global warming may be explained as the superposition of distinct quasiperiodic climatic patterns 

with different frequencies. Can one explain droughts and other protracted anomalies similarly? 

Recognition of low frequency variability leads to changes in the interpretation (e.g., of water 

quality trends) and utility of hydro-climatic records. Traditional hydrologic models formulated at 

monthly or annual time scales assume stationarity of the statistics of the underlying process. 

Interannual structure in these time series invalidates such assumptions. The identification of 

coherent, low frequency patterns is also relevant to interpretation of long range persistence or the 

Hurst effect. 
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A purpose of the work presented here is to develop an empirical understanding of the role of 

climatic variability in the dynamics of the Great Salt Lake (GSL) of Utah - a closed lake in the arid 

Western U.S.A. Our findings are also directly relevant to the ongoing debate on interdecadal 

climatic variability. A long record (1848-1992) was available. The GSL "samples" precipitation in 

the Great Basin, an area where most of the precipitation occurs at high elevations and runoff is 

largely from snow melt. Worldwide, very few long record, high elevation, precipitation gages are 

available. Barnston and van den Dool (1993) suggest that regions with low interannual variance in 

atmospheric circulation are favorable sites for studying low frequency climatic behavior. In their 

analysis of 700 mb atmospheric pressure surface data, the GSL basin is such a region. Insights 

from spectral analyses using "modern" methods such as Singular Spectral Analysis (SSA) 

(Vautard et al (1992», and the Multi-taper spectral analysis method (MTM) (Thomson (1982» of 

GSL volume changes and precipitation, temperature, and streamflow time series at nearby stations 

are presented here (see Figure 1 for a site map, and Table 1 for site information). Of interest is 

evidence for structured low frequency variability in these time series, and insight into the relative 

sensitivity of the GSL to low frequency precipitation and temperature variability. 

In the next section we develop a perspective for the analysis of climatic variability - is it 

random; is it deterministic but chaotic and unpredictable; are cycles sustainable; do they represent 

quasi-periodic transitions between different climatic regimes~ or are they episodic damped 

oscillations triggered by external events? What are the implications for the analysis of a finite, 

noisy time series? Are some types of data (e.g., spatially gridded or averaged data vs. point time 

series) more useful than others? What are some desirable attributes of the analysis methodology? 

Background information on the Great Salt Lake and its environs comes next. A section describing 

the methods used follows. This leads to the results from the analysis of the selected time series. 

Draft U. Lall October 11,1994 3 



* Weather Station 
° Streamgauging Station 

GSL~PR OBFH 
: OGD 

RIV 

SLB** °WRO 
SNC 

OBRB 

Figure 1 

Site Map 
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Elevation 
Site (m above MSL) 
BRB 1920 
SNC 1828 
SLB 2664 
WRO 2012 
RIV 1341 
OOD 1325 
COR 1289 
BFH 1530 
OSL 1280 

Scale 

100 200 Km. 
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Table 1 

Data Sets Analyzed 

Elevation 
Latitude Longitude (m. above MSL) Record Length 

Great Salt Lake (GSL) 40' 20' to Ill' 52' to 1280 1848-1991 
Monthly Volume Change 41' 40' N 113' 06' W 

Snake Creek 40' 33' N Ill' 30' W 1828 1916-1989 
(SNC) 

Silver Lake/Brighton 40' 36' N 111' 35' W 2664 1916-1989 
(SLB) (Highest station) 

Riverdale 41' 09' N 112' 00' W 1341 1916-1989 
(RlV) 

Ogden 41' 15' N Ill' 51' W 1325 1916-1989 
(OGD) 

Corinne 41' 33' N 112' 01' W 1289 1902-1989 
(COR) (Closest to GSL) (Lowest Station) 

BeaverRivernr. Beaver 38' 17' N 112' 34' W 1920 1915-1988 
(BRB) (South ofGSL drainage and does not flow into GSL) 

Weber River nr Oakley 
(WRO) 

40' 44' N 111'15' W 

Blacksmith Fork nr Hyrum 41' 37' N Ill' 44' W 
(BFH) 

2012 

1530 
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1905-1988 

1919-1988 

Source/Comments 

U.S.G.S./Sangoyomi(1993) 

Fan and Duffy (1993) 
Monthly Temperature/Precipitation 

Fan and Duffy (1993) 
Monthly Precipitation 

Fan and Duffy (1993) 
Monthly Temperature/Precipitation 

Fan and Duffy (1993) 
Monthly Precipitation 

Fan and Duffy (1993) 
Monthly Temperature/Precipitation 

U.S.G.S., Slack et al (1992) 
Monthly Streamflow 

U.S.G.S., Slack et al (1992) 
Monthly Streamflow 

U.S.G.S., Slack et al (1992) 
Monthly Streamflow 
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Notions about Climatic Fluctuations and Data Analysis Issues 

During 1983-86, the Great Salt Lake rose rapidly to its highest level in a hundred years, and 

then declined quickly just as a $60 million pumping project to control its level was implemented. 

The previous decade had seen concern that the GSL might be drying up. The persistent rain and 

floods in the Mississippi River basin in 1993, were equally noteworthy. Such extremes are 

fascinating because they occur at every time scale, and in human memory, with some regularity. 

Let us examine some postulates regarding such behavior. 

(I) The climatic time series is the outcome of a random process (perhaps one with some 

memory) and the diurnal and annual cycles. 

The observed extremes occur randomly in accordance with such a process. This is a rather 

unsatisfying postulate, not in the least because it provides little physical intuition or understanding 

of the climatic process. 

Pragmatically, it is known that a number of deterministic and chaotic systems (Abarbanel et 

ai, 1993) have generally broadband spectra that can be easily misclassified as "white" or "red" 

noise systems. The underlying dynamics may have well defined regimes with nearly periodic 

transitions between them at some preferred range of time scales. Predictability is lost only by 

passage through some unstable state(s). Palmer(1993) exemplifies this perspective using the 

Lorenz equations. Consequently, there are no sharp spectral peaks, but possibly high power in 

some frequency bands that will be overlooked in a traditional periodogram analysis. Since it calls 

for an explanation, evidence of such frequency structure in the spectrum of climatic time series is 

important, even if no sharp spectral peaks are apparent. There is a growing recognition (e.g., 

Kahya and Dracup (1993), Guetter and Georgakokas (1993), Cayan and Webb (1992), Cayan and 

Peterson (1989), Ropelewski and Halpert (l986)} of the importance of the nearly periodic (over a 
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2 to 3 and 4 to 6 year frequency bands) EI Nifio Southern Oscillation (ENSO) on temperature, 

precipitation and streamflow variability over large regions. Philander (1990) presents a treatise on 

the observational aspects of ENS 0 as well as several physical/dynamical explanations. 

(II) The climate system is deterministic, with positive and negative feedbacks that lead to 

recurrent patterns in time and space. 

Such "oscillations" may be described by linear or nonlinear dynamics associated with the 

amplifying (positive) and restoring (negative) forces. The governing equations (see Lorenz 

(1976), or Saltzman (1983» of the climate system are nonlinear with a variety of feedbacks. Ghil 

et al (1992) review recent work on understanding climate through a nonlinear dynamics 

perspective. What are some implications of nonlinearity that are of interest in analyzing climatic 

time series? 

1. Harmonic Generation. Burroughs (1992), p.147, indicates that in a nonlinear system, (a) 

higher harmonics (e.g., 2f, 3f etc.) of an external forcing at frequency f, may be generated, and (b) 

if there are two or more forcing frequencies, periodicities at integer combinations of these 

frequencies may show up in the response. In the latter case (often called a quasi-periodic 

system)l, low frequency responses (e.g., through the combination f1-f2) may be generated. 

Typically, the amplitude of the higher harmonics is smaller than that of the lower harmonics. Once 

again, such a response could easily be misclassified as "red" noise upon periodogram analysis. 

Burroughs offers the example of the 11 year (f1 =1/11) sunspot cycle, which if relevant to climate, 

may lead to harmonics at 5.5 (2f1) and 3.7 (3f1) years; and its combination with the purported 

lunar tide cycle of 18.6 (f2=1/18.6) years could produce periodicities of 6.9 (n +f2), and 120.3 

(4f2-2f1) years. Sangoyomi and Lall (1993) analyzed the spectra of the biweekly 1848-1992 GSL 

volume using classical periodogram analysis following a recipe for peak identification suggested 

lSome authors use the tenn quasi-periodic to mean periodic behavior that is slowly frequency or amplitude 

modulated. Such behavior is tenned nearly rather than quasi periodic here, to distinguish it from the fonnal 

defmition of quasi-periodicity used by physicists and mathematicians. 
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by MacDonald(1989), and found that there were 15 peaks that were significant at the 0.1 level. 

However •. all these peaks could be resolved as integer combinations of four base frequencies 

corresponding to periods of 36.07, 14.23, 11.10 and 1 years. This is an interesting preamble for 

this work since it naturally raises the question of whether this quasi-periodicity (if real) is generated 

by the dynamics of the lake and its drainage or by climatic variability. Jin et al (1994) developed a 

paradigm for ENSO along these lines. 

2. Entrainment. Burroughs (1992), p.148 describes entrainment as a situation in which a system 

with a natural self-excitation frequency f l' if stimulated by a forcing at frequency f 2, may respond 

at f2 if f2 is close to f1, or asynchronously, at a new frequency f3. Transient oscillations in one 

part of the system (e.g., the ocean) may consequently lead to a synchronous or asynchronous 

response in other parts of the system. Energetic perturbations, such as volcanoes, may lead to a 

chain reaction of oscillations in the system. The effected subsystem may respond with a damped 

oscillation at its natural frequency. Interacting subsystems may respond synchronously or 

asynchronously, and may also have positive feedbacks. In a dissipative system, eventually such a 

chain of events would damp out. Vautard et al (1992) point out that the behavior of a chaotic 

system is usually not totally random. Near periodicities may contribute a large part of the system 

variability. Weakly unstable periodic orbits (corresponding to internal or natural response 

frequencies) may attract trajectories intermittently and lead to spells of periodic activity. Such 

cycles may show up in one segment of the data, but may be missing in another.2 Thus the 

response of the system to particular forcings (e.g. volcanic disturbances) that occur at roughly the 

same state of the system may have short term predictability. This observation may account for Lall 

et al's (1994) success in predicting the GSL for up to 4 years in the future using a nonlinear 

dynamics based forecasting model. 

brhis ties in with what we called nearly periodic behavior earlier. Such variability will typically show up in a 

spectrum as an elevated narrow band rather than a sharp peale ENSO is often assigned this interpretation. 
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3. Phase Shift. Phase shifts relate to the previous discussion on entrainment. Burroughs (1992), 

p. 149, points out that for systems that are forced by a combination of frequencies that slowly 

move in and out of phase (e.g., 8.65 and 18.6 years, that have a 165 year overtone), the response 

of the climate at the higher frequency may suddenly switch its phase by 1t radians. This leads to a 

loss of predictability and identifiability unless such a phase shift can be anticipated or described. It 

also implies that the associated signal will most likely fail significance tests for phase coherence 

upon data analysis, unless appropriately chosen data segments are looked at. 

Research into interannual and interdecadal climatic mechanisms has received renewed 

impetus recently as it has become clear that (a) such features exist, (b) the amplitude of low 

frequency oscillations is high, and (c) they are important to understand in the context of not only 

the global warming debate, but also the nature of climate in general. Of course, considerable 

controversy surrounds the data, the analysis and the proposed mechanisms at this point. Typical 

cycles identified most often are 2.1, 3.1, 3.4, 3.7, 5.2, 6.9, 10, 11, 15, 18,22, and 25 years 

(Burroughs (1992) ). In light of the discussion thus far, it is useful to think of such variability as 

organized by characteristic frequency bands rather than sharp peaks. We refer the reader to 

Burroughs (1992) and Ohil et al (1992) for discussion of the features and suspected mechanisms 

associated with these cycles. 

Clearly, nonlinearity imparts complexity, and by itself, the analysis of a finite data set is 

unlikely to resolve most of the features we list above. We hope to isolate at least some frequency 

bands where there is evidence of activity, as well as intermittent oscillations. It will also be 

instructive to see if the differences in the analyses of precipitation, temperature, streamflow and 

OSL time series are consistent with one's expectations regarding the evolution of these processes. 

Specifically, do we see a relative filtering of the higher frequency phenomena as we move through 

this sequence of series. Are there any new features introduced that may highlight the role of 

hydrologic processes? 
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L<?!lg records are clearly essential for investigations into intermittent oscillations, phase 

shifts, and important frequency bands. What kind of records are most useful? Clearly, one must 

guard against making far reaching conclusions from data at a single location, lest the feature may 

be an artifact of the local circulation, or systematic biases (e.g., due to man's activity or 

instrumental errors). On the other hand, MP93 show that the use of regionally or globally averaged 

data can lead to a cancellation of a spatially evolving pattern. Since the spatial distribution of 

recording stations is highly nonuniform over the earth, working with the spatial data set may also 

implicitly introduce poorly quantifiable biases into the analysis. Carefully selected hydrologic 

records (streams, closed basin lakes) offer an opportunity to use "natural" averaging of the climatic 

signal. However, they may introduce artifacts (at the high frequency range) that are peculiar to 

drainage basin hydrology, and also suffer from non stationarity induced by man's activity. Here, 

we use a number of local hydro-climatic records as a check for the self-consistency of the 

local/regional signal identified. Connections between the signals identified here and large scale 

atmospheric circulation are explored further in Mann et al (1994). 

The Great Salt Lake And Data Used 

Closed lakes occur in arid regions of the world, where there is a delicate hydrologic balance 

between the long term average lake evaporation, precipitation and runoff from the drainage basin. 

The average lake evaporation rate (volume/(time*area)), usually exceeds the average precipitation 

rate, and the difference is balanced by basin runoff. The drainage basin of the lake is 

topographically closed. The only outlet for water is evaporation, which is determined by 

temperature, relative humidity, lake area, wind and salinity. Precipitation on the lake and runoff 

(induced by precipitation in the drainage basin) constitute lake inputs. Such lakes are of interest 
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because (1) they are very sensitive to climatic variability, (2) their volumetric fluctuation represents 

a natural space and time average of regional climatic variability, and (3) they can highlight longer 

term fluctuations through a natural damping of high frequency components. 

The GSL is the fourth largest (average surface area 4350 Km2), first or second saltiest (salt 

15 to 28% by weight), and shallowest (average depth 5 m.) perennial closed lake in the world. The 

large surface area and shallow depth make the lake very sensitive to fluctuations in long term 

evaporation and precipitation. The topographic relief in the basin ranges from the GSL elevation of 

1280 m. above Mean Sea Level (MSL) to 3960 m. above MSL. The principal mountain ranges as 

well as the primary influent rivers are east of the lake. The drainage area of the lake is 

approximately 90,000 Km2, of which approximately 40% does not contribute flow to the lake 

except under very wet conditions (e.g., 1983-86). Low levels of the GSL correspond to regional 

drought. High levels of the GSL in the 1980's led to extensive flooding and damage. A volumetric 

record (Figure 2) from 1848-1992 developed by Sangoyomi (1993) is used here. The variables 

analyzed are the monthly and annual GSL average volume change. We choose the differenced 

volume, rather than the volume itself, to allow an easier comparison with the precipitation, 

temperature and streamflow records. While such differencing could introduce noise at frequencies 

near the monthly sampling, it does not significantly alter the attributes of low frequency periodic 

structure. 

Monthly temperature and precipitation records (see Fan and Duffy, 1993) for five sites 

(Silver Lake-Brighton (SLB), Corinne, Ogden, Riverdale, and Snake Creek) in the GSL drainage 

were analyzed. Most of the precipitation in the GSL basin occurs in Winter/Spring. Precipitation 

increases with elevation. SLB, the highest available long term precipitation station, is 

approximately at the elevation of the 700 mb pressure surface. The SLB precipitation should be 

well correlated with precipitation driven GSL fluctuations as well as larger scale atmospheric 

fluctuations. Most of the GSL evaporation takes place in Summer/FalL The summer diurnal 
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temperature range near the GSL is of the order of 16 to 22° C, with highs around 35-40· C. The 

lowest temperature recorded in the GSL basin is -39°C, and the highest is 44°C for an extremal 

range of 83°C. Of the long record stations available to us, the Corinne (COR) record was perhaps 

the most relevant for summer temperature driven GSL fluctuations. 

GSL Average Annual Volume and av 
(1 Acre-ft. = 1233.48 cubic metres) 

3.0e+7 ..,..--------.....-----,- 6.0e+6 

2.7e+7 

--.:- 2.4e+7 
;;;= 
t5 2.1e+7 2.0e+6 ~ 
~ ~ 
~ 1.8e+7 J....S.IH4-~H-:-\l~~~~....;.;:4R.;.I_,1_ 16 
:J O.Oe+O ;-

g 1.5e+7 t\',) 

1.2e+7 

9.0e+6 -t---r-,---.,..-,---,---,--......--t- -4.0e+6 

1840 1880 1920 1960 2000 
year 

Figure 2 
GSL Annual Volume and Annual Volume Change Time Series (1848-1991) 

Three streamflow records (Table 1) were also analyzed. These records are believed to be 

free of any significant effects of reservoir regulation, diversion or consumptive use (Slack et aI, 

1992). Blacksmith Fork is near the northern extreme of the GSL drainage, Weber River in the 

middle, and Beaver River is south of the GSL drainage. The sources of moisture for Beaver River 

and Blacksmith Fork can be different depending on the location and configuration of the winter jet 

stream. 
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Willet and Prohaska (198S) speculate that three major circulation patterns influence the 

weather iii the basin. These are: (1) a high latitude (SOON), moderate jet stream, corresponding to a 

dry climate; (2) a lower latitude split jet stream, with a primary storm track that borders the 

northern extreme of the OSL drainage, and a secondary storm track that borders the southern part 

of the drainage; and (3) a cellular blocking pattern with large, alternating north and south strong 

jets, and a breakdown of the westerly flow. The split jet stream is very active and corresponds to a 

rapid rise of the GSL. The cellular blocking pattern leads to hot, dry summers and a falling GSL. 

In their investigation of the relationship between North Pacific atmospheric circulation and 

streamflow in the Western United States, Cayan and Peterson (1989) noted a strong association 

(correlation=0,43) between positive Weber River streamflow anomalies and a positive Sea Level 

Pressure (SLP) anomaly centered over N. Pacific and with a negative SLP anomaly locally. This 

implies a southerly displaced storm track across the Eastern North Pacific and into the West with 

increased activity from Canadian and Alaskan storms that dip in east of the Cascades. An 

anomalous northeasterly to southeasterly flow with precipitation associated with a local trough 

corresponds to this pattern. Enhanced winter precipitation is accompanied by positive minimum 

daily temperature anomalies. Cayan and Peterson (1989) found a positive association between the 

Southern Oscillation Index (SOl) (defined as the difference between normalized SLP anomalies 

between Darwin and Tahiti), and two indices of pressure anomalies over the North Pacific - the 

Pacific North American (PNA) Index (defined in terms of 700 mb height H, as PNA= H(170·W, 

200 N)-H(16soW,45"N) +H(115"W,S8°N) -H(90·W,300N), and the Central North Pacific (CNP) 

Index (defined as CNP = average SLP over 35" -SsoN and 1700E -IS00W). These indices reflect 

characteristic pressure systems that determine atmospheric flow and hence precipitation in the OSL 

area. The SOl has nearly periodic behavior (Keppenne and Ohil, 1992) with high (2-3 yr) and low 

frequency (4-7 year) bands corresponding to ENSO, which is best understood as an internal self­

sustained equatorial oscillation in the coupled ocean-atmosphere system (see Philander, 1990). 
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Streamflow relates to PNA and CNP which are measures of the strength of the winter Aleutian 

Low (see also Barnston and van den Dool (1993) who identify the GSL area as one with a maxima 

in interannual N. Hemisphere 700 mb height standard deviation). One should thus expect some 

organized inter-annual variability at least in the ENSO band for the hydro-climatic variables in this 

area. 

Spectral Analysis Methods 

The limited length of instrumental records, the sensitivity of the variable analyzed to local as 

well as global factors, the intermittence of oscillatory patterns, and issues (see MP93) related to the 

interpretation of space and time averaged data make the identification of a coherent long period 

signal difficult. Spectral analysis methods tailored to the identification of coherent variability in 

specific frequency bands where the underlying spectrum may have line (Le. sharp peaks 

corresponding to periodic behavior) as well as broad band (due to stochastic, chaotic or nearly 

periodic factors) features are needed. 

We tested Windowed Periodograms, Maximum Entropy Spectral Estimates, SSA and 

MTM, on a variety of synthetic data sets with these factors in mind. Of these, MTM and SSA were 

the most successful in terms of the criteria listed above. Our goal here is to present evidence of low 

frequency climatic variability, rather than a comparative evaluation of methods of spectral 

estimation. We shall limit ourselves to a brief description of the relevant attributes of SSA and 

MTM. We use SSA to identify anharmonic oscillations, and MTM for identification of peaks and 

frequency band structure. 

Singular Spectral Analysis(SSA): 

An excellent exposition of SSA, complete with guidance for interpretation of results, tests 
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and properties is provided by Vautard et al (1992). Recall that the traditional periodogram 

constructs the spectrum as a Fourier decomposition of the variance of the time series. This can be 

done equivalently through appropriate Fourier transforms of the time series or the autocovariance 

function. Likewise, the windowing or smoothing operation can be done in the frequency, time or 

autocovariance domain. SSA is similar in that it operates on the autocovariance structure of the time 

series. It differs in using data driven, empirical, orthogonal basis functions, rather than Fourier 

(Le. sin or cos) basis functions for the decomposition. Ohil and Le Treut (1981), discuss and 

model saw tooth shaped variations in the Quaternary climate record, that could be captured better 

by SSA than the Fourier basis. 

SSA considers the eigen decomposition (Principal Component Analysis - PCA) of the 

autocorrelation matrix of a time series formed to some lag M. The resulting eigenvectors are the 

basis functions. The corresponding eigenvalues indicate the fraction of overall variance explained 

by an eigenvector, and projections of the time series on to the eigenvector provide a representation 

of that component of the time series. Eigenvectors with the same shape and nearly equal 

eigenvalues are called oscillatory pairs and jointly represent the amplitude and phase of a cyclic 

pattern. SSA can potentially resolve signal and noise and works well in situations where there is a 

distinct signal-noise separation. The data driven basis functions can potentially resolve the signal in 

terms of a smaller set of basis functions than the Fourier basis. SSA can have problems 

identifying underlying signals if a long memory stochastic process constitutes the noise, or if the 

underlying signals have periods that are close, but long relative to reasonable choices of the 

windowing parameter (lag M). Its strength is the recovery of dominant, arbitrarily shaped, data 

adaptive recurrent patterns from a finite sample, and their corresponding time history. A 

decomposition of the time series into orthogonal variance components, and their associated time 

patterns is provided. Thus one can identify the timing and amplitude of oscillations, as well as the 

nature of trends. The statistical machinery associated with PCA is readily invoked by SSA. A 
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synopsis of the algorithm (based on Vautard et al (1992» for a scalar time series follows. While 

some results are referenced in this section, they are formally discussed later. 

1. Given a time series {xi' i=l,n},translated to have zero expectation, and rescaled to unit standard 

deviation, form the Toeplitz matrix Tx. with element ~j=c(k), where k=li-jl, k=O ... M-1, and c(k) 
n-k 

=(l/(n-k) ~>iXi+k is an estimate of the lag k covariance. Here the dimension of T x is M*M, and 
i=l 

M has the role of a smoothing window. The longest period recoverable is thus M. Vautard et al 

(1992) recommend M s: 0/3 for stability of the computed c(k). They also suggest that SSA is 

successful in analyzing periods in the range (Ml5, M). The spectral resolution is 11M since the 

frequencies that can be resolved are 1, 1/2, ... 11k, .. lIM. As M decreases, neighboring peaks in the 

spectrum may coalesce, while as M increases, a peak may split into components at adjacent 

frequencies (the Gibbs effect). Varying M over a coarse grid during the analysis is consequently 

desirable to screen out spurious frequencies and to focus on signals in different frequency bands. 

II. Now an eigen decomposition of T x yields a decomposition of the total variance into 

components in a manner analogous to Fourier analysis. 

(1) 

where A is a diagonal matrix of eigenvalues (generally positive) sorted in descending order, and E 

is a corresponding matrix of eigenvectors, such that ETE =1. 

Each eigenvector ei of length M represents a data pattern, or empirical orthogonal basis 

function. The corresponding eigenvalue Ai provides a measure of the variance associated with this 

pattern. The leading eigenvectors consequently provide information on the dominant patterns in the 

data. All eigenvalues for a white noise series are equal in expectation. A plot of Ai vs i, is termed 

an SSA eigenspectrum (see Figure 3 for some of our data sets). Eigenvectors i and i+ 1 are termed 

an oscillatory pair if Aj""Aj+ 1. and the coefficients el and el+ 1 exhibit a similar temporal pattern 

for j=l...M. Preisendorfer (1988), p.247 reports that standard deviation aAj of Aj is asymptotically 
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A.i(2/n)1!2. Thus if (A.rA.i+1) is of the same size or smaller than OA.i' the eigenvalues may be 

considered to be equal. One can think of this oscillatory pair (see Figure 4 for an example) as a sine 

and cosine pair that carries the frequency and phase information. Energetic intermittent oscillations 

with lifetime less than the window length can be identified through the eigencoefficient pattern. 

A number of strategies for selecting the "statistically significant" eigenvectors for PCA are 

described by Preisendorfer (1988). These are applicable here as well. GV, Vautard et al (1992) and 

Allen and Smith (1994) review some of these techniques as well as Monte Carlo strategies for 

testing for significance against white and red noise. For the results presented here, we considered 

(a) only the first 8 eigenvectors in any case, (b) dropped eigenvectors if the corresponding 

eigenvalue dropped below 11M, and (c) considered paired eigenvectors only as described above, 

where the patterns were distinct, meaningful and similar. Finally, we satisfied ourselves that our 

choices were conservative relative to those from the significance criteria against the white noise 

hypothesis (using Rule N, described in Preisendorfer (1988), p.199-206, based on a Monte Carlo 

Analysis of Gaussian data, with consideration of serial correlation). Coherent patterns that have 

low contribution to the time series variance are thus missed. Our primary purpose for using SSA 

was to identify prominent recurrent patterns and their time projection, with a view to comparing the 

leading patterns in local precipitation, temperature and the OSL. Formal significance testing of 

peaks was done as part of the MTM procedure. 

Draft U. Lall October 11.1994 17 



SSA Eigenvalues, m=25 
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Figure 3 
Eigenvalue Spectrum from SSA for Selected Sites. 

The window length m =25 years unless noted otherwise. 

The three horizontal lines (.02,.033,.04) correspond to the average eigenvalues for (WRO, SLB), 
COR-T, and GSL respectively. Only the first 15 eigenvectors are shown in each case. Note the 
near equality of some pairs of leading eigenvalues (especially GSL). Typically, these pairs 
correspond to eigenvectors that are periodic and in quadrature as shown in Figure, 4. Such a 
relation was not clear cut for COR-T, where the first 4 eigenvalues are nearly equal and only the 
flrst and fourth eigenvector look "similar". 
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Figure 4 
Eigenvectors 1-4 for annual GSL av 

Each set is seen to form an oscillatory pair (near 11 years for 1-2, and near 15 years for 3-4). 

Not all eigenvectors whose eigenvalues are nearly equal are so obviously in quadrature. 
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Figure 5 
Reconstruction of annual GSL av time series using the 11 and 15 year cycles shown in Figure 4. 

Nearly 40% of the variance is accounted for. 
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Figure 6 
Comparison of 15 yr Reconstructed Component Pair (RCP) of annual GSL av, SLB-P, and 

COR-To 

To ease plotting, each RCP is standardized by removing its mean and dividing by its standard 
deviation. In each case, the full record described in Table I was used. Results are plotted only for 
the overlapping time period. Each RCP has an approximately 14-15 year period. Note how the 
GSL and precipitation (SLB-P) are nearly coherent throughout, while the temperature (COR-T) 
signal is nearly in phase with the other two to begin with and then drifts completely out of phase 
around 1950. The COR-T eigenvectors corresponding to this RCP were not as clearly periodic as 
the others, and this Rep may represent a mixture of two nearby interdecadal frequencies, resulting 
in a "frequency" drift. The streamflow BFH is also coherent with GSL and SLB-P. Evidence of a 
small phase shift between GSL and BFH in the 1960-1989 period is also evident. However, this 
drift may be due to the estimated periods being slightly different. 
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Multitaper Method of Spectral Analysis (MTM): 

Thomson (1982) provides the following motivation for the MTM algorithm. He points out 

that (a) the classical periodogram is an inconsistent estimator of the spectrum, (b) without a taper 

window, it may be too biased to be useful, (c) usual tapers can reduce variance efficiency, (d) 

smoothing the periodogram is unsatisfactory for spectra with large range and line and broadband 

components, since the true spectrum is not smooth, and (e) since the periodogram based spectral 

estimator does not directly use phase information, line detection is poor. He sets his sights on 

developing an estimator (MTM) that (a) is consistent, (b) has good small sample performance in 

terms of variance efficiency, (c) is data adaptive, (d) is nonparametric, i.e. locally approximates the 

spectrum using information only from neighboring frequencies, (e) works well with spectra with a 

high dynamic range, (f) is computationally easy, and (g) whose statistics can be estimated, and 

hence significance tests for line components and coherence can be provided. We outline the aspects 

of the MTM algorithm relevant to our presentation and refer the reader to Thomson (1982) and 

Percival and Walden (1993), Chapter 7, for details. 

The fmite discrete fourier transform (OFf) of the data, x(O), .x(t), .. x(n-l) is given by 
,...1 

y(f)= Le-i2l1f(Hn-1)f2)x(t) (4) 
t=0 

For a finite data set, the DFf is related to the spectrum as: 
1/2 • 1/2 

y(f)= J sl~n1t(f -v) dZ(v) = J G(n,f,v)dZ(v) (5) 
-1{2 sm1t(f -v) -112 

where the spectrum S(f) is defined through {Set) df = E[ldZ(f)12]}, where E[.] denotes 

expectation. 

Note that the periodogram estimate Sp(t) is simply ly(f)12, whose properties will not 

correspond to those of Set), since the term G(n,f,v) in (5) poorly approximates a Dirac delta 

function. This term is a consequence of a rectangular window of width n placed on the underlying 

process. Given the estimate y(t), one can seek a solution for dZ(fo) in (5) in some locale (fo-W, 
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fo+W) of a frequency fo' This is an inverse problem parameterized by G(n,f,v). Thomson pursues 

a least squares solution, by considering a weighted eigenfunction expansion in this locale, and then 

an appropriate combination of the resulting estimates. Consider the K term (k=O ... K-l) 

eigenfunction expansion: 
w 

1lA;(n,W),UA;(n,W;f)= J G(n,j,v)U(n,W;v)dv (6) 
-w 

where Uk(n,W;f) is the kth eigenfunction centered at f, with window width W, and Ak(n,W) is the 

corresponding eigenvalue. 

The eigenfunctions (called discrete prolate spheroidal wave functions) are ordered by 

decreasing eigenvalue, with the first nW eigenvalues close to 1. Consequently, of all functions that 

are DFT's of some discrete sequence, these leading eigenfunctions have a maximum energy 

concentration in the interval (fo-W, fo+W). This implies that the tapers are leakage resistant. The 

window width W is O<W<l/2, and is usually of order liN to retain high resolution of the resulting 

estimate. The idea here is that if the K term approximation in (6) is "good", then a good solution to 

the estimation of S(f) is available. Thomson derives such a solution by first considering K spectral 

estimates corresponding to each of the eigenfunctions and then combining them using an optimality 

criteria derived from estimates of the mean square error of estimate of the spectrum in the locale of 

interest. The K eigenspectra Sk(f), k==O, ... K-l, are defined through: 

YA;(f)= I,X(t) vt,A;(n,W) e-i21f/(I-(II-I)/2) 

t=O E;; 
(7) 

Sk(f) = IYk(f)12 (8) 

where Ek is 1 for k even, and i for k odd; and vt,k(n,W), the kth discrete prolate spheroidal 

sequence (DPSS) is defined such that its Fourier transform gives Uk(n,W;f-fo)' 

The MTM estimate is obtained as: 
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K-l 

SMCf)= LWk (f)Sk Cf) (9) 
k=O 

and wkCt) is a weight associated with the kth eigenspectrum estimate at frequency f. 

The windows Uk(') are positive everywhere, and hence the problem of getting negative 

estimates of S(f) resulting from traditional higher order spectral windows is averted. The combined 

estimate from K orthogonal tapers also circumvents the loss of resolution and variance efficiency 

problems endemic to periodograms smoothed with a single taper. The orthogonality of the 

eigenfunctions leads the Sk to be approximately uncorrelated. MTM recovers information lost by 

using a single taper and by ignoring the phase information in the periodogram. A number of 

strategies for choosing the weights wk(f) at each frequency f are indicated by Thomson. These 

range from a simple average, to weights proportional to the eigenvalues Ak, to a fully data adaptive 

and recursive procedure that internally estimates the bias and variance of the local estimate. We 

used the last two strategies in our work. The latter allows improved separation of the line and 

broad band spectral components. We refer the reader to Thomson for details of the DPSS and the 

wk' and discuss the choice of W and K, the user selected parameters of the model. 

The half bandwidth W is usually specified in terms of the Rayleigh frequency fR = (ru1tr 1, 

where At is the sampling frequency, as pfR' where p is usually a small integer. The corresponding 

DPSS is called a p1t taper. The corresponding spectral estimate averages in the frequency band 

f±pfR' For example, a 21t taper, for a 100 year annual data set would average over f±0.02 

cycles/year. Note that this would correspond to periods of 1.92 to 2.08 years for a band centered at 

f=0.5, and 14.28 to 33.33 years for a band centered at f=0.05. We see from this example that it is 

desirable to use a small value of p to get higher resolution in the low frequency range. On the other 

hand a small value of p can lead to peak splitting in the high frequency range. Comparing estimates 

obtained by varying p over a small range is consequently desirable. As K increases, the variance of 
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SM decreases, however, the broad band bias can increase. SM is distributed as X22K' rather than 

as X22 for the periodogram, and the increased degrees of freedom correspond to reduced variance. 

The first (2p-1) tapers are leakage resistant, so K is usually taken to be 2p-1. As p increases, the 

number of leakage resistant tapers increases. Note that, as n increases, one can increase p while 

retaining the same spectral resolution. The estimate SM(f) is unbiased, but its local features 

(amplitude) will depend on p and K. Consequently, it is desirable to also look at a significance test 

for line components based on the ratio of variance explained by a peak at fo to unexplained 

variance in a band centered at fo' 

Thomson shows that an F variance ratio test with 2, and 2K-2 degrees of freedom can be 

constructed for significance of line components through the statistic F(f): 

K-l 
l: Uk(O)Yk(f) 

where !l(f) = .;;.;..k=O"';;K-_-l---

l: U~(O) 
k=O 

(10) 

(11) 

Vautard et al (1992) point out that the maxima of SM(f) and F(f) don't always coincide, and 

suggest using the maxima ofF(f) for peak identification. We examined SM(f) for the different time 

series analyzed to identify any clear cut bands with high values of SM(f). Then we assessed the 

total power (integral of SM(f) in each such band, and ranked the importance of each such band for 

each time series. Finally, we examined F(f) to identify any peaks that passed the 99% significance 

test in each time series. 

The coherence C(f) across two time series xt (1), t=0 ... ,n-1, and xt (2), t=0, ... n-1, is 

estimated as: 
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11 y~I)* (t)y~2\t) 
C(t) = k=O 

(11 y~I)* (t)y~I)(t)~1 /2)* (t)/2\t) Ifl 
k=O J=O J J 

(12) 

where * represents a complex conjugate. 

A confidence test (see Brillinger (1981» similar to the F variance ratio test is used to test for 

the significance of the coherence amplitude. 

Our experience with synthetic data suggested that the MTM procedures were very reliable 

and were not as sensitive to signal to noise ratio, or to the memory in the broadband noise process 

as SSA or MESA or periodogram estimates. We did not see a need to prefilter the data via SSA and 

then apply MTM, as done by Vautard et al (1992). The reader may have noted that SSA uses an 

eigenexpansion of the autocovariance function, while MTM does something similar in the 

frequency domain. Consequently, SSA may be more useful for showing time patterns. MTM is 

generally superior for identifying phase coherent frequency structure. One could subject the SSA 

RC's to frequency analysis by MTM, or use the MTM estimates in the frequency domain to 

bandpass the time series at desired frequencies. We prefer to examine the SSA time optimal 

decompositions and the MTM frequency optimal decomposition independently and seek 

consistency across the analyses. Confirmation of "patterns" by independent analyses by different 

methods and across data sets is in our view more valuable than statistical confidence limits for a 

single analysis of a particular data set. A comparative discussion of the two methods is offered by 

Thomson (1982) and Vautard et al (1992). 
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Spectral Analysis Results 

For brevity we shall focus on the main points through an examination of some key spectra, 

and through the summary of the individual time series analyses presented in Table 2. After a 

preliminary screening of the spectral output, it was clear that one could designate bands in which 

there was power. The bands are larger in the time domain near the lower frequencies recognizing 

the increasing effect of the fixed averaging window in frequency space. The approximate spectral 

power in each band was ranked for each time series, and any spectral peak in that band that met the 

F variance ratio test for significance at the 0.99 level, for MTM was also r~corded. For a confident 

interpretation of a periodic signal, it is desirable to have sizeable power as well as a significant F­

test. Features that are resistant to the indicated variations in MTM parameters are reported in Table 

2. We summarize results for the GSL, all precipitation series, all temperature series and then all 

streamflow series. In each subset, sites are arranged from South to North. The SSA results report 

the fractional variance explained by the oscillatory pairs of eigenvectors and the corresponding 

period of the variation. Only the readily interpretable eigenvectors, with dominant eigenvalues are 

used. The last column for the SSA results gives the total variance explained by the selected 

eigenvectors. 

Representative MTM spectra for each hydro-climatic process are presented in Figures 7 

through 10. MTM estimates of coherence across selected time series are presented in Figures 11 

through 13. 
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Data Set 2·3 yr 

MTM B~~nll~ 
GSLMI 7(2,2.3,2.6) 

SNC-P M2 2(2.8) 
SLB-PM2 1(2.3,2.7) 
RIV.PM2 2(2.8) 
OGD-PM2 1(2,2.3) 
COR-PM2 3(2.3) 

SNC-T M2 4(2.2,2.6) 
COR-TM2 3(2.5) 
RIV-TM2 4(2.2,2.7) 

BRBM2 3(2.4,2.8) 
WROM2 5(2.2,2.7) 
BFHM2 6(2.3,2.8) 

SSA Resnlts 
GSL S(25) 
GSL S(50) 
SLB-P S(25) 
COR-T S(30) 
BRB S(25) 
WROS(25) 
BFHS(25) 

TABLE 2 

RESULTS FROM SPECfRAL ANALYSIS 

3·5 yr 

4(3.2,3.5,5) 

4(4.6) 
2(3.3,4.6) 
3(3.6,4.4) 
2(3.9,5.3) 

1(3.3,3.8,4.7) 

1(4.6) 
2(3.1,4,4.8) 
2(3.3,4.7) 

1(3.2,4.2) 
3(3.3,3.6) 
5(3.3,4.8) 

9%(4.5) 

8%(3) 
12%(4) 

29%(5,4) 
22%(4,5) 

Period 
5·8 yr 8-10 yr 

6(6) 

1(7) 
3(7) 
5(7) 
4(6) 

4 

5(6.8,7.7) 
3(6.7) 

2(5.8) 
4(5.7,7) 

16%(6) 

14%(7.5) 
17%(7) 

5 

5 

5(9) 

24%(8-9) 
14%(8-9) 

10·12 yr 12--25 yr longer 

2(12) 

4 
5(10) 
3(12) 
5(9.8) 

1(10) 

1(12) 
3 

21%(12) 
17%(11) 

1 (20) 

3 (>20) 
5(21,14) 

3 
5(14.8) 

6 

2(16) 
1(17.5) 

3(17,24) 

2(21) 
4(25) 
1(21) 

23%(15) 
18%(14) 
16%(15) 
15%(14) 
15%(18) 

21%(13-14) 

2 

1 
2 
2 

3 

4 

2 

n 
5%(35) 

n 
n 
n 
n 
n 

Legend: xxx-P refers to a Precipitation and xxx-T to a Temperature Record 

Total % Var. 
54% 
59% 
26% 
44% 
44% 
51% 
38% 

M 1 = based on MTM with 6, 41t & 3, 21t tapers M2 =based on MTM with 3, 21t & 2,11t tapers 

For MTM the entries for each band represent rank of spectral power for the band(#,#, ... =peaks significant from Ftest at 99%) 

The rank is based on the integral of the spectrum over the band. The band with the most power is ranked 1. 

SO=SSA (m) : % variance(period) 

For SSA, the variance given is for an oscillatory pair, followed by the indicated period. 

Notes: 

(1) All SSA with annual values, MTM with monthly values, GSL is differenced, others are not. 

(2) The window M in SSA is chosen towards n/3, to (a) better resolve low frequencies, and (b) to reduce the effect of 

leakage of high power from the Nyquist frequency (in this case 2 years). SSA is expected to resolve periods in the range 

[M/5,M] 
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We offer the following observations: 

(1) There is significant power in these series at selected bands. There are also clear gaps in the 

spectrum at some frequency bands (e.g., 8-10 years). Such features are generally consistent across 

sites for the same type of series, in particular for sites at similar elevation and latitude. 

(2) Coherent cyclic activity with periods around 2.2, 2.6, 2.8, 3.3, 3.6, 3.9, 4.5, 5, 6, 7, 10, 14, 

17, and 21 years shows up in the MTM analysis of virtually all the series. These cycles are 

consistent with the summary presented in our motivational section. These frequencies are best 

interpreted as representing activity in the bands shown in Table 2. Support for the 14-15 year 

cycle, and the lower frequency end of the ENSO band also comes from the SSA analysis of each 

time series. We report fewer cycles from SSA because we were rather deliberate about excluding 

eigenvectors with low variance even if they showed coherent patterns. 

(3) A small set of low frequency recurrent patterns explains a relatively large fraction of the 

observed variability for some time series. As an example, see figure 5 for a reconstruction of the 

GSL series using only the 11 and 15 year cycles that account for 40% of the variance in the series. 

It is worth noting that significant modes of spatio-temporal variance in global surface temperature 

are observed on each of these time scales in MP94. GV report 15 and 20 year cycles in global 

average temperature, while MP94 identify a broader-band 16-20 year oscillation in gridded surface 

temperature records. 

(4) The relative amplitude of these cycles varies across the series, with the GSL series favoring the 

lower frequencies as expected. A closer examination of these series (e.g., Figure 6) reveals that the 

amplitude of each cycle is variable over each record as well. 

(5) The MTM spectra for precipitation and temperature data from Corinne, Ogden and Riverdale 

(only Corinne is shown here) are very similar, reflecting the proximity of these sites to each other, 
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and the consistency of the local signal. 

(6) The frequencies identified by SSA and MTM for a given time series are usually similar, but not 

identical. The frequency bands identified are consistent. MTM peaks appear to pick the "middle" 

period range of the broader-band SSA. There is also consistency across time series for a given 

method. The differences by method are likely due to differences in the windowing/smoothing 

parameters used, and because SSA is time optimal, and MTM frequency optimal. The different 

values ofM used for SSA isolate somewhat different frequency bands. Our selections for Table 2 

in both cases were quite restrictive. Relaxing the criteria leads to more commonality in the signals 

identified here, as well as additional frequencies. 

A graphical depiction of the relationship between long term precipitation, temperature and 

GSL variability is offered in Figure 6, where the projections of the respective time series on the 

near 15 year oscillatory pair identified by SSA. It is encouraging that independent analyses of 

these time series show a very similar pattern. Note the close correspondence between the time 

pattern of the 15 year cycle in precipitation and annual GSL avo In the early part of the record, the 

temperature signal appears to be in phase with the precipitation and annual GSL avo However, in 

the 1950's the precipitation cycle has near zero amplitude, and the temperature signal loses its 

phase completely. Similarly, the BFH streamflow RC that follows the GSL RC closely in the early 

part of the record, seems to drift in phase in the latter 20 years. This is reminiscent of our earlier 

discussion regarding the attributes of a nonlinear system. At the end of the time series, we have 

negative temperature anomalies for this cycle coinciding with positive anomalies in precipitation 

and annual GSL avo What's the explanation for coincident positive anomalies in all series that we 

see in the earlier part of the record? Recall that the SSA analysis was performed with annual data. 

Seasonal effects are consequently masked. A warmer winter may very well be associated with 

increased sensible heat and moisture fluxes associated with a southwesterly flow. On the other 

hand a milder summer would clearly correspond to a positive lake anomaly. We suspect that the 

Draft U. Lall October 11, 1994 32 



two conditions correspond to persistent large scale circulation regimes that were set up 

preferentially during these periods. Of course, these arguments presume that the low frequency 

temperature forcing is important for GSL av and, at least on the decadal time scale. 

From Figure 5 we see that the combined 11 and 15 year patterns appear to be visually 

convincing as appropriate moving averages or low frequency filters for the data. Here it is worth 

reiterating the point of accounting for such variability in hydro-climatic models and data 

interpretation. 

Let us examine our representative MTM spectra. Comparing Figures 7 and 8, one can argue 

that the spectra are similar with the exception that the GSL spectra appears to be a filtered version 

of the SLB precipitation spectra, with the higher frequencies attenuated. Mechanistically, this is 

precisely what we expect. The transfer function of such a filter is not estimated here. We can also 

see qualitative similarities between the SLB precipitation and the COR temperature spectra. The 

Weber river (Figure 10) spectra is also similar with a bit more lower frequency character than the 

precipitation or temperature, but not as clearly as for the monthly GSL avo Streamflow and lake 

volume change are similar processes. However, the WRO gage samples a much smaller fraction of 

the basin than the GSL, and will thus represent a smaller amount of time and space averaging. 

Some of the differences in these spectra may be accounted for by noting that the GSL record is 

considerably longer, leading to a better ability to resolve lower frequencies. 

Is the GSL essentially mirroring large scale climatic variability, or showing interesting basin 

dynamics? Can we quantify the role of precipitation and temperature in the long term evolution of 

the GSL? We have seen some discussion of this issue through Figure 6. At this point we shall 

focus on coherence between the GSL, precipitation, temperature and streamflow at low frequencies 

«0.25 cycles/year), From Figure 11, we see that there is very high coherence between SLB 

precipitation and GSL av at virtually all frequencies (gaps correspond to spectral gaps in each 

series), Interestingly, the coherence increases with decreasing frequency, and with a small phase 
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lag. This suggests that low frequency precipitation variability largely drives the GSL. From Figure 

12, we observe that coherence between COR temperature and monthly GSL av is high for three 

frequency bands ( >40 years or secular, "" 10 years or decadal, =5 years or interannual). It is worth 

noting that these are precisely the three low frequency bands where consistent climate signals 

impacting on the U.S are noted through a spatiotemporal analysis of global surface temperatures 

and North American surface Sea Level Pressures (Mann et al, 1994). Temperature is nearly 1800 

out of phase with the GSL aV. Recall that the COR-T MTM spectra does not show much power at 

the 10 year period. A weak (in terms of variance) 10 year pattern in temperature nevertheless 

appears to be coherent with the 10 year GSL variability. From Table 2, we see that the COR-P 

precipitation does show a peak (that passes the F-test) near 10 years in the MTM spectra. The 

story is confirmed in Figure 13, where COR-T and SLB-P show a similar relationship to COR-T 

and monthly GSL avo Given the analyses of global and U.S. data reported in Mann et al (1994), 

and the results in Table 2, and Figures 11 through 13, we believe that the lake is largely 

precipitation driven, with temperature forcing important at a few selected frequencies. The 

temperature signals are consistent with the precipitation signals. A consistent climatic signal driving 

the long term evolution of the GSL is thus apparent. 

A better understanding of the mechanisms responsible for this low frequency climate 

variability is important for improved management of regional, anomalous wet periods and 

droughts, and the rise and fall of the GSL. Work on linking these analyses with analyses of large 

scale atmospheric circulation is reported in Mann et al (1994). Explanations for the apparent phase 

lag at low frequencies between temperature, precipitation and GSL (figures 12,13) are developed 

in Mann et al (1994) in terms of the large scale circulation. However, it is clear that the near O· 

phase lag between SLB-P and monthly GSL av, together with statistically significant coherence at 

some frequencies is consistent with precipitative forcing of the GSL. Likewise, a 180· phase and 

significant coherence between monthly GSL av and COR-T at certain frequencies may imply 
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temperature forcing of GSL evaporation. The relationship with precipitation is present over a much 

larger fraction of the frequency range than the one between temperature and the GSL. Precipitative 

forcing may consequently account for far more of the low frequency variability, and some of this 

variability appears to have periodic or quasiperiodic structure 

Closure 

We find consistent evidence for structured low frequency variability from an analysis of a 

number of hydro-climatic time series in the Great Salt Lake basin. The implications of such a 

finding were stressed earlier. Given the richness of the behavior seen, it is hard to accept simple 

explanations of external forcing at 11 and 18.6 year periods corresponding to the sunspot or lunar 

tide cycles, as advanced by some researchers (e.g., Willet and Prohaska, and Currie and O'Brien). 

The climatic behavior observed seems more consistent with the signature of a nonlinear 

dynamical system as discussed earlier - general broadband structure, with preferred frequency 

bands; with a variety of harmonics with power in a finite record; with lower frequencies being 

more important; with phase degeneracy of some signals; with amplitude of the harmonic variable 

dependant on position in the cycle; and the hint of persistent low frequency regimes marked by 

different joint characteristics of precipitation and temperature. Of course, this is a speculative 

argument, and in this manuscript we report no evidence of formal tests of nonlinearity (e.g., higher 

order spectra, or dimensionality or predictability). However, such evidence is forthcoming in 

Sangoyomi and Lall (1993) for the GSL time series. 

The suggestion that low frequency behavior accounts for a large part of the GSL variability 

and that this low frequency signature is closely coupled to precipitation and temperature variability 

is also interesting. Recall that SLB, our index precipitation station is a high elevation station, and is 

believed to be minimally affected by local factors such as lake effect precipitation. The high 
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coherence between SLB-P and GSL av at interannual and interdecadal periods has directed our 

efforts into seeking an understanding of the large scale atmospheric circulation and its relation to 

low frequency local precipitation and temperature variability (see Mann et al (1994)). Preliminary 

analyses suggest strong coherence between decadal and secular variations in spatial pressure and 

temperature fields and the GSL. This gives us hope that we can develop a cogent explanation for 

long term GSL variability in terms of recurrent atmospheric circulation described regimes. 

Mechanistic investigations to develop a physical explanation for the observed low frequency 

hydroclimatic variability should be fruitful, and are being pursued. 
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MTM Spectra (S(f) 1/2) of GSL Monthly Volume Change (6,41t tapers) 
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MTM Spectra (S(f)l/2) of SLB Precipitation (using 3, 21t tapers) 
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MTM Spectra (S(f)l/2) of COR Temperature (using 3, 21t tapers) 
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tapers. The dashed horizontal lines are the 90%, 95%, and 99% confidence limits for coherence 
amplitude. 
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MTM Coherence (Solid) and Phase (Dots) between GSLdV and COR-To using 3, 21t tapers. 
The dashed horizontal lines are the 90%, 95%, and 99% confidence limits for coherence 
amplitude. Note that phase lags of 1800 and -1800 are the same, and switching between them may 
not be significant. The phase difference at 0.01< f<0.05 has temperature leading GSL. 
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MTM Coherence (Solid) and Phase (Dots) between SLB-P and COR-T, using 3, 21t tapers. 
The dashed horizontal lines are the 90%, 95%, and 99% confidence limits for coherence 

amplitude. 

Note that phase lags of 180· and -180· are the same, and switching between them may not be 
significant. The phase difference at 0.01< f<0.05 has temperature leading SLB-P, as was the case 
with GSL. 
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